JP2004522163A - 細胞などの微小移動対象物の画像化及び分析パラメータ - Google Patents

細胞などの微小移動対象物の画像化及び分析パラメータ Download PDF

Info

Publication number
JP2004522163A
JP2004522163A JP2003504054A JP2003504054A JP2004522163A JP 2004522163 A JP2004522163 A JP 2004522163A JP 2003504054 A JP2003504054 A JP 2003504054A JP 2003504054 A JP2003504054 A JP 2003504054A JP 2004522163 A JP2004522163 A JP 2004522163A
Authority
JP
Japan
Prior art keywords
light
image
imaging system
time delay
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003504054A
Other languages
English (en)
Other versions
JP4018063B2 (ja
JP2004522163A5 (ja
Inventor
オルティン ウィリアム
バシジ デイビッド
Original Assignee
アムニス コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/820,434 external-priority patent/US6473176B2/en
Application filed by アムニス コーポレイション filed Critical アムニス コーポレイション
Publication of JP2004522163A publication Critical patent/JP2004522163A/ja
Publication of JP2004522163A5 publication Critical patent/JP2004522163A5/ja
Application granted granted Critical
Publication of JP4018063B2 publication Critical patent/JP4018063B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/148Beam splitting or combining systems operating by reflection only including stacked surfaces having at least one double-pass partially reflecting surface
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • C07K1/047Simultaneous synthesis of different peptide species; Peptide libraries
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4406Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1468Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
    • G01N15/147Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/11Compounds covalently bound to a solid support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0294Particle shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/144Imaging characterised by its optical setup
    • G01N2015/1443Auxiliary imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1468Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
    • G01N2015/1472Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle with colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1477Multiparameters
    • G01N2015/1479Using diffuse illumination or excitation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • G01N2021/058Flat flow cell

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

画像化システムを通って移動する細胞などの対象物からの光が、複数の個別検出器(321〜325)上に結像するように集光され、かつ分散される。光は、間隔を隔てて配置された複数の二色性反射器(301〜304)によってスペクトル分散し、検出器(321〜325)の各々が、二色性反射器(301〜304)の各々からの光を受光する。二色性フィルタ(301〜304)の各々は、異なる予め決められた色の光を反射し、その他の色の光を通過させる。検出器(321〜325)の各々の出力信号は、対象物の様々な特性を表している。ある構成では、検出器(321〜325)の各々は、個別の画像化レンズ(311〜315)を備えている。他の構成では、検出器(321〜325)は、対応する二色性反射器(301〜304)から可変距離を隔てて配置されており、したがって個別の画像化レンズは不要である。

Description

【0001】
(発明の分野)
本発明は、一般に移動対象物すなわち粒子を分析し、検出するための画像化システムに関し、より詳細には、細胞などの移動対象物の形態を決定し、分析するための画像化システム及びその方法、細胞内における蛍光インサイチュハイブリッド化(Fluorescence In−Situ Hybridization;FISH)プローブの存在および組成を検出するための画像化システム及びその方法に関する。
【0002】
(発明の背景)
細胞および粒子分析技術の限界により、現時点では実行不可能な多くの生物学的および医学的アプリケーションが存在している。このような生物学的アプリケーションの例として、既知の空気伝染毒素の戦場監視、および既知および未知の両毒素の存在を検出するための培養細胞の監視がある。医学的アプリケーションには、抹消血液中の珍しい細胞(すなわち出現率の小さい細胞)の検出および分析による非侵襲出生前遺伝検査(non−invasive prenatal genetic testing)および常用癌スクリーニングがある。これらのすべてのアプリケーションには、以下の主要特性を備えた分析システムが必要である。
1.測定速度が速い。
2.極めて大型のサンプルあるいは連続するサンプルを処理することができる。
3.スペクトル分解能が高く、かつ、帯域幅が広い。
4.空間解像力が良好である。
5.感度が高い。
6.測定変動が小さい。
【0003】
出生前検査における標的細胞は、胎盤関門(placental barrier)を超えて母親の血流中に入る胎児の細胞である。癌スクリーニングでは、標的細胞が、発生期の癌腫瘍から血流中に腐肉する。この技術のこれらのいずれのアプリケーションにおいても、標的細胞は、十億個当たりに1〜5個の細胞濃度で血液中に存在している。この濃度は、典型的な20mlの血液サンプル中に約20〜100個の標的細胞をもたらしている。標的細胞が極端に珍しい場合、これらのアプリケーションに使用されるいかなる検出および分析システムも、濃縮サンプルの約1億個の細胞を、毎秒10,000細胞の最小スループットに相当する数時間以内に処理することができなければならない。細胞の処理には、全体の大きさ、核の大きさ、核の形状、および光学的濃度などの細胞形態パラメータの正確な測定、多数の蛍光マーカおよびFISHプローブの検出および特性化、核中のDNAの総量の定量化、および胎児のヘモグロビンなどの他の細胞成分の検出が含まれている。これらの処理タスクを達成するためには、システムは、細胞画像を約1ミクロンの空間解像力で収集することができなければならない。同様に、4個以上の蛍光色を弁別するためには、システムは、スペクトル分解能が高く、かつ、帯域幅が広くなければならない。プローブの中には、わずか数千個の蛍光分子で重要な細胞の特徴をラベル化しているものがあるため、極めて微弱な信号を弁別するためには、システムは、感度が高く、かつ、良好な測定の一貫性を備えていなければならない。
【0004】
非侵襲出生前診断のための優勢な研究所プロトコルには、非核化細胞を除去するための勾配遠心分離、胎児の細胞を濃縮するための高速細胞分離、および胎児の細胞を識別し、遺伝分析するための蛍光顕微鏡検査を始めとする一連の複雑な処理ステップが使用されている。プロトコルの各ステップで胎児の細胞が少しずつ失われていくため、これらのプロトコルによっては、分析のためにもたらされる胎児細胞が極めて少なく、あるいは全くもたらされないことがしばしばである。それにも関わらず、既存の分析技術の限界により、プロトコルは簡易化されていない。胎児細胞の識別および分析は、必要な速度およびサンプル処理能力を備えた高速細胞分離装置によって、数時間以内に実施されることが理想的である。従来の細胞分離装置には、高い信頼性で胎児の細胞を識別し、かつ、診断に使用されるFISHプローブの数および色を列挙するための、必要な画像化能力、感度、および再現性が欠けているため、この理想は、従来のシステムでは不可能である。したがって、現在のプロトコルでは、胎児の由来を確立し、遺伝診断を実施するためには、蛍光顕微鏡検査法を使用してスライド上で細胞を分離し、検査しなければならない。もたらされる胎児の細胞が少ないこと、および処理時間が長いことが相俟って、既存の技術による非侵襲胎児検査に対する臨床上のアプリケーションを阻んでいる。
【0005】
本発明以前には、上述した有効な胎児細胞分析システム、あるいは癌分析システムのための6つの主要特性をすべて組み込んだ技術は存在していない。進歩した従来の技術を、これらのアプリケーションに適用することもできるが、依然として大きな限界が存在している。
【0006】
Ongらによって発行された文献[Anal. Quant. Cytol. Histol.,9(5):375−82]に、画像化フロー細胞計算器への時間遅延積分(Time Delay and Integration;TDI)検出器の使用が記述されている。TDI検出器は、デバイスに向けられた放射に応答して生成される信号を、制御された方式で移動させることができる任意のピクセル化デバイスである。通常、TDI検出器のピクセルは、行および列に配列され、デバイス上に投影された移動画像に同期して行から行へ信号が移動し、ぼやけることなく長時間の積分時間を可能にしている。Ongらによって開示された手法は、流動している細胞に対する空間解像力および高感度の必要性に対処することによって技術を進歩させたが、この手法は、残りの主要特性には対処していない。この文献の著者は、非侵襲胎児検査に必要な速度より少なくとも1桁遅い毎秒10細胞の動作速度および毎秒500細胞の理論速度限界を引用している。また、システムにはスペクトル分解能がなく、レーザ散乱光および蛍光光が、画像化システムによって無差別に収集されている。
【0007】
ごく最近開発された、米国特許第5,644,388号明細書に、画像化フロー細胞計算器の代替手法が開示されている。この特許には、ビデオカメラが流動する細胞を凍結フレーム方式で検査する、フレームベース画像収集手法の使用が開示されている。この手法には、検出器の読出し速度と細胞の速度が同期するTDI検出器の場合と異なり、画像収集システムを画像エリア内に存在する細胞に同期させる必要がある。細胞をフレームベース方式で画像化する場合、ぼやけを回避するためには積分周期を極めて短くしなければならない。積分時間は、ストローブ光源あるいはシャッタ検出器と組み合わせた連続光源を使用して短縮されているが、いずれの場合においても、積分時間が短くなることによって信号対雑音比が小さくなり、延いては上記手法の感度を低下させている。また、フレームベースのカメラの場合、カメラからのデータ転送に時間がかかり、その間、画像を入手することができず、当該細胞の検出が見逃されることがある。最後に、Ongらの特許と同様、本特許にも、広スペクトル帯域幅に対するデータ取得の備えはなく、異なる色に着色された多数の蛍光プローブおよびFISHスポットを同時に解像するだけの十分なスペクトル分解能を備えている。
【0008】
