JP2005001965A - 自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料 - Google Patents
自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料 Download PDFInfo
- Publication number
- JP2005001965A JP2005001965A JP2003169864A JP2003169864A JP2005001965A JP 2005001965 A JP2005001965 A JP 2005001965A JP 2003169864 A JP2003169864 A JP 2003169864A JP 2003169864 A JP2003169864 A JP 2003169864A JP 2005001965 A JP2005001965 A JP 2005001965A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- less
- composite material
- strain
- fine aggregate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 CCCCCCCN*C Chemical compound CCCCCCCN*C 0.000 description 1
Images
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
【課題】ひずみ硬化型セメント系複合材料の充填性と低収縮性を改善する。
【解決手段】材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型の繊維補強セメント複合材料であって,下記〔M1〕の調合マトリックスに,下記〔F1〕のPVA短繊維を1超え〜3vol.%の量で配合してなる自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料。
〔M1〕普通,低熱または中庸熱ポルトランドセメント使用で水結合材重量比:25%以上,単位水量:250〜400Kg/m3,細骨材結合材重量比(S/C):1.5以下(0を含む),細骨材の最大粒径:0.8mm以下,細骨材の平均粒径:0.4mm以下,膨張材:100Kg/m3未満,バイオサッカライド系増粘剤:0.025超え〜1.0Kg/m3未満。
〔F1〕繊維径:50μm以下,繊維長さ:5〜25mm,繊維引張強度:1500〜2400MPa。
【選択図】 なし
【解決手段】材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型の繊維補強セメント複合材料であって,下記〔M1〕の調合マトリックスに,下記〔F1〕のPVA短繊維を1超え〜3vol.%の量で配合してなる自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料。
〔M1〕普通,低熱または中庸熱ポルトランドセメント使用で水結合材重量比:25%以上,単位水量:250〜400Kg/m3,細骨材結合材重量比(S/C):1.5以下(0を含む),細骨材の最大粒径:0.8mm以下,細骨材の平均粒径:0.4mm以下,膨張材:100Kg/m3未満,バイオサッカライド系増粘剤:0.025超え〜1.0Kg/m3未満。
〔F1〕繊維径:50μm以下,繊維長さ:5〜25mm,繊維引張強度:1500〜2400MPa。
【選択図】 なし
Description
【0001】
【発明の属する技術分野】
本発明は,PVA繊維(Polyvinyl Alcohol 系繊維,通称ビニロン繊維と呼ばれている)を配合した高靭性の繊維補強セメント複合材料(FRC材料)の施工性の改善に関する。
【0002】
【従来の技術】
特許文献1には,引張ひずみが1%以上,場合によっては2〜3%パーセントに達するような極めて靭性に富むFRC材料(高靭性FRC材料)が記載されている。このものは,安価なPVA繊維を用いており,その繊維の物性と調合マトリックスの配合を適正な関係に規制した場合には,マルチクラックの発生によって,安定して高い引張ひずみが得られると教示しており,経済的にも有利な材料である。
【0003】
ここで,マルチクラックは,引張応力−ひずみ関係において,初期ひび割れ点以降のひずみは,載荷軸に垂直に発生する多数の微細クラックを意味しており,このマルチクラックを適切に発生させることがこの材料の特徴である。このようなマルチクラックの発生により引張ひずみ1%以上を達成する高靭性FRC材料は「ひずみ硬化型セメント系複合材料」と呼ぶこともできる。
【0004】
【特許文献1】特開2000−7395号公報
【0005】
【発明が解決しようとする課題】
ひずみ硬化型セメント系複合材料における問題の一つは,乾燥収縮や自己収縮による寸法変化が大きく,これに起因する拘束ひずみにより収縮ひび割れが発生する点があり,このために寸法変化の少ない低収縮性を実現しながら高い引張ひずみ性能を実現しなければならない。このことは必ずしも容易ではない。一般的な処法で低収縮性を実現しようとすると,フレッシュ時における粘性および降伏値を高めることになり,施工性に劣る材料すなわち充填性や流動性が低下した材料となり,流動性を高めようとすると材料分離が生じ易い材料となる。
【0006】
したがって,本発明の課題は,特許文献1で提案されたようなひずみ硬化型セメント系複合材料の施工性を改善すること,より具体的には当該材料の低収縮性を実現しながら,自己充填性を有するような材料分離のない流動性を確保することによって,当該材料の施工性を高めることにある。
【0007】
【課題を解決するための手段】
特許文献1で提案した以降においても,本発明者らは前記の課題解決を目的として,ひずみ硬化型セメント系複合材料の低収縮性と硬化後の引張ひずみ性能の関係について種々の試験研究を続けてきたが,下記〔M1〕の調合マトリックスに,下記〔F1〕のPVA短繊維を1超え〜3vol.%の配合量で配合すると,低収縮性と自己充填性を同時に具備する低収縮性のひずみ硬化型セメント系複合材料が得られることを知見した。
【0008】
すなわち,本発明によれば,材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型の繊維補強セメント複合材料であって,下記〔M1〕の調合マトリックスに,下記〔F1〕のPVA短繊維を1超え〜3vol.%の量で配合してなる自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料を提供する。なお,下記〔M1〕のバイオサッカライド系増粘剤として「ウエランガムを除く」と記載したのは,同一出願人に係る特願2001−389498号の出願当初の請求項1に係る発明との重複を避けるためであり,それ以外の意味はない。
