JP2005010516A - 顕微鏡 - Google Patents

顕微鏡 Download PDF

Info

Publication number
JP2005010516A
JP2005010516A JP2003175185A JP2003175185A JP2005010516A JP 2005010516 A JP2005010516 A JP 2005010516A JP 2003175185 A JP2003175185 A JP 2003175185A JP 2003175185 A JP2003175185 A JP 2003175185A JP 2005010516 A JP2005010516 A JP 2005010516A
Authority
JP
Japan
Prior art keywords
objective lens
focal point
sample
lens
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003175185A
Other languages
English (en)
Inventor
Tomio Endo
富男 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003175185A priority Critical patent/JP2005010516A/ja
Publication of JP2005010516A publication Critical patent/JP2005010516A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

【課題】対物レンズと試料の距離を変えることなく焦点移動を簡単に行なうことができる顕微鏡を提供する。
【解決手段】光源21から発せられる一定の波長域の光を対物レンズ27を通して試料28に照射し、試料28から発せられる光を観察する顕微鏡であって、光源21と対物レンズ27との間の光路に、対物レンズ27の焦点を移動させるように波面を変換する複数の焦点移動レンズを回転板5に設けた焦点移動手段4を配置し、回転板5を回転させることで、所望する焦点移動レンズを光路上に位置させる。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、試料を拡大して観察する顕微鏡に係り、特に、試料の3次元形状の観察を可能にした共焦点顕微鏡に代表される顕微鏡に関する。
【0002】
【従来の技術】
従来、試料の3次元構造の観察を可能にした顕微鏡として、共焦点顕微鏡が用いられている。
【0003】
図5は、このような共焦点顕微鏡の概略構成を示すもので、レーザ光源101から出射される励起光としてのレーザ光の光路上にダイクロックミラー102が配置されている。ダイクロックミラー102は、蛍光を励起するレーザの波長を反射し、蛍光波長は透過するようになっている。
【0004】
ダイクロックミラー102の反射光路上には、XY走査を行う2つのガルバノミラー103、瞳リレーレンズ104、対物レンズ105を介して試料106が配置されている。試料106は、ステージ107の上に配置されている。
【0005】
ダイクロックミラー102の試料106に対する透過光路上には、集光レンズ108、ピンホール109を介して、試料106からの蛍光を光電変換するための光検出器110が配置されている。この光検出器110には、コンピュータ(PC)111が接続されている。
【0006】
このような構成において、レーザ光源101からレーザ光が発せられると、レーザ光は、ダイクロックミラー102で反射される。この反射されたレーザ光は、2つのガルバノミラー103で反射され、瞳リレーレンズ104を介して対物レンズ105に入射する。この場合、瞳リレーレンズ104は、ガルバノミラー103の位置が対物レンズ105の瞳面と共役になるような光学配置にしており、これにより、ガルバノミラー103の角度を振ることで、対物レンズ105の瞳面に入射するレーザ光の入射角が変化し、焦点面でレーザスポットが光軸に対して垂直な面内で2次元に走査するようになる。対物レンズ105に入射したレーザ光が、対物レンズ105の焦点近傍に配置された試料106に入射すると、試料106では入射した励起光により蛍光が発生する。この蛍光は、対物レンズ105、瞳リレーレンズ104、ガルバノミラー103を介してダイクロックミラー102に達し、蛍光である長い波長が透過して集光レンズ108でピンホール109に収束される。ピンホール109は対物レンズ105の焦点と光学的に共役であるので、試料106からの蛍光のうち合焦の成分はピンホール109を通過するが、非合焦の成分は広がってしまうため、ほとんどピンホール109を透過できない。ピンホール109を透過した、焦点のあっている成分は、光検出器110に入力されて光電変換され、PC111でA/D変換された後、PC111の不図示のメモリに記憶される。