スペクトルの弁別については、米国特許第5,422,712号明細書で対処されており、流体中に懸垂された粒子のスペクトルが、検出領域を通って流れる粒子のスペクトルとして収集されている。しかし、対象物が検出器部分で焦点外れになるため、システムにおける対象物の空間表現については、この特許には開示されていない。このシステムでは、対象物からの光が収集され、中間開口部に画像が生成されている。光は、開口を通ってスペクトル分散素子まで連続している。スペクトル分散素子は、流れの軸に沿って、光のスペクトルを分散させている。分散した光は光増幅器に印加されて増幅される。光増幅器の光信号出力が最終的にフレームベース検出器に導かれている。中間開口における画像は、スペクトル分散に先立って、物空間における光の空間分布を表している。空間分布は、光が像平面を通過し、スペクトル分散素子を通って光増幅器に伝搬するとぼやける。光増幅器部分で中間開口を再画像化するための備えがないため、結果として光増幅器部分に得られる信号分布が表しているのは光のスペクトル分布のみであり、対象物からの光の空間分布は維持されていない。空間情報の喪失により、胎児の細胞分析などのアプリケーションに対する発明の効用が制限されている。細胞内に複数の同一FISHスポットが存在する場合、この手法を用いてそれらのスペクトルを確認することができるが、スポットの数を正確に測定することはできない。また、この手法は、流れの軸に平行に波長スペクトルを分散させている。2つの粒子が流れの軸に沿って照射されると、その2つの粒子のスペクトルが検出器上で重複する。この問題を回避するために、上記発明には、流れの軸に沿った、極めて低い高さからの照射の使用が開示されている。低い高さからの照射により、積分時間が短縮され、光増幅器の使用が余儀なくされている。また、低い高さから照射する場合、流れの軸に沿った複数の細胞の同時画像化を回避しなければならないため、スループットが制限されている。
【0009】
したがって、提案された従来の手法の限界を解決して、改善された技法が望ましいことは明らかであろう。従来の技術が抱えるこれらの問題に対処するべく開発された新しい手法には、さらに、細胞以外の他の種類の移動対象物を分析するアプリケーションがあり、また、全く異種の技術アプリケーションに対する特定の要求に合致するべく、異なる構成で実施することができる期待がある。
【0010】
(発明の概要)
本発明は、対象物の画像から対象物の1つまたは複数の特性を決定するようになされた画像化システムを対象としている。対象物と画像化システムとの間には相対運動が存在し、いずれか一方(または両方)が移動することが意図されているが、対象物が移動し、画像化システムが固定されていることが好ましい。また、以下の概要および対応する請求項のほとんどは、「1つの対象物」に関連して記載されているが、本発明が好ましくは複数の対象物との使用が意図され、とりわけ対象物の流れを画像化することに対して有用であることが明確に意図されていることについても理解すべきである。
【0011】
本発明により、複数の検出器を利用した、視野を通って検出器に対して移動する対象物の少なくとも1つの特性を決定する方法および装置が提供される。検出器は静止していることが好ましいが、対象物と検出器との間に相対運動が存在していることがクリティカルアスペクトであり、したがって、本発明が、対象物が静止し、検出器が移動する実施形態を見越していることを理解すべきである。本発明によって提供されるデータには、高い解像力で広い帯域幅をカバーする同時空間画像およびスペクトル画像が含まれていること、また、本発明により、対象物から収集されるスペクトル情報の空間起点が提供されることに留意されたい。詳細には、複数の検出器を使用することにより、放出帯域幅による画像のひずみ、すなわちたみ込みの発生が確実に回避され、したがって、画像を修正するための逆たたみ込みの必要がない。スペクトル分解画像の各々に独立した検出器を提供するだけの十分な検出器が使用されている。
【0012】
多重検出器画像化システムのいくつかの異なる実施形態が提供されている。実施形態の第1のシリーズは、個々の検出器と結合した画像化レンズを備えたシステムを対象とし、また、実施形態の第2のシリーズは、単一画像化レンズを備えたシステムを対象としている。
【0013】
一般的に、画像化システムは、対象物から進行する光が、集光レンズを通過することによって平行になり、かつ、集光光路に沿って進行するように配置された集光レンズを備えている。集光レンズを通過した光を受光し、結像させるための少なくとも1つのレンズが配置されている。1つまたは複数のこのような画像レンズの配置は、画像化システムに使用される画像レンズが1つであるか、あるいは上で言及したように個別のレンズを個々の検出器に結合させるかどうかによって変化する。相対配置については、以下でより詳細に説明する。複数の光反射素子が、集光レンズを通過した光を受光し、予め決められた特性(predefined characteristic)を有する光を反射し、予め決められた特性を持たない光を通過させている。集光レンズを通過する光は、対象物と画像化システムとの間の相対移動方向に対して実質的に直角をなす平面に存在することが好ましい。上述したように、対象物または画像化システムあるいはその両方を、互いに相対移動させることができる。以下、簡潔にするために、この相対移動を単純に「移動」と呼ぶ。光反射素子の各々は、光を異なる方向に反射し、それぞれ、反射光を受光するべく配置された検出器を備えている。検出器の各々は、対象物の少なくとも1つの特性を表す信号を生成することができる。検出器の各々は、少なくとも1つの画像化レンズによって結像した画像を受け取るべく配置されたTDI検出器であることが好ましい。移動が生じると、画像レンズによって結像した対象物の画像が、TDI検出器の両端間を行から行へ移動する。TDI検出器の各々は、対象物の少なくとも一部からの光を時間に対して積分することにより、対象物の少なくとも1つの特性を表す出力信号を生成している。
【0014】
この実施例では、集光レンズによる光の平行化により、対象物の第1のポイントから放出されるすべての光が平行光線で進行する。また、対象物の第2のポイントから放出される光も平行光線で進行するが、第1のポイントからの光に対する角度が異なっている。この方法により、対象物の空間情報が集光レンズによって集光光路中で角度情報に変換される。複数の異なる反射素子がそれぞれ特性が異なる光を反射し、それにより、異なるスペクトル成分が、複数の異なる反射素子から、好ましくは、対象物と画像化システムとの間の移動方向に対して実質的に直角をなす平面内の異なる方向に離れるように、平行化された光に作用している。この方法により、対象物の空間情報およびスペクトル情報の両方が角度情報に変換される。少なくとも1つの画像化レンズが平行化された光に作用し、様々な光角度が各検出器上の様々な位置に変換される。空間情報は、対象物の様々な位置からの光が、両方の軸に対して検出器上の様々な位置に投影されるため、システムによって保存されている。また、対象物から放出されるスペクトル成分が異なる光は、移動に対して実質的に直角をなす軸に沿って、異なる検出器に投影されることが好ましい。この方法により、対象物からの空間情報が保存され、広帯域幅をカバーするスペクトル情報が、高い分解能で同時に収集される。単一検出器を異なるスペクトル成分の各々に使用することは、各々の検出器が個々に各々の色を集束させ、それにより単一検出器システムに必要な縦色補正の制約が除去され、光学設計が単純化されることを意味している。さらに他の利点は、検出器の各々の量子効率を、その特定の色帯域に対して個別に最適化し、それによりシステムの総合感度を向上させることができることである。
【0015】
光反射素子の各々は、予め決められた帯域幅内の光を予め決められた角度で反射するようになされた二色性フィルタすなわち二色性ミラーであることが好ましい。すべての波長が様々な角度で離れるプリズムとは異なり、予め決められた帯域幅内のすべての光が共通の角度で二色性素子に入射し、同じ角度で所与の二色性素子を離れるため、対象物を離れた光の発光スペクトルと該対象物の画像との間にたたみ込みが生じることはない。このような反射素子を使用する場合、第1のスペクトル帯域幅の光が、第1の二色性素子で予め決められた公称角度で反射する。第2のスペクトル帯域幅の光は、第1の二色性素子を通過して次の二色性素子に向かい、そこで別の予め決められた公称角度で反射する。第3のスペクトル帯域幅の光は、第1および第2の二色性素子を通過して第3の二色性素子に向かい、そこで第3の予め決められた公称角度で反射する。二色性素子は、所望の光スペクトルをカバーするべく選択され、適切なスペクトル通過帯域を備えている。二色性素子の各々の角度は、二色性素子で反射する、該二色性素子のスペクトル帯域幅に対応するスペクトル帯域幅内の光が、異なる検出器上に集束するように設定されている。
【0016】
少なくとも1つの実施形態では、集光光路内に単一画像レンズが配置されている。検出器の位置は、検出器の各々から単一画像レンズまでの距離が実質的に等しくなるように操作されている。反射素子の各々は、画像レンズとその対応する検出器の間に配置されている。
【0017】
他の実施形態では、検出器の各々に、反射素子とその対応する検出器の間に配置された1つの画像レンズが設けられている。画像レンズは、反射素子で反射した光が検出器に到達する前に画像レンズを通過するように配置されている。
【0018】
さらに他の実施形態では、二色性反射素子の各々がキューブ(cube)基板であり、他の実施形態では、二色性反射素子の各々は、ペリカル(pellical)である。また、他の実施形態では、二色性反射素子の各々は、プレート基板である。ほとんどの実施形態において、対象物からの光が光反射素子の各々を通過するのは一度だけであることに留意されたい。
【0019】
特に単一レンズを使用している実施形態では、光が二色性反射素子の各々を通過した後、光のひずみが大きくなる。一実施形態では、キューブ基板を使用することによって、このようなひずみが軽減され、キューブ基板の各々と結合した開口数が十分に小さく、コマ収差および非点収差が実質的に除去されている。他の実施形態では、連続する光反射素子の各々の間に補正板が配置されている。補正板の各々は、直前の光反射素子に対して、直前の光反射素子によって付与されるあらゆる非点収差が実質的に除去されるように配向されている。補正板の配向は、直前の光反射素子が反射光を複数の検出器のうちの1つに向けて導くべく回転する軸に対して実質的に直角をなしていることが好ましい。
【0020】
個々のTDI検出器に、対応する光反射素子によってTDI検出器の各々に向けて導かれる特定の色の光を適切に集束させるためには、光を反射させ、あるいは通過させるために使用される光反射素子の予め決められた特性が色であり、また、個々のTDI検出器が、特定の色の光を個別に集束させることが好ましい。個々のTDI検出器が、そのTDI検出器に向けて導かれる特定の色に対して個々に最適化されることが最も好ましい。
【0021】
本発明に追加光素子を組み込むことができることを理解すべきである。一実施形態は、少なくとも1つの画像レンズに隣接し、かつ、その直前に配置された開口絞りを備えている。開口絞りは、上記少なくとも1つの画像レンズに関連する開口数の制御を可能にしている。他の実施形態は、対象物と集光レンズの間の光集光光路に沿って配置された対物レンズおよび画像化スリット備えている。対象物を照射する入射光を提供するための光源が配置されている。
【0022】
本発明におけるTDI検出器の使用により、移動軸に沿った画像化領域が拡張され、延いては積分時間が長くなっていることに留意されたい。複数の光源を画像化領域に同時に投射し、画像化領域内の対象物に入射する光の量を増やすことができる。また、拡張した画像化領域と移動軸に対するスペクトル分散軸の直交配向が相俟って、複数の対象物の同時画像化を可能にしている。この実施形態による長い積分時間および平行画像の取得が、感度が高く、かつ、矛盾のない画像化性能と高スループットの結合を可能にしている。
【0023】
対象物からの光を提供するためのいくつかの代替方法があり、一実施形態では、対象物からの光は、対象物の非誘導放出からなっている。つまり、対象物が、放出を誘導するための光源を必要とすることなく光を放出している。他の実施形態では、対象物を照射する入射光を提供するための光源が配置されている。この実施形態では、対象物によって散乱した光の少なくとも一部が集光レンズを通過するように、対象物が入射光を散乱させ、あるいは対象物を照射している入射光が対象物を誘導し、集光レンズを通過する光を放出させている。また、対象物によって入射光の少なくとも一部が吸収され、したがって、集光レンズを通過する光には、対象物によって吸収された光の一部は含まれていない。最後に、光源からの入射光は、対象物から集光レンズに向かって反射する。使用される1つまたは複数の光源は、コヒーレント光源、非コヒーレント光源、パルス光源、および連続光源のうちの少なくとも1つを備えていることが好ましい。
【0024】
集光レンズを通って対象物を移動させる流体の流れの中に対象物を流入させ、あるいは他の方法として、対象物をサポートに載せて運ぶことができる。あるいはサポートまたは流動媒体を利用することなく、単純に移動させることもできる。また本発明は、微視的すなわち微小対象物の画像化に限られたものではない。