〔M1〕
普通ポルトランドセメントまたは低熱ポルトランドセメント使用で水結合材重量比:25%以上,
単位水量:250〜400Kg/m3,
細骨材結合材重量比(S/C):1.5以下(0を含む),
細骨材の最大粒径:0.8mm以下,
細骨材の平均粒径:0.4mm以下,
膨張材:100Kg/m3未満,
バイオサッカライド系増粘剤(但し,ウエランガムは除く):0.025を超え〜1.0Kg/m3未満。
〔F1〕
繊維径:50μm以下,
繊維長さ:5〜25mm,
繊維引張強度:1500〜2400MPa。
【0009】
また,本発明によれば,材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型の繊維補強セメント複合材料であって,下記〔M1〕の調合マトリックスに,下記〔F1〕のPVA短繊維を1超え〜3vol.%の量で配合してなる自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料を提供する。
〔M1〕
中庸熱ポルトランドセメント使用で水結合材重量比:25%以上,
単位水量:250〜400Kg/m3,
細骨材結合材重量比(S/C):1.5以下(0を含む),
細骨材の最大粒径:0.8mm以下,
細骨材の平均粒径:0.4mm以下,
膨張材:100Kg/m3未満,
バイオサッカライド系増粘剤:0.025を超え〜1.0Kg/m3未満。
〔F1〕
繊維径:50μm以下,
繊維長さ:5〜25mm,
繊維引張強度:1500〜2400MPa。
【0010】
本発明材料は,合成床版として橋梁に適用すると,従来のものにはない優れた疲労耐力を示す。また,本発明材料は鉄筋内臓の型枠,若しくは鉄筋を内臓しない型枠として適用すると,この型枠を用いてコンクリートを打設した場合に,コンクリートと一体化して優れた耐震構造物を形成することができる。
【0011】
【発明の実施の形態】
ひずみ硬化型セメント系複合材料において,硬化後の高い引張ひずみ性能と低い収縮性を同時に実現するには,以下の条件が必要である。
(1) できるだけ小さな粒径の骨材,望ましくは最大粒径0.8mm以下で平均粒径0.4mm以下の骨材を使用する。
(2) できるだけ少ない単位水量,望ましくは400Kg/m3以下の単位水量に抑制し,適切な収縮低減策を用いる。
(3) 繊維分散を確実にし材料分離を抑えるためにフレッシュ時の粘性を高める。このために増粘剤を添加する。
【0012】
しかし,単純に前記の(1) 〜(3) の条件を満たそうとすると,フレッシュ時の粘性および降伏値を高めることになるので施工性を劣化させる結果となる。すなわち,繊維分散を確実にするレベルまで増粘剤の添加で粘度を高めると,粘り気が高く同時に降伏値も上昇して施工性に劣る材料となる傾向が顕著となり,反対に粘度を抑えると,繊維分散が不確実になり,硬化後の靭性(マルチクラック発生)に悪影響を与えることなるので,フレッシュ時の施工性と硬化後の引張ひずみ性能を両立させることは一般に困難である。さらに,単位水量を400Kg/m3以下に抑えた場合であっても,通常のモルタルやコンクリートと比較して非常に多い水量となるので,乾燥収縮が大きくなり,乾燥収縮ひび割れの問題が生ずる。そしてひずみ硬化型セメント系複合材料では粉体量が必然的に多くなることから流動性の経時的低下が著しくなり(いわゆるスランプロスが大きく),練り上がりから施工までに短時間しかとれなくなる。
【0013】
したがって,前記の(1) 〜(3) の条件を満たしたうえで,さらに施工性を改善しようとすると,大きな困難に遭遇した。だが,この施工性の問題が解決されないと,ひずみ硬化型セメント系複合材料の実際の適用が制限されることがある。例えば,配筋が密であったり,充填し難い形状の型枠中に打設しようとすると,鉄筋の下部等に欠陥を生じるおそれがあった。
【0014】
ところが,適量のバイオサッカライド系増粘剤を使用したうえで,前記〔F1〕で特定されるPVA繊維を前記〔M1〕で特定される調合のマトリックスに対して1超え〜3vol.%の量で配合した場合には,前記の施工性の問題が解決されて優れた自己充填性を示すフレッシュ性状となり,しかも,ひずみ硬化型セメント系複合材料としての引張ひずみ性能を満足し且つ低収縮性も満足するものが得られることがわかった。バイオサッカライド系増粘剤は,コーンシロップなどの原料に微生物を植え付けて好気発酵させて製造される微生物発酵多糖類であり,例えば代表的には菌体番号Alcaligenes ATCC 31555の菌種によって産出されるウエランガムや, 菌体番号Alcaligenes ATCC 53159の菌種によって産出されるデュータンガムなどがある。このようなバイオサッカライド系増粘剤の配合量は0.025Kg/m3以下ではその効果が発現できず,他方1.0Kg/m3以上添加してもその効果が飽和し,かえって施工性が低下するようになるので0.025Kg/m3を超え〜1.0Kg/m3未満の範囲で添加するのがよい。
【0015】
本発明で特定するその他の事項について以下さらに説明する。〔M1〕の調合において,マトリックスの水結合材比が25%未満では〔F1〕の繊維にとってはマトリックスの弾性係数と破壊靭性が高くなってマルチクラックが発生せず,1%以上の引張ひずみが発生し難い。なお,水/結合材比は,詳しくは水/(セメント+混和材)を意味している。セメントとしては普通ポルトランドセメント,低熱ポルトランドセメントまたは中庸熱ポルトランドセメントを使用できる。本発明で使用できる混和材としては,高炉スラグ微粉末,フライアッシュ,シリカフューム,石灰石微粉末等が挙げられる。
【0016】
また,砂結合材比が1.5を超えるとPVA繊維にとってはマトリックスの弾性係数と破壊靭性が高くなってマルチクラックが発生せず,1%以上の引張ひずみが発生し難くなる。したがって,〔F1〕の繊維を用いる場合のマトリックスは水結合材比が25%以上,好ましくは30%以上とし,砂結合材比は1.5以下とする。しかし,この調合のマトリクスであっても,〔F1〕繊維の配合量が1vol.%以下ではマルチクラックが発生し難いので1vol.%より多くする必要がある。しかし,あまり多く配合しても効果は飽和するので3vol.%以下とする。
【0017】
また,この繊維配合量であっても,繊維の長さが5mm未満であると,マルチクラックが発生しないので,5mm以上の長さのものを使用する必要がある。しかし,25mmより長いものを使用しても,前記の配合量ではマルチクラックが発生しなくなる。したがって〔F1〕の繊維の長さは5〜25mmとする必要があり,好ましくは6〜20mm,さらに好ましくは8〜15mmである。
【0018】
以下に,試験例を挙げて本発明をさらに説明する。
【0019】
表1に材料配合の例を示した。表1において,セメントの種類として普通と記したものは普通ポルトランドセメント(太平洋セメント株式会社製),低熱は低熱ポルトランドセメント(太平洋セメント株式会社製),中庸熱は中庸熱ポルトランドセメント(太平洋セメント株式会社製)である。