【0007】
このようにして、ガルバノミラー103を互いに垂直な方向に振動すると、光軸と垂直な面をXY平面とすれば、一方を高速のX軸、もう一方を低速のY軸の走査を行なうことでXY面の2次元画像を得ることができる。
【0008】
一方、試料106の3次元構造を観察するには、ステージ107により試料106を対物レンズ105に対して上下方向(Z軸方向)に移動させ、対物レンズ105の焦点を試料106に対して相対的に少量ずつ移動させながら、上述のXY走査を繰り返し行うようにする。つまり、このような共焦点顕微鏡では、試料106のZ軸方向の観察を行うために、対物レンズ105の焦点位置をずらそうとすると、試料106と対物レンズ105の相対距離を変化させる必要がある。
【0009】
このため、上述したようにステージ107を使って試料106を移動させる方法や、その他の方法として、対物レンズ105を含む光学系をZ軸方向に動かすこととなる。
【0010】
しかし、このようにしてステージ107または対物レンズ105を移動させるには、両者ともかなりの重量があるため高速で、しかも高精度に動かすことが難しい。また、試料106として生物試料の観察の場合、対物レンズ105と試料106の間に水を介在させた水浸観察等があるが、特に、生物試料が生きた細胞の水浸観察では、ステージ107または対物レンズ105を高速にZ軸方向に移動させると試料106が動いてしまい試料観察に支障がでることがある。
【0011】
そこで、従来、対物レンズ105と試料106の相対距離を変化させずに、対物レンズ105の焦点位置をZ軸方向に移動させる方法として、例えば、特許文献1に開示されるように、対物レンズと試料との間に焦点位置変化手段として平行平板の光学ガラス板を配置し、このガラス板を厚さの異なったものに高速で切換えることで焦点位置を変化させる方法や、特許文献2に開示されるように、光学系として、2枚の弾性透明膜の間に透明な液体を満たした可変焦点レンズを構成し、弾性透明膜の周囲に圧電素子で圧力を加えて焦点を変化させることで、焦点位置を変化させる方法が考えられている。
【0012】
【特許文献1】
特開平9−5046号公報
【0013】
【特許文献2】
特開2000−316120号公報
【0014】
【発明が解決しようとする課題】
ところが、これら従来の焦点移動方法には、次のような欠点がある。
【0015】
顕微鏡に用いられる対物レンズは、高倍率になるほど焦点距離が短くなる。このため、対物レンズと試料との間の距離は、倍率が60倍や100倍になると、数百μm程度しかない。このため、特許文献1のように対物レンズと試料との間に、平行平板のガラス板を配置し、さらに、このガラス板を高速で切換えるのは、極めて難しく、実用的でない。また、高倍率の対物レンズは、分解能をよくするために、NA(開口数)が非常に大きく0.9以上であるため、平行平板のガラス板で焦点距離を変えようとすると、収差が変化して観察像の解像度が著しく悪化してしまう。また、対物レンズと試料の間に液体を介在させた液浸観察の場合は、対物レンズと試料の間に液体が介在するため、この間にガラス板を配置するのは極めて難しくなる。
【0016】
また、可変焦点レンズを使用した方法でも、対物レンズのNAが大きい場合は、可変焦点レンズで焦点位置を変えようとすると、焦点の位置によって収差が変化してしまい、観察像の解像度が著しく悪化してしまう。また、可変焦点レンズそのものが高価であり、このため装置全体が高価になるという問題もある。
【0017】
本発明は上記事情に鑑みてなされたもので、対物レンズと試料の距離を変えることなく焦点移動を簡単に行なうことができる顕微鏡を提供することを目的とする。
【0018】
【課題を解決するための手段】
請求項1記載の発明は、光源から発せられる一定の波長域の光を対物レンズを通して試料に照射し、試料から発せられる光を観察する顕微鏡において、前記光源と対物レンズとの間の光路に配置され、且つ前記対物レンズの焦点を移動させるように波面を変換する焦点移動素子を少なくとも1個有する焦点移動手段と、前記焦点移動手段の焦点移動素子を前記光路上に位置させる切換え手段とを具備したことを特徴としている。
【0019】
請求項2記載の発明は、請求項1記載の発明において、前記焦点移動手段は、前記対物レンズの瞳面と共役の面に配置されることを特徴としている。
【0020】