【0025】
TDI検出器は、TDI検出器の両端間に伝搬する信号を生成することによって、対象物の像に反応することが好ましい。典型的なTDI検出器のピクセルは行および列に配列され、行から行へ信号が伝搬しているが、本発明は、直線状ピクセル配列を使用したTDI検出器(例えば、マイクロチャネルプレートベースTDI検出器)に限定されない。TDI検出器の両端間の信号伝搬速度は、移動の結果として得られるTDI検出器上の対象物の画像の移動に同期させることができ、あるいは移動と非同期にすることができる。
【0026】
本発明の他の態様は、対象物を画像化するための方法を対象としたものである。これらの方法により、上で考察した画像化システムに概ね一致したステップが実施される。
【0027】
本発明の前述の態様および付随する多くの利点については、添付の図面と共に以下の詳細な説明を参照することにより、より容易に認識され、かつ、より良く理解されるであろう。
【0028】
(好ましい実施形態の説明)
本発明により、細胞分析および粒子分析に使用される従来技術のシステムに勝る優れた利点が提供される。これらの利点は、本発明が、光分散システムとTDI検出器に導かれる細胞および他の対象物の画像に応答して出力信号を生成するTDI検出器とを組み合わせて使用していることによるものである。複数の対象物を同時にTDI検出器上に画像化することができる。また、分析するために、各対象物の画像をスペクトル分解し、共通TDI検出器を使用した吸収、散乱、反射あるいはプローブ放出によって対象物の特徴を弁別することができる。
【0029】
本発明を使用して、光の散乱、反射、吸収、蛍光、りん光、ルミネセンス等を含む光信号を測定することにより、細胞および他の対象物の形態学的特性、測光特性およびスペクトル特性を決定することができる。形態学パラメータには、核面積、周界、構成すなわち空間周波数成分、重心位置、形状(すなわち円形、楕円、バーベル形等)、体積、および任意のこれらのパラメータの比率が含まれている。また、本発明を使用して、細胞の細胞形質のための同様のパラメータを決定することもできる。本発明による測光測定により、核光学濃度、細胞形質光学濃度、背景光学濃度、および任意のこれらの値の比率が決定される。本発明を使用して画像化される対象物は、蛍光またはりん光を誘導することによって発光する対象物であっても、あるいは誘導を必要とすることなく光を発生する対象物のいずれであっても良い。いずれの場合においても対象物からの光が本発明によるTDI検出器上で画像化され、放出された光の存在および大きさ、1つまたは複数の光信号が発生する、細胞または他の対象物中の離散位置の数、信号源の相対配置、および対象物中の各位置から放出される光の色(波長または波長帯)が決定される。
【0030】
本発明を備えた画像化システムの最初のアプリケーションは、画像化システムを通って流れる流体中に流入される細胞の、上述した1つまたは複数のパラメータを決定するための細胞分析装置としての使用が考えられるが、本発明を使用して他の移動対象物を画像化することもできることを理解すべきである。
【0031】
<第1の好ましい実施形態>
図1〜図3は、本発明による画像化システム20の第1の好ましい実施形態を、画像化システムを通って流れる流体流22によって運ばれる細胞などの移動対象物の画像生成と共に略図で示したものである。図1では、流体流22に対象物24(細胞などであるが、代替としては微粒子)が流入され、対象物を、画像化システムを通して運んでいる。図1の流体流の方向は、図面用紙に向かう(あるいは図面用紙から出てくる)方向であり、図2および図3では、流れの方向は、図の左側の矢印で示すように上から下に向かう方向である。対象物24からの光30は、光を集光し、無限遠でほぼ集束する集光光34を生成する集光レンズ32aおよび32bを通過している。つまり、集光レンズ32bからの集光光の光線は概ね平行である。集光光34は、光を分散させ、分散光38を生成するプリズム36に入っている。分散光は、次に、光42をTDI検出器44上に集束させる画像化レンズ40aおよび40bに入っている。
【0032】
図2から明らかなように、対象物24の画像化を常に示していると仮定すると、対象物が流体流22と共に移動すると、位置26および位置28の両方に対象物が示されることになる。その結果、対象物24の画像が、図2の右側に示すように、検出器上の2つの離散空間位置26’および28’に生成される。あるいは、図2が単一の瞬間を示している場合、位置26および28は、検出器上の位置26’および28’に同時に画像化された2つの個別対象物の位置を表している。
【0033】
画像化システム20および本明細書において示す他のすべての画像化システムに関しては、図2に示すレンズおよび他の光素子が、比較的単純な形態でのみ示されていることを理解されたい。したがって、集光レンズは、集光レンズ32aおよび32bのみを備えた複合レンズとして示されている。当分野の技術者には理解されるように、より単純であれ、あるいはより複雑であれ、異なる設計のレンズ素子を使用して画像化システムを構築し、所望の光学性能を提供することができる。画像化システムに使用される実際のレンズまたは光学素子は、画像化システムが使用される画像化アプリケーションの個々のタイプによって様々である。
【0034】
本発明の実施形態の各々に対して、画像化する対象物と画像化システムとの間に相対移動が存在することを理解されたい。ほとんどの実施形態では、画像化システムを移動させるより対象物を移動させる方が好都合であるが、実施形態の中には、対象物を静止した状態に維持し、画像化システムを対象物に対して移動させることを意図した実施形態もある。他の代替として、画像化システムおよび対象物の両方を、異なる方向に、あるいは異なる速度で移動させることもできる。
【0035】
本発明の様々な実施形態に使用されるTDI検出器は、以下で説明するように、専用ピクセル読出しアルゴリズムを使用した長方形電荷結合素子(CCD)を備えていることが好ましい。非TDI CCDアレイは、カメラの二次元画像化に広く使用されている。標準CCDアレイでは、ピクセルに入射する光子が、ピクセル中にトラップされる電荷を生成している。各ピクセルからの光子電荷が、電荷をピクセルからピクセルへシフトさせることによって検出器アレイから読み出される。検出器アレイから読み出された電荷は、次に出力コンデンサにもたらされ、電荷に比例した電圧が生成される。ピクセルの読出しと読出しの間にコンデンサが放電し、チップ上のすべてのピクセルに対する処理が繰り返される。読出しの間は、未だ読出しが完了していないピクセル中の電荷生成を防止するために、あらゆる露光からアレイを遮蔽しなければならない。
【0036】
CCDアレイを備えたあるタイプのTDI検出器44では、ピクセルが読み出されている間、CCDアレイは露光された状態を維持している。読出しは、一度に1行づつ、アレイの上から下へ向かって実施される。第1の行が読み出されると、読出しが完了したばかりの行の方向に、1ピクセルだけ残りの行がシフトされる。アレイ上に画像化される対象物が、ピクセルの移動に同期して移動すると、対象物からの光が、画像がぼやけることなく、TDI検出器の総読出し周期の期間に渡って積分される。TDI検出器によって生成される信号の強度は、TDIの行数に比例した積分期間に伴って直線的に増加するが、雑音は、積分期間の平方根でしか増加しないため、行数の平方根だけ信号対雑音比が総合的に増加する。本発明での使用に適したTDI検出器の1つは、Dalsa社のTypu IL−E2イメージセンサであるが、代替として他の等価物またはさらに優れた画像センサを使用することもできる。Dalsaのイメージセンサは、96段すなわち96行を有しており、それぞれ512個のピクセルを備えている。本発明には、行および列の構成が異なる他のタイプのイメージセンサ、あるいはピクセルが非直線状に配列された他のタイプのイメージセンサを使用することもできる。Dalsaセンサの感度および信号対雑音比は、それぞれ標準CCDアレイの約96倍および10倍である。また、TDI検出に関連する積分時間が長いため、時間的かつ空間的な照度変動が平均化され、測定の一貫性が向上している。
【0037】
流体の流れを使用し、対象物を、画像化システムを通して運んでいる画像化システム20および本発明の他の実施形態では、フロースルークベットすなわちジェット(図示せず)に、分析する細胞あるいは他の対象物が含まれている。流体の速度および細胞濃度は、TDI検出器のピクセル読出し速度に整合させるために、システムを通してサンプル溶液をドライブするシリンジポンプ、ガス圧力、または他のポンプ方式(図示せず)を使用して制御されているが、必要に応じてTDI検出器の読出し速度を選択的に制御し、それによりサンプル溶液の移動に整合させることができることを理解すべきである。
【0038】
様々な光学倍率を使用して、TDI検出器の感光領域(ピクセル)上に画像化される対象物の所望の解像力を達成することができる。ほとんどの実施形態では、光学倍率の範囲が1:1から50:1の間であり、対象物の画像が形成されるTDI検出器上の感光領域の数に対して、また、当然のことではあるが、画像化する対象物の実際のサイズ、および対象物の画像化システムからの距離に応じて実質的な範囲を提供することが意図されている。本発明には、細胞および他の微視的対象物の分析から、星のような対象物の画像化に至るアプリケーションを有することが意図されている。
【0039】
本発明がCCDタイプのTDI検出器に限定されないことを強調しておく。本発明のTDI検出器には、相補性金属酸化膜半導体(CMOS)および多重チャネルプレート画像化デバイスなどの他のタイプのTDI検出器を使用することも可能である。デバイスに向けられた放射に応答して生成される信号を、制御された方式でデバイスを通して移動させることができる任意のピクセル化デバイス(すなわち多数の感光領域を有するデバイス)が、本発明のTDI検出器としての使用に適していることを理解することが重要である。通常、信号は、デバイス上に投影される移動画像に同期して移動し、それによりぼやけの原因になることなく、画像を積分する時間を長くしているが、所望の効果を達成する必要に応じて、信号の移動を放射画像の移動に対して選択的に非同期化させることもできる。
【0040】
<第2の好ましい実施形態>
図4は、本発明の第2の好ましい実施形態である画像化システム45を示した図で、多くの点で画像化システム20と類似しているが、画像化システム45は、外部光のTDI検出器44への到達を実質的に防止するスリット52を備えた共焦点実施形態である。画像化システム45では、対象物24からの光46は、対物レンズ48によってスリット52上に集束する。図4に示すように、スリット52は十分に狭く、対物レンズ48によってスリット上に集束しない光によるスリットの通過を阻止している。スリットを通過した光30’は、画像化システム20に関連して上で考察したように、集光レンズ32によって集光される。集光光34は、プリズム36によってスペクトル分散し、同じく上述したように、画像化レンズ40によってTDI検出器44上で結像する。対象物24からの光以外の光によるTDI検出器44への到達を排除することにより、TDI検出器44は、対象物の実際の画像にのみ対応する、既に排除済みの外部光による影響を受けていない出力信号を生成することができる。この方法によって排除されない場合、TDI検出器44に到達する周辺光によって、TDI検出器からの出力信号に「雑音」が生成されることになる。
【0041】
画像化システム20および45の各々の図には、光源が示されていないことに留意されたい。この最初の2つの実施形態は、対象物が発光体である場合、すなわち対象物が光を発生する場合、対象物の画像を生成するための個別の光源を必要としないことを明確にするために、この2つの実施形態の最も一般的な形態で示したものである。しかしながら本発明のアプリケーションの多くは、画像化する対象物に入射する光を提供する1つまたは複数の光源を使用する必要がある。光源の位置によって入射光と対象物の相互作用が実質的に影響され、延いてはTDI検出器上の画像から得られる情報が影響される。
【0042】
図5には、対象物24に入射する光を提供するために使用することができる複数の様々な光源の位置が示されているが、光源を図5に示す位置以外の他の多くの位置に配置することができることを理解されたい。使用される1つまたは複数の光源の各々の位置は、画像化する対象物およびTDI検出器によって生成される信号から引き出す対象物のデータによって様々である。例えば、図5に示すように、光源60aまたは60bを使用することにより、対象物24に入射し、対象物から集光レンズ32の光軸に沿って散乱する光58が提供される。集光レンズ32の光軸は、光源60aまたは60bのいずれかから対象物24に入射する光の方向に対して約90°の角度をなしている。
【0043】
一方、光源62は、光源62から放出された光58が、対象物に向かって概ね集光レンズ32の光軸に整列した方向を進行するように配置されている。したがって、TDI検出器44上に形成される画像には、対象物24によって吸収される光は含まれていない。したがって、光源62を使用して対象物を照射することにより、対象物の光吸収特性を決定することができる。
【0044】