【0020】
膨張材は各例とも市販のカルシウムサルフォアルミネット系膨張材(電気化学工業株式会社製の商品名デンカCSA#20)を使用した。これに代えて生石灰系のものや石灰−エトリンガイト複合系のものも使用可能である。繊維は表1に表示の径,長さおよび引張強度を有するPVA繊維(ビニロン繊維)を使用した。ウエランガムは菌体番号 Alcaligenes ATCC 31555 の菌種によって産出される微生物発酵多糖類である。デュータンガムはAlcaligenes ATCC 53159の菌種によって産出される微生物発酵多糖類である。各例とも粉末状のものを表示の量で添加した。HECはヒロドキシエチルセルロースを表しており,住友精化株式会社製の商品名フジケミHECAV−15Fを使用した。
【0021】
表1の配合の各材料を練り混ぜ,テーブルフローまたはスランプフローとポックス充填高さを測定すると共にそれらの試験において材料分離の程度を観察してそのフレッシュ性状を評価した。また,硬化後の特性としては,特開2000−7395号公報に記載されたものと同様の材令28日の引張試験に供し,引張応力−ひずみ曲線における最大引張応力値でのひずみ量(%)を求めマルチクラックの発生の有無を調べた。それらの結果を表1に併記した。
【0022】
なお,ボックス充填高さは,土木学会の高流動コンクリート施工指針(1998)における土木学会基準案の充填装置を用いた間げき通過性試験方法に定めされたボックス型容器を用いた試験に準じ,その試験においてボックス高さを測定した。同指針ではボックス高さが300mmを超えるものを充填性があると定義しており,ここでもその定義に従って,300mmを超えるものを自己充填性の判定の基準として採用し,超えるものを◎,以下のものを×で表示した。またこの試験において材料分離を生じなかったものを◎印,生じたものを×印で表示した。また,ひずみ硬化型セメント系複合材料としての評価は,マルチクラックが発生して引張ひずみが1%以上であったものを◎印,引張ひずみが1%未満であったものを×印で表示した。
【0023】
【表1】
【0024】
表1より,実施例1〜9の配合のもの(普通,低熱または中庸熱ポルトランドセメント使用)は全てひずみ硬化型セメント系複合材料としての要件を充足しながら,そのフレッシュ性状としては自己充填性が良好で材料分離も生じていないことがわかる。なお,表示されていないが,これら実施例1〜9のものは1時間後であっても自己充填性を示してスランプロスの問題も生じないものであった。
【0025】
これに対し,比較例1は,実施例7(普通セメント使用)のデュータンガムをHECに変えたものであるが,引張ひずみ1%の要件は充足するが,自己充填性の条件であるボックス高さ300mmを満足せず自己充填性が良好ではない。比較例2は,実施例2(低熱セメント使用)のウエランガムをHECに変えたものであるが,引張ひずみ1%の要件は充足するが同じく自己充填性を満足しない。比較例3は,比較例1よりもHECの量を減じることにより,降伏値を小さくして充填性の向上を目指したものであるが,材料分離を生じて良好な結果を得なかった。比較例4は実施例7(普通セメント使用)のデュータンガム配合量を0.025Kg/m3まで低下させたものであるが,デュータンガムを使用してもこの添加量では材料分離を生じて自己充填性および引張ひずみ1%を満足しないことを示している。比較例5は実施例7(普通セメント使用)のデュータンガム配合量を1.0Kg/m3まで増加させたものであるが,粘性が強すぎて自己充填性を悪くなったことを示している。なお,表示はしなかったが,HECに変えて同系の増粘剤であるMC(メチルセルロース)を用いた試験も行ったが,HECとほぼ同様の結果となった。
【0026】
次に収縮性状について,表1の実施例2の材料の乾燥収縮率を測定した結果を図1に示した。図1の結果から,この材料の乾燥収縮量は, 一般的なコンクリートの乾燥収縮量レベルの8×10−4と同等のレベルに抑えられていることがわかる。表1の各実施例では添加しなかったが,本発明材料においては,一般的なコンクリートの収縮低減剤例えば低級アルコール系,ポリエーテル系,グリコールエーテル系,アミノアルコール系,ポリエーテル系などの収縮低減剤を配合すると一層小さな収縮を実現できる。
【0027】
このように,本発明のひずみ硬化型セメント系複合材料は,フレッシュ性状では自己充填性を有しながら硬化状態では高い靭性と低収縮性を有するので,耐久性が特に要求される構造物に有利に適用できる。その代表例を以下に挙げる。
【0028】
図2は,橋梁の合成床版に本発明のひずみ硬化型セメント系複合材料を適用した例を示す略断面図である。図2において1は合成床版であり,この床版1は本発明に従うひずみ硬化型セメント系複合材料によって形成されている。この合成床版1は工場生産されたものであるが,現場打設で形成することも可能であり,橋軸方向の床版下端筋2と橋軸直角方向の床版下端筋3を内臓している。この合成床版1を型枠として使用し,さらに合成床版1nを橋軸方向に継ぎ足すさいには,下端筋2のフック接続7が形成できる間隔を設けておき,この間隔の位置で下端筋2および上端筋4のフック接続7を行う。この合成床版1の上に橋軸方向の床版上端筋4と橋軸直角方向の床版上端筋5を配筋したうえ,普通コンクリート8を打設して,橋梁の上部工コンクリート構造物が完成する。
【0029】
図3は,本発明に従うひずみ硬化型セメント系複合材料を用いた柱型枠の水平断面を示している。この場合には,軸方向の主筋9および軸直角方向の剪断補強筋10を内臓した状態で本発明のひずみ硬化型セメント系複合材料12を用いて柱型枠13を製作することができる。この柱型枠13の内部空洞14内に通常のコンクリートを打設することによって,耐震性能に優れた高強度のコンクリート柱が形成できる。柱に限らず梁部材等も梁型枠を用いて同様に形成することができる。なお,主筋9および剪断補強筋10を内臓しない場合には,内部空洞14内に配筋を行うことになるが,この場合にも,かぶりコンクリートが高靭性FRCとなっていることで大変形時のはく落が防止される高性能の柱とすることができる。
【0030】
図4は,いずれも厚み180mmで,長さ3000mm,幅2200mmの3種の合成床版について,移動荷重載荷による曲げ疲労試験を行った結果を示したものである。図中のECC試験体は,図2のものに相当する配合のひずみ硬化型セメント系複合材料からなるもの,RC試験体は通常のコンクリートを用いたもの,SFRC試験体は参考のために全断面が鋼繊維補強コンクリートを用いたものである。配筋はECC試験体とRC試験体は同一条件で行ってある。図4の結果から明らかなように,本発明のひずみ硬化型セメント系複合材料を用いた合成床版は,そのセメント系複合材料部分が全断面の1/4程度であるにも拘わらず全断面が鋼繊維補強コンクリートであるSFRC試験体と同等以上の疲労耐力を有していることがわかる。