請求項3記載の発明は、請求項1または2記載の発明において、前記切換え手段は、周縁部に沿って前記焦点移動素子を複数配置した円板状の回転板を有し、該回転板を回転させて前記焦点移動素子を選択的に光路上に位置させることを特徴としている。
【0021】
請求項4記載の発明は、請求項1乃至3のいずれかに記載の発明において、前記焦点移動素子は、1枚以上の光学レンズから構成されることを特徴としている。
【0022】
請求項5記載の発明は、光源と、前記光源からの光を試料上に集光させる対物レンズと、前記光を前記試料上で2次元走査する走査手段と、前記光源と対物レンズとの間の光路に配置され、且つ前記対物レンズの焦点を移動させるように波面を変換する焦点移動素子を少なくとも1個有する焦点移動手段と、前記焦点移動手段の焦点移動素子を前記光路上に位置させる切換え手段と、前記試料上の集光位置から発する光を共焦点観察する共焦点観察手段とを具備したことを特徴としている。
【0023】
この結果、本発明によれば、対物レンズと試料の距離を変えることなく対物レンズの焦点移動を簡単に行なうことができる。
【0024】
また、本発明によれば、焦点移動手段は、光源と対物レンズとの間の光路に配置できるので、対物レンズの焦点移動を高速で行なうことができ、しかも、高倍率でNAの大きな対物レンズに対して収差が変化することもなく、解像度の劣化を防止できる。
【0025】
さらに、本発明によれば、試料として生きた細胞を液浸観察するような場合も、対物レンズと試料の間に液体が介在していても、対物レンズの焦点を移動させることで試料が動いてしまうことがなくなり、正確な試料観察を行なうことができる。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従い説明する。
【0027】
(第1の実施の形態)
図1は、本発明の第1実施の形態が適用される蛍光共焦点顕微鏡の概略構成を示している。図において、1はレーザ光源で、このレーザ光源1は、励起光として一定の波長域のレーザ光を発生するものである。このレーザ光の光路上には、ビームエキスパンダ2、ダイクロックミラー3が配置されている。ダイクロックミラー3は、蛍光を励起するレーザ光の波長を反射し、蛍光波長を透過するような特性を有している。
【0028】
ダイクロックミラー3の反射光路上には、焦点移動手段4、第1の瞳リレーレンズ7、走査手段としてのガルバノミラーユニット8、第2の瞳リレーレンズ9および対物レンズ10が配置されている。また、対物レンズ10の焦点近傍には、試料11が配置されている。
【0029】
焦点移動手段4は、図2に示すように切換え手段として円板状の回転板5の周縁部に円周方向に沿って1個の空穴4aと複数(図示例では9個)の焦点移動レンズ4b、4c、…4jが設けられている。ここでの空穴4aは、レンズが無い状態であり、本来の対物レンズ10の焦点位置を使う場合に用いられる。また、焦点移動レンズ4b、4c、…4jは、対物レンズ10の焦点をそれぞれ異なった距離にするように波面変換するのに用いられ、このうちの焦点移動レンズ4bは、対物レンズ10の焦点を試料11の方向に0.1μmだけ移動させるように波面を平面から球面に変換するもので、同様に焦点移動レンズ4c、4d、…は、それぞれ対物レンズ10の焦点を試料11の方向に0.2μm、0.3μm、…だけ移動させるように波面を平面から球面に変換するものである。これら焦点移動レンズ4b、4c、…は、対物レンズ10の設計と移動させる焦点距離の量などによって条件が異なるため、個々に光線追跡、波面のシミュレーションなどの数値計算を用いて設計されている。
【0030】
なお、これらの焦点移動レンズ4b、4c、…4jは、それぞれ1枚の光学レンズで構成してもよいが、実際は、色収差を取るため2〜3枚の光学レンズで構成されている。
【0031】
図1に戻って、回転板5は、モータ6の回転軸6a上に取り付けられている。
モータ6は、モータドライバ16により駆動され、回転軸6aを介して回転板5を回転させて空穴4a、焦点移動レンズ4b、4c、…を選択的に光路上に位置させるようにしている。
【0032】
第2の瞳リレーレンズ9は、ガルバノミラーユニット8の位置を対物レンズ10の瞳面に共役になるような光学配置とするためのものである。また、第1の瞳リレーレンズ7は、第2の瞳リレーレンズ9で投影された瞳をもう一度リレーして、焦点移動手段4の位置を対物レンズ10の瞳面に共役になるような光学配置とするためのものである。ここで、焦点移動手段4の位置を対物レンズ10の瞳面と共役になるように光学配置しているのは、各焦点移動レンズ4b、4c、…4jより対物レンズ10の瞳面に球面波を入射させた時の対物レンズ10での焦点の移動量を求める計算が比較的簡単にできるからである。このことから、焦点移動手段4は、必ずしも対物レンズ10の瞳面と共役になる位置に配置しなくともよい。