光源64は、集光レンズ32の光軸から約30〜45°外れた光路に沿って対象物に導かれる光で対象物24を照射するべく配置されている。この光58は、対象物24に入射すると対象物24で反射(散乱)し、反射すなわち散乱した光がTDI検出器44上に結像する。より直接的な反射光は、外部光源66によって提供されている。外部光源66は、外部光源66の光58が部分反射表面68に向かって導かれるように配置されている。部分反射表面68は、光の一部が集光レンズ32を通して対象物24上に反射するように配置されている。対象物に到達した光は対象物で反射し、集光レンズ32の光軸に沿って戻り、少なくともその一部が部分反射表面68を通過し、それによりTDI検出器44上に対象物の画像が形成される。他の方法としては、部分反射表面68の位置に、部分反射表面68の代わりに二色性ミラーを使用して外部光源66からの光を導き、対象物24からの蛍光あるいは他の誘導放出を励起することもできる。この場合、対象物24からの放出の少なくとも一部が集光レンズ32によって集光され、二色性ミラーを通過してスペクトルが分散し、TDI検出器によって検出される。
【0045】
対象物に入射する光を使用して対象物を画像化する以外に、光源を使用して、対象物による光の放出を誘導することもできる。例えば、細胞内に挿入されたFISHプローブは、光で励起されると蛍光を発し、励起されたあらゆるFISHプローブから、TDI検出器44上で結像する、対応する特性発光スペクトルを生成する。図5では、光源60a、60b、64または66を代替として使用して、対象物24のFISHプローブを励起させ、それによりTDI検出器44は、FISHプローブによって生成されるFISHスポットを、プリズム36によって提供される対象物からの光のスペクトル分散の結果として、TDI検出器上の異なる位置に画像化することができる。TDI検出器表面におけるこれらのFISHスポットの配置は、FISHスポットの発光スペクトルおよびFISHスポットの対象物中の位置によって決まる。本発明によるTDI検出器上へのFISHスポットの画像生成に関連したFISFプローブの使用については、以下でさらに詳細に説明する。
【0046】
図5に示す光源の各々は、所望する画像化システムのアプリケーションに応じて、コヒーレント光、非コヒーレント光、広帯域光または狭帯域光のいずれかの光58を発生している。したがって、狭帯域光源を必要としないアプリケーションに対しては、タングステンフィラメント光源を使用することができる。FISHプローブからの蛍光放出を誘導するようなアプリケーションの場合は、対象物によって散乱した光から、その対象物のスペクトル分解無ひずみ画像を生成することもできるため、狭帯域レーザ光であることが好ましい。この散乱光画像は、すべてのFISHスポットの発光スペクトルが、レーザ光の波長以外の異なる波長である限り、TDI検出器44上に生成されるFISHスポットから個別に解像することができる。光源は、持続波(CW)タイプあるいはパルスタイプのいずれであっても良い。パルスタイプの照射源を使用する場合、TDI検出に関連する積分期間が長いため、複数のパルスからの信号を積分することができる。また、光をTDI検出器に同期してパルス化する必要が無い。
【0047】
本発明においては、パルスレーザにより、光源としてCWレーザに勝る、小型、高効率、高信頼性、および多数の波長を同時に引き渡す能力を含むいくつかの利点が提供される。パルスレーザのもう1つの利点は、細胞内に使用される蛍光プローブの蛍光励起の飽和レベルを達成するその能力である。蛍光飽和は、蛍光分子に遭遇する光子の数が、その吸収能力を超えた場合に生じる。パルスレーザによって提供される飽和励起は、パルス間の励起強度の変化が蛍光放出強度に及ぼす影響が小さいため、非飽和CWレーザ励起より本質的に雑音が少ない。
【0048】
上述した画像化システムのプリズム36は、いずれも細胞からの光信号をTDI検出器のピクセル上にスペクトル分散させることができるため、回折格子に置き換えることができる。スペクトル分散を使用することにより、細胞すなわち他の対象物からの有用なデータが提供されるばかりでなく、測定雑音が低減される。光源の波長と蛍光プローブの発光スペクトルが異なる場合、集光系中に散乱する光源からの光は、蛍光信号から空間的に隔離される。光源の波長と蛍光プローブの発光スペクトルがオーバラップする場合は、光源の波長の光が当たるTDI検出器のピクセルが、残りの蛍光信号が当たるピクセルから隔離される。また、蛍光信号を複数のピクセル上に分散させることにより、画像化システムの総合ダイナミックレンジが広がる。
【0049】
<第3の好ましい実施形態>
第3の好ましい実施形態は、図6に示すように、第1の好ましい実施形態の立体構造70である。この構造により、対象物を2つの異なる方向から画像化し、単一方向から見た場合にオーバラップすることになる特徴を弁別することができる。第3の好ましい実施形態は、顕微鏡スライドなどの移動基板上の対象物に使用することもできるが、細胞を含有したFISHプローブなど、溶液中の多重成分対象物の分析に特に有用である。このようなプローブは、細胞の三次元核中のいたるところに点光源として出現する。場合によっては複数のFISHプローブが、画像化システムの光軸に沿って、オーバラップした形で出現することもある。このような場合、FISHプローブの1つが他のFISHプローブを妨害するため、細胞内に存在しているプローブの数を正確に測定することは困難である。プローブの数を正確に測定することは、ダウン症候群として知られているトリソミー21などの遺伝異常を決定する場合の重要な要素である。単一透視系は、対象物を光軸に沿って「パンスルー(panning through)」させることによってこの問題に対処し、対象物中に複数の像平面を得ている。この方法は有効ではあるが、複数の画像を収集するためには相当な時間を必要とし、流動する細胞に容易に適用することは不可能である。図6に示す立体画像化システム70は、画像化システム20に関連して、上述したように、2つのTDI検出器44aおよび44b、および関連する光素子を備えている。
【0050】
2つのTDI検出器の集光レンズ32の光軸を、例えば、90°の間隔を隔てて配置することにより、複数のFISHプローブから、少なくとも一方のTDI検出器44aまたは44b上に画像化されたFISHスポットを個別に解像することができる。複数のFISHプローブが、一方の検出器上に生成された画像に対してオーバラップしている場合、それらのFISHプローブは、もう一方のTDI検出器上に生成されたスペクトル分散画像中で個別に解像される。また、2つのTDI検出器を、「立体すなわち三次元構成」と呼ぶことができる画像化システム70に使用することにより、相対TDI読出し速度、軸配向、傾き、焦点面位置および倍率などのパラメータを含むシステムの各レグを柔軟に構成することができる。複数の細胞または他の対象物を、各検出器上に垂直方向に同時に画像化することができる。TDI上の信号に同期して対象物が移動するため、画像のぼやけを防止するためのゲートすなわちシャッタは不要である。既に言及したように、本発明は、パルスを粒子の視野中への到達に一致させるためのタイミングを取るトリガ機構を必要とすることなく、パルス光源またはCW光源を使用することができる。パルス光源を使用する場合、TDI検出器と結合した移動軸に沿った視野が広くなるため、移動中の細胞すなわち対象物に、その縦断中に複数のパルスを照射することができる。フレームベースの画像化装置とは対照的に、TDIシステムは、複数のパルスからの信号を積分した、対象物のぼやけのない単一画像を生成することができる。CW光源を使用する場合、シャッタが開いているごく僅かな微小セグメントの時間とは対照的に、対象物が視野を通って縦断する全期間に渡って、対象物が発生する信号を収集することができる。したがって、本発明においては、検出器上に収集され、画像化される信号の量が、従来技術によるフレームベースの画像化システムより実質的に多くなっている。したがって、本発明は、優れた信号対雑音比で、極めて高いスループット率で動作することができる。
【0051】
また、図6には、図に示す画像化システムに関連する様々な目的に有用な、複数の例示的光源位置が示されている。TDI検出器44aに関しては、光源62が、TDI検出器上に生成される画像から対象物の吸収特性を決定することができる方向から、対象物24の照射を提供している。同時に、光源62によって提供される、対象物24で散乱する光を使用して、TDI検出器44b上に散乱画像およびスペクトル分散画像を生成することができる。光源74を使用して、TDI検出器44aおよび44bの両方に、スペクトル分散画像および散乱画像を生成することができる。光源62および72の波長が異なり、かつ、各々の集光レンズ32の光軸に整列した光源からの波長を阻止するための適当なフィルタを備えている場合、この2つの光源を使用して、対象物で散乱する光を生成することができる。例えば、光源72が、対象物24で散乱し、かつ、TDI検出器44aに向かって導かれる波長Aの光を発生すると仮定する。光源62が発生する波長Bを阻止するフィルタ(図示せず)を備えることにより、波長Bの光がTDI検出器44a上に生成される画像に直接影響を及ぼすことはない。同様に、光源62が発生する、対象物24からTDI検出器44b上に散乱する光の画像化を妨害することがないよう、適当なフィルタ(図示せず)を使用して、光源72からの光を阻止することができる。
【0052】
また、図6に示されている外部光源66を使用して、部分反射器68と共にTDI検出器44a上に画像を生成することができる。光源64を使用して、TDI検出器44a上に画像を生成する反射光を発生させることができる。外部光源66からの散乱光は、TDI検出器44に向けて導かれる。所望する特定のアプリケーションおよび対象物に関する情報に応じた画像化を達成するために必要な、対象物への入射光の提供に適したこれらの光源の位置および他の可能位置については、当分野の技術者には明らかであろう。
【0053】
<画像化スライドまたはスライドによって移送される対象物>
次に、図7を参照すると、画像化システム80が示されている。画像化システム80は、スライド82上の対象物24を画像化するために使用される点を除き、画像化システム20に類似している。対象物24は、図7に示すように、画像化システムに対して移動するスライド82によってサポートされている。別法としては、スライド82が画像化する対象物であっても良い。反射した入射光を使用して対象物が画像化されるため、対象物は半導体ウェハであっても紙であっても良く、あるいは他の興味のある対象物であっても良い。
【0054】
スライド82あるいはスライド82によってサポートされた対象物24のいずれかに入射する光を提供するために、複数の異なる位置の1つに配置された光源が使用される。例示的光源62、64および66は、本発明に有用な光源が配置される位置をいくつか示したものである。いずれかの光源から放出される光58は、コヒーレント光であっても非コヒーレント光であっても、あるいはパルスまたはCWのいずれであっても良い。光58は、光源62からスライド82を通して(スライドが透明である場合)導かれ、あるいは光源64または66が使用される場合は、対象物またはスライドで反射する。既に言及したように、外部光源66は、部分反射表面68と共に対象物を照射している。
【0055】
<第4の好ましい実施形態>
図8Aおよび8Bは、第4の好ましい実施形態である、TDI検出器44上に対象物24の散乱パターン画像を生成する画像化システム90の2つの異なる図を示したものである。上に挙げた実施形態の場合と同様、対象物24からの光30は、集光レンズ32aおよび32bを通過し、集光光34が円筒レンズ92上に導かれている。円筒レンズ92は、概ね円筒レンズ92の中心軸96に整列したラインに沿って、光94をTDI検出器44上に集束させている。図8Bに中心軸96が示されているが、対象物24が画像化システムを通って移動する方向に対して直角をなしていることは明らかであろう。対象物24が図8Aに示す配置に対して下へ向かって移動すると、円筒レンズ92のTDI検出器44上の焦点が上に向かって移動する。したがって、円筒レンズ92は、TDI検出器44の感光領域、すなわちピクセルの1つまたは複数の行に沿って、対象物の画像を分布している。
【0056】
<第5の好ましい実施形態>
次に、図9を参照すると、第5の好ましい実施形態である、TDI検出器44上に対象物24の散乱パターン画像およびスペクトル分散画像の両方を形成する画像化システム100が示されている。画像化システム100では、対象物24からの光30は、二色性フィルタ102に向けて導かれる無限遠集束光34を生成する集光レンズ32aおよび32bを通過している。二色性フィルタ102は、対象物24に入射する特定の波長の光、例えば光源(図示せず)の波長の光を反射している。他のすべての波長の光は、回折格子112に向かって二色性フィルタ102を透過する。回折格子112は、二色性フィルタ102を透過した、典型的には対象物24のFISHプローブの蛍光によって生成された光をスペクトル分散させ、それにより異なるFISHプローブの数に対応する複数のFISHスポットおよび画像化する対象物がTDI検出器44上に形成される。
【0057】