【0031】
【発明の効果】
以上説明したように,本発明によるひずみ硬化型セメント系複合材料によれば次のような効果を奏することができる。
(1) 自己充填性に優れるので密な配筋部でも密実に材料を充填できる。また,厚みの薄い材料の流し込み充填もできる。その結果,高靭性という本来のひずみ硬化型セメント系複合材料の特性を十分に発揮することができる。
(2) 乾燥収縮が通常のコンクリートと少なくとも同程度であるので,収縮に起因するひび割れ発生の問題が少ない。
(3) 優れた疲労耐力を有するのでその合成合版を橋梁等に適用した場合に疲労寿命を著しく高めることができる。
(4) 過大な曲げモーメントやせん断力を受けても,ひび割れを微細なレベル(通常0.1mm程度)に抑制できるので,水分や化学物質の浸透を抑制することができ,部材の耐久性を高めることができる。
(5) 地震載荷時に曲げせん断力による大きな変形を受けても,曲げ圧縮による本発明材料のかぶり部分は剥落を生じないため,急激な耐力低下が現れない。
(6) 鉄筋内臓の型枠として使用した場合には,鉄筋と本発明材料との付着力および付着靭性が高いので,鉄筋付着破壊を抑制し,高い部材耐力と靭性を実現できる。
(7) 鉄筋を内臓しない型枠して使用した場合には,本発明材料の高い引張強度および曲げ強度を利用することによって型枠を薄肉化することができるので,型枠の大幅な軽量化を図ることができる。
(8) 本発明材料は鋸による切断,釘打ち,ビス止め,ボルト止めが可能であるので,現場加工が容易で加工効率の向上に寄与することができる。
【図面の簡単な説明】
【図1】本発明に従う材料の乾燥収縮率を測定した結果を示す図である。
【図2】本発明に従う材料からなる合成床版を用いた橋梁上部工のコンクリート構造物の略断面図である。
【図3】本発明に従う材料からなる柱状型枠の略断面図である。
【図4】本発明に従う材料の疲労試験結果を他の材料と比較して示した図である。
【符号の説明】
1 本発明に従う合成床版
8 打設された普通コンクリート
13 本発明に従う柱状型枠
【発明の属する技術分野】
本発明は,PVA繊維(Polyvinyl Alcohol 系繊維,通称ビニロン繊維と呼ばれている)を配合した高靭性の繊維補強セメント複合材料(FRC材料)の施工性の改善に関する。
【0002】
【従来の技術】
特許文献1には,引張ひずみが1%以上,場合によっては2〜3%パーセントに達するような極めて靭性に富むFRC材料(高靭性FRC材料)が記載されている。このものは,安価なPVA繊維を用いており,その繊維の物性と調合マトリックスの配合を適正な関係に規制した場合には,マルチクラックの発生によって,安定して高い引張ひずみが得られると教示しており,経済的にも有利な材料である。
【0003】
ここで,マルチクラックは,引張応力−ひずみ関係において,初期ひび割れ点以降のひずみは,載荷軸に垂直に発生する多数の微細クラックを意味しており,このマルチクラックを適切に発生させることがこの材料の特徴である。このようなマルチクラックの発生により引張ひずみ1%以上を達成する高靭性FRC材料は「ひずみ硬化型セメント系複合材料」と呼ぶこともできる。
【0004】
【特許文献1】特開2000−7395号公報
【0005】
【発明が解決しようとする課題】
ひずみ硬化型セメント系複合材料における問題の一つは,乾燥収縮や自己収縮による寸法変化が大きく,これに起因する拘束ひずみにより収縮ひび割れが発生する点があり,このために寸法変化の少ない低収縮性を実現しながら高い引張ひずみ性能を実現しなければならない。このことは必ずしも容易ではない。一般的な処法で低収縮性を実現しようとすると,フレッシュ時における粘性および降伏値を高めることになり,施工性に劣る材料すなわち充填性や流動性が低下した材料となり,流動性を高めようとすると材料分離が生じ易い材料となる。
【0006】
したがって,本発明の課題は,特許文献1で提案されたようなひずみ硬化型セメント系複合材料の施工性を改善すること,より具体的には当該材料の低収縮性を実現しながら,自己充填性を有するような材料分離のない流動性を確保することによって,当該材料の施工性を高めることにある。
【0007】
【課題を解決するための手段】
特許文献1で提案した以降においても,本発明者らは前記の課題解決を目的として,ひずみ硬化型セメント系複合材料の低収縮性と硬化後の引張ひずみ性能の関係について種々の試験研究を続けてきたが,下記〔M1〕の調合マトリックスに,下記〔F1〕のPVA短繊維を1超え〜3vol.%の配合量で配合すると,低収縮性と自己充填性を同時に具備する低収縮性のひずみ硬化型セメント系複合材料が得られることを知見した。
【0008】
すなわち,本発明によれば,材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型の繊維補強セメント複合材料であって,下記〔M1〕の調合マトリックスに,下記〔F1〕のPVA短繊維を1超え〜3vol.%の量で配合してなる自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料を提供する。なお,下記〔M1〕のバイオサッカライド系増粘剤として「ウエランガムを除く」と記載したのは,同一出願人に係る特願2001−389498号の出願当初の請求項1に係る発明との重複を避けるためであり,それ以外の意味はない。
〔M1〕
普通ポルトランドセメントまたは低熱ポルトランドセメント使用で水結合材重量比:25%以上,
単位水量:250〜400Kg/m3,
細骨材結合材重量比(S/C):1.5以下(0を含む),
細骨材の最大粒径:0.8mm以下,
細骨材の平均粒径:0.4mm以下,
膨張材:100Kg/m3未満,
バイオサッカライド系増粘剤(但し,ウエランガムは除く):0.025を超え〜1.0Kg/m3未満。
〔F1〕
繊維径:50μm以下,
繊維長さ:5〜25mm,
繊維引張強度:1500〜2400MPa。
【0009】
また,本発明によれば,材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型の繊維補強セメント複合材料であって,下記〔M1〕の調合マトリックスに,下記〔F1〕のPVA短繊維を1超え〜3vol.%の量で配合してなる自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料を提供する。
〔M1〕
中庸熱ポルトランドセメント使用で水結合材重量比:25%以上,
単位水量:250〜400Kg/m3,
細骨材結合材重量比(S/C):1.5以下(0を含む),
細骨材の最大粒径:0.8mm以下,
細骨材の平均粒径:0.4mm以下,
膨張材:100Kg/m3未満,
バイオサッカライド系増粘剤:0.025を超え〜1.0Kg/m3未満。
〔F1〕
繊維径:50μm以下,
繊維長さ:5〜25mm,
繊維引張強度:1500〜2400MPa。
【0010】