【0033】
ガルバノミラーユニット8は、直交する2方向に光を偏向するための2枚のガルバノミラー8a、8bを有するもので、これらのガルバノミラー8a、8bにより光を2次元方向に偏向するようになっている。これにより、ガルバノミラーユニット8のガルバノミラー8a、8bの角度を振ることで、対物レンズ10の瞳面に入射するレーザ光の入射角が変化し、焦点面でレーザスポットが光軸に対して垂直な面内で2次元に走査するようにしている。
【0034】
一方、ダイクロックミラー3の試料11に対する透過光路上には、共焦点観察手段として、レンズ12、ピンホール13を介して、ホトマルチプライヤー(PMT)14が配置されている。ピンホール13は、対物レンズ10の焦点と光学的に共役な位置に配置され、試料11からの蛍光のうち合焦の成分を通過し、非合焦の成分を遮断して高い空間分解能を与えるためのものである。PMT14は、ピンホール13を透過した焦点のあっている蛍光の成分を受光し、光電変換により電気信号に変換するものである。
【0035】
PMT14には、パーソナルコンピュータ(PC)15に接続されている。PC15は、PMT14からの出力をA/D変換し、不図示のメモリに記憶するようにしている。また、PC15には、モータドライバ16が接続されている。モータドライバ16は、PC15からの指令によりモータ6を駆動して回転板5の回転を制御するようになっている。
【0036】
次に、このように構成した実施の形態の作用について説明する。
【0037】
いま、レーザ光源1からレーザ光が発せられると、レーザ光は、ビームエキスパンダ2を通って、ダイクロックミラー3で反射される。この反射したレーザー光は、焦点移動手段4に入射する。
【0038】
ここで、焦点移動手段4において、仮に、回転板5上の焦点移動レンズ4bが光路上に位置されているものとすると、レーザ光は、焦点移動レンズ4bを透過することで、対物レンズ10の焦点がずれるように平行光からわずかに波面が曲面に変換される。
【0039】
そして、第1の瞳リレーレンズ7を透過し、2つのガルバノミラー8a、8bで反射され、第2の瞳リレーレンズ9を介して対物レンズ10に入射する。この場合、第2の瞳リレーレンズ9は、ガルバノミラーユニット8の位置が対物レンズ10の瞳面と共役にするような光学配置であり、第1の瞳リレーレンズ7は、第2の瞳リレーレンズ9で投影された瞳をもう一度リレーし、焦点移動レンズ4bの位置が対物レンズ10の瞳面と共役になるような光学配置となっている。
【0040】
これにより、ガルバノミラー8a、8bの角度を振ることで、対物レンズ10の瞳面に入射するレーザ光の入射角が変化し、焦点面でのレーザスポットが光軸に対して垂直な面内で2次元に走査される。対物レンズ10に入射したレーザ光は、対物レンズ10の焦点近傍に配置された試料11に励起光として入射する。
この場合、対物レンズ10の焦点位置は、焦点移動レンズ4bにより試料11の方向に0.1μmだけ移動したところになる。
【0041】
試料11では、入射した励起光により蛍光が発生する。この蛍光は、対物レンズ10、第2瞳リレーレンズ9、ガルバノミラーユニット8、第1の瞳リレーレンズ7を介して焦点移動レンズ4bで平行光となって、ダイクロックミラー3に達し、蛍光である長い波長が透過し、レンズ12を介してピンホール13に収束される。
【0042】
ピンホール13は、対物レンズ10の焦点と光学的に共役である。これにより、試料11からの蛍光のうち合焦の成分はピンホールを通過するが、非合焦の成分は広がってしまうため、ほとんどピンホール13を透過できない。ピンホール13を透過した焦点のあっている成分は、PMT14で受光され、光電変換されたのち、PC15に入力され、A/D変換されて不図示のメモリに記憶される。
【0043】
このようにして、ガルバノミラー8a、8bを互いに垂直な方向に振動させ、このとき一方を高速なX軸、もう一方を低速なY軸の走査を行なわせることにより、XY面の2次元画像を取得することができる。
【0044】
次に、試料11の3次元構造を観察する場合を説明する。
【0045】
この場合、始めにPC15からモータドライバ16に指令を出してモータ6により回転板5を回転し、回転板5上のレンズが無い空穴4aを光路上に位置させる。そして、この状態から、上述したガルバノミラー8a、8bの角度を振ってXY走査を行なうことにより、1枚の2次元画像を取得する。この状態は、回転板5上にレンズが無い状態であり、本来の対物レンズ10の焦点位置での2次元画像が取得される。
【0046】