二色性フィルタ102で反射した光104は、円筒レンズ106を透過し、ラインに沿って、散乱パターン画像としてTDI検出器上の領域110中に集束する。二色性フィルタ102で反射する波長とは異なる波長を有する、対象物24のFISHスポットまたは他のアスペクトのスペクトル分散画像が、画像化レンズ114aおよび114bによる光116として、TDI検出器の領域118上に結像される。したがって、散乱パターン画像およびスペクトル分散画像に対応する信号の両方が、TDI検出器44によって生成される。
【0058】
<第6の好ましい実施形態>
図10に示すように、第6の好ましい実施形態は、第2のTDI検出器44bに向かって異なる方向に角度が付けられた二色性フィルタ102’が使用されているため、前述の第5の実施形態とは若干異なる画像化システム120である。この実施形態では、光108’で示される分散パターン画像は、円筒レンズ106’によって生成されている。画像化システム100の場合と全く同様に、二色性フィルタ102’を透過した光がTDI検出器44a上に集束する。画像化システムの異なる側に配置された2つの個別TDI検出器が使用されている以外は、画像化システム120の動作は、画像化システム100の動作と実質的に同じであるが、第3の好ましい実施形態の場合と全く同様に2つの個別TDI検出器が使用されているため、相対TDI読出し速度、軸配向、傾き、焦点面位置および倍率などのパラメータを含むシステムの各レグを柔軟に構成することができる。また、必要に応じて、画像化システム100を単一TDI検出器の代わりに2つの個別TDI検出器を備えた構造にすることができることに留意されたい。
【0059】
<TDI検出器上のスペクトル分散画像の処理>
細胞分析に使用する場合、本発明により、FISHプローブが細胞内で空間的に接近して配置されている場合であっても、TDI検出器上のFISHスポットの解像に実質的なユーティリティが提供される。本発明を使用してスペクトル画像化を実施する場合、対象物中の光の空間分布がその光のスペクトル分布でたたみ込まれ、TDI検出器に対象物の画像が生成される。このたたみ込みにより、光のスペクトル帯域幅に応じて、分散軸に沿ったぼやけが生じる。スペクトル帯域幅が狭い場合、システムのスペクトル分解能によるぼやけは小さいか、あるいはまったくぼやけることはない。本発明では、物空間の空間解像力が約1ミクロンで、ピクセル当たり約3nmのスペクトル分解能であることが意図されているが、空間解像力およびスペクトル分解能は、特定のアプリケーションの要求に合致させるべく調整することができる。
【0060】
図11は、ピクセル当たり約10nmのスペクトル分解能および約0.5ミクロンの空間解像力を備えた本発明を示した図である。図11には、さらに、同一発光スペクトルを有する2つのFISHプローブ144aおよび144bが配置された核142を有する細胞140を画像化するための本発明の使用方法が示されている。図11では、FISHプローブ144aおよび144bの発光スペクトル146の幅は約10nmであり、「量子ドット」または狭帯域蛍光染料で生成される。狭帯域幅スペクトルの光たたみ込みにより、FISHスポット148aおよび148bのぼやけが最小になり、それらをTDI検出器44上で容易に解像することができる。
【0061】
図12では、異なる発光スペクトルを有するFISHプローブ154および156が配置された核152を有する細胞150が示されている。FISHプローブは、異なる発光スペクトルが異なるDNA列に対応するように設計されている。FISHプローブ154および156の発光スペクトルの各々は、波長帯158および160で示すように比較的狭く、したがって、図11の場合と同様、FISHスポット162および164のぼやけが最小になっている。また、波長をTDI検出器44上の横方向位置にマップする本発明によるスペクトル分散により、細胞内のFISHプローブ154および156が極めて近接しているにも関わらず、FISHスポット162および164の比較的広い物理変位が提供される。合わせて考察すると、図11および図12には、本発明による同一または異なる色のFISHプローブの弁別方法が示されており、それにより多数の遺伝的特徴を同時に列挙することができる。本発明が、一度に10個以上の異なる色のプローブが細胞内に存在する、胎児の細胞分析の要求に打ってつけであることは、当分野の技術者には理解されよう。また、本発明が、FISHプローブを使用した胎児の細胞分析に限定されないことについても、当分野の技術者には理解されよう。
【0062】
図13および図14は、同じくスペクトル帯域幅の広い光と共に本発明を使用することができることを示したものである。この場合、追加信号処理ステップが実行され、広発光スペクトルによる横方向のぼやけが補正されている。図13には、核142を有する細胞140が示されている。核には、共通の発行スペクトルを有するFISHプローブ170aおよび170bが配置されている。FISHプローブ170aおよび170bは、比較的広い発光スペクトル172を生成することによって特性化されている。本発明によって提供されるスペクトル分散によって光学的にたたみ込まれると、FISHスポット174aおよび174bがTDI検出器44上に生成されるが、FISHスポットの発光スペクトルが比較的広いため、TDI検出器44の両端間でその画像が横方向にぼやける。FISHスポット174aおよび174bの分離をより鮮明に解像するために、既知のFISH発光スペクトルを使用して、TDI検出器44によって生成される信号に対する逆たたみ込みが実行され、それにより正確なFISHスポット表現178aおよび178bがディスプレイ176上に生成されている。逆たたみ込みステップにより、FISHスポットの数を列挙する能力が強化されている。
【0063】
図14は、細胞150の核152中に配置されたFISHプローブ180と182の間の対応関係を示した図である。FISHプローブ180および182は、図に示すように、それぞれ比較的広い帯域の発光スペクトル184および186を生成することによって特性化されている。スペクトル分散したFISHプローブによって放出される蛍光の光たたみ込みにより、TDI検出器44上にFISHスポット188および190が生成される。この場合も、TDI検出器44によって生成される信号を使用した既知の発光スペクトルに対する逆たたみ込みにより、ディスプレイ176上に示す、FISHスポット192および194の対応画像が回復されている。この場合も、波長をTDI検出器44上の横方向位置にマップする本発明によるスペクトル分散により、細胞内のFISHプローブ180および182が極めて近接しているにも関わらず、FISHスポット192および194の比較的広い物理変位が提供される。この方法により、比較的広く、かつ、異なる発光スペクトルを有するFISHプローブによって生成されたこれらのFISHスポット画像を解像することができる。
【0064】
図15は、TDI検出器44によって生成される信号を分析し、上で説明した逆たたみ込みステップを実行するためのシステム230を示した図である。図15では、TDI検出器44の信号は、アナログ/ディジタル(A−D)変換器234に必要なレベルを達成するべく、TDI検出器44からの信号をバッファし、かつ、増幅する増幅器232に印加されている。このA−D変換器は、増幅器232からのアナログ信号をディジタル信号に変換し、TDIラインバッファ236に入力している。TDIラインバッファ236は、ディジタル信号がCPU238によって処理されるまでの間、ディジタル信号を一時的に保存している。上述した逆たたみ込みを実行するために、TDIラインバッファ236に保存されている信号を使用して、使用されているFISHプローブの発光スペクトルに対する逆たたみ込みを実行することができるよう、既知の発光スペクトルが、FISHプローブ毎にスペクトルバッファ240にロードされる。CPU238は、逆たたみ込みおよび他の分析手順を実行するべくプログラムされた高速プロセッサであり、画像化された対象物の所望の特性、すなわちパラメータの識別を可能にしている。CPU238の出力は、画像を表示するかあるいは後の分析用として記録することができる画像ラインバッファ242に一時的に保存される。
【0065】
図16は、本発明による、雄細胞200および雌細胞208を識別し、かつ、それらに対応する散乱画像212および220を生成するための実用的なアプリケーションを示した図である。雄細胞200には、黄色蛍光染料で着色された核202が含まれている。また、FISHプローブ204は、核中のX染色体の存在を示す橙色蛍光放出を提供し、一方、FISHプローブ206は、Y染色体の存在を示す蛍光放出を提供している。グリーンレーザの光が照射された雄細胞200からの蛍光放出をスペクトル分解することにより、画像化される光の波長を関数として分離された一連の画像がTDI検出器44上にもたらされる。細胞に入射するレーザ光の波長帯は極端に狭いため、レーザの散乱によって生成される雄細胞200の画像212に対するスペクトル分解処理によるたたみ込みはごく僅かである。細胞200およびその核202のグリーンレーザ散乱画像212がTDI検出器の左側に出現し、核202が放出する黄色蛍光に対応する蛍光スポット214が、TDI検出器上の次の何列かの列に出現している。また、FISHプローブ204および206が放出する蛍光の異なる波長を関数としたFISHスポット216および218が、検出器上の間隔を隔てた位置に出現しているが、それらの各々の発光スペクトルの幅により、TDI検出器44の数列に渡って僅かにぼやけている。TDI検出器によって生成される信号を分析することにより、XおよびY染色体に反応したFISHプローブが検出され、それにより使用者は、XおよびYの両方の染色体が細胞に含まれているため、その細胞200が雄の細胞であることを決定することができる。同様に、スペクトル分解された雌細胞208にも、同じく核210の特性黄色蛍光が含まれているが、雄細胞の場合とは異なり、FISHプローブ204に対応する、2つのX染色体の存在を示す2つのFISHスポット216が含まれている。TDI検出器44も雄細胞200および雌細胞208の空間位置を区別しているため、両細胞が図16の左側の矢印で示す方向に画像化システムを通過する際に、これらの細胞に対する対応スペクトル分解を個別に容易に解像することができる。この場合も、TDI検出器44によって生成される信号に逆たたみ込みを適用することにより、図に示す対応FISHスポットがより良好に解像されることに留意されたい。
【0066】
<無ひずみスペクトル分散システム>
本発明は、画像からの発光ペクトルに対する逆たたみ込みの必要を排除するために、画像を形成する光の発光スペクトルで画像をたたみ込むことのないスペクトル分散フィルタアセンブリを備えることができる。図17は、本発明の第7の好ましい実施形態を示した図で、5色スタックウェッジスペクトル分散フィルタアセンブリ252を使用したこのような無ひずみスペクトル分散システム250に対応している。この第7の実施形態は、スペクトル分散プリズム素子36(図〜図3)がスペクトル分散フィルタアセンブリ252に置き換えられている点を除き、図1〜図3に示す実施形態に実質的に類似している。スペクトル分散フィルタアセンブリは、光を帯域幅が異なる複数の光ビームに分割している。したがって、生成された各光ビームは、それぞれ異なる公称角度で導かれ、それぞれTDI検出器44の異なる領域を照射している。スペクトル分散フィルタアセンブリ252によって生成される各帯域幅間の公称角度分離は、物空間内の画像化システムの視野角度を超過しており、それにより検出器上での様々な帯域幅の視野画像のオーバラップを防止している。
【0067】
スペクトル分散フィルタアセンブリ252は、赤色二色性フィルタR、橙色二色性フィルタO、黄色二色性フィルタY、緑色二色性フィルタGおよび青色二色性フィルタBを含む複数の二色性スタックウェッジフィルタからなっている。赤色二色性フィルタRは、集光光34の光路内に配置され、集光レンズ32aおよび32bの光軸253に対して約44.0°の角度で配向されている。赤色波長以上、すなわち>640nmの光が赤色二色性フィルタRの表面で、垂直光軸257から反時計方向に測定した公称角度1°で反射する。図18は、赤色二色性フィルタRの典型的なスペクトル反射率特性R’を、スペクトル分散フィルタアセンブリ252に使用されている他の二色性フィルタに対応する典型的なスペクトル反射率特性と共にプロットした図である。図18では、O’は、橙色二色性フィルタOのスペクトル反射率特性を表している。また、Y’は、黄色二色性フィルタYのスペクトル反射率特性を表しており、以下同様である。赤色二色性フィルタRで反射した光は、スペクトル分散フィルタアセンブリ252を離れ、TDI検出器44の赤色光を受光する領域に光を結像させる画像化レンズ40aおよび40bを通過する。赤色光を受光する領域は、図17に示すように、TDI検出器の右端に向かって配置されている。
【0068】