本発明材料は,合成床版として橋梁に適用すると,従来のものにはない優れた疲労耐力を示す。また,本発明材料は鉄筋内臓の型枠,若しくは鉄筋を内臓しない型枠として適用すると,この型枠を用いてコンクリートを打設した場合に,コンクリートと一体化して優れた耐震構造物を形成することができる。
【0011】
【発明の実施の形態】
ひずみ硬化型セメント系複合材料において,硬化後の高い引張ひずみ性能と低い収縮性を同時に実現するには,以下の条件が必要である。
(1) できるだけ小さな粒径の骨材,望ましくは最大粒径0.8mm以下で平均粒径0.4mm以下の骨材を使用する。
(2) できるだけ少ない単位水量,望ましくは400Kg/m3以下の単位水量に抑制し,適切な収縮低減策を用いる。
(3) 繊維分散を確実にし材料分離を抑えるためにフレッシュ時の粘性を高める。このために増粘剤を添加する。
【0012】
しかし,単純に前記の(1) 〜(3) の条件を満たそうとすると,フレッシュ時の粘性および降伏値を高めることになるので施工性を劣化させる結果となる。すなわち,繊維分散を確実にするレベルまで増粘剤の添加で粘度を高めると,粘り気が高く同時に降伏値も上昇して施工性に劣る材料となる傾向が顕著となり,反対に粘度を抑えると,繊維分散が不確実になり,硬化後の靭性(マルチクラック発生)に悪影響を与えることなるので,フレッシュ時の施工性と硬化後の引張ひずみ性能を両立させることは一般に困難である。さらに,単位水量を400Kg/m3以下に抑えた場合であっても,通常のモルタルやコンクリートと比較して非常に多い水量となるので,乾燥収縮が大きくなり,乾燥収縮ひび割れの問題が生ずる。そしてひずみ硬化型セメント系複合材料では粉体量が必然的に多くなることから流動性の経時的低下が著しくなり(いわゆるスランプロスが大きく),練り上がりから施工までに短時間しかとれなくなる。
【0013】
したがって,前記の(1) 〜(3) の条件を満たしたうえで,さらに施工性を改善しようとすると,大きな困難に遭遇した。だが,この施工性の問題が解決されないと,ひずみ硬化型セメント系複合材料の実際の適用が制限されることがある。例えば,配筋が密であったり,充填し難い形状の型枠中に打設しようとすると,鉄筋の下部等に欠陥を生じるおそれがあった。
【0014】
ところが,適量のバイオサッカライド系増粘剤を使用したうえで,前記〔F1〕で特定されるPVA繊維を前記〔M1〕で特定される調合のマトリックスに対して1超え〜3vol.%の量で配合した場合には,前記の施工性の問題が解決されて優れた自己充填性を示すフレッシュ性状となり,しかも,ひずみ硬化型セメント系複合材料としての引張ひずみ性能を満足し且つ低収縮性も満足するものが得られることがわかった。バイオサッカライド系増粘剤は,コーンシロップなどの原料に微生物を植え付けて好気発酵させて製造される微生物発酵多糖類であり,例えば代表的には菌体番号Alcaligenes ATCC 31555の菌種によって産出されるウエランガムや, 菌体番号Alcaligenes ATCC 53159の菌種によって産出されるデュータンガムなどがある。このようなバイオサッカライド系増粘剤の配合量は0.025Kg/m3以下ではその効果が発現できず,他方1.0Kg/m3以上添加してもその効果が飽和し,かえって施工性が低下するようになるので0.025Kg/m3を超え〜1.0Kg/m3未満の範囲で添加するのがよい。
【0015】
本発明で特定するその他の事項について以下さらに説明する。〔M1〕の調合において,マトリックスの水結合材比が25%未満では〔F1〕の繊維にとってはマトリックスの弾性係数と破壊靭性が高くなってマルチクラックが発生せず,1%以上の引張ひずみが発生し難い。なお,水/結合材比は,詳しくは水/(セメント+混和材)を意味している。セメントとしては普通ポルトランドセメント,低熱ポルトランドセメントまたは中庸熱ポルトランドセメントを使用できる。本発明で使用できる混和材としては,高炉スラグ微粉末,フライアッシュ,シリカフューム,石灰石微粉末等が挙げられる。
【0016】
また,砂結合材比が1.5を超えるとPVA繊維にとってはマトリックスの弾性係数と破壊靭性が高くなってマルチクラックが発生せず,1%以上の引張ひずみが発生し難くなる。したがって,〔F1〕の繊維を用いる場合のマトリックスは水結合材比が25%以上,好ましくは30%以上とし,砂結合材比は1.5以下とする。しかし,この調合のマトリクスであっても,〔F1〕繊維の配合量が1vol.%以下ではマルチクラックが発生し難いので1vol.%より多くする必要がある。しかし,あまり多く配合しても効果は飽和するので3vol.%以下とする。
【0017】
また,この繊維配合量であっても,繊維の長さが5mm未満であると,マルチクラックが発生しないので,5mm以上の長さのものを使用する必要がある。しかし,25mmより長いものを使用しても,前記の配合量ではマルチクラックが発生しなくなる。したがって〔F1〕の繊維の長さは5〜25mmとする必要があり,好ましくは6〜20mm,さらに好ましくは8〜15mmである。
【0018】
以下に,試験例を挙げて本発明をさらに説明する。
【0019】
表1に材料配合の例を示した。表1において,セメントの種類として普通と記したものは普通ポルトランドセメント(太平洋セメント株式会社製),低熱は低熱ポルトランドセメント(太平洋セメント株式会社製),中庸熱は中庸熱ポルトランドセメント(太平洋セメント株式会社製)である。
【0020】
膨張材は各例とも市販のカルシウムサルフォアルミネット系膨張材(電気化学工業株式会社製の商品名デンカCSA#20)を使用した。これに代えて生石灰系のものや石灰−エトリンガイト複合系のものも使用可能である。繊維は表1に表示の径,長さおよび引張強度を有するPVA繊維(ビニロン繊維)を使用した。ウエランガムは菌体番号 Alcaligenes ATCC 31555 の菌種によって産出される微生物発酵多糖類である。デュータンガムはAlcaligenes ATCC 53159の菌種によって産出される微生物発酵多糖類である。各例とも粉末状のものを表示の量で添加した。HECはヒロドキシエチルセルロースを表しており,住友精化株式会社製の商品名フジケミHECAV−15Fを使用した。
【0021】
表1の配合の各材料を練り混ぜ,テーブルフローまたはスランプフローとポックス充填高さを測定すると共にそれらの試験において材料分離の程度を観察してそのフレッシュ性状を評価した。また,硬化後の特性としては,特開2000−7395号公報に記載されたものと同様の材令28日の引張試験に供し,引張応力−ひずみ曲線における最大引張応力値でのひずみ量(%)を求めマルチクラックの発生の有無を調べた。それらの結果を表1に併記した。
【0022】
