JP2004526497A - 皮下検体センサ - Google Patents

皮下検体センサ Download PDF

Info

Publication number
JP2004526497A
JP2004526497A JP2002572876A JP2002572876A JP2004526497A JP 2004526497 A JP2004526497 A JP 2004526497A JP 2002572876 A JP2002572876 A JP 2002572876A JP 2002572876 A JP2002572876 A JP 2002572876A JP 2004526497 A JP2004526497 A JP 2004526497A
Authority
JP
Japan
Prior art keywords
light
analyte
membrane
assembly
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002572876A
Other languages
English (en)
Other versions
JP2004526497A5 (ja
JP3692116B2 (ja
Inventor
エッセンプライス、マッチアス
ゲルバー、マルチン
ペトリッヒ、ヴォルフガング
Original Assignee
エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト filed Critical エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト
Publication of JP2004526497A publication Critical patent/JP2004526497A/ja
Publication of JP2004526497A5 publication Critical patent/JP2004526497A5/ja
Application granted granted Critical
Publication of JP3692116B2 publication Critical patent/JP3692116B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement

Abstract

生物学的マトリクス中の検体の濃度を測定するための組み立て体および方法。当該組み立て体は移植可能な光感知素子を含み、該光感知素子は、本体と膜とを備え、該膜は本体に、該膜と本体が空洞部を画定するように設けられる。該膜は検体を透過することができるが、生物学的マトリクス中の背景種を透過することができない。屈折要素は前記空洞内に設けられる。光源は、第1の強度の光を該屈折要素に伝達し、光検知器は、前記空洞部から反射した第2の強度の光を受け取る。当該検知器に光学的に結合された制御装置は第1の強度と第2の強度とを比較し、当該強度と検体濃度とを関連づける。