橙色二色性フィルタOは、赤色二色性フィルタRの後方に若干距離を隔てて配置され、光軸253に対して44.5°の角度で配向されている。橙色波長以上、すなわち>610nmの光が橙色二色性フィルタOで、垂直光軸257に対して0.5°の公称角度で反射する。640nmより長い波長からなる集光光34の一部が、赤色二色性フィルタRで既に反射しているため、橙色二色性フィルタOの表面で反射した光は、610nmと640nmの間の橙色に着色された領域を有効に帯域通過する。この光は、垂直光軸257から0.5°の公称角度で進行し、同じく、図17に示すように、TDI検出器44の右側に向かって、TDI検出器の中央領域と赤色光を受光する領域の間に配置された、橙色光を受光する領域に照射するようになされた画像化レンズ40aおよび40bによって結像する。
【0069】
黄色二色性フィルタYは、橙色二色性フィルタOの後方に若干距離を隔てて配置され、光軸253に対して45°の角度で配向されている。黄色波長、すなわち560nm以上の波長の光が黄色二色性フィルタYで、垂直光軸257に対して0.0°の公称角度で反射する。黄色二色性フィルタYで反射した光の波長は、560nmと610nmの間の黄色領域を有効に帯域通過し、TDI検出器44の中央へ向かって、黄色光を受光する領域に照射するようになされた、垂直光軸257の近傍の画像化レンズ40aおよび40bによって結像する。
【0070】
二色性フィルタGおよびBも、二色性フィルタR、OおよびYと同様の方法で、緑色光波長帯および青色光波長帯が、TDI検出器44のそれぞれ緑色光および青色光を受光する領域上に結像するように構成され、かつ、配向されている。緑色光および青色光を受光する領域は、TDI検出器の左側に向かって配置されている。二色性フィルタを予め決められた異なる角度で積み重ねることにより、スペクトル分散フィルタアセンブリ252が集合的に機能し、光スペクトルの定義済波長帯内の光が、TDI検出器44の予め決められた領域上に集束する。スペクトル分散フィルタアセンブリ252に使用するフィルタに、図18に関連して上で説明したスペクトル特性とは異なるスペクトル特性を持たせることができることは、当分野の技術者には理解されよう。また、所望の分散特性を達成するためのスペクトル特性は任意であり、二色性以外のフィルタを使用することもできる。
【0071】
上述した二色性フィルタのウェッジ形状により、フィルタをほぼ接触した状態で、あるいは接触した状態で配置し、また、場合によっては接合して一体にすることによってスペクトル分散フィルタアセンブリ252を形成することができる。二色性フィルタの基板中に製造されたウェッジ形状の角度により、スペクトル分散フィルタアセンブリ252を容易に組み立てることができ、隣接する二色性フィルタの間にウェッジ形基板が挟まれたモノリシック構造を形成することができる。フィルタを互いに接触させるか、あるいは接合して一体にする場合、フィルタのスペクトル性能を決定している材料の組成は、接触していない材料の組成とは異なる組成にすることができる。平らな非ウェッジ形基板を使用して、スペクトル分散フィルタアセンブリ252を製造することができることは、当分野の技術者には理解されよう。その場合、機械的なフィルタ取り付けなど、他の手段を使用してフィルタ間の角度関係を維持することができる。
【0072】
前述の構成以外に、帯域外信号に必要な除去量に応じて、各光ビーム中の不要な信号をさらに減衰させるための検出器フィルタアセンブリ254を、任意選択で無ひずみスペクトル分散システム250に備えることができる。図19は、上述した5色帯域に対応する例示的検出器フィルタ254の構造を示した図で、図19に示すように、すべて隣り合わせて配置された、青色スペクトル領域256、緑色スペクトル領域258、黄色スペクトル領域260、橙色スペクトル領域262および赤色スペクトル領域264を備えている。図20A〜図20Eは、それぞれ青色、緑色、黄色、橙色および赤色の各スペクトル領域すなわち波長帯に対応するスペクトル特性を示したものである。図19に示す検出フィルタアセンブリは、個々のフィルタを共通基板上に隣合せ配列で接合して構築されたものであり、あるいは当分野の技術者に良く知られている他の手段によって構築されたものである。また、フィルタをTDI検出器44の直前に置く代わりに、代替として中間像平面に配置することもできることは、当分野の技術者には理解されよう。
【0073】
図17に示す実施形態では、光は、スペクトル分散フィルタアセンブリ252を励起する前に、スペクトル分散フィルタアセンブリ252中の二色性フィルタの各々を2回通過している。この条件により、帯域外信号がさらに減衰するが、帯域内信号も減衰する。図21は、本発明の第8の実施形態を示した図で、反射した後の光は、他の二色性フィルタを通過していない。この実施形態では、赤色キューブフィルタ266、黄色キューブフィルタ268、緑色キューブフィルタ270および青色キューブフィルタ272を備えた複数のキューブ二色性フィルタが、光が2度以上いかなるキューブフィルタも通過しないことを保証するために、十分に間隔を隔てて配置されている。図17に示す実施形態の場合と同様、キューブ二色性フィルタは、定義済帯域幅内の光を、TDI検出器274上の個別領域に結像させるべく、適切な角度で配向されている。光がキューブ二色性フィルタ266、268、270および272の各々で反射すると、画像化レンズ40aおよび40bに向けて導かれ、光の異なる帯域幅部分が、TDI検出器274の受光表面上に形成された、それぞれ対応する赤色光、黄色光、緑色光および青色光を受光するセグメントすなわち領域に集束する。必要に応じて、検出器フィルタアセンブリ254(ただし橙色スペクトル領域を除く)に類似した構造の任意選択検出器フィルタアセンブリ276を使用して、帯域外信号の除去を強化することができる。キューブフィルタの代わりに、間隔を隔てて配置された個別プレートすなわちペリカル素子を、このアプリケーションに使用することができることは、当分野の技術者には理解されよう。図21に示す第8の実施形態では、レンズ40aおよび40bに対するクリア開口の要求を最小化するためには、画像化レンズ40aおよび40bは、複数のキューブフィルタから十分に離れた位置に配置しなければならない。ページに対して直角をなす平面内のクリア開口が、レンズと複数のキューブフィルタとの間の距離の増加と共に大きくなることは、当分野の技術者には理解されよう。したがって、レンズ40aおよび40bの配置は、両方の平面内のクリア開口に適切に適応するべく選択しなければならない。
【0074】
第7および第8の好ましい実施形態についての前述の説明は、4色系および5色系の使用を示したものである。より広いスペクトル領域、あるいはより狭いスペクトル領域、もしくは所与のスペクトル領域内における異なる通過帯域をカバーするシステムを構築するために、フィルタの数がもっと多い、あるいはもっと少ないスペクトル分散素子を、これらの構成に使用することができることについては、当分野の技術者には理解されよう。同様に、使用する二色性フィルタおよび/または帯域通過フィルタの数およびスペクトル特性を適切に選択することにより、本発明によるスペクトル分解能が向上し、あるいは低下することについても、当分野の技術者には理解されよう。また、所与の帯域幅の光をTDI検出器上の任意の所望ポイントに導くべく、フィルタの角度すなわち配向を調整することができることは、当分野の技術者には理解されよう。さらに波長が増加する順に、あるいは波長が減少する順に光を集束させる必要はない。例えば、蛍光画像化アプリケーションの場合、励起波長および放出波長に対応しているフィルタが、システムの光軸に対して配向されている角度を変更することにより、これらの波長間のより空間的な分離をTDI検出器上に生成することができる。最後に、角度、位置、偏光、位相または他の光学特性を含む非スペクトル特性に基づいて集光光を分散させることができることは、当分野の技術者には明らかであろう。
【0075】
既に上述した実施形態の場合と同様、第7および第8の好ましい実施形態の多くのアプリケーションには、画像化する対象物に入射する光を提供するために使用する1つまたは複数の光源が必要である。したがって図5〜図7に示し、かつ、上述した様々な位置に配置された様々な光源を使用して、これらの実施形態の各々によって生成される画像の品質を向上させることができる。これらの実施形態の説明を簡潔にし、分かり易くするために、図17および図21には光源が省略されているが、上述した実施形態に関連した光源の使用についての説明を基に、これらの実施形態におけるこのような光源の使用法については、当分野の技術者には認識されよう。
【0076】
図22は、無ひずみスペクトル分散システム250を使用した場合の複数の細胞200の画像に対応する、TDI検出器44上の画像分布を示した図である。図22と図16を比較すると明らかなように、結果として得られるTDI検出器上の画像は、多くの点で類似しているが、無ひずみスペクトル分散システムを使用した場合、図22から分かるように、発光スペクトルと対象物のたたみ込みによって生じる画像の広がりはない。たたみ込みに代わって、各二色性フィルタの予め決められた帯域幅内のすべての波長が、フィルタで同じ公称角度で反射するため、その通過帯域内の画像成分が検出器上で位置ひずみを生じることはない。また、図22には物空間の流れに対して直角をなす視野角度が示されている。この特定の構成では、物空間における視野角度は、+/−0.25°未満である。視野角度をもっと大きくし、あるいはもっと小さくすることができることは、当分野の技術者には理解されよう。例えば、スライド上のより広い領域に渡る細胞、あるいは広い平坦な流れの中の細胞を画像化するために視野角度を大きくした分だけ、使用されている色の数に比例して検出器における視野角度が大きくなる。含有フローセル306が組み込まれた図25に示すように、市販されているフローセルを使用して、容易に広い平坦な流れを生成することができることは、当分野の技術者には理解されよう。フローセル306は、流れおよび光軸の両方に対して直角をなす軸に沿った細長い断面を有している。広い平坦な流れの生成については、米国特許第5,422,712号明細書を含む多くの参照文献の中で考察されている。フローセル306を使用することにより、広い平坦な流れが得られる。広い平坦な流れを提供するためのフローセル306または他の手段が組み込まれた実施形態では、このような広い平坦な流れに流入されるあらゆる対象物を画像化し、かつ、その画像を検出器で捕捉することができるだけの十分な大きさの視野角度であることが好ましい。したがって、流量の幅が広くなると、対象物が視野を通過する際に、その流量中のすべての対象物を確実に画像化するためには、上記幅の増加に比例して視野角度も大きくしなければならない。
【0077】
図22は、3つの細胞280、282および284が視野を通過する場合の、検出器上に投影される画像を示した図である。細胞280、282および284の光散乱画像は、青色領域として示されている検出器の左側に出現している。緑色蛍光染料で着色された細胞核202の画像は、検出器の緑色領域に出現している。また、細胞内の性染色体を分析するために、3つの異なる色に着色された遺伝プローブ204、205および206が使用されている。プローブ204は、橙色蛍光染料でX染色体を着色し、プローブ205は、黄色蛍光染料でY染色体を着色している。また、プローブ206は、雌細胞内の不活性X染色体を赤色蛍光染料で着色している。細胞282は、図22に示すように、検出器上に画像化されている。細胞282からのプローブ204の画像286は、検出器の橙色領域に出現している。同様に、プローブ205の画像288は、検出器の黄色領域に出現している。検出器上の信号が、検出器上におけるこれらの画像の存在および位置を決定するために処理され、細胞282が雄細胞であることが決定される。同様に、検出器の橙色領域に画像290および292を生成し、かつ、検出器の赤色領域に画像294および296を生成するプローブ204および206を含んだ細胞280および284は、これらの細胞がそれぞれ雌であることを示している。
【0078】
<無ひずみスペクトル分散システムの多重TDI検出器実施形態>
図25、図26および図28は、スペクトル分散および画像化のための多重検出器を利用した、本発明の代替実施形態を示した図である。スペクトル分解は、概ね上で説明した二色性フィルタを使用して実施されているが、図25に示すように、スペクトル領域の各々に独立した画像化レンズおよび検出器が使用されている。対象物に対する無限空間に二色性フィルタ301〜305が配置され、光収差を最小化するべく、対象物からの光をスペクトル分解させている。各二色性フィルタの後段に、個別の画像化レンズ311〜315が使用され、対応する検出器321〜325上に対象物の画像を形成している。この構成の場合、各検出器のピクセルの数は、上述した実施形態の場合より少なく、そのため、高ピクセルライン速度でこの実施形態を動作させることができる。検出器の各々に投影される画像は、図17に示す検出器のゾーンの1つに示すように出現する。スペクトルの赤色部分の光を受光するようになされた検出器上の画像は、図17の最も右側のゾーンに出現する画像と同じように出現する。
【0079】