なお,ボックス充填高さは,土木学会の高流動コンクリート施工指針(1998)における土木学会基準案の充填装置を用いた間げき通過性試験方法に定めされたボックス型容器を用いた試験に準じ,その試験においてボックス高さを測定した。同指針ではボックス高さが300mmを超えるものを充填性があると定義しており,ここでもその定義に従って,300mmを超えるものを自己充填性の判定の基準として採用し,超えるものを◎,以下のものを×で表示した。またこの試験において材料分離を生じなかったものを◎印,生じたものを×印で表示した。また,ひずみ硬化型セメント系複合材料としての評価は,マルチクラックが発生して引張ひずみが1%以上であったものを◎印,引張ひずみが1%未満であったものを×印で表示した。
【0023】
【表1】
【0024】
表1より,実施例1〜9の配合のもの(普通,低熱または中庸熱ポルトランドセメント使用)は全てひずみ硬化型セメント系複合材料としての要件を充足しながら,そのフレッシュ性状としては自己充填性が良好で材料分離も生じていないことがわかる。なお,表示されていないが,これら実施例1〜9のものは1時間後であっても自己充填性を示してスランプロスの問題も生じないものであった。
【0025】
これに対し,比較例1は,実施例7(普通セメント使用)のデュータンガムをHECに変えたものであるが,引張ひずみ1%の要件は充足するが,自己充填性の条件であるボックス高さ300mmを満足せず自己充填性が良好ではない。比較例2は,実施例2(低熱セメント使用)のウエランガムをHECに変えたものであるが,引張ひずみ1%の要件は充足するが同じく自己充填性を満足しない。比較例3は,比較例1よりもHECの量を減じることにより,降伏値を小さくして充填性の向上を目指したものであるが,材料分離を生じて良好な結果を得なかった。比較例4は実施例7(普通セメント使用)のデュータンガム配合量を0.025Kg/m3まで低下させたものであるが,デュータンガムを使用してもこの添加量では材料分離を生じて自己充填性および引張ひずみ1%を満足しないことを示している。比較例5は実施例7(普通セメント使用)のデュータンガム配合量を1.0Kg/m3まで増加させたものであるが,粘性が強すぎて自己充填性を悪くなったことを示している。なお,表示はしなかったが,HECに変えて同系の増粘剤であるMC(メチルセルロース)を用いた試験も行ったが,HECとほぼ同様の結果となった。
【0026】
次に収縮性状について,表1の実施例2の材料の乾燥収縮率を測定した結果を図1に示した。図1の結果から,この材料の乾燥収縮量は, 一般的なコンクリートの乾燥収縮量レベルの8×10−4と同等のレベルに抑えられていることがわかる。表1の各実施例では添加しなかったが,本発明材料においては,一般的なコンクリートの収縮低減剤例えば低級アルコール系,ポリエーテル系,グリコールエーテル系,アミノアルコール系,ポリエーテル系などの収縮低減剤を配合すると一層小さな収縮を実現できる。
【0027】
このように,本発明のひずみ硬化型セメント系複合材料は,フレッシュ性状では自己充填性を有しながら硬化状態では高い靭性と低収縮性を有するので,耐久性が特に要求される構造物に有利に適用できる。その代表例を以下に挙げる。
【0028】
図2は,橋梁の合成床版に本発明のひずみ硬化型セメント系複合材料を適用した例を示す略断面図である。図2において1は合成床版であり,この床版1は本発明に従うひずみ硬化型セメント系複合材料によって形成されている。この合成床版1は工場生産されたものであるが,現場打設で形成することも可能であり,橋軸方向の床版下端筋2と橋軸直角方向の床版下端筋3を内臓している。この合成床版1を型枠として使用し,さらに合成床版1nを橋軸方向に継ぎ足すさいには,下端筋2のフック接続7が形成できる間隔を設けておき,この間隔の位置で下端筋2および上端筋4のフック接続7を行う。この合成床版1の上に橋軸方向の床版上端筋4と橋軸直角方向の床版上端筋5を配筋したうえ,普通コンクリート8を打設して,橋梁の上部工コンクリート構造物が完成する。
【0029】
図3は,本発明に従うひずみ硬化型セメント系複合材料を用いた柱型枠の水平断面を示している。この場合には,軸方向の主筋9および軸直角方向の剪断補強筋10を内臓した状態で本発明のひずみ硬化型セメント系複合材料12を用いて柱型枠13を製作することができる。この柱型枠13の内部空洞14内に通常のコンクリートを打設することによって,耐震性能に優れた高強度のコンクリート柱が形成できる。柱に限らず梁部材等も梁型枠を用いて同様に形成することができる。なお,主筋9および剪断補強筋10を内臓しない場合には,内部空洞14内に配筋を行うことになるが,この場合にも,かぶりコンクリートが高靭性FRCとなっていることで大変形時のはく落が防止される高性能の柱とすることができる。
【0030】
図4は,いずれも厚み180mmで,長さ3000mm,幅2200mmの3種の合成床版について,移動荷重載荷による曲げ疲労試験を行った結果を示したものである。図中のECC試験体は,図2のものに相当する配合のひずみ硬化型セメント系複合材料からなるもの,RC試験体は通常のコンクリートを用いたもの,SFRC試験体は参考のために全断面が鋼繊維補強コンクリートを用いたものである。配筋はECC試験体とRC試験体は同一条件で行ってある。図4の結果から明らかなように,本発明のひずみ硬化型セメント系複合材料を用いた合成床版は,そのセメント系複合材料部分が全断面の1/4程度であるにも拘わらず全断面が鋼繊維補強コンクリートであるSFRC試験体と同等以上の疲労耐力を有していることがわかる。
【0031】
【発明の効果】
以上説明したように,本発明によるひずみ硬化型セメント系複合材料によれば次のような効果を奏することができる。
(1) 自己充填性に優れるので密な配筋部でも密実に材料を充填できる。また,厚みの薄い材料の流し込み充填もできる。その結果,高靭性という本来のひずみ硬化型セメント系複合材料の特性を十分に発揮することができる。
(2) 乾燥収縮が通常のコンクリートと少なくとも同程度であるので,収縮に起因するひび割れ発生の問題が少ない。
(3) 優れた疲労耐力を有するのでその合成合版を橋梁等に適用した場合に疲労寿命を著しく高めることができる。
(4) 過大な曲げモーメントやせん断力を受けても,ひび割れを微細なレベル(通常0.1mm程度)に抑制できるので,水分や化学物質の浸透を抑制することができ,部材の耐久性を高めることができる。
(5) 地震載荷時に曲げせん断力による大きな変形を受けても,曲げ圧縮による本発明材料のかぶり部分は剥落を生じないため,急激な耐力低下が現れない。
(6) 鉄筋内臓の型枠として使用した場合には,鉄筋と本発明材料との付着力および付着靭性が高いので,鉄筋付着破壊を抑制し,高い部材耐力と靭性を実現できる。
(7) 鉄筋を内臓しない型枠して使用した場合には,本発明材料の高い引張強度および曲げ強度を利用することによって型枠を薄肉化することができるので,型枠の大幅な軽量化を図ることができる。
(8) 本発明材料は鋸による切断,釘打ち,ビス止め,ボルト止めが可能であるので,現場加工が容易で加工効率の向上に寄与することができる。