Description

【技術分野】
【0001】
本発明は移植可能なセンサに関し、さらに詳しくは、グルコースなどの検体のレベルを監視するためのセンサに関する。
【背景技術】
【0002】
グルコースなどの検体のレベルをインビボに連続的に監視することを許す移植可能なセンサのためのいくつかの設計が以前に記載されている。多くのそのような設計は電気化学的な検体検知の原理に基づいている。そのようなものとしては、センサの固有信号が不安定になる傾向があり、化学製品(たとえば、酵素、メディエイタ)を患者の体内に導入することを必要とする。
【0003】
第2のアプローチには物理的(すなわち、試薬不要)方法がある。インビボにグルコースを決定する物理的な方法の精査として、ジェイ ディー クルーズ−ジャールズの「グルコースのインビボな物理的決定」、ジェイ クライン ケムの臨床生化学第26巻(1988年)、201〜208頁、核磁気共鳴(NMR)、電子スピン共鳴(ESR)、および赤外線(IR)スペクトルがあげられ、とりわけ、非侵襲的な方法があげられる。しかしながら、これらの方法は、まだ実用上の意義を得ていない。これらのうちのいくつかは、大きく高価な装置を必要とし、ルーチンの分析や患者の家庭での分析には一般的に適していない。
【0004】
この第2のアプローチの方法のほとんどすべては、分光の原理に基づいている。光学的方法に関して、しばしば基礎となる原理は、(特定の波長の)一次照射光と分析決定を行っている分子の振動および回転状態との相互作用である。グルコースの基礎的な振動および回転状態は2500nmを超える波長での領域に見られる。このスペクトル領域は、水の強い吸収のために、グルコースの非侵襲的な分析決定には適していない。このスペクトル領域は生物学的マトリクス中に高濃度で存在する。近赤外線(NIR)領域において、水の吸収は小さい(いわゆる「水伝達窓(water transmission window)」)。この領域でのグルコースのスペクトル分析は、グルコース分子の基礎的な振動および回転状態のオーバートーンおよび組み合わせ振動による吸収に基づいている(叙上のクルース−ジャールズによる論文および欧州特許出願公開第0426358号明細書参照)。
【0005】
これらの原理に基づく実用的に移植可能なグルコースセンサの開発には問題がある。この問題は、有効な信号(グルコース濃度の変化による吸収スペクトルの変化)が一般的に小さいという事実に起因する。感知性は、比較的大きい背景信号上に重ねられた小さい有効な信号を観察する際に困難性のゆえに吸収測定において常に問題である。しかしながら、この場合、水のスペクトル吸収に起因する背景信号のためにこの困難性が増大する。この問題を解決するためにいくつかの試みがなされている(欧州特許出願公開第0160768号明細書、米国特許第5028787号明細書、国際公開第93/00856号パンフレット参照)が、これらの試みは、吸収の原理に基づく実用的で機能的な移植可能なグルコースセンサを成功裏に提供していない。
【0006】
光散乱の原理に基づいてグルコースを連続的に監視する方法は記載されている。たとえば、欧州特許第0074428号明細書は、光散乱によるグルコースの定量的な決定のための方法および装置を記載している。当該方法は、グルコース粒子の散乱光線がテスト溶液を通って伝達されることと、グルコース濃度がこの散乱から引き出され得ることを仮定している。この方法は、テストキュベットまたは体の検査部位から発する伝達光(前方散乱光)の空間的角分散の測定を要するとくに、伝達光の強度は、グルコース濃度についての変化できるだけ大きい角度領域で測定される。ついで、この強度は、サンプルを直接通過する中央光線に対して測定された強度と比較される。インビボの分析決定のために、レーザ光による耳たぶ上の伝達測定がもっぱら勧められる。
【0007】
光散乱の原理に基づく第2の方法は、伝達光(すなわち、前方散乱光)よりむしろ後方散乱光の測定に頼っている。米国特許第5551422号明細書は、少なくとも2つの検知方法を行うことによって生物学的マトリクスのグルコース濃度を測定する方法を記載している。それぞれの検知測定において、一次光が、画定された放射場所においてその境界面を介して生物学的マトリクス内に照射される。光の強度は、境界面の画定された検知場所を介して二次光として光を発するときに測定される。検知測定の少なくとも1つは、多数の散乱光の空間的に分解された測定である。検知場所は、照射場所に対応して設けられ、その結果、生物学的マトリクスでの散乱中心において多数が散乱した光が検知される。生物学的マトリクス内の少なくとも2つの検知測定の光路は異なる。ついで、グルコース濃度が、照射場所および検知場所の対応する位置における二次光の強度への依存性から引き出される。
【0008】
温度および/または生物学的マトリクスにおける背景イオン、タンパク質および濃度の変化などの物理的パラメータの変化からの光強度への効果を最小にするかまたは除去し、かつ光路の数および/または行われるべき所要の検知測定数を最小にする追加の方法が必要とされる。
【発明の開示】
【0009】
本発明は、その一形態において、生物学的マトリクスにおける検体の濃度を測定するための組み立て体を備えている。該組み立て体は、移植可能な光感知素子、光を該光感知素子内に伝達するためのソース、および該光感知素子から発した光を受け取るための検知器とを含んでいる。伝達し発光したそれぞれの量を比較し、該それぞれの量を生物学的マトリクス内の検体の濃度に関連づけるために、信号処理および計算要素が設けられる。該移植可能な光感知素子は、本体と該本体上に設けられた膜とを備え、その結果、膜と本体が空洞部を画定する。伝達された光のための屈折要素が該空洞部内に設けられる。
【0010】
本発明は、他の形態において、生物学的マトリクス内の検体の濃度を測定するのに適した移植可能な光学的要素を備えている。該光感知素子は、本体と該本体に設けられた膜とを備え、その結果、該本体および膜は検体を受け入れるための空洞部を画定する。該膜は検体を実質的に透過(ないしは浸透)することができるが、大きいタンパク質などの生物学的マトリクス内の背景種(background species)を透過することができない。検体の屈折率と異なる屈折率を有する屈折要素が空洞内に設けられる。
【0011】
本発明は、さらに他の形態において、生物学的マトリクス内の検体の濃度を測定するための組み立て体を備えている。該組み立て体は、本体と、空洞部を画定するために該本体に設けられた第1の半透膜を備えた移植可能な光感知素子を備えている。該第1の半透膜は検体を透過することができるが、生物学的マトリクス内の背景種を透過することはできない。第2の空洞を画定するために、前記第1の膜から離れた前記本体上に第2の膜が設けられる。第1の屈折要素は前記第1の空洞内に設けられ、第2の屈折要素は前記第2の空洞内に設けられる。光源は光を第1および第2の空洞内で、それぞれ第1および第2の屈折要素に向けて供給し、光検知器は第1および第2の空洞それぞれから光を受け取る。信号処理器およびコンピュータは、供給された光および受け取られた光それぞれの強度と検体濃度とを関連づけるために設けられる。
【0012】
本発明は、さらに他の形態において、生物学的マトリクス内の検体の濃度を測定するのに適した移植可能な光感知素子を備えている。該光感知素子は、本体と該本体に設けられた第1の半透膜とを備えている。該第1の膜は検体を透過しうるが、生物学的マトリクス中の背景種を透過することはできない。該第1の膜と本体は第1の空洞を画定するために並んでおり、該第1の空洞内に第1の屈折要素を有している。第2の膜が、前記第1の膜から離れた本体に設けられている。該第2の膜と本体は、前記第1の空洞から隔絶した第2の空洞を確定するために並んでいる。該第2の空洞内に第2の屈折要素を有している。
【0013】
本発明は、さらに他の形態において、生物学的マトリクス内の検体の濃度を測定する方法を含んでいる。光感知素子が該生物学的マトリクス内に移植され、該光感知素子は本体と該本体に設けられた半透膜とを備え、該半透膜は検体を透過することができるが、前記マトリクス内の背景種を透過することはできない。前記半透膜と本体は空洞を画定し、屈折要素は前記空洞内に設けられている。発光源からの一次光は前記光感知素子の本体内に導入され、前記屈折要素に向けられる。前記光感知素子から反射した二次光が集光され、光検知装置に伝達される。該二次光の強度が測定され、前記生物学的マトリクス中の検体の濃度が、一次光の強度と二次光の強度とを比較することによって決定される。
【0014】
本発明は、さらに他の形態において、生物学的マトリクス中の検体の濃度を測定する方法を含んでいる。光感知素子が該生物学的マトリクス内に移植され、光感知素子は本体と該本体に設けられた第1の半透膜と、該第1の半透膜から離れた本体に設けられた第2の半透膜とを備えている。前記本体と第1の膜は空洞を画定し、該空洞内に第1の屈折要素を有し、前記本体と第2の半透膜は第1の空洞から隔絶した第2の空洞を確定し、該第2の空洞内に第2の屈折要素を有している。光感知素子からの一次光は前記本体内に伝達され、該一次光からの光の流れは第1の空洞内の第1の屈折要素に向けられ、第2の空洞内の第2の屈折要素に向けられる。前記第1の屈折要素から反射した光は集光され、光検知器の第1の通信路(channel)に伝達され、第2の屈折要素において反射した本体からの光が集光され、前記光検知器の第2の通信路に伝達される。前記第1および第2の通信路それぞれから集光された光のそれぞれの強度が測定され、前記生物学的マトリクス中の検体の濃度が、伝達された光の強度と前記第1および第2の通信路から集光された光の強度とを比較することによって計算される。
【0015】
本発明は、さらに他の形態において、生物学的マトリクス中の検体の濃度を監視するための組み立て体を含んでいる。該組み立て体は、本体、該本体に設けられた膜、および該膜と本体によって画定された空洞内に設けられた屈折要素を備えた移植可能な光感知素子を含んでいる。検体は前記膜を経て前記空洞内に受け取られ、前記膜は重要な検体を透過することができ、前記生物学的マトリクス中の背景種を透過することができない。1または2以上の光源が、第1の波長と第2の波長の光を前記空洞内に供給し、前記空洞内の屈折要素は、当該第1の波長における検体の屈折率より大きい屈折率を有し、当該第2の波長における検体の屈折率より小さい屈折率を有する検知器は、前記検体の第1の濃度における前記第1および第2の波長それぞれにおける光の強度を前記空洞から受け取り、検体の第2の濃度における前記第1および第2の波長それぞれにおける光の強度を受け取る。信号処理および計算要素は、前記第1の波長において受け取られた光の強度を前記第2の波長において受け取られた光の強度と比較し、該強度を検体濃度と関連づけるために前記検知器に光学的に結合される。
【0016】
本発明は、さらに他の形態において、被験者の生物学的マトリクス中の検体の濃度の変化を監視する方法を含んでいる。光感知素子は、該被験者に移植され、当該移植可能な光感知素子は、本体と該本体に設けられた膜とを備えており、当該膜および本隊は検体を受け取るための空洞を画定している。前記膜は、重要な検体を実質的に透過することができ、生物学的マトリクス中の背景種を実質的に透過することはできない。屈折要素が空洞内に設けられる。第1の波長と第2の波長の光が前記空洞内に導入され、前記屈折要素は、前記第1の波長における検体の屈折率より大きい屈折率を有し、第2の波長における検体の屈折率より小さい屈折率を有する。第1および第2の波長それぞれにおける光の強度は検体の第1の濃度で測定され、当該第1および第2の波長それぞれにおける光の強度は検体の第2の濃度で測定される。検体の濃度の変化は、前記第1の波長において受け取られた光の強度を前記第1および第2の濃度それぞれに対して第2の波長において受け取られた光の強度と比較し、該強度を検体の濃度の変化と関連づけることによって計算される。
【発明を実施するための最良の形態】
【0017】
本発明の種々の他の目的、特徴および付随する利点は、添付図面と関連して考慮されたときに以下の詳細な説明からそれらがよく理解されるようになるとより完全に認識されるであろう。類似の参照符号はいくつかの図面を通じて類似の部分または対応する部分を示す。
【0018】
本明細書において使用されているように、「生物学的マトリクス」という用語は生きている生物の体液または組織を示す。本発明が関係している生物学的マトリクスは光学的に異質である。すなわち、多数の物質(たとえば、塩、タンパク質、および有機酸)を含み、屈折率に影響を及ぼしうる。