対象物からの光は、一度しか二色性フィルタの各々を通過しないため、図25、図26および図28に示す実施形態は、光効率の点で他の実施形態に勝る利点を有している。多重検出器実施形態の他の利点は、個々の検出器が個々の色を個別に集束させるため、縦方向の色補正の制約が除去され、光学設計が簡略化されることである。さらに他の利点は、各検出器の量子効率を、その特定の色帯域に対して個々に最適化することができることである。検出器に利用される半導体材料をドーピングすることによって、このような最適化が達成されることについては、当分野の技術者には容易に認識されよう。図25に示すように、複数の画像化レンズを使用する場合、1つまたは複数のレンズ(レンズ311で実例化されているように)の焦点距離を他のレンズとは異なる焦点距離にし、それにより差動倍率を使用して同時に画像を収集することができる。この場合、検出器321のクロックレートが、同期を維持するために焦点距離に比例して速くなるため、チャネルの1つをより大きい倍率で使用して明視野画像を収集し、それにより形態の詳細をより正確に分析する場合に有用であることが期待される。また、図25に示す構成により、光開口絞り330の配置によって示すように、開口数をチャネルに独立して制御することができる。フローセル306の特性により、図25に示す物体平面348aが、他の図に示す物体平面348より広いことに留意されたい。上述したように、フローセル306により、画像の各々が十分な大きさの視野角度をカバーしている限り、物体平面348aを同時に通過する複数の対象物が同時に画像化される、広く平坦な流れを得ることができる。本発明による画像化システムを、このような広く平坦な流れと共に使用する場合、生成される画像が実質的にすべての物体平面を囲い込むように、視野角度を物体平面(物体平面348aなど)の大きさに整合させなければならない。物体平面は、使用する流体通路の周囲によって形成されることに留意されたい。
【0080】
図26は、多重検出器手法の他の実施形態を示した図である。図25に示す実施形態に類似しているが、図26に示す実施形態には、検出器上に画像を投影するために必要な画像化レンズの数が少なくなる利点がある。図26に示す実施形態では、二色性フィルタ345〜347の前段に画像レンズ340が配置されている。集光レンズ32および画像レンズ340の機能を単一素子で実行することができることは、当分野の技術者には理解されよう。検出器341〜344は、光路に沿った適切な位置に配置され、各検出器の表面に物体平面348を結像している。検出器341〜343は、二色性フィルタ345、346および347で反射する対象物からの光の光路に沿って配置され、検出器344は、二色性フィルタ347を透過する対象物からの光の光路に沿って配置されている。二色性フィルタは、対象物の画像に対する集束空間に配置され、したがって、各フィルタは、その設計に応じて、各下流側検出器の画像中に、非点収差、コマ収差、球面収差および色収差を付与している。後続する各フィルタによって、これらの収差の各々の多くが累進的に追加される。本発明の典型的な実施態様では、フィルタ空間における開口数(すなわち屈折率と照射半円錐角の正弦の積)は、約0.03である。したがって、キューブ基板を二色性フィルタに使用する場合、コマ収差および非点収差は無視することができ、また、球面収差は実質的に除去され、0.15波高未満である。縦方向色収差は、検出器をそれらの各色帯域に対する最良焦点面に移動させることによって効果的に相殺される。また、二色性フィルタの基板に、優れた理論的光学性能を備えたペリクル(pellicle)をキューブの代わりに使用することもできる。
【0081】
二色性フィルタ345〜347にプレート基板を使用する場合、優勢な収差は非点収差である。非点収差は、二色性プレートフィルタを通して透過波面に付与されるが、図27に示すように、厚さ、入射角およびガラスの種類がほぼ同じ透明補正板360を挿入することによって効果的に相殺される。しかし、補正板360は、二色性フィルタ361に対して軸Zの周りに90°回転させなければならない。補正板360および二色性フィルタ361により、等しく、かつ、相対する量の非点収差が透過波面に付与され、それにより非点収差が互いに相殺される。したがって、検出器342を照射する光には非点収差は存在しない。この構成により、若干の残留コマ収差が残されるが、光学性能は、回折限界に極めて近くなっている。光の伝搬に対して、その厚さ、材料および/または角度を調整することにより、補正板を多くの代替位置に配置することができることは、当分野の技術者には理解されよう。追加対物レンズ48およびスリット52を使用して、任意の無ひずみスペクトル分散実施形態を構築し、図26に示すような共焦点ストップ構造を形成することができる。図28は、複数の画像化レンズを使用した、図25と類似した実施形態を示したものであるが、検出器のほとんどが、二色性フィルタの透過光路に沿って配置されている。いずれの多重検出器実施形態も、図26および図28の両方に示すように、二色性フィルタを透過した光、二色性フィルタで反射した光、あるいは透過と反射を組み合わせた光を検出器が受光するように構築されている。
【0082】
<広視野分解画像>
図24に示すようなセグメントTDI検出器300を使用することにより、本発明を使用して広視野を画像化し、スループットを向上させることができる。この方法により、広い平坦な流れの中、または顕微鏡スライドおよびマイクロプレート上に見出される細胞または他の対象物を隣り合わせて配向することができる。この構成により、対象物が一列配向で整列している場合に可能な数より多くの対象物を同時に画像化することができる。
【0083】
図23は、広い視野を容易に画像化することができる本発明の一実施形態を示した図である。図23では、基板73は、二色性素子252によって提供されるスペクトル分解の軸に概ね平行すなわち整列した方向に移動している。レーザまたは他のタイプの照明源を備えた任意選択の外部イルミネータ60aを使用して、基板73上で移送される対象物を照射することができる。また、基板と画像化システムとの間には、両矢印で示す方向に相対移動が存在している。任意選択でもう1つのイルミネータ60bを備え、反射表面77で反射した光を使用して、基板上の対象物の明視野照明を提供することもできる。レンズ71を通過した基板73上の対象物からの光は、反射表面69で反射し、二色性(または部分反射)ミラー67を通過して、レンズ57によってスリット55に集束する。集光レンズ32は、スリットからの光を平行にし、二色性素子252上に導いている。二色性素子252は、レンズ40を通過する光を検出器44の様々な領域上に個々に分散させている。
【0084】
セグメント検出器300(図24)は、図23に示す検出器44に使用され、スペクトル分散フィルタアセンブリ252は、画像が検出器44の両端間を移動する方向に平行な軸に沿って光を分解するべく配向されている。上述したように、図23に示す基板73の視野は、明視野イルミネータ60bを使用して、あるいはイルミネータ60aによる外部照明を使用して、明視野中で照射されている。いずれの場合においても、照射された視野は、光学系によって画像化されると、検出器300のセグメントの1つとサイズが同じになる。
【0085】
既に説明したように、スペクトル分散フィルタアセンブリ252を使用する場合、光は、帯域幅が異なる複数の光ビームに分割される。したがって、生成された光ビームの各々は、それぞれ異なる公称角度で導かれ、それぞれ検出器300の異なるセグメントを照射する。スペクトル分散フィルタアセンブリ252によって生成される各帯域幅間の公称角度分離は、物空間内の画像化システムの視野角度を超過しており、それにより検出器上での様々な帯域幅の視野画像のオーバラップを防止している。したがって、検出器セグメントの各々は、同じ視野を見ているが、それぞれ異なるスペクトル帯域幅からなる光を見ている。スリット55は、意図する視野以外からのあらゆる迷光を除去し、それらがシステムを通過して検出器300の不適切なゾーンを照射することを防止するために設けられている。
【0086】
図に示す実施形態では、セグメント化された検出器300は、4つのセグメントすなわちゾーン302a〜302dからなり、それぞれ異なる特性の光を受光している。検出器は、入射する画像に対応する電荷が、セグメントの両端間を移動する画像に一致して、そのセグメントの両端間を流れるように、これらのゾーンにセグメント化されている。この電荷がセグメントから読み出され、隣接する、異なる特性の光が画像化されているセグメントすなわちゾーンに入ることは許容されない。任意選択で、各ゾーンによって受け取られた画像に対応する電荷が、ゾーンの長さに対して積分され、ゾーンに設けられているタップから読み出される。また、任意選択で、各ゾーンから電荷を読み出す速度を個別に制御することができる。要約すると、本発明のこの最後の実施形態により、複数の特性の光を同時に収集し、かつ分析することができるように、検出器上に広い視野が画像化され、分析される。
【0087】
以上、本発明について、本発明を実践する好ましい形態に関連して説明したが、特許請求の範囲に記載の各請求項の技術的範囲内において、多くの変更を加えることができることは、当分野の技術者には理解されよう。したがって、本発明の範囲は、以上の説明に何ら制限されることはなく、特許請求の範囲の各請求項を参照することによってのみ決定されるものである。
【図面の簡単な説明】
【図1】
粒子が図面用紙中に流れ込むものとして画かれた流体流によって運ばれる、本発明の第1実施形態の平面図である。
【図2】
図1に示す第1実施形態の側面図である。
【図3】
図1の第1実施形態の等角図である。
【図4】
外部光の空間フィルタリングに使用されるスリットを備えた共焦点実施形態の等角図である。
【図5】
光源の様々な位置を第1の実施形態と共に示す等角図である。
【図6】
FISHプローブ間の干渉を回避するべく、粒子からの光をモニタするための画像化素子の第2のセットおよびTDI検出器を備えた、第1実施形態の代替および光源の代替位置を示す図である。
【図7】
対象物が集光レンズを通過して移動するスライドによってサポートされるか、あるいは集光レンズを通過して移動するスライドを備えた実施形態の等角図であって、光源の様々な位置を示す図である。
【図8A】
TDI検出器上に散乱パターンを生成するために使用される、図7の実施形態の代替の平面図である。
【図8B】
TDI検出器上に散乱パターンを生成するために使用される、図7の実施形態の代替の側面図である。
【図9】
散乱パターン画像を形成する光および対象物からのスペクトル分散光が、TDI検出器の個別部分に画像化されるさらに他の実施形態の平面図である。
【図10】
散乱パターン画像を形成する光および対象物からのスペクトル分散光が、2つの異なるTDI検出器によって画像化されるさらに他の実施形態の平面図である。
【図11】
細胞内の2つのFISHプローブを解像するための、本発明による狭FISH発光スペクトルの光たたみ込みを示す概略図である。
【図12】
TDI検出器上のFISHプローブの画像を解像するための、異なる2色の狭FISH発光スペクトルの光たたみ込みを示す概略図である。
【図13】
FISH発光スペクトルがより広い場合に、単一色の2つのFISHプローブの画像を解像するために、本発明によって如何にして逆たたみ込みが提供されるかを示す概略図である。
【図14】
FISHプローブの画像を解像するための、比較的広い2色FISHスペクトルの逆たたみ込みを示す概略図である。
【図15】
本発明によるTDI検出器によって生成される信号を処理するために使用される画像化システムのブロック図である。
【図16】
細胞が雄からのものであるか、雌からのものであるかを決定するための本発明の使用方法を示す概略図である。
【図17】
光をスペクトル分離させるために使用される複数の二色性スタックフィルタを備えた、スペクトル分散素子を使用した代替実施形態の平面図である。
【図18】
図17に示す実施形態に使用される二色性フィルタのいくつかの典型的な通過帯域をX−Yプロットしたグラフを示す図である。
【図19】
帯域外の光をさらに抑制するために、図17の実施形態のTDI検出器の前段に任意選択で置かれる検出フィルタアセンブリを示す概略図である。
【図20A】
TDI検出器の前段に任意選択で置かれる検出フィルタアセンブリのフィルタセグメントの対応する通過帯域に対する透過率対波長をX−Yプロットしたグラフを示す図である。
【図20B】
TDI検出器の前段に任意選択で置かれる検出フィルタアセンブリのフィルタセグメントの対応する通過帯域に対する透過率対波長をX−Yプロットした他のグラフを示す図である。
【図20C】
TDI検出器の前段に任意選択で置かれる検出フィルタアセンブリのフィルタセグメントの対応する通過帯域に対する透過率対波長をX−Yプロットしたグラフを示す図である。
【図20D】
TDI検出器の前段に任意選択で置かれる検出フィルタアセンブリのフィルタセグメントの対応する通過帯域に対する透過率対波長をX−Yプロットした他のグラフを示す図である。
【図20E】
TDI検出器の前段に任意選択で置かれる検出フィルタアセンブリのフィルタセグメントの対応する通過帯域に対する透過率対波長をX−Yプロットした他のグラフを示す図である。
【図21】
スペクトル分散フィルタシステムが、スペクトル分散効果を生成するために様々な角度で配向された複数の二色性キューブフィルタを備えた、図17の構成の他の実施形態の平面図である。
【図22】
図17のスペクトル分散フィルタシステムを使用する場合に、TDI検出器上に投影される画像の例示的セットを示す図である。
【図23】
スペクトル分解が対象物を運んでいる基板の移動方向に概ね平行な軸に沿って発生する、さらに他の実施形態の略等角図である。