【図面の簡単な説明】
【図1】本発明に従う材料の乾燥収縮率を測定した結果を示す図である。
【図2】本発明に従う材料からなる合成床版を用いた橋梁上部工のコンクリート構造物の略断面図である。
【図3】本発明に従う材料からなる柱状型枠の略断面図である。
【図4】本発明に従う材料の疲労試験結果を他の材料と比較して示した図である。
【符号の説明】
1 本発明に従う合成床版
8 打設された普通コンクリート
13 本発明に従う柱状型枠
Claims (6)
- 材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型の繊維補強セメント複合材料であって,下記〔M1〕の調合マトリックスに,下記〔F1〕のPVA短繊維を1超え〜3vol.%の量で配合してなる自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料。
〔M1〕
普通ポルトランドセメントまたは低熱ポルトランドセメント使用で水結合材重量比:25%以上,
単位水量:250〜400Kg/m3,
細骨材結合材重量比(S/C):1.5以下(0を含む),
細骨材の最大粒径:0.8mm以下,
細骨材の平均粒径:0.4mm以下,
膨張材:100Kg/m3未満,
バイオサッカライド系増粘剤(但し,ウエランガムは除く):0.025を超え〜1.0Kg/m3未満。
〔F1〕
繊維径:50μm以下,
繊維長さ:5〜25mm,
繊維引張強度:1500〜2400MPa。 - 材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型の繊維補強セメント複合材料であって,下記〔M1〕の調合マトリックスに,下記〔F1〕のPVA短繊維を1超え〜3vol.%の量で配合してなる自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料。
〔M1〕
中庸熱ポルトランドセメント使用で水結合材重量比:25%以上,
単位水量:250〜400Kg/m3,
細骨材結合材重量比(S/C):1.5以下(0を含む),
細骨材の最大粒径:0.8mm以下,
細骨材の平均粒径:0.4mm以下,
膨張材:100Kg/m3未満,
バイオサッカライド系増粘剤:0.025を超え〜1.0Kg/m3未満。
〔F1〕
繊維径:50μm以下,
繊維長さ:5〜25mm,
繊維引張強度:1500〜2400MPa。 - バイオサッカライド系増粘剤はデュータンガムである請求項1または2に記載の自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料。
- コンクリートの打設空間を形成するための型枠であって,その型枠が請求項1または2に従うひずみ硬化型セメント系複合材料を用いて形成されていることを特徴とするコンクリート打設用型枠。
- 請求項1または2のひずみ硬化型セメント系複合材料を用いて形成された橋梁の合成床版。
- 請求項1または2のひずみ硬化型セメント系複合材料を用いて形成された柱または梁の型枠。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003169864A JP2005001965A (ja) | 2003-06-13 | 2003-06-13 | 自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003169864A JP2005001965A (ja) | 2003-06-13 | 2003-06-13 | 自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005001965A true JP2005001965A (ja) | 2005-01-06 |
Family
ID=34094868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003169864A Pending JP2005001965A (ja) | 2003-06-13 | 2003-06-13 | 自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005001965A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007063103A (ja) * | 2005-09-02 | 2007-03-15 | Kajima Corp | 急硬型高靭性frc材料ならびにその調合方法 |
KR100755423B1 (ko) | 2006-08-08 | 2007-09-05 | 한국건설기술연구원 | 자기충전형 섬유보강 시멘트 복합체의 제조방법 |
WO2009035654A3 (en) * | 2007-09-13 | 2009-05-22 | Univ Michigan | Impact resistant strain hardening brittle matrix composite for protective structures |
WO2011070014A1 (de) | 2009-12-11 | 2011-06-16 | Wacker Chemie Ag | Herstellung von mineralisch gebundenen beschichtungen mit duktilen eigenschaften |
US8097666B2 (en) | 2007-05-30 | 2012-01-17 | W. R. Grace & Co.-Conn. | Cement additive for stucco applications |
JP2017087485A (ja) * | 2015-11-05 | 2017-05-25 | 鹿島建設株式会社 | 繊維補強セメント材料の製造方法 |
CN109083319A (zh) * | 2018-08-31 | 2018-12-25 | 东莞市润阳联合智造有限公司 | 一种免振捣混凝土叠合楼板的制备方法 |
CN114988786A (zh) * | 2022-06-02 | 2022-09-02 | 高延(山西)新材料科技有限公司 | 一种补偿收缩微膨胀性水泥基加固修复材料及其制备方法 |
-
2003
- 2003-06-13 JP JP2003169864A patent/JP2005001965A/ja active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007063103A (ja) * | 2005-09-02 | 2007-03-15 | Kajima Corp | 急硬型高靭性frc材料ならびにその調合方法 |
KR100755423B1 (ko) | 2006-08-08 | 2007-09-05 | 한국건설기술연구원 | 자기충전형 섬유보강 시멘트 복합체의 제조방법 |