【0019】
本明細書において使用されているように、「背景種」という用語は、生物学的マトリクスに由来するイオン、タンパク質、有機酸などの検体または生物学的マトリクス内に導入された非由来の薬剤をいい、インビボな濃度の適切な変化(1)および大きい特定の屈折率の増加(2)の結果として実質的に屈折率の変化をさせ得る。「背景種」は監視される検体のことをいわない。
【0020】
本明細書において使用されているように、「屈折要素」は、測定されるべき媒体と異なる屈折率を有する要素をいうために用いられる。
【0021】
本明細書において使用されているように、「mMol」という用語は1リットルにつき1ミリモルの単位での物質の濃度を示す。
【0022】
本明細書において使用されているように、「n」という用語は物質の屈折率を示す。
【0023】
本発明は、生物学的マトリクス中の検体の濃度を測定するのに適した移植可能な光感知素子を備えた組み立て体を提供する。光感知素子の機能は、光の屈折に変化を発生することであり、当該変化は生物学的マトリクス中の検体の濃度の変化である。光感知素子は本体に設けられた膜を含み、その結果、膜と本体が空洞部を画定する。膜は実質的に検体を透過することができ、それによって検体が拡散または浸透などの手段によって膜を経て空洞内に透過することを許し、生物学的マトリクス中の背景種を透過することができない。
【0024】
本発明の光感知素子は延長された時間間隔を超えても安定しており、頻繁な再較正を必要とせず、酵素反応を通して信号増幅を必要としない。光感知素子は、また、温度および/または生物学的マトリクス中に存在するかもしれない背景イオン、タンパク質、および有機酸の濃度の変化などの物理的パラメータの変化によってそのような測定における背景ドリフト(drift)を最小にするかまたは除去する。
【0025】
本発明の組立て体を利用する監視に適した検体の例はグルコースである。溶液中のグルコースなどの検体の濃度における変化が溶液の屈折率に変化を引き起こすことは周知である。たとえば、可視波長のグルコース水溶液の屈折率の増加Δnmは、Δnm=2.5×10-5/mMol グルコースであり(アール シー ウェスト編、化学および物理学のシーアールシーハンドブック、第55版(シーアールシー、オハイオ州、クリーブランド、1974年)参照)、この関係は検査のもとでの全波長領域にわたってほぼ同一であることが仮定される。言い換えれば、溶液の屈折率は、グルコース濃度の1mMolの増加に対して約2.5×10-5倍増加する。
【0026】
残念なことに、屈折率の変化に基づく生物学的マトリクスのグルコース濃度の直接的測定は実用的ではない。なぜなら、屈折率自体はグルコースに特有のものではいからである。表1に示されるように、生物学的マトリクスに共通して見られる、ある背景分子(たとえば、有機酸)およびイオン(たとえば、ナトリウムおよび塩化物)はマトリクスの屈折率に実質的に影響を及ぼし得る。
【0027】
【表1】
Figure 2004526497
【0028】
これらの種の独立した濃度変化はグルコース測定に干渉し、ドリフトまたは読みの間違いを引き起こす可能性がある。
【0029】
本発明は、実質的に通過し得ない本体を有する光感知素子を設けることによってこの問題に対処している。該本体は半透膜によって少なくとも1つのその表面上に覆われている。該半透膜は、本体の内部への望まれない背景分子および/またはイオンの侵入/存在を排除するように設計され、同時に検体または重要な検体が膜を経て自由に拡散させている。重要な検体がグルコースであるとき、グルコースは膜を経て拡散し、組織のグルコース濃度と均衡している。背景種は膜を透過することができない。たとえば、タンパク質は適切な孔径を有する膜を用いることによって排除されることができ(たとえば、30kDであればアルブミンを排除するが、グルコースの拡散を可能にする)、イオンは極性化された膜(+/−)層を用いることによって排除され得る。
【0030】
半透膜としてバイポーラ膜(ないしは、両極性膜)を用いることが好ましい。バイポーラ膜は、逆極性のイオン交換の2つの隣接する層から構成されるイオン交換膜である(たとえば、陽イオン交換側と、陰イオン交換側)。これらの膜の電荷密度は、固定された電荷と同一の電荷のイオンが膜から拡散することが妨げられる電荷密度である。バイポーラ膜は、一方のイオン環境から他方のイオン環境を隔離するために有用である。これらの膜は水と化合し、グルコースなどの非電荷溶質を透過することができ、一方の側から他方の側に拡散することができる。
【0031】
本発明に使用するのに適したバイポーラ膜は、NeoSepta(商品名)の名称で徳山曹達(日本)によって製造されたものを含み、ニューヨーク州、ランカスターのエレクトロシンセシス カンパニーから入手できる。これらの膜は大規模の電気分解および塩分離(salt-splitting)への応用のために製造されており、機械的にひじょうに安定しておりリジッドである。これらは、生物学的マトリクスの高い塩濃度での使用に要求される高い電荷密度を備えている。これらの膜は厚さが約250nmであり、適切な寸法に切断され得る。低いイオン含有の薄い膜も使用できる。センサの応答時間を減少し、より正確な結果を提供し得るので、薄い膜は有利である。
【0032】
使用中、半透膜は、膜を除いて体内または対外への溶液の注入を防止するように光感知素子の本体と結合されなければならない。この結合は、熱または超音波結合、シアノアクリレート(たとえば、スーパーグルー(商品名)またはクレイジーグルー(商品名))などのウレタンまたはホットメルト接着剤などの熱可塑性接着剤、または熱硬化性接着剤などの感圧接着または液体接着による接着結合を含むいくつかの方法によって達成され得る。インビボな応用の好ましい結合方法は、熱または超音波結合などの化学的または物理的方法を含む。
【0033】
典型的な商業的なバイポーラ膜は、陰イオン交換側のために架橋ポリビニルトリメチルアンモニウムクロライドと結合した陽イオン交換側のために架橋ポリスチレンスルフォネートからなる。該膜は、安定性のために高濃度(10%)の塩で供給され、光感知素子に使用するに先立ち生理学的食塩水(1.15Mの塩化ナトリウム)で平衡化されている。バイポーラ膜は、タンパク質およびリピドの高分子量溶質が当該膜から排除され、膜によって覆われた空間から同時に排除される程度に架橋されることが好ましい。
【0034】
より薄いバイポーラ膜がより迅速な反応時間を可能にするために用いられるならば、該バイポーラ膜を巨大溶質を排除し得る第3の膜層と組み合わせることが好ましい。そのような第3の膜層は、たとえば、再生セルロースまたはポリアミド膜のような透析の適用のために一般的に用いられる膜のいずれかであってもよい。第3の膜層は、バイポーラ膜の上または周囲で、バイポーラ膜を取り付けるために適した方法のいずれかを使用してセンサ本体に取り付けられてもよい。その代わりに、第3の膜層は、バイポーラ膜をセンサ本体に適用する前に、バイポーラ膜に直接積層させてもよい。また、第3の膜層は、鋳造ないしはキャスティングによって、たとえば、バイポーラ膜が取り付けられた組立後の光感知素子を、膜形成ポリマの溶液に浸し、それから制御された条件下でその部材を乾燥することにより、バイポーラ膜上に形成されてもよい。
【0035】
バイポーラ膜は、透析および微小透析用の膜が製造され方法と同様の方法で、中空繊維状に形成されてもよく、膜繊維がセンサ構造上を摺動し、叙上のいずれかの方法で取り付けられる。
【0036】
本発明において依拠される分光原理は、光が屈折率の変化において反射または屈折されることである。2つの接する媒体の屈折率がより近接するほど、鏡面反射がより小さくなる。反射率が一致する場合、鏡面反射はまったく観察され得ない。これに対して、2つの接する媒体の屈折率が不一致であれば、鏡面反射は絶対値の大きさで大きくなる。しかし、全体がここで参考によって組み込まれている、エム コール、エム コープ、エム エッセンプレイズ、およびデー ビュッケルの「光学論文」、第19版、第24巻(1994年)、2170〜2172頁に記載されるように、スペクトル反射率の差が小さい場合には、鏡面反射の相対的な変化はもっとも大きい。これらの競合効果に基づいて、本体内に配置された屈折要素の屈折率およびグルコースのような検体の屈折率が好ましくは9%以内、より好ましくは5%以内であって、互いに、生物学的マトリクスのグルコース濃度が生理学的レベル、すなわち4〜7mミリモルの場合、測定の感度が最適化されることが、決定された。
【0037】
所定の検体がグルコースの場合、屈折要素は、生理学的濃度(すなわち、n=1.38)におけるグルコース溶液の屈折率と近い屈折率の材料から形成されるのが好ましい。好ましくは、屈折要素は、1.26〜1.50、より好ましくは1.31〜1.45の屈折率を有する型成形可能なプラスチックから形成される。適したプラスチックの例は、ポリウンデカフルオロヘキシルアクリレート(n=1.36)、ポリデカメチレンカーボネート(n=1.47)、ポリエチレンサクシネート、ポリエチレンオキシド(n=1.46)、ポリトリフルオロエチレン(n=1.34)、ポリヘキサフルオロプロピレン(n=1.31)、ポリメチルメタクリレート(n=1.49)、ポリエチレン(n=1.49)、ポリオキシジエチルシリレン(n=1.42)およびポリビニルフルオライド(n=1.45)を含む。好ましいプラスチックは、ポリメチルメタクリレートおよびポリエチレンである。
【0038】
本発明の光感知素子の第1の実施の形態は、図1〜3に示されている。光感知素子は、本体100、半透膜110および屈折要素140を含む。本体100と膜110は、空洞112を画定するために並んでいる。屈折要素114および検体または所定の検体(図示せず)は、空洞112内に設けられている。半透膜110は、検体を実質的に透過することができるが、生物学的マトリクス内の背景種を実質的に透過することができない。
【0039】
好ましくは、光感知素子の本体100は、概ね「U」または「V」形状断面を有し、型成形されたプラスチックからなる。本体100は、基部101および2つの対向する側壁103を有する。側壁103のおのおのは、上部縁111を含む。本体100は、近位端102および遠位端104を有し、好ましくは長さ2mm未満である。光伝達導管106、ここでは、単一光ファイバが本体100の近位端102に光学的に結合される。本体と導管とのあいだの光学的結合は、たとえば、接着剤を用いて導管106を本体100内部に形成されたオリフィス内に固持することのような、当該技術において公知のあらゆる手段によって達成され得る。
【0040】
屈折要素114は、好ましくは、単一のプラスチック型成形過程の一部として、本体100と同じ材料で作られる。図1〜3の実施の形態では、屈折要素114は、複数の実質的に平行な矩形のプレートからなる。矩形プレートによって支えている、一体になったユニット−ボディ構造は、光感知素子に格別な安定性を与える。好ましくは、屈折要素のおのおの個別のプレートが、10μm未満の厚さを有している。各プレートは、屈折または反射面として機能する2つの面115を有している。面115は、平坦であってもよいし、またはその代わりに、傾斜されていたり、または一様に不規則な形状をした構造(たとえば、図7、10および13)であってもよい。傾斜されたプレートは、干渉を避けるためにも有用である。図1〜3におけるこれらの面ような面が利用された場合、面115は、それぞれ本体100の長手方向の軸に直交する面内に横たわるように並べられ、隣接するプレート上の面115は、せいぜい10μmだけ分離されている。
【0041】
屈折要素から反射して出た光の強度の変化は、フレネルの式にしたがった多重の反射および/または屈折が可能な面115を有する屈折要素114を用いることによって最大にしてもよい。この変化は、検体と屈折要素114とのあいだの屈折率の差を最適化することによって、さらに最大にしてもよい。好ましくは、光感知素子は、少なくとも200の面115を有する少なくとも100個の平行なプレート114を有する屈折要素を含む。プレートおよび面の大半は、明瞭化のために、図1から省略されている。多重の面115を用いることによって、屈折率の変化に(したがって検体の濃度の変化に)対応する反射または屈折光の強度は、少なくとも200個の要素によって増幅され得る。
【0042】