次に、PC15からモータドライバ16に指令を出してモータ6により回転板5を回転し、焦点移動レンズ4bを光軸上に位置させる。この状態で、レーザ光が焦点移動レンズ4bを透過すると、対物レンズ10の焦点が試料11の方向に0.1μmだけ移動するように、波面が平面から曲面に変換される。
【0047】
そして、上述したガルバノミラー8a、8bの角度を振ってXY走査を行なうことにより、対物レンズ10の焦点が試料11の方向に0.1μmだけずれた位置での2次元画像を取得する。
【0048】
以下、同様にして、PC15からモータドライバ16に指令を出してモータ6により回転板5を回転し、焦点移動レンズ4c、4d、…を順番に光軸上に位置させ、対物レンズ10の焦点を試料11の方向に0.1μmずつ移動させながら、それぞれの焦点位置で、ガルバノミラー8a、8bの角度を振ってXY走査を行い、2次元画像を取得する。
【0049】
これにより、これら対物レンズ10の異なる焦点位置から取得された2次元画像から3次元画像を構成することができる。
【0050】
従って、このようにすれば、対物レンズ10の瞳面と光学的に共役な面に対物レンズ10の焦点を移動させるように波面を変換する複数の焦点移動レンズ4b、4c、…を有する回転板5を具備した焦点移動手段4を配置し、回転板5を回転させて、焦点移動レンズ4b、4c、…を光軸上に順次位置させることで、対物レンズ10の異なる焦点位置を設定できるようにしたので、対物レンズ10と試料11の距離を変えることなく対物レンズ10の焦点移動を簡単に行なうことができる。
【0051】
また、焦点移動手段4は、レーザ光源1と対物レンズ10との間の光路に配置できるので、従来の対物レンズと試料との間に極めて狭い空間に平行平板の光学ガラス板を配置したものと比べ、対物レンズ10の焦点移動を高速で行なうことができ、しかも、高倍率でNAの大きな対物レンズに対して収差が変化することもなく、観察像の解像度の劣化を防止できる。
【0052】
さらに、焦点移動手段4は、対物レンズ10の焦点を移動させるように波面を変換する焦点移動レンズ4b、4c、…を選択的に切換えるようにしているので、従来の可変焦点レンズを使用したものと比べても、対物レンズのNAが大きい場合に焦点位置によって収差が変化してしまうことがなく、観察像の解像度の劣化を防止できる。
【0053】
(第2の実施の形態)
次に、本発明の第2の実施の形態を説明する。
【0054】
図3は、本発明の第2の実施の形態が適用される顕微鏡の概略構成を示すものである。図において、21は光源で、この光源21は、一定の波長域の光を発するものである。この光源21から発せられる光の光路上には、第1のレンズ22、第2のレンズ23およびハーフミラー24が配置されている。第1のレンズ22は、光源21からの光を平行光に変換するコレクタレンズの役目をしている。
第2のレンズ23は、後述する焦点移動手段25の位置に光源21の像を投影するためのものである。
【0055】
ハーフミラー24の反射光路上には、焦点移動手段25、瞳リレーレンズ26および対物レンズ27が配置されている。また、対物レンズ27の焦点近傍には、試料28が配置されている。
【0056】
いま、光源21から光が発せられると、この光は、第1のレンズ22と第2のレンズ23を透過し、ハーフミラー24で反射される。反射した光は、第2のレンズ23により、焦点移動手段25の位置に光源21の像を投影する。
【0057】
ここで、焦点移動手段25において、仮に、回転板5上の焦点移動レンズ4bが光路上に位置されているものとすると、焦点移動レンズ4bを透過した光は、対物レンズ27の焦点がずれるようにわずかに波面が曲面に変換される。
【0058】
焦点移動手段25を透過した光は、瞳リレーレンズ26を介して対物レンズ27の瞳面に光源像を投影する。対物レンズ27は、この光源21から光で試料28面を照明する。この場合、対物レンズ27の焦点位置は、焦点移動レンズ4bにより試料28の方向に0.1μmだけ移動したところになる。
【0059】
試料28で反射した光は、図示破線に沿って対物レンズ27、瞳リレーレンズ26、焦点移動手段25を通り、ハーフミラー24を透過してチューブレンズ32を通り接眼レンズ33に入射し、試料像が目視される。
【0060】
次に、対物レンズ27の焦点をZ方向の異なる位置に設定し、それぞれの焦点位置で試料28の観察を行なう場合を説明する。
【0061】
この場合、始めに、モータコントローラ31からモータドライバ30に指令を出してモータ29により回転板5を回転し、回転板5上のレンズが無い空穴4aを光路上に位置させる。この状態で、光源21からの光が空穴4aを通過し、瞳リレーレンズ26、対物レンズ27を透過して試料28を照明することで、試料28の像が観察される。つまり、この状態は、回転板5上にレンズが無い場合で、本来の対物レンズ27の焦点位置の像が観察されることになる。