US8097666B2 (en) | 2007-05-30 | 2012-01-17 | W. R. Grace & Co.-Conn. | Cement additive for stucco applications |
WO2009035654A3 (en) * | 2007-09-13 | 2009-05-22 | Univ Michigan | Impact resistant strain hardening brittle matrix composite for protective structures |
WO2011070014A1 (de) | 2009-12-11 | 2011-06-16 | Wacker Chemie Ag | Herstellung von mineralisch gebundenen beschichtungen mit duktilen eigenschaften |
DE102009054563A1 (de) | 2009-12-11 | 2011-06-16 | Wacker Chemie Ag | Herstellung von mineralisch gebundenen Beschichtungen mit duktilen Eigenschaften |
JP2017087485A (ja) * | 2015-11-05 | 2017-05-25 | 鹿島建設株式会社 | 繊維補強セメント材料の製造方法 |
CN109083319A (zh) * | 2018-08-31 | 2018-12-25 | 东莞市润阳联合智造有限公司 | 一种免振捣混凝土叠合楼板的制备方法 |
CN114988786A (zh) * | 2022-06-02 | 2022-09-02 | 高延(山西)新材料科技有限公司 | 一种补偿收缩微膨胀性水泥基加固修复材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Matrix design of light weight, high strength, high ductility ECC | |
Collepardi et al. | Mechanical properties of modified reactive powder concrete | |
US7799127B2 (en) | High early strength engineered cementitious composites | |
Haktanir et al. | A comparative experimental investigation of concrete, reinforced-concrete and steel-fibre concrete pipes under three-edge-bearing test | |
Rashid et al. | Properties of higher strength concrete made with crushed brick as coarse aggregate | |
EP3307692B1 (en) | Advanced fiber reinforced concrete mix designs | |
US20020019465A1 (en) | Self-compacting engineered cementitious composite (ECC) | |
Choucha et al. | Effect of natural pozzolan content on the properties of engineered cementitious composites as repair material | |
CN101186471B (zh) | 一种混凝土 | |
JP2005001965A (ja) | 自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料 | |
Ramli et al. | High-strength flowable mortar reinforced by steel fiber | |
Katz et al. | Mechanical properties and pore structure of carbon fiber reinforced cementitious composites | |
JP2009221053A (ja) | セメント組成物 | |
JP2566099B2 (ja) | コンクリート断面補修用グラウト材 | |
JP5154456B2 (ja) | コンクリート構造物 | |
KR20040079629A (ko) | 단섬유보강 고인성 시멘트복합재료의 제조방법 | |
JP2004115315A (ja) | 高流動コンクリート | |
JP4039801B2 (ja) | 水硬性組成物 | |
Yin et al. | Investigation on compounding and application of C80–C100 high-performance concrete | |
JP2003192421A (ja) | 自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料 | |
JP2011121832A (ja) | 耐せん断破断性に優れたセメント複合材料用の混練物並びに複合材料および橋梁部材 | |
JP2024018472A (ja) | コンクリート構造材を踏段部分に備えた階段構造 | |
JP2001316157A (ja) | 水硬性材料組成物及び繊維補強水硬性硬化体 | |
JP2009023878A (ja) | 断面修復用コンクリート及び当該コンクリートを用いたコンクリート構造物の断面修復工法 | |
Ali et al. | Flexural behaviour of reinforced concrete beams repaired with styrene—butadiene rubber latex, silica fume and methylcellulose repair formulations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20051228 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20081106 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20081125 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20090331 Free format text: JAPANESE INTERMEDIATE CODE: A02 |