光感知素子の本体100は、光感知素子のために支持構造を提供し、それに対応して硬質、または半硬質ないしはある程度硬質であるべきである。感知素子が、生きた組織内に実施されるようにされているため、本体100の構造材料は、生体親和性ないしはバイオコンパティブル(bio-compatible)があってもよい。本体100の遠位端104は、透明材料が代わりに利用されてもよいけれども、好ましくは光吸収材料108からなる。
【0043】
屈折要素114は、単一構造または複数の構造から構成され得る。特別な形状は要求されない。単一構造の例は、多孔質繊維、多孔質ロッド、巻き込んだリボンおよび巻き込んだ繊維を含む。屈折要素は、また、前述のものの組合せからなる。複数の構造の例は、規則的または不規則的な形状を呈するプレート、粒子、玉ないしはビーズ、および粉、または前述のものの組合せからなる。特定の実施の形態にもかかわらず、屈折要素は、好ましくは、単一の面から反射された光と比較したときに反射光を増幅するために検体と接続する複数の反射または屈折面115を提供する。
【0044】
本発明の第2の実施の形態が、図4〜6に示されている。光感知素子の本体200は、それぞれ上部縁211および下部縁213を有する2つの平行な長尺の部材203からなる。本体は、好ましくは型成形されたプラスチックで形成され、図1〜3の実施の形態の要領で寸法が設定されている。本体200は、近位端202および遠位端204も含む。光伝達導管206、ここでは単一の光ファイバは、近位端202内のオリフィス内に封止されている。近位端204は、好ましくは光吸収材料208からなる。本実施の形態では、第1の半透膜210が長尺の部材203の頂部縁211に取り付けられ、第2の半透膜209が長尺の部材203の底部縁213に取り付けられている。
【0045】
長尺の部材203、および半透膜209ならびに210は、空洞212を画定している。空洞212は、所定の検体(図示せず)および屈折要素214を収容する。屈折要素は、複数の実質的に平行な矩形のプレートからなり、長尺の部材203は、矩形プレートからの桟(cross-support)と一緒になって保持されている。他の関連する点では、矩形プレート214および面215の数および並び方は、前述に記載されたものと同様である。
【0046】
本発明の第3の実施の形態が、図7〜9に示されている。本実施の形態では、本体300、基部301、側壁303、光伝達導管306、光吸収材料308、膜310、縁311、空洞312、およびそれぞれの近位端302および遠位端304は、図1〜3の実施の形態に記載されているとおりである。屈折要素314は、複数の反射または屈折面315を提供する複数の玉からなる。玉の組成は、当該玉が適した反射または屈折面を提供する限り、通常は重要ではない。ガラス玉、またはポリスチレンのようなポリマから形成された玉がとくに適している。玉の組成、直径および数は、玉表面315から出る多重の反射によって光の最適な増幅を提供する充填配列を達成するために、変更され得る。玉の代わりに空洞内に屈折性の粉を付与した場合、同様の効果が達成される。
【0047】
本発明の第4の実施の形態が、図10〜12に示されている。本実施の形態では、本体400、基部401、側壁403、光伝達導管406、光吸収材料408、膜410、縁411、空洞412、およびそれぞれの近位端402および遠位端404は、図1〜3の実施の形態に記載されているとおりである。屈折要素414は、複数の反射または屈折面415を提供する、巻き込んだリボンまたは繊維からなる。リボン414の組成、長さ、幅および厚さは、表面415から出る多重の反射によって光の最適な増幅を与える充填配列を達成するために、変更され得る。リボンまたは繊維の特別な組成は、適した反射または屈折面が提供される限り、通常は重要ではない。ガラスまたはプラスチックのリボンまたは繊維がとくに適している。
【0048】
本発明の第5の実施の形態が、図13〜15に示されている。本実施の形態では、本体500、基部501、側壁503、光伝達導管506、光吸収材料508、膜510、縁511、空洞512、およびそれぞれの近位端502および遠位端504は、図1〜3の実施の形態に記載されているとおりである。屈折要素514は、複数の空隙(pore)を有するロッドまたは繊維からなる。空隙516は、複数の反射または屈折面515を提供する。ロッドは、内側の空隙が検体に接触する程度の充分な空隙率(porosity)を有する。ロッドまたは繊維の組成は、空隙率、空隙の寸法、および空隙の数と同様に、表面515から出る多重の反射によって光の最適な増幅を与える充填配列を達成するために、変更され得る。ロッドまたは繊維の特別な組成は、適した反射または屈折面が提供される限り、通常は重要ではない。ガラスまたはプラスチックのロッドおよび繊維がとくに適している。
【0049】
本発明の第6の実施の形態が、図16〜18に示されている。本体600は、横はり部分601および2つの対向する側壁603を有し、かつ、
[外1]
Figure 2004526497
形状を呈する横断面を有し、好ましくは、プラスチックの型成形過程によって製造される。側壁603のおのおのは、上部縁611および下部縁621を含む。横はり部分601は、上部縁611と下部縁621とのあいだでおのおのの側壁603に取り付けられている。第1の半透膜610は、側壁603の各上部縁611に取り付けられ、それにより第1の空洞612を画定する。第1の光伝達導管606、ここでは、単一光ファイバが第1の空洞612に隣接する本体600の近位端602内部のオリフィス内に封止されている。本体600の遠位端604は、好ましくは第1の空洞612に隣接する第1の光吸収材料608からなる。第2の半透膜620は、本体600の対向する壁603のおのおのの下部縁621に取り付けられており、それにより第1の空洞612に重なり合う第2の空洞622を形成する。第2の光伝達導管616、ここでは、単一光ファイバが第2の空洞622に隣接する本体600の近位端602内部のオリフィス内に封止されている。本体600の遠位端604は、好ましくは第2の空洞622に隣接する第2の光吸収材料618からなる。第1および第2の空洞は、第1および第2の屈折要素612、624を含む。屈折要素は、好ましくは、前述と同様に、本体600と同じ材料から作られ、複数の実質的に平行な矩形のプレートからなる。第1および第2の光吸収材料608および618は、それぞれ好ましくは同じ組成を有する。第2の半透膜620は、第1の空洞612の対応物と同じ組成または異なる組成を有してもよい。
【0050】
本発明の第7の実施の形態が、図19〜21に示されている。感知素子の本体700は、
[外2]
Figure 2004526497
形状を呈する横断面を有し、好ましくは、プラスチックの型成形過程によって製造される。本体は、基部701および2つの対向する側壁703を有する。側壁703のおのおのは、上部縁711a〜711cを含む。本体700は、近位端702および遠位端704を有し、好ましくは長さが2mm未満である。第1の半透膜710は、一方の外側壁703の上部縁711aおよび内側壁703の上部縁711bに取り付けられ、それにより第1の空洞712を画定する。第1の光伝達導管706、ここでは、単一光ファイバが第1の空洞712に隣接する本体700の近位端702内部のオリフィス内に封止されている。本体700の遠位端704は、好ましくは第1の空洞712に隣接する第1の光吸収材料708からなる。第1の空洞712は、第1の屈折要素714を収容する。第1の屈折要素714は、好ましくは、本体700と同じ材料から作られ、複数の実質的に平行な矩形のプレートからなる。
【0051】
第2の半透膜720は、他方の外側壁703の上部縁711cおよび内側壁703の上部縁711bに取り付けられ、それにより第2の空洞722を画定する。第2の空洞722は、第1の空洞712と横並びの並び方になっている。第2の光伝達導管716、ここでは、単一光ファイバが第2の空洞722に隣接する本体700の近位端702内部のオリフィス内に封止されている。本体700の遠位端704は、好ましくは第2の空洞722に隣接する第2の光吸収材料718からなる。第2の空洞722は、第2の屈折要素724を収容する。第2の屈折要素724は、好ましくは、本体700と同じ材料から作られ、複数の実質的に平行な矩形のプレートからなる。第1および第2の光吸収材料708および718は、それぞれ好ましくは同じ組成を有する。第2の半透膜720は、第1の空洞712の対応物と同じ組成または異なる組成を有してもよい。
【0052】
本発明の第6および第7の実施の形態は、生物学的マトリクス内の2つの異なる検体に濃度を同時に測定するためにとくに有用である。このことは、異なる種を透過し得るそれぞれの半透膜を選ぶことによって達成され得る。たとえば、第1の半透膜は、検体Aを透過し得るが、検体Bを透過することはできず、一方、第2の半透膜は、検体Bを透過し得るが、検体Aを透過することはできない。第1の空洞は、そのとき検体Aの濃度を監視することができ、第2の空洞は、検体Bの濃度を監視することができる。
【0053】
本発明の第6および第7の実施の形態は、温度のような物理的パラメータの変化に起因する生物学的マトリクスの屈折率の背景の変化のための補正をするために有用である。たとえば、第1の半透膜は、検体Aのみを透過し得るが、第2の半透膜は、生物学的マトリクスのすべての組成(検体)を透過することができない。そのとき第1の空洞は試料セルを構成し、一方、第2の空洞は参照セルを構成する。試料セルは、検体Aの濃度の変化および感知素子の環境の物理的変化に起因する光の変化を監視するために用いられ得る。参照セルは、生物学的マトリクスの環境の物理的変化のみに起因する光の変化を監視するために用いられ得る。試料および参照セルのあいだの光強度の差は、そのとき検体Aの濃度の変化のみによる生物学的マトリクスの屈折率の変化を較正し得る。
【0054】
代替として、第1の半透膜は、検体Aおよび生物学的マトリクスの背景種を透過し得るが、第2の半透膜は、背景種を透過し得るが、検体Aを透過することができない。第1の空洞は、まだ試料セルを構成するが、第2の空洞は、参照セルを構成する。しかし、ここでは、試料セルは、検体Aの濃度の変化、感知素子の環境の物理的変化および背景種の濃度変化に起因する光強度の変化を監視するのに用いられる。同様に、参照セルは、感知素子の環境の物理的変化および背景種の濃度変化に起因する光強度の変化を監視するのに用いられる。試料および参照セルのあいだの光強度の差は、検体Aの濃度の変化による生物学的マトリクスの屈折率の変化を較正し得る。
【0055】
本発明の移植可能な検体センサは、光電検出および測定組み立て体に光学的に結合するように構成されている。光電検出および測定組み立て体は、光を光源から感知素子に伝達するための光源を含むか、またはその代わりに光源が別個の組み立て体であってもよい。光電検出および測定組み立て体は、感知素子から戻るか、または反射される光を受けるための検知器を含む。信号処理および計算素子は、受け取った光の強度を送った光の強度と比較するために、検知器に光学的に結合されている。以前に測定された参照値を用いることによって、信号処理および計算素子は、光強度の差を検体の濃度に関連する信号に変換する。信号は、そのとき、読出し装置に表示され得る。
【0056】
ある場合には、多重の波長を用いることは有利かもしれないが、本方法は1つまたはそれ以上の規定された波長の分光測定を要求しない。多重の規定された波長の測定が要求されないとき、発光ダイオード(LED)、レーザダイオード、キセノンおよび金属ハロゲンランプのような相対的に高価でない光電要素が光源として用いられ得る。
【0057】
実施の形態1〜5に記載されたタイプの光電検出および測定組み立て体が光感知素子に光学的に結合されたブロックダイアグラムが図22に示されている。第1の光伝達導管800の第1の端部802が、光感知素子808の本体の近位端806に、たとえば、接着剤を用いてオリフィス内に端部802を封止することによって、光学的に結合される。第1の光伝達導管800の第2の端部804は、発光源および光検知装置の両方に光学的に結合されている。このダイアグラムでは、光学的結合は、ビームスプリッタ810によって提供される。ビームスプリッタは、好ましくは、入射光の角度が反射光の角度と等しいように傾斜しており、第1の光伝達導管800の第2の端部804から発せられた二次光が光検知装置に接続された第2の光伝達導管814に向けられるように方向付けられる。光検知装置は、たとえば、光電増倍管またはフォトダイオードであり得る。ビームスプリッタ810は、また、発光源に接続された第3の光伝達導管812が光伝達導管800の第2の端部804を向くように、方向付けられる。前記源は、光を連続的にまたはパルス形態で発することができる。適した光源または検知器は、ニュージャージー州、ブリッジウォータのハママツ コーポレーションのから購入され得る。光検知装置は、二次光を従来の読出し装置上のヴィジュアルディスプレイによるような従来の様式で読み取り可能な電気信号に変換する信号処理および計算素子に電気的に接続されている。信号処理および計算素子は、たとえば、ソフトウェアで駆動されるコンピュータのような従来のコントローラを備えてもよい。