【0062】
次に、モータコントローラ31からモータドライバ30に指令を出してモータ29により回転板5を回転し、例えば、焦点移動レンズ4bを光軸上に位置させる。この状態で、光源21からの光が焦点移動レンズ4bを透過すると、対物レンズ27の焦点が試料28の方向に0.1μmだけ移動するように、波面が平面から曲面に変換される。この焦点移動レンズ4bを透過した光は、瞳リレーレンズ26、対物レンズ27を透過して試料28を照明する。これにより、対物レンズ27の焦点が試料28の方向に0.1μmだけずれた位置の試料像が観察される。
【0063】
以下、同様にして、モータコントローラ31からの指令により、焦点移動レンズ4b、4c、…4jを選択的に光軸上に位置させることにより、対物レンズ27の焦点を試料28の方向に適宜ずらすことができ、つまり対物レンズ27の焦点をZ方向の異なる位置に設定することができ、それぞれの焦点位置の試料28の像の観察を行なうことができる。
【0064】
従って、このようにしても、対物レンズ27と試料28の距離を動かすことなく、対物レンズ27の焦点を試料28の方向に移動させることができるので、つまり、対物レンズ27の焦点をZ方向の異なる位置に簡単に設定することができるので、試料28上のXY面は勿論、上下方向(Z方向)の所望する場所も容易に観察することができる。
【0065】
また、試料28として生きた細胞を液浸観察するような場合も、対物レンズ27と試料28の間に液体が介在していても、対物レンズ27の焦点を移動させることで試料28が動いてしまうことがなくなり、正確な試料観察を行なうことができる。
【0066】
その他、第1の実施の形態で述べたと同様な効果も期待できる。
【0067】
なお、上述した第1の実施の形態では、蛍光共焦点顕微鏡の例を述べたが、例えば、ダイクロックミラー3を偏光ビームスプリッタ(PBS)に変更し、このPBSと試料11との間の光路中にλ/4板を介在させるようにすれば、半導体や金属試料を観察する反射観察にも使用できる。また、第1の実施の形態では、XY走査をするガルバノミラー8a、8bを1個所に纏めて配置する構成としたが、2つのガルバノミラー8a、8aの間に瞳リレー光学系を配置すれば、ガルバノミラーユニット8の位置を正確に瞳面と共役になるので、収差をさらに減少させることができる。
【0068】
また、上述した第2の実施の形態では、ハーフミラー24を用いているが、これをダイクロックミラーに代え、光源21との間に励起フィルタを介在させ、同時に、ダイクロックミラーと接眼レンズ33との間にバリアフィルターを介在させれば蛍光観察を行なうことができる。
【0069】
さらに、上述した第2の実施の形態では、接眼レンズ33を通して目視観察を行なうようにしたが、これに代えて、CCDで撮像した像の観察も可能である。
【0070】
さらに、上述した焦点移動手段に用いられる回転板5は、図4に示すように内側円周方向に沿って1個の空穴41aと複数(図示例では7個)の焦点移動レンズ41b、41c、…41hを配置するとともに、外側円周方向に沿って、1個の空穴42aと複数(図示例では9個)の焦点移動レンズ42b、42c、…42jを配置して、2種類の対物レンズに対して切り替えて使用できるようにすることもできる。
【0071】
さらに、回転板5に代えて直線方向に複数の焦点移動レンズを配置した板状部材を直線方向に移動可能に配置し、この板状部材の移動により所望する焦点移動レンズを光路上に選択的に配置させるような構成としてもよい。
【0072】
さらに、焦点移動レンズに代えて液晶による焦点移動手段を用いることも可能である。
【0073】
なお、本発明は、上記実施の形態に限定されるものでなく、実施段階では、その要旨を変更しない範囲で種々変形することが可能である。
【0074】
さらに、上記実施の形態には、種々の段階の発明が含まれており、開示されている複数の構成要件における適宜な組み合わせにより種々の発明が抽出できる。
例えば、実施の形態に示されている全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題を解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出できる。
【0075】
【発明の効果】
以上述べたように本発明によれば、対物レンズと試料の距離を変えることなく焦点移動を簡単に行なうことができる顕微鏡を提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の概略構成を示す図。
【図2】第1の実施の形態に用いられる焦点移動手段の概略構成を示す図。