【0058】
好ましくは、第1、第2および第3の光伝達導管800、814および812のおのおのは、それぞれ1つまたはそれ以上の光ファイバを備えている。適した光ファイバおよび光ファイバ束は、アリゾナ州、フェニックスの有限会社、ポリマイクロ テクノロジーから購入され得る。光ファイバのための適したビームスプリッタは、カナダ国、オンタリオ州、カープのオージー オプティクス リミテッドから購入され得る。
【0059】
実施の形態1〜5に記載されたタイプの光電検出および測定組み立て体が光感知素子に光学的に結合された他のブロックダイアグラムが図23に示されている。この配列では、一次光が発光源から発せられる。発光源は、たとえば標準SMAコネクタを使用するような、第1の光伝達導管900の第1の端部902に光学的に結合される。第1の光伝達導管900の第2の端部904は、光感知素子の本体の近位端906に、たとえば、該感知素子の本体のオリフィス内に端部904を封止することによって、光学的に結合される。位置合わせは、一次光が屈折要素に向かう空洞内に向くようにする。屈折要素における反射または屈折から生じる二次光は、光感知素子の本体の近位端906に光学的に結合された第2の光伝達導管910の第1の端部912に集められる。導管の第2の端部914は、たとえばSMAコネクタを用いて、光検知装置に光学的に結合される。光検知装置は、たとえば光増倍管またはフォトダイオードであってもよい。好ましくは、第1および第2の光伝達導管900および910のおのおのがそれぞれ1つまたはそれ以上の光ファイバを備えている。光検知装置は、二次光を読出し装置上で表示可能な電気信号に変換する信号処理および計算素子に電気的に接続されている。
【0060】
実施の形態6〜7に記載されたタイプの光電検出および測定組み立て体が光感知素子に光学的に結合されたブロックダイアグラムが図24に示されている。一次光は、発光源から発せられる。発光源は、第1の光伝達導管920の第1の端部922に光学的に結合される。第1の光伝達導管920の第2の端部924は、第1の空洞に隣接する光感知素子の本体の近位端926に、一次光が第1の屈折要素に向かう第1の空洞内に向くような位置合わせをして、光学的に結合される。第1の屈折要素における反射または屈折で生じる二次光は、第2の光伝達導管940の第1の端部942に集められる。第2の光伝達導管940の第1の端部942は、第1の空洞に隣接する光感知素子の本体の近位端926に光学的に結合され、一方、第2の端部944は、光検知装置の通信路に光学的に結合される。光検知装置は、たとえば光増倍管またはフォトダイオードであってもよい。
【0061】
さらに、発光源は、第3の光伝達導管930の第1の端部932に光学的に結合されている。第3の光伝達導管930の第2の端部934は、第2の空洞に隣接する光感知素子の本体の近位端926に、一次光が第2の屈折要素に向かう第2の空洞内に向くような位置合わせをして、光学的に結合されている。第2の屈折要素における反射または屈折で生じる二次光は、第4の光伝達導管950の第1の端部952に集められる。第4の光伝達導管950の第1の端部952は、第2の空洞に隣接する光感知素子の本体の近位端926に光学的に結合され、一方、第4の光伝達導管950の第2の端部954は、光検知装置の第2の通信路に光学的に結合される。好ましくは、第1、第2、第3および第4の光伝達導管920、940、930および950のおのおのがそれぞれ1つまたはそれ以上の光ファイバを備えている。光検知装置は、二次光を読出し装置上で表示可能な電気信号に変換する信号処理および計算素子に電気的に接続されている。
【0062】
本発明はさらに生物学的マトリクス内の検体の濃度を測定する方法を考えている。最初に、光感知素子が、マトリックス内に挿入される。光感知素子は、前段で記載されているように、本体、半透膜および屈折要素を含む。ついで、一次光が発光源から光感知素子の本体に伝達され、屈折要素へ向かう空洞内へ向けられる。ついで、屈折要素における反射または屈折で生じる二次光は、光検知装置によって集められ、読み取られる。送った光と反射光とのあいだの強度の差は、標準的な計算装置によって測定され、生物学的マトリクス内の検体濃度は、たとえばアルゴリズムおよび較正手順を用いて計算装置によって決定される。そのような評価アルゴリズムおよび較正手順は、当業者にはよく知られている。
【0063】
生物学的マトリクス内の検体濃度が導き出されるとすぐに、測定過程が繰り返され得るので、それにより検体濃度の連続的な監視が可能になる。代替として、測定が、特定のまたは不規則の時間間隔でなされ得る。それぞれの場合では、結果は、当業者に知られた手段を用いて表示され得る。たとえば、検体濃度の実行中のグラフまたはチャートがモニタに表示され得る。その代わりに、検体濃度が、デジタル読み出し装置またはアナログゲージ上に表示され得る。また、電気信号は、検体濃度が所定の範囲外である場合に音響装置で警報を発するために使用され得る。
【0064】
光感知構成部品から戻された光強度の変化が、多重波長における分光測定の必要なしに、生物学的マトリクス内のグルコースのような特定の検体の濃度の変化に関連し得ることが本発明の特徴である。さらに、少なくとも1つの検知測定が多重に反射された光の空間的に分解された測定である、2つの検知測定がなされる要求がない。光感知素子から戻された光強度のすべての測定は、同じ空間的な位置でなされ得る。さらに、依拠される原理が光の反射であり、光の吸収ではない。したがって、以前に知られた分光方法(とくにNIR分光法)とは対照的に、波長が、検体の吸収が相対的に低いスペクトルの範囲で好ましく選ばれる。
【0065】
グルコースの吸収が相対的に低いスペクトル範囲は、たとえば、米国特許第5,551、422号明細書に記載されている。好ましくは、波長は、400nmから1300nmのあいだである。この範囲外の他の波長は、妨害する種がマトリクス内に実質的に存在しなかったり、または存在しても適当な参照テスト試料の使用により補償される場合には、適した場合に利用される。
【0066】
従来技術に対して、これらのスペクトル範囲は、半透膜が感知用の容積部分から生物学的マトリクス内の他の成分(たとえばヘモグロビン)を排除するため、そのような成分による吸収による干渉を避けるために、通常さらに狭められる必要がない。同様に、方法が生物学的マトリクス内の光の貫通の深さに依存しないため、相対的に短い波長のための特別な選択はない。
【0067】
生物学的マトリクス内のグルコース濃度の非侵襲分析決定のための吸収に基づいた方法に対して、本発明では、測定波長に依存する最小値による、狭いバンド測定を用いることは概ね必要ではない。したがって、発光ダイオード(LED)および他の半導体光源のような相対的に広いバンドの光源(20nmより大きい半値幅)が、一次側または二次側上の後に続くスペクトル選択のための必要なく、用いられ得る。これにより、装置のコストをかなり減らすことができる。この特徴により、装置はとくに糖尿病患者のグルコース濃度の連続的な監視に適している。レーザを一次光源として用いる必要は概ねないけれども、平たい屈折表面のような、いくつかの場合では、所望であれば、レーザ光を用いてもよい。同様に、コヒーレント光または偏光を用いることも概ね必要ない。
【0068】
叙上に記載されたものの代わりの配列は、屈折材料および/または検体の屈折率の分散(すなわち、波長依存性)を活用するために、所定の波長で光を空洞内に発する1つまたはそれ以上の光源を使用する。この配列では、ある光源は、屈折要素の屈折率nelementが常に検体の屈折率nanalyteよりも大きい波長λ1を有する光を発する。他の光源は、屈折要素の屈折率nelementが常に検体の屈折率nanalyteよりも小さい波長λ2を有する光を発する。各波長の相対的な屈折率nrel=nanalyte/nelementは、以下のとおりである。
rel<1〜λ1および
rel>1〜λ2
代替として、多重の波長で光を発する単一の光源は、光を所望の波長で別個のビームに分けるために(2色性の)ビームスプリッタと組み合わせて用いられてもよい。検体の濃度が変わる、たとえば増加するとき、nanalyteは増加し、したがってnrelはλ1およびλ2の両方で増加する。この設定において、λ1およびλ2によって引き起こされる信号の相対的な変化は測定されている。相対的な測定は、絶対的な較正に依拠しておらず、背景の考慮すべきことによる影響も少ない。したがって、この配列は、方法の感度および/または特異性を改善するために用いられ得る。
【0069】
多重の波長を用いるこの配列の実施において、単一の検知器または多数の検知器が用いられ得る。たとえば、2つの波長λ1およびλ2が、叙上に記載されているように用いられるとき、2つの別個の検知器が信号を受けるために利用され得る。一方の検知器が「λ1光」を受ければ、他方が「λ2光」を受ける。所望であれば、波長依存性2色ビームスプリッタは、反射光から適当な波長を分離させるために用いられる。そのとき、コントローラが検体依存性の結果を生むために信号除去のような手段で信号を分析するために用いられ得る。信号検知器も用いられ得るが、この場合、信号は時間的な変化を概ね受ける。
【0070】
この多重波長の解決策に用いられる適した光源は、それぞれ異なる波長を有する多重の独立した単色光源を含む。代替として、ビームスプリッタが、光を異なるとくに所望の波長で別個のビームに分けるために、単色、多色光源とともに利用されてもよい。
【0071】
センサが、光を光感知素子へおよび光感知素子から伝達するために光ガイドを用いる経皮センサとして構成されていてもよい。代替として、センサは、集積された装置でもよい。この場合、移植された装置は、発光および光感知素子を単一の素子に組み込んでいる。完全に互換性を有するセンサユニットは、また無線周波数データ転送手段およびバッテリ充電器も含み得る。
【0072】
本発明の多数の改良および変形は、叙上の教示に照らせば可能であることは自明である。したがって、添付の特許請求の範囲の範囲内で、本発明がここで詳細に記載されている以外の他の実施がなされてもよいことが理解される。
【図面の簡単な説明】
【0073】
【図1】は本発明の第1の実施例の光感知素子のX11面の側断面図を示す。
【図2】図1に示された光感知素子のX11面の正面断面図を示す。
【図3】図1に示された光感知素子のX11面の頂部断面図を示す。
【図4】本発明の第2の実施例の光感知素子のX22面の側断面図を示す。
【図5】図4に示された光感知素子のX22面の正面断面図を示す。
【図6】図4に示された光感知素子のX22面の頂部断面図を示す。
【図7】本発明の第3の実施例の光感知素子のX33面の側断面図を示す。
【図8】図7に示された光感知素子のX33面の正面断面図を示す。
【図9】図7に示された光感知素子のX33面の頂部断面図を示す。
【図10】本発明の第4の実施例の光感知素子のX44面の側断面図を示す。
【図11】図10に示された光感知素子のX44面の正面断面図を示す。
【図12】図10に示された光感知素子のX44面の頂部断面図を示す。
【図13】本発明の第5の実施例の光感知素子のX55面の側断面図を示す。
【図14】図13に示された光感知素子のX55面の正面断面図を示す。
【図15】図13に示された光感知素子のX55面の頂部断面図を示す。
【図16】本発明の第6の実施例の光感知素子のX66面の側断面図を示す。
【図17】図16に示された光感知素子のX66面の正面断面図を示す。
【図18】図16に示された光感知素子のX66面の頂部断面図を示す。
【図19】本発明の第7の実施例の光感知素子のX77面の側断面図を示す。
【図20】図19に示された光感知素子のX77面の正面断面図を示す。
【図21】図19に示された光感知素子のX77の頂部断面図を示す。
【図22】実施例1〜5に記載されたタイプの光感知素子のブロックダイアグラムを示す。
【図23】実施例1〜5に記載されたタイプの光感知素子に工学的に結合された光学的検知および測定組み立て体を示す。
【図24】実施例6〜7記載されたタイプの光感知素子のブロックダイアグラムを示す。

Claims (82)

  1. 生物学的マトリクス中の検体の濃度を測定するための組み立て体であって、
    本体(100、200、300、400、500、600、700)と、該本体に設けられた膜(110、210、310、410、510、610、710)と、屈折要素(114、214、314、414、514、614、714)とを備え、該膜と本体が前記検体を受け取るための空洞部(112、212、312、412、512、612、712)を画定し、該膜が生物学的マトリクス中の検体を実質的に透過することができ、背景種を実質的に透過することができず、該屈折要素が該空洞部内に設けられた移植可能な光感知素子、
    前記空洞部から第1の強度の光を供給するための光源、
    前記空洞部から第2の強度の光を受け取るための検知器、および
    前記空洞部に光学的に結合された信号処理および計算素子であって、前記第1の強度と第2の強度とを比較し、当該強度を検体濃度と関連づけるための信号処理および計算素子。
  2. 前記本体は近位端(102、202、302、402、502、602、702)と遠位端(104、204、304、404、504、604、704)を有するとともに、前記屈折要素が前記本体の縦軸に対する横に連続的に配列された複数のプレートからなる請求項1記載の組み立て体。
  3. 前記屈折要素がプレート、粒子、玉および粉体のうち、少なくと1つからなる請求項1記載の組み立て体。
  4. 前記屈折要素が多孔質繊維、多孔質ロッド、巻き込まれたリボンおよび巻き込まれた繊維のうち、少なくと1つからなる請求項1記載の組み立て体。
  5. 前記屈折要素が前記検体の屈折率の±9%以内の屈折率を有する請求項1記載の組み立て体。
  6. 前記屈折要素の屈折率が前記検体の屈折率の±5%以内である請求項5記載の組み立て体。
  7. 前記屈折要素が1.26と1.50とのあいだの屈折率を有する請求項1記載の組み立て体。
  8. 前記屈折率が1.31と1.45とのあいだである請求項7記載の組み立て体。
  9. 前記屈折要素が成形可能なプラスチックからなる請求項1記載の組み立て体。
  10. 前記成形可能なプラスチックが、ポリウンデカフルオロヘキシルアクリレート、ポリデカメチレンカーボネート、ポリエチレンサクシネート、ポリエチレンオキシド、ポリトリフルオロエチレン、ポリヘキサフルオロプロピレン、ポリメチルメタクリレート、ポリエチレン、ポリオキシジエチルシリレンまたはポリビニルフルオライドである請求項9記載の組み立て体。
  11. 前記成形可能なプラスチックがポリメチルメタクリレートまたはポリエチレンである請求項10記載の組み立て体。
  12. 前記膜が陽イオン交換層と陰イオン交換層を有する両極性膜からなる請求項1記載の組み立て体。
  13. 前記陽イオン交換層と陰イオン交換層は接合されており、該陽イオン交換層が架橋ポリスチレンスルサルフォネートからなるとともに、該陰イオン交換層が架橋ポリビニルベンジルトリメチルアンモニウムクロライドからなる請求項12記載の組み立て体。
  14. さらに前記膜が、前記陽イオン交換層および陰イオン交換層のうちの1つに接合されるか、または前記本体に接合される第3の膜層からなり、該第3の膜層が巨大溶質を排除できる請求項12記載の組み立て体。
  15. 前記第3の膜層が再生セルロースまたはポリアミド膜である請求項14記載の組み立て体。
  16. 前記第3の膜層が前記両極性膜にラミネートされている請求項14記載の組み立て体。
  17. 前記両極性膜と第3の膜層のいずれかが前記本体の角において本体に単独に取り付けられている請求項14記載の組み立て体。
  18. 前記第3の膜層が成形工程で前記両極性膜に形成されている請求項14記載の組み立て体。
  19. 前記本体が近位端と遠位端を含んでおり、該本体の遠位端が光吸収材(108、208、308、408、508、608、708)からなる請求項1記載の組み立て体。
  20. 前記本体が近位端と遠位端を含んでおり、該本体の遠位端が透明材からなる請求項1記載の組み立て体。
  21. 前記本体が成形可能なプラスチックからなる請求項1記載の組み立て体。
  22. 前記本体がU形状またはV形状した断面を有する請求項21記載の組み立て体。
  23. 前記第1の強度と第2の強度の比率が電気信号に変換可能である請求項1記載の組み立て体。
  24. さらに前記電気信号のための読み出し装置を備える請求項23記載の組み立て体。
  25. 前記読み出し装置がアナログ、デジタルまたは音響読み出しを備える請求項24記載の組み立て体。
  26. 前記ソースが前記第1の強度の光を前記屈折要素に送信するための送信器からなる請求項1記載の組み立て体。
  27. 前記送信された光は半導体光源によって送信される請求項26記載の組み立て体。
  28. 前記半導体光源が発光ダイオードである請求項27記載の組み立て体。
  29. 前記送信された光が400nmと1300nmとのあいだの波長を有する請求項1記載の組み立て体。
  30. 前記検出器が光ダイオードからなる請求項1記載の組み立て体。
  31. 前記プレートが10μm以下で連続的に隔てられている請求項2記載の組み立て体。
  32. 前記送信された光および受信された光が1または2以上の光ファイバーにより伝達される請求項26記載の組み立て体。
  33. 生物学的マトリクス中の検体の濃度を測定するのに適した移植可能な光感知素子であって、
    本体(100、200、300、400、500、600、700)と、前記本体および膜が検体を受け取るための空洞部(112、212、312、412、512、612、712)を画定するように、該本体に設けられた膜であって、前記検体を実質的に透過することができ、前記生物学的マトリクス中の背景種を透過することができない膜と、前記検体の屈折率とは異なる屈折率を有する屈折要素(114、214、314、414、514、614、714)とを備えてなる光感知素子。
  34. 前記本体が2つの平行で細長い部材からなるとともに、前記屈折要素が2つの面を有する複数のプレートからなり、該プレートが前記細長い部材間に連続して配列され、一般的に該細長い部材と直角に向き合わせられている請求項33記載の光感知素子。
  35. 前記プレートが単一本体構造の前記細長い部材と一体化されている請求項34記載の光感知素子。
  36. 前記膜が第1の膜からなり、さらに前記光感知素子が該第1の膜から遠く離れ前記本体に取り付けられる第2の膜からなる請求項33記載の光感知素子。
  37. 前記屈折要素がプレート、粒子、玉および粉体のうち、少なくと1つからなる請求項33記載の光感知素子。
  38. 前記屈折要素が多孔質繊維、多孔質ロッド、巻き込まれたリボンおよび巻き込まれた繊維のうち、少なくと1つからなる請求項33記載の光感知素子。
  39. 前記屈折要素が前記検体の屈折率の±9%以内の屈折率を有する請求項33記載の光感知素子。
  40. 前記屈折要素の屈折率が前記検体の屈折率の±5%以内である請求項39記載の光感知素子。
  41. 前記屈折要素が1.31と1.45とのあいだの屈折率を有する請求項33記載の光感知素子。
  42. 前記屈折要素が成形可能なプラスチックからなる請求項33記載の光感知素子。
  43. 前記成形可能なプラスチックが、ポリウンデカフルオロヘキシルアクリレート、ポリデカメチレンカーボネート、ポリエチレンサクシネート、ポリエチレンオキシド、ポリトリフルオロエチレン、ポリヘキサフルオロプロピレン、ポリメチルメタクリレート、ポリエチレン、ポリオキシジエチルシリレンまたはポリビニルフルオライドである請求項42記載の光感知素子。
  44. 前記成形可能なプラスチックがポリメチルメタクリレートまたはポリエチレンである請求項42記載の光感知素子。
  45. 前記膜が陽イオン交換層と陰イオン交換層を有する両極性膜からなる請求項33記載の光感知素子。
  46. 前記陽イオン交換層と陰イオン交換層は接合されており、該陽イオン交換層が架橋ポリスチレンスルサルフォネートからなるとともに、該陰イオン交換層が架橋ポリビニルベンジルトリメチルアンモニウムクロライドからなる請求項45記載の光感知素子。
  47. さらに前記膜が、前記陽イオン交換層および陰イオン交換層のうちの1つに接合される第3の膜層からなり、該第3の膜層が巨大溶質を排除できる請求項46記載の光感知素子。
  48. 前記第3の膜層が再生セルロースまたはポリアミド膜である請求項47記載の光感知素子。
  49. 前記本体が近位端と遠位端を含んでおり、該本体の遠位端が光吸収材からなる請求項33記載の光感知素子。
  50. 前記本体が近位端と遠位端を含んでおり、該本体の遠位端が透明材からなる請求項33記載の光感知素子。
  51. 前記本体が成形可能なプラスチックからなる請求項33記載の光感知素子。
  52. 前記本体がU形状またはV形状した断面を有する請求項51記載の光感知素子。
  53. 生物学的マトリクス中の検体の濃度を測定するための組み立て体であって、
    本体(100、200、300、400、500、600、700)と、該本体に設けられた第1の半透膜(110、210、310、410、510、610)であって、生物学的マトリクス中の検体を透過することができ、生物学的マトリクス中の背景種を透過することができず、該第1の半透膜および本体が第1の空洞部(112、212、312、412、512、612、712)を画定するために並べられた第1の半透膜と、前記第1の空洞部内に設けられた第1の屈折要素と、前記第1の膜から離間した本体に設けられた第2の膜(209、620、720)であって、該第2の膜と本体が第2の空洞部(622、722)を画定するために並べられた第2の膜と、前記第2の空洞部内に設けられた第2の屈折要素(624、724)とを備えてなる組み立て体。
  54. 前記検体が第1の検体からなり、前記第1の半透膜が該第1の検体を透過することができ、第2の検体を透過することができず、かつ前記第2の膜が該第2の検体を透過することができる請求項53記載の組み立て体。
  55. 前記第2の膜が前記第1の検体を透過することができない請求項54記載の組み立て体。
  56. 前記第2の膜は前記検体に対して透過することができない請求項55記載の組み立て体。
  57. 前記ソースが第1および第2のキャビティのいずれかに光を送信するための光送信器からなる請求項53記載の組み立て体。
  58. 前記送信された光が400nmと1300nmとのあいだの波長を有する請求項57記載の組み立て体。
  59. 前記検出器が第1および第2の溝からなり、該第1の溝が前記第1の屈折要素から反射された光を受け入れるとともに、前記第2の溝が前記第2の屈折要素から反射された光を受け入れる請求項53記載の組み立て体。
  60. 前記受け入れられた光が信号処理および計算エレメントにより電気信号に変換される請求項53記載の組み立て体。
  61. 前記組み立て体は、さらに前記電気信号の表示のために読み出し装置を備えている請求項60記載の組み立て体。
  62. 前記読み出し装置はアナログ、デジタルまたは音響読み出しを備えている請求項61記載の組み立て体。
  63. 前記本体が
    [外1]
    Figure 2004526497
    形状した断面を有する請求項53記載の組み立て体。
  64. 前記本体が
    [外2]
    Figure 2004526497
    形状した断面を有する請求項53記載の組み立て体。
  65. 生物学的マトリクス中の検体の濃度を測定するための移植可能な光感知素子であって、
    本体(100、200、300、400、500、600、700)と、該本体に設けられた第1の半透膜(110、210、310、410、510、610、710)であって、生物学的マトリクス中の検体を透過することができ、背景種を透過することができず、該第1の半透膜と本体とが第1の空洞部(112、212、312、412、512、612、712)を画定するように並んでいる第1の半透膜と、前記第1の空洞部内に設けられた第1の屈折要素(114、214、314、414、514、614、714)と、前記第1の膜から離間した本体に設けられた第2の膜(209、620、720)であって、該第2の膜と本体が前記第1の空洞部から離間した第2の空洞部(622、722)を画定するように並んでいる第2の膜と、前記第2の空洞部内に設けられた第2の屈折要素(624、724)とを備えてなる光感知素子。
  66. 前記検体が第1の検体からなり、前記第1の半透膜が該第1の検体を透過することができ、第2の検体を透過することができず、かつ前記第2の膜が該第2の検体を透過することができる請求項65記載の光感知素子。
  67. 前記第2の膜が前記第1の検体を透過することができない請求項66記載の光感知素子。
  68. 前記第2の膜が前記検体を透過することができない請求項65記載の光感知素子。
  69. 前記本体が
    [外3]
    Figure 2004526497
    形状した断面を有する請求項65記載の光感知素子。
  70. 前記本体が
    [外4]
    Figure 2004526497
    形状した断面を有する請求項65記載の光感知素子。
  71. 生物学的マトリクス中の検体の濃度を測定するための方法であって、
    前記生物学的マトリクス中に光感知素子を移植する工程であって、該光感知素子が、本体(100、200、300、400、500、600、700)と、該本体に設けられた半透膜(110、210、310、410、510、610、710)であって、前記検体を透過することができるが、前記マトリクス中の背景種を透過することができず、該半透膜と本体が空洞部(112、212、312、412、512、612、712)を画定している半透膜と、該空洞部内に設けられた屈折要素(114、214、314、414、514、614、714)とを備えた、前記生物学的マトリクス中に光感知素子を移植する工程、
    発光源からの一次光を前記光感知素子の本体に導入し、該一次光を前記屈折要素に向ける工程と、
    前記光感知素子から反射された二次光を集光し、該二次光を光検知装置に伝達する工程と、
    前記二次光の強度を測定し、該二次光の測定された強度を前記一次光の強度と比較することによって前記生物学的マトリクス中の検体の濃度を評価する工程
    とを含む方法。
  72. 前記評価が評価アルゴリズムと較正によって行なわれる請求項71記載の方法。
  73. 前記検体がグルコースからなり、かつ前記二次光が、グルコースが該二次光の吸収に最小限の影響を及ぼすスペクトル領域内の波長を有する請求項71記載の方法。
  74. 生物学的マトリクス中の検体の濃度を測定するための方法であって、
    前記生物学的マトリクス内に光感知素子を移植する工程であって、該光感知素子が、本体(100、200、300、400、500、600、700)と、該本体に設けられた第1の膜(110、210、310、410、510、610、710)と、該第1の膜から離間した該本体に設けられた第2の膜(209、620、720)であって、当該第1および第2の膜の少なくとも1つが前記検体を透過することができるが、前記生物学的マトリクス中の背景種を透過することができず、当該第1および第2の膜と本体が空洞部(112、212、312、412、512、612、712)を画定する第2の膜と、該空洞部内に設けられた屈折要素(114、214、314、414、514、614,714)とを備えた、前記生物学的マトリクス内に光感知素子を移植する工程と、
    発光源から一次光を前記空洞部内の屈折要素に向けて伝達する工程と、
    屈折要素から反射した二次光を集光し、該二次光を光検知装置に伝達する工程と、
    前記光検知装置によって前記二次光の強度を測定する工程と、
    評価アルゴリズムおよび較正により前記二次光の測定された強度から前記生物学的マトリクス中の検体濃度を引き出す工程
    とを含む方法。
  75. 前記検体がグルコースであり、かつ前記二次光が、グルコースが該二次光の吸収に最小限の影響を及ぼすスペクトル領域内の波長を有する請求項74記載の方法。
  76. 生物学的マトリクス中の検体の濃度を測定する方法であって、
    前記生物学的マトリクス内に光感知素子を移植する工程であって、該光感知素子が、本体(100、200、300、400、500、600、700)と、該本体に設けられた第1の半透膜(110、210、310、410、510、610、710)であって、該第1の半透膜は検体を透過することができるが、前記生物学的マトリクス中の背景種を透過することができず、該本体および第1の膜が第1の空洞部(112、212、312、412、512、612、712)を画定する第1の半透膜と、該第1の半透膜から離間した該本体に設けられた第2の半透膜と、前記第1の空洞部内に設けられた第1の屈折要素(114、214、314、414、514、614、714)であって、当該本体と第2の膜が前記第1の空洞部から離間した第2の空洞部(622、722)を画定していおる第1の屈折部と、該第2の空洞部内に設けられた第2の屈折要素(624、724)とを備えた、前記生物学的マトリクス内に光感知素子を移植する工程と、
    発光源からの一次光を前記本体に伝達し、該一次光の個々の流れを前記第1の空洞部内の第1の屈折要素に向け、前記第2の空洞部内の第2の屈折要素に向ける工程と、
    前記第1の屈折要素における反射に起因する前記本体からの光を集光し、該光を光検知装置の第1の通信路に伝達する工程と、
    前記第2の屈折要素における反射に起因する前記本体からの光を集光し、該光を光検知装置の第2の通信路に伝達する工程と、
    前記第1および第2の通信路から集光された光の強度を測定する工程と、
    前記伝達された光の強度と前記第1および第2の通信路のそれぞれから集光された光の強度を比較することによって前記生物学的マトリクス中の検体の濃度を計算する工程
    を含む方法。
  77. 前記検体が第1の検体からなり、前記第1の半透膜が前記第1の検体を透過することができるとともに、前記生物細胞間質の第2の検体を透過することができず、前記第2の膜が前記第2の検体を透過することができ、かつ前記計算する工程が前記第1および第2の検体のいずれかの濃度を計算する請求項76記載の方法。
  78. 生物学的マトリクス中の検体の濃度を監視する組み立て体であって、
    移植可能な光感知素子であって、該光感知素子が、本体(100、200、300、400、500、600、700)と、該本体に設けられた膜(110、210、310、410、510、610、710)であって、該膜と本体が前記検体を受け取るための空洞部(112、212、312、412、512、612、712)を画定し、前記検体を実質的に通過することができ、前記生物学的マトリクス中の背景種を透過することができない膜と、前記空洞部内に設けられた屈折要素(114、214、314、414、514、614、714)とを備えた移植可能な光感知素子、
    第1の波長と第2の波長の光を前記空洞部内に供給するための光源であって、該第1の波長において前記屈折要素の屈折率は検体の屈折率より大きく、第2の波長において前記屈折要素の屈折率は検体の屈折率より小さい光源、
    前記空洞部から前記検体の第1の濃度における第1および第2の波長それぞれの光の強度を受け取り、前記検体の第2の濃度における第1および第2の波長それぞれの光の強度を受け取る検知器、および
    前記第1の波長において受け取られた光の強度と前記第2の波長において受け取られた光の強度とを比較し、当該強度と検体濃度を関連づけるために前記検知器に光学的に結合された信号処理および計算要素
    を備えてなる組み立て体。
  79. 前記ソースが前記光を少なくとも2つの波長の光に分割するためのビームスプリッターを含む請求項78記載の組み立て体。
  80. 前記ソースが少なくとも2つの光源からなり、各光源は光に規定された波長の光を与えることができる請求項78記載の組み立て体。
  81. 前記検出器が前記第1の波長の光の強度を検出するための検出部材と前記第2の波長の光を検出するための検出部材とからなる請求項78記載の組み立て体。
  82. 被験者の生物学的マトリクス中の検体の濃度変化を監視するための方法であって、
    前記被験者に光感知素子を移植する工程であって、当該光感知素子が、本体(100、200、300、400、500、600、700)と、該本体に設けられた膜(110、210、310、410、510、610、710)であって、該膜および本体が前記検体を受け取るための空洞部(212、312、412、512、612、712)を画定し、前記検体を実質的に透過することができ、前記生物学的マトリクス中の背景種を実質的に透過することができない膜と、前記空洞部内に設けられた屈折要素(114、214、314、414、514、614、714)とを備えた、前記被験者に光感知素子を移植する工程、
    第1の波長および第2の波長の光を空洞部内に伝達する工程であって、該第1の波長において前記屈折要素の屈折率は検体の屈折率よりも大きく、該第2の波長において前記屈折要素の屈折率は検体の屈折率より小さい、第1の波長および第2の波長の光を空洞部内に伝達する工程、
    前記空洞部から検体の第1の濃度における第1および第2の波長それぞれの光の強度と、検体の第2の濃度における第1および第2の波長それぞれの光の強度とを収集する工程、および
    前記第1および第2の濃度のそれぞれに対して第1の波長において受け取られた光の強度と前記第2の波長において受け取られた光の強度とを比較することによって検体の濃度変化を測定し、該強度と検体濃度とを関連づける工程
    を含んでなる方法。
JP2002572876A 2001-03-16 2002-03-18 皮下検体センサ Expired - Lifetime JP3692116B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/810,635 US6952603B2 (en) 2001-03-16 2001-03-16 Subcutaneous analyte sensor
PCT/EP2002/002960 WO2002074161A2 (en) 2001-03-16 2002-03-18 Subcutaneous analyte sensor