【図3】本発明の第2の実施の形態の概略構成を示す図。
【図4】焦点移動手段の変形例の概略構成を示す図。
【図5】従来の顕微鏡の一例として共焦点顕微鏡の概略構成を示す図。
【符号の説明】
1…レーザ光源、2…ビームエキスパンダ
3…ダイクロックミラー、4…焦点移動手段
4a…空穴、4b、4c、…4j…焦点移動レンズ
5…回転板、6…モータ
6a…回転軸、7…第1の瞳リレーレンズ
8…ガルバノミラーユニット、8a.8b…ガルバノミラー
9…第2の瞳リレーレンズ、10…対物レンズ
11…試料、12…レンズ、13…ピンホール
14…PMT、15…PC、16…モータドライバ
21…光源、22…第1のレンズ、23…第2のレンズ
24…ハーフミラー、25…焦点移動手段
26…瞳リレーレンズ、27…対物レンズ
28…試料、29…モータ、29a…回転軸
30…モータドライバ、31…モータコントローラ
32…チューブレンズ、33…接眼レンズ、41a、42a…空穴、
41b.41c…41h、42b.42c…42j…焦点移動レンズ

Claims (5)

  1. 光源から発せられる一定の波長域の光を対物レンズを通して試料に照射し、試料から発せられる光を観察する顕微鏡において、
    前記光源と対物レンズとの間の光路に配置され、且つ前記対物レンズの焦点を移動させるように波面を変換する焦点移動素子を少なくとも1個有する焦点移動手段と、
    前記焦点移動手段の焦点移動素子を前記光路上に位置させる切換え手段とを具備したことを特徴とする顕微鏡。
  2. 前記焦点移動手段は、前記対物レンズの瞳面と共役の面に配置されることを特徴とする請求項1記載の顕微鏡。
  3. 前記切換え手段は、周縁部に沿って前記焦点移動素子を複数配置した円板状の回転板を有し、該回転板を回転させて前記焦点移動素子を選択的に光路上に位置させることを特徴とする請求項1または2記載の顕微鏡。
  4. 前記焦点移動素子は、1枚以上の光学レンズから構成されることを特徴とする請求項1乃至3のいずれかに記載の顕微鏡。
  5. 光源と、
    前記光源からの光を試料上に集光させる対物レンズと、
    前記光を前記試料上で2次元走査する走査手段と、
    前記光源と対物レンズとの間の光路に配置され、且つ前記対物レンズの焦点を移動させるように波面を変換する焦点移動素子を少なくとも1個有する焦点移動手段と、
    前記焦点移動手段の焦点移動素子を前記光路上に位置させる切換え手段と、
    前記試料上の集光位置から発する光を共焦点観察する共焦点観察手段とを具備したことを特徴とする共焦点顕微鏡。
JP2003175185A 2003-06-19 2003-06-19 顕微鏡 Withdrawn JP2005010516A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175185A JP2005010516A (ja) 2003-06-19 2003-06-19 顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003175185A JP2005010516A (ja) 2003-06-19 2003-06-19 顕微鏡

Publications (1)

Publication Number Publication Date
JP2005010516A true JP2005010516A (ja) 2005-01-13

Family

ID=34098462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175185A Withdrawn JP2005010516A (ja) 2003-06-19 2003-06-19 顕微鏡

Country Status (1)

Country Link
JP (1) JP2005010516A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041142A (ja) * 2011-08-17 2013-02-28 Yokogawa Electric Corp 顕微鏡装置
JP2013190624A (ja) * 2012-03-14 2013-09-26 Takaoka Electric Mfg Co Ltd 焦点位置変更装置およびこれを用いた共焦点光学装置
JP2013235122A (ja) * 2012-05-09 2013-11-21 National Institute Of Advanced Industrial & Technology 微小物の3次元操作装置