Publications (3)

Publication Number Publication Date
JP2004526497A true JP2004526497A (ja) 2004-09-02
JP2004526497A5 JP2004526497A5 (ja) 2005-06-09
JP3692116B2 JP3692116B2 (ja) 2005-09-07

Family

ID=25204303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002572876A Expired - Lifetime JP3692116B2 (ja) 2001-03-16 2002-03-18 皮下検体センサ

Country Status (6)

Country Link
US (3) US6952603B2 (ja)
EP (1) EP1372466A2 (ja)
JP (1) JP3692116B2 (ja)
AU (1) AU2002237332A1 (ja)
CA (1) CA2440854C (ja)
WO (1) WO2002074161A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191149A (ja) * 2007-02-05 2008-08-21 Palo Alto Research Center Inc 植設用光学キャビティ構造
JP2009142657A (ja) * 2007-12-17 2009-07-02 Palo Alto Research Center Inc 移植可能製品
JP2010048807A (ja) * 2008-08-21 2010-03-04 Palo Alto Research Center Inc 検体検知方法
JP2013519895A (ja) * 2010-02-16 2013-05-30 ライトシップ メディカル リミテッド グルコースセンサ用障壁層

Families Citing this family (221)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US6952603B2 (en) * 2001-03-16 2005-10-04 Roche Diagnostics Operations, Inc. Subcutaneous analyte sensor
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
AU2002312521A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
WO2002100461A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
EP1404233B1 (en) 2001-06-12 2009-12-02 Pelikan Technologies Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US7033371B2 (en) 2001-06-12 2006-04-25 Pelikan Technologies, Inc. Electric lancet actuator
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
AU2002358128A1 (en) * 2001-12-17 2003-06-30 Danfoss A/S Method and device for monitoring analyte concentration by optical detection
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8858434B2 (en) 2004-07-13 2014-10-14 Dexcom, Inc. Transcutaneous analyte sensor
US7828728B2 (en) 2003-07-25 2010-11-09 Dexcom, Inc. Analyte sensor
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7727181B2 (en) 2002-10-09 2010-06-01 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
US7993108B2 (en) 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
EP2322798A1 (en) 2002-10-09 2011-05-18 Abbott Diabetes Care Inc. Device and method for delivering medical fluids using a shape memory alloy
US7248912B2 (en) * 2002-10-31 2007-07-24 The Regents Of The University Of California Tissue implantable sensors for measurement of blood solutes
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
WO2004061420A2 (en) 2002-12-31 2004-07-22 Therasense, Inc. Continuous glucose monitoring system and methods of use
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US7679407B2 (en) 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
EP1648298A4 (en) 2003-07-25 2010-01-13 Dexcom Inc OXYGEN-IMPROVED MEMBRANE SYSTEMS FOR IMPLANTABLE DEVICES
US8788006B2 (en) 2003-08-01 2014-07-22 Dexcom, Inc. System and methods for processing analyte sensor data
US8060173B2 (en) 2003-08-01 2011-11-15 Dexcom, Inc. System and methods for processing analyte sensor data
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc METHOD AND APPARATUS PROVIDING A VARIABLE USER INTERFACE
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US8615282B2 (en) 2004-07-13 2013-12-24 Dexcom, Inc. Analyte sensor
DE602004029092D1 (de) 2003-12-05 2010-10-21 Dexcom Inc Kalibrationsmethoden für einen kontinuierlich arbeitenden analytsensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7146203B2 (en) 2003-12-18 2006-12-05 Elliot Botvinick Implantable biosensor and methods of use thereof
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
EP1718198A4 (en) 2004-02-17 2008-06-04 Therasense Inc METHOD AND SYSTEM FOR PROVIDING DATA COMMUNICATION IN A CONTINUOUS BLOOD SUGAR MONITORING AND MANAGEMENT SYSTEM
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc METHOD AND APPARATUS FOR MANUFACTURING A DEVICE FOR SAMPLING LIQUIDS
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20060270922A1 (en) 2004-07-13 2006-11-30 Brauker James H Analyte sensor
US7522786B2 (en) 2005-12-22 2009-04-21 Palo Alto Research Center Incorporated Transmitting light with photon energy information
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
CN101180093B (zh) 2005-03-21 2012-07-18 雅培糖尿病护理公司 用于提供结合的药剂输液以及分析物监测系统的方法和系统
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US7768408B2 (en) 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US7620437B2 (en) 2005-06-03 2009-11-17 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US7583190B2 (en) 2005-10-31 2009-09-01 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US8437582B2 (en) 2005-12-22 2013-05-07 Palo Alto Research Center Incorporated Transmitting light with lateral variation
US7433552B2 (en) 2005-12-22 2008-10-07 Palo Alto Research Center Incorporated Obtaining analyte information
US8344966B2 (en) 2006-01-31 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing a fault tolerant display unit in an electronic device
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
DE102006020720A1 (de) * 2006-05-04 2007-11-08 Robert Bosch Gmbh Interferometrische Messvorrichtung zur optischen Messung an Hautstrukturen
US7809441B2 (en) 2006-05-17 2010-10-05 Cardiac Pacemakers, Inc. Implantable medical device with chemical sensor and related methods
WO2007143225A2 (en) 2006-06-07 2007-12-13 Abbott Diabetes Care, Inc. Analyte monitoring system and method
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US8579853B2 (en) 2006-10-31 2013-11-12 Abbott Diabetes Care Inc. Infusion devices and methods
US8280470B2 (en) * 2006-11-03 2012-10-02 Volcano Corporation Analyte sensor method and apparatus
US9164037B2 (en) 2007-01-26 2015-10-20 Palo Alto Research Center Incorporated Method and system for evaluation of signals received from spatially modulated excitation and emission to accurately determine particle positions and distances
US8821799B2 (en) 2007-01-26 2014-09-02 Palo Alto Research Center Incorporated Method and system implementing spatially modulated excitation or emission for particle characterization with enhanced sensitivity
US7471399B2 (en) * 2007-02-05 2008-12-30 Palo Alto Research Center Incorporated Photosensing optical cavity output light
US7936463B2 (en) 2007-02-05 2011-05-03 Palo Alto Research Center Incorporated Containing analyte in optical cavity structures
US7633629B2 (en) 2007-02-05 2009-12-15 Palo Alto Research Center Incorporated Tuning optical cavities
US7545513B2 (en) * 2007-02-05 2009-06-09 Palo Alto Research Center Incorporated Encoding optical cavity output light
US7502123B2 (en) * 2007-02-05 2009-03-10 Palo Alto Research Center Incorporated Obtaining information from optical cavity output light
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
WO2009009799A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Catheter for in vivo imaging
US8629981B2 (en) 2008-02-01 2014-01-14 Palo Alto Research Center Incorporated Analyzers with time variation based on color-coded spatial modulation
US8373860B2 (en) 2008-02-01 2013-02-12 Palo Alto Research Center Incorporated Transmitting/reflecting emanating light with time variation
EP2252196A4 (en) 2008-02-21 2013-05-15 Dexcom Inc SYSTEMS AND METHOD FOR PROCESSING, TRANSMITTING AND DISPLAYING SENSOR DATA
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
US20100022856A1 (en) * 2008-07-28 2010-01-28 Medtronic, Inc. Implantable optical hemodynamic sensor including light transmission member
US9161714B2 (en) 2008-08-21 2015-10-20 Palo Alto Research Center Incorporated Specificity of analyte detection in etalons
EP3795987B1 (en) 2008-09-19 2023-10-25 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8560082B2 (en) 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
WO2010123521A1 (en) * 2009-04-21 2010-10-28 The Trustees Of Columbia University In The City Of New York Sensors for long-term and continuous monitoring of biochemicals
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
WO2010129375A1 (en) 2009-04-28 2010-11-11 Abbott Diabetes Care Inc. Closed loop blood glucose control algorithm analysis
US9184490B2 (en) 2009-05-29 2015-11-10 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
ES2888427T3 (es) 2009-07-23 2022-01-04 Abbott Diabetes Care Inc Gestión en tiempo real de los datos relativos al control fisiológico de los niveles de glucosa
WO2011026148A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
WO2011041469A1 (en) 2009-09-29 2011-04-07 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
KR20140082642A (ko) 2011-07-26 2014-07-02 글리젠스 인코포레이티드 용봉한 하우징을 포함하는 조직 이식 가능한 센서
WO2013019714A1 (en) 2011-07-29 2013-02-07 The Trustees Of Columbia University In The City Of New York Mems affinity sensor for continuous monitoring of analytes
US8723140B2 (en) 2011-08-09 2014-05-13 Palo Alto Research Center Incorporated Particle analyzer with spatial modulation and long lifetime bioprobes
US9029800B2 (en) 2011-08-09 2015-05-12 Palo Alto Research Center Incorporated Compact analyzer with spatial modulation and multiple intensity modulated excitation sources
WO2013033489A1 (en) 2011-08-31 2013-03-07 Volcano Corporation Optical rotary joint and methods of use
EP2775918B1 (en) 2011-11-07 2020-02-12 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US10561353B2 (en) 2016-06-01 2020-02-18 Glysens Incorporated Biocompatible implantable sensor apparatus and methods
US10660550B2 (en) 2015-12-29 2020-05-26 Glysens Incorporated Implantable sensor apparatus and methods
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US9743871B2 (en) * 2012-09-24 2017-08-29 Dexcom, Inc. Multiple electrode system for a continuous analyte sensor, and related methods
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9478940B2 (en) 2012-10-05 2016-10-25 Volcano Corporation Systems and methods for amplifying light
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
CA2894403A1 (en) 2012-12-13 2014-06-19 Volcano Corporation Devices, systems, and methods for targeted cannulation
WO2014113188A2 (en) 2012-12-20 2014-07-24 Jeremy Stigall Locating intravascular images
US9709379B2 (en) 2012-12-20 2017-07-18 Volcano Corporation Optical coherence tomography system that is reconfigurable between different imaging modes
CA2895502A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
WO2014100162A1 (en) 2012-12-21 2014-06-26 Kemp Nathaniel J Power-efficient optical buffering using optical switch
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
EP2936626A4 (en) 2012-12-21 2016-08-17 David Welford SYSTEMS AND METHODS FOR REDUCING LIGHT WAVE LENGTH TRANSMISSION
WO2014099672A1 (en) 2012-12-21 2014-06-26 Andrew Hancock System and method for multipath processing of image signals
EP2934280B1 (en) 2012-12-21 2022-10-19 Mai, Jerome Ultrasound imaging with variable line density
WO2014100606A1 (en) 2012-12-21 2014-06-26 Meyer, Douglas Rotational ultrasound imaging catheter with extended catheter body telescope
WO2014100530A1 (en) 2012-12-21 2014-06-26 Whiseant Chester System and method for catheter steering and operation
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
EP2936426B1 (en) 2012-12-21 2021-10-13 Jason Spencer System and method for graphical processing of medical data
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
CN105103163A (zh) 2013-03-07 2015-11-25 火山公司 血管内图像中的多模态分割
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
WO2014164696A1 (en) 2013-03-12 2014-10-09 Collins Donna Systems and methods for diagnosing coronary microvascular disease
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
JP6339170B2 (ja) 2013-03-13 2018-06-06 ジンヒョン パーク 回転式血管内超音波装置から画像を生成するためのシステム及び方法
EP2967606B1 (en) 2013-03-14 2018-05-16 Volcano Corporation Filters with echogenic characteristics
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
WO2016022696A1 (en) 2014-08-05 2016-02-11 The Trustees Of Columbia University In The City Of New York Method of isolating aptamers for minimal residual disease detection
US10780222B2 (en) 2015-06-03 2020-09-22 Pacific Diabetes Technologies Inc Measurement of glucose in an insulin delivery catheter by minimizing the adverse effects of insulin preservatives
US10716500B2 (en) 2015-06-29 2020-07-21 Cardiac Pacemakers, Inc. Systems and methods for normalization of chemical sensor data based on fluid state changes
AU2016315838B2 (en) 2015-09-02 2022-07-28 Metronom Health, Inc. Systems and methods for continuous health monitoring using an opto-enzymatic analyte sensor
US10638962B2 (en) 2016-06-29 2020-05-05 Glysens Incorporated Bio-adaptable implantable sensor apparatus and methods
US10332693B2 (en) * 2016-07-15 2019-06-25 Nanotek Instruments, Inc. Humic acid-based supercapacitors
US11254616B2 (en) 2016-08-04 2022-02-22 Global Graphene Group, Inc. Method of producing integral 3D humic acid-carbon hybrid foam
US10731931B2 (en) 2016-08-18 2020-08-04 Global Graphene Group, Inc. Highly oriented humic acid films and highly conducting graphitic films derived therefrom and devices containing same
US10597389B2 (en) 2016-08-22 2020-03-24 Global Graphene Group, Inc. Humic acid-bonded metal foil film current collector and battery and supercapacitor containing same
WO2018038920A1 (en) * 2016-08-26 2018-03-01 Cardiac Pacemakers, Inc. Systems and methods for determining presence of an analyte using an implantable medical device
US10647595B2 (en) 2016-08-30 2020-05-12 Global Graphene Group, Inc. Humic acid-derived conductive foams and devices
US11638544B2 (en) * 2017-05-17 2023-05-02 Radiometer Medical Aps Porous optical fiber for the detection of an analyte in a fluid
CN108968976B (zh) 2017-05-31 2022-09-13 心脏起搏器股份公司 具有化学传感器的植入式医疗设备
US10638979B2 (en) 2017-07-10 2020-05-05 Glysens Incorporated Analyte sensor data evaluation and error reduction apparatus and methods
CN109381195B (zh) 2017-08-10 2023-01-10 心脏起搏器股份公司 包括电解质传感器融合的系统和方法
CN109419515B (zh) 2017-08-23 2023-03-24 心脏起搏器股份公司 具有分级激活的可植入化学传感器
CN109864746B (zh) 2017-12-01 2023-09-29 心脏起搏器股份公司 用于医学装置的多模式分析物传感器
CN109864747B (zh) 2017-12-05 2023-08-25 心脏起搏器股份公司 多模式分析物传感器光电子接口
US11278668B2 (en) 2017-12-22 2022-03-22 Glysens Incorporated Analyte sensor and medicant delivery data evaluation and error reduction apparatus and methods
US11255839B2 (en) 2018-01-04 2022-02-22 Glysens Incorporated Apparatus and methods for analyte sensor mismatch correction