JP2013238522A (ja) * 2012-05-16 2013-11-28 Takaoka Electric Mfg Co Ltd 多焦点撮像装置
JP2016202613A (ja) * 2015-04-23 2016-12-08 国立大学法人埼玉大学 生体装着型小型顕微鏡および内視鏡
JP2018077416A (ja) * 2016-11-11 2018-05-17 オリンパス株式会社 顕微鏡
US10890743B2 (en) 2017-02-08 2021-01-12 Olympus Corporation Illumination device and microscope device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041142A (ja) * 2011-08-17 2013-02-28 Yokogawa Electric Corp 顕微鏡装置
JP2013190624A (ja) * 2012-03-14 2013-09-26 Takaoka Electric Mfg Co Ltd 焦点位置変更装置およびこれを用いた共焦点光学装置
US9435982B2 (en) 2012-03-14 2016-09-06 Takaoka Toko Co., Ltd. Focus position changing apparatus and confocal optical apparatus using the same
JP2013235122A (ja) * 2012-05-09 2013-11-21 National Institute Of Advanced Industrial & Technology 微小物の3次元操作装置
JP2013238522A (ja) * 2012-05-16 2013-11-28 Takaoka Electric Mfg Co Ltd 多焦点撮像装置
JP2016202613A (ja) * 2015-04-23 2016-12-08 国立大学法人埼玉大学 生体装着型小型顕微鏡および内視鏡
JP2018077416A (ja) * 2016-11-11 2018-05-17 オリンパス株式会社 顕微鏡
US10890743B2 (en) 2017-02-08 2021-01-12 Olympus Corporation Illumination device and microscope device

Similar Documents

Publication Publication Date Title
JP5287252B2 (ja) レーザ走査共焦点顕微鏡
JP5690394B2 (ja) 焦点調整装置および焦点調整方法
EP2316048B1 (en) Optical arrangement for oblique plane microscopy
JP3816632B2 (ja) 走査型顕微鏡
CN107003508B (zh) 选择性平面照明显微镜学仪器
WO2012035903A1 (ja) 3次元共焦点観察用装置及び観察焦点面変位・補正ユニット
JP4889375B2 (ja) 共焦点顕微鏡および多光子励起型顕微鏡
US9229207B2 (en) Laser scanning microscope with focus-detecting unit
US20040263959A1 (en) Scanning beam optical imaging system for macroscopic imaging of an object
JP7342101B2 (ja) 改良された走査光学顕微鏡
US20110279893A1 (en) Laser scanning microscope
JP2011118264A (ja) 顕微鏡装置
JP4854880B2 (ja) レーザー顕微鏡
JP2017215546A (ja) 共焦点顕微鏡
JP2016091006A (ja) シート照明顕微鏡、及び、シート照明方法
JP4128387B2 (ja) 顕微鏡装置
JP2005010516A (ja) 顕微鏡
JPH07333511A (ja) 顕微鏡
JP2005070477A (ja) 焦点移動機構およびそれを用いた光学顕微鏡
JP5825476B2 (ja) 顕微鏡装置
JP2011118265A (ja) 顕微鏡装置
JP4593141B2 (ja) 光走査型観察装置
JP4722464B2 (ja) 全反射蛍光照明装置
JP2001027728A (ja) 共焦点光スキャナ
JP2006220954A (ja) 蛍光顕微鏡装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905