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US426358A (en) 1890-04-22 Brazing-machine
US4024043A (en) 1975-12-31 1977-05-17 Allied Chemical Corporation Single film, high performance bipolar membrane
DE3176091D1 (en) 1981-09-15 1987-05-14 Mueller Arno Method and device for the quantitative determination of dissolved substances in single- or multicomponent systems of laser light scattering
AU1615983A (en) 1982-06-22 1984-01-05 Unsearch Ltd. Bipolar membrane
US4584246A (en) 1983-11-23 1986-04-22 Chinese Petroleum Corp. Bipolar membranes
ATE42673T1 (de) 1984-05-04 1989-05-15 Kurashiki Boseki Kk Spektrophotometrisches geraet zur unblutigen bestimmung von glukose in lebendem gewebe.
DE3508206A1 (de) 1985-03-08 1986-09-11 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung bipolarer membranen
US5227040A (en) * 1987-07-30 1993-07-13 Unisearch Limited High performance bipolar membranes
US5183042A (en) 1989-05-23 1993-02-02 Vivascan Corporation Electromagnetic method and apparatus to measure constituents of human or animal tissue
US5098532A (en) 1991-05-24 1992-03-24 Ormiston Mining And Smelting Co. Ltd. Process for producing sodium hydroxide and ammonium sulfate from sodium sulfate
US5246551A (en) 1992-02-11 1993-09-21 Chemetics International Company Ltd. Electrochemical methods for production of alkali metal hydroxides without the co-production of chlorine
WO1994010553A1 (en) 1992-10-23 1994-05-11 Optex Biomedical, Inc. Fibre-optic probe for the measurement of fluid parameters
IL107396A (en) 1992-11-09 1997-02-18 Boehringer Mannheim Gmbh Method and apparatus for analytical determination of glucose in a biological matrix
DE19521628A1 (de) * 1995-06-14 1997-01-09 Hoechst Ag Optische Sonde mit Sensor aus einem optischen Polymeren
WO1997003603A1 (en) * 1995-07-21 1997-02-06 Respironics, Inc. Method and apparatus for diode laser pulse oximetry using multifiber optical cables and disposable fiber optic probes
US6095974A (en) * 1995-07-21 2000-08-01 Respironics, Inc. Disposable fiber optic probe
DE19540456C2 (de) 1995-10-30 1997-10-09 Buschmann Johannes Verfahren zur Messung der Glukosekonzentration in einer Flüssigkeit und Verwendung des Verfahrens
US6011984A (en) * 1995-11-22 2000-01-04 Minimed Inc. Detection of biological molecules using chemical amplification and optical sensors
WO1998001071A1 (en) 1996-07-08 1998-01-15 Animas Corporation Implantable sensor and system for in vivo measurement and control of fluid constituent levels
US6070093A (en) 1997-12-02 2000-05-30 Abbott Laboratories Multiplex sensor and method of use
US6241663B1 (en) * 1998-05-18 2001-06-05 Abbott Laboratories Method for improving non-invasive determination of the concentration of analytes in a biological sample
US6330464B1 (en) 1998-08-26 2001-12-11 Sensors For Medicine & Science Optical-based sensing devices
JP4055266B2 (ja) * 1998-10-13 2008-03-05 株式会社日立製作所 光計測装置
US6442410B1 (en) * 1999-06-10 2002-08-27 Georgia Tech Research Corp. Non-invasive blood glucose measurement system and method using optical refractometry
US6952603B2 (en) * 2001-03-16 2005-10-04 Roche Diagnostics Operations, Inc. Subcutaneous analyte sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191149A (ja) * 2007-02-05 2008-08-21 Palo Alto Research Center Inc 植設用光学キャビティ構造
JP2009142657A (ja) * 2007-12-17 2009-07-02 Palo Alto Research Center Inc 移植可能製品
JP2010048807A (ja) * 2008-08-21 2010-03-04 Palo Alto Research Center Inc 検体検知方法
JP2013519895A (ja) * 2010-02-16 2013-05-30 ライトシップ メディカル リミテッド グルコースセンサ用障壁層
US9151764B2 (en) 2010-02-16 2015-10-06 Lightship Medical Limited Barrier layer for glucose sensor

Also Published As

Publication number Publication date
US20050271546A1 (en) 2005-12-08
CA2440854A1 (en) 2002-09-26
CA2440854C (en) 2008-08-05
US7499738B2 (en) 2009-03-03
US20020161286A1 (en) 2002-10-31
US6952603B2 (en) 2005-10-04
EP1372466A2 (en) 2004-01-02
WO2002074161A3 (en) 2003-07-24
US20050271547A1 (en) 2005-12-08
JP3692116B2 (ja) 2005-09-07
WO2002074161A2 (en) 2002-09-26
AU2002237332A1 (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP3692116B2 (ja) 皮下検体センサ
JP3000350B2 (ja) 総ヘモグロビン濃度の光学的測定のための方法及び測定システム
US7315752B2 (en) Method and device for determining a light transport parameter in a biological matrix
KR102093684B1 (ko) 전혈 샘플 중 자유 헤모글로빈의 검출을 위한 광학 센서
US5288646A (en) Method of photometric in vitro determination of the content of an analyte in a sample of whole blood
US8173439B2 (en) Measurement system with optical referencing
US20120059232A1 (en) Implantable optical glucose sensing
US4704029A (en) Blood glucose monitor
US8231832B2 (en) Analyte concentration detection devices and methods
US5176882A (en) Dual fiberoptic cell for multiple serum measurements
Wolfbeis Fibre-optic sensors in biomedical sciences
JP2011519635A (ja) 光学マイクロニードル系分光計
Anderson et al. Fiber optic immunochemical sensor for continuous, reversible measurement of phenytoin.
WO1999067623A1 (en) Method and apparatus for the quantitative analysis of a liquid sample with surface enhanced spectroscopy
KR20020086230A (ko) 분석물질 검출 장치에서의 광학 요소 기반 온도 측정
JP2001513350A (ja) 患者の身体におけるinvivo分析用の分析装置
US20110118570A1 (en) Optic sensor device with sers
US20210137430A1 (en) Fully implantable sensor element and method for detecting at least one analyte in a body fluid
CN116868046A (zh) 用于光学分析物测量的无反射层的多孔装置
Gupta et al. Fiber optical sensors and instruments for bio-science
Bronzino Optical Sensors

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5