【図24】
複数の異なるスペクトル構成の光の検出および画像化に使用されるスペクトルセグメント検出器の略平面図である。
【図25】
各スペクトル分解画像のための個別TDI検出器および個別画像化レンズを使用した代替実施形態の等角図である。
【図26】
個別TDI検出器を使用し、スペクトル分解素子の前に共通画像化レンズが置かれた代替実施形態の等角図である。
【図27】
収束空間に配置されたプレートビームスプリッタによって誘導される非点収差を補正するために追加された補正板を示す等角図である。
【図28】
スペクトル分解素子を透過した光およびスペクトル分解素子で反射した光の両方を受光する個別TDI検出器を使用した代替実施形態の等角図である。

Claims (63)

  1. 対象物との間に相対移動がある場合に、前記対象物の画像から前記対象物の1つまたは複数の特性を決定するようにした画像化システムであって、
    (a)前記対象物からの光を通過させ、集光光路に沿って進行するように配置された集光レンズと、
    (b)前記集光レンズを通過した光を受光するべく配置され、該配置により所定の位置に向けて導かれる画像を生成する少なくとも1つの画像レンズと、
    (c)前記集光レンズを通過した光を受光するべく配置され、前記対象物からの光が、一度だけ各々を通過するように、各々が予め決められた特性の光を異なる反射光路に沿って反射し、かつ、前記予め決められた特性を持たない光を通過させる複数の光反射素子と、
    (d)前記各光反射素子の各々に対して、前記光反射素子で反射した光および前記光反射素子を透過した光のうちの1つから前記対象物の画像を受け取るべく位置付けされ、前記対象物と前記画像化システムの間に前記相対移動が生じている間、前記対象物の少なくとも1つの特性を表す出力信号を生成し、前記対象物の少なくとも一部からの光を時間に対して積分することによって前記出力信号を生成するように配置された複数の時間遅延積分(TDI)検出器と
    を備えることを特徴とする画像化システム。
  2. 前記少なくとも1つの画像レンズが、前記集光レンズと前記複数の光反射素子との間の前記集光光路内に配置され、かつ、前記複数の時間遅延積分検出器の各々と前記画像化レンズとの間の光路の長さが実質的に等しいことを特徴とする請求項1に記載の画像化システム。
  3. 前記少なくとも1つの画像レンズと前記集光レンズが同じ光素子であることを特徴とする請求項2に記載の画像化システム。
  4. 前記少なくとも1つの画像レンズが、前記複数の光反射素子の各々に対して1つの独立した画像レンズを備え、該画像レンズの各々が、前記複数の光反射素子の1つと前記複数の時間遅延積分検出器の対応する1つとの間に配置されることを特徴とする請求項1に記載の画像化システム。
  5. 前記複数の光反射素子の各々が二色性フィルタを備えていることを特徴とする請求項1に記載の画像化システム。
  6. 前記二色性フィルタの各々がキューブ基板からなることを特徴とする請求項1に記載の画像化システム。
  7. キューブ基板の各々に関連する開口数が十分に小さく、それにより球面収差が実質的に除去されることを特徴とする請求項6に記載の画像化システム。
  8. 二色性フィルタの各々がペリカルからなることを特徴とする請求項1に記載の画像化システム。
  9. 二色性フィルタの各々がプレート基板からなることを特徴とする請求項1に記載の画像化システム。
  10. それぞれ前段の光反射素子と時間遅延積分検出器の間に配置され、かつ、直前の光反射素子に対して、前記直前の光反射素子によって付与されるあらゆる非点収差が実質的に除去されるように配向された複数の補正板を備えることを特徴とする請求項9に記載の画像化システム。
  11. 前記補正板の各々が、前記直前の光反射素子が回転する軸に対して実質的に直角をなす軸の周りに回転し、前記軸の両方が前記集光光路を形成している軸に対して直角をなすことを特徴とする請求項10に記載の画像化システム。
  12. 前記予め決められた特性に、前記対象物から受光する特定の波長帯の光が含まれ、独立した時間遅延積分検出器の各々が、対応する反射素子によって、透過および反射の1つによって前記時間遅延積分検出器の各々に向けて導かれる特定の波長帯の光を適切に集束させるように、前記時間遅延積分検出器の各々が、特定の異なる波長帯の光を集束させることを特徴とする請求項1に記載の画像化システム。
  13. 前記独立した時間遅延積分検出器の各々の量子効率が、前記時間遅延積分検出器の各々に向けて光を導く特定の光反射素子と結合した前記予め決められた特性に対して個別に最適化されることを特徴とする請求項1に記載の画像化システム。
  14. 前記光反射素子と対応する前記時間遅延積分検出器の間に配置された、前記対応する時間遅延積分検出器上に投影される前記画像に関連する開口数を制御することができる開口絞りを備えることを特徴とする請求項1に記載の画像化システム。
  15. 前記対象物と前記集光レンズの間に、前記集光光路に沿って配置された対物レンズおよび画像化スリットを備えることを特徴とする請求項1に記載の画像化システム。
  16. 前記対象物を照射する入射光を提供するべく配置される光源を備えることを特徴とする請求項1に記載の画像化システム。
  17. 前記光源が、明視野と共に前記対象物を照射することを特徴とする請求項16に記載の画像化システム。
  18. 前記対象物を配置する基板を備えることを特徴とする請求項1に記載の画像化システム。
  19. 対象物との間に相対移動がある場合に、前記対象物の画像から前記対象物の1つまたは複数の特性を決定するための画像化システムであって、
    (a)前記対象物からの光を通過させ、集光光路に沿って進行するように配置された集光レンズと、
    (b)前記集光レンズを通過した光を受光するべく前記集光光路に沿って配置され、前記対象物からの光が、一度だけ各々を通過するように、異なる予め決められた特性の光を異なる反射光路に沿って反射し、かつ、前記異なる予め決められた特性を持たない光を通過させる複数の光反射素子と、
    (c)前記各光反射素子の各々に対して少なくとも1つが、前記光反射素子で反射した光および前記光反射素子を透過した光のうちの1つを受光するべく位置付けされ、それにより異なる所定の位置に向けて導かれる、各々によって投影される画像を生成するように配置された複数の画像レンズと、
    (d)該画像レンズの各々に対して、前記光反射素子で反射した光および前記光反射素子を透過した光のうちの1つから前記対象物の画像を受け取るべく位置付けされ、前記対象物と前記画像化システムの間に前記相対移動が生じている間、前記対象物の異なる特性を表す出力を生成し、前記対象物の少なくとも一部からの光を時間に対して積分することによって前記出力信号を生成するように配置された複数の時間遅延積分検出器と
    を備えることを特徴とする画像化システム。
  20. 前記複数の光反射素子の各々が二色性フィルタを備えることを特徴とする請求項19に記載の画像化システム。
  21. 前記予め決められた特性に特定の波長帯の光が含まれ、時間遅延積分検出器の各々が、対応する反射素子によって前記時間遅延積分検出器に向けて導かれる特定の波長帯の光を集束させるように、前記時間遅延積分検出器の各々が特定の波長帯の光を個別に集束させることを特徴とする請求項19に記載の画像化システム。
  22. 前記時間遅延積分検出器の各々の量子効率が、前記時間遅延積分検出器に向けて光を導く特定の反射素子と結合した前記予め決められた特性に対して個別に最適化されることを特徴とする請求項19に記載の画像化システム。
  23. 少なくとも前記複数の画像レンズの1つが、他の画像レンズによって生成される第2の画像の倍率とは異なる倍率を有する第1の画像を生成するように、前記他の画像レンズの焦点距離とは異なる焦点距離を有することを特徴とする請求項19に記載の画像化システム。
  24. 他の時間遅延積分検出器が受け取る画像の倍率とは異なる倍率の画像を受け取る前記複数の時間遅延積分検出器の各々が、前記他の時間遅延積分検出器上に投影される画像の移動との同期を維持するクロック速度でクロックされることを特徴とする請求項23に記載の画像化システム。
  25. 前記光反射素子と対応する前記時間遅延積分検出器の間に配置され、該時間遅延積分検出器上に投影される前記画像に関連する開口数を制御することができる開口絞りを備えることを特徴とする請求項19に記載の画像化システム。
  26. 前記対象物と前記集光レンズとの間に、前記集光光路に沿って配置された対物レンズおよび画像化スリットを備えることを特徴とする請求項19に記載の画像化システム。
  27. 前記複数の光反射素子が、それぞれ前記対象物と前記画像化システムの間の相対移動方向に対して実質的に直角をなす方向に光を反射することを特徴とする請求項19に記載の画像化システム。
  28. 前記複数の光反射素子が、それぞれ前記対象物と前記画像化システムの間の相対移動方向に実質的に整列した方向に光を反射することを特徴とする請求項19に記載の画像化システム。
  29. 前記対象物からの光が、該対象物で反射した光および該対象物で散乱した光のうちの少なくとも1つの非誘導放出光、および前記対象物からの誘導放出光からなることを特徴とする請求項19に記載の画像化システム。
  30. 前記対象物を照射する入射光を提供するべく配置される光源を備えることを特徴とする請求項19に記載の画像化システム。
  31. 対象物との間に相対移動がある場合に、前記対象物の画像から前記対象物の1つまたは複数の特性を決定するための画像化システムであって、
    (a)前記対象物からの光を受光するべく配置され、所定の光路に沿って導かれる画像を生成する少なくとも1つの光素子と、
    (b)前記所定の光路に沿って、間隔を隔てて配置され、前記対象物からの光が一度だけ各々を通過するように、異なる予め決められた特性の光を異なる反射光路に沿って反射し、かつ、前記予め決められた特性を持たない光を通過させる複数の光反射素子と、
    (c)前記光反射素子の各々に対して、該光反射素子で反射した光および前記光反射素子を透過した光のうちの1つを介して前記画像を受け取るように配置され、前記対象物の少なくとも1つの特性を表す出力を生成し、前記画像を生成する少なくとも1つの光素子のと間の光路の長さが実質的に等しい複数の検出器と
    を備えることを特徴とする画像化システム。
  32. 前記複数の光反射素子の各々が二色性フィルタを備えることを特徴とする請求項31に記載の画像化システム。
  33. 前記二色性フィルタの各々が、キューブ基板、ペリカルおよびプレート基板の1つからなることを特徴とする請求項32に記載の画像化システム。
  34. 前記キューブ基板の各々に関連する開口数が十分に小さく、それにより球面収差が実質的に除去されることを特徴とする請求項33に記載の画像化システム。
  35. 前記複数の光反射素子の各々と対応する前記検出器との間に配置され、かつ、隣接する光反射素子に対して、該隣接する光反射素子によって付与されるあらゆる非点収差が実質的に除去されるように配向された複数の補正板を備えることを特徴とする請求項31に記載の画像化システム。
  36. 前記複数の補正板の各々が、前記隣接する光反射素子が回転する軸に対して実質的に直角をなす軸の周りに回転し、前記軸の両方が前記集光光路を形成している軸に対して直角をなすことを特徴とする請求項35に記載の画像化システム。
  37. 前記検出器の各々が、時間遅延積分検出器からなることを特徴とする請求項31に記載の画像化システム。
  38. 前記予め決められた特性に特定の波長帯の光が含まれ、前記時間遅延積分検出器の各々が、対応する光反射素子によって、透過および反射の1つを介して前記時間遅延積分検出器の各々に向けて導かれる特定の波長帯の光を個別に集束させることを特徴とする請求項37に記載の画像化システム。
  39. 前記対象物と前記集光レンズとの間に、前記集光光路に沿って配置された対物レンズおよび画像化スリットを備えることを特徴とする請求項31に記載の画像化システム。
  40. 前記対象物を照射する入射光を提供するべく配置される光源を備えることを特徴とする請求項31に記載の画像化システム。
  41. 対象物との間に相対移動がある場合に、前記対象物の画像から前記対象物の1つまたは複数の特性を決定するための画像化システムであって、
    (a)前記対象物からの光を通過させ、集光光路に沿って進行するように配置された集光レンズと、
    (b)前記集光光路に沿って配置され、前記対象物からの光が一度だけ各々を通過するように、異なる定義済特性の光を異なる反射光路に沿って反射し、かつ、前記異なる予め決められた特性を持たない光を通過させる複数の光反射素子と、
    (c)前記光反射素子の各々に対して少なくとも1つが、前記光反射素子で反射した光および前記光反射素子を透過した光のうちの1つを受光するべく位置付けされ、それにより異なる所定の位置に向けて導かれ、各々によって投影される画像を生成するように配置され、他の画像レンズによって生成される第2の画像の倍率とは異なる倍率を有する第1の画像を生成するように、前記他の画像レンズの焦点距離とは異なる焦点距離を有する複数の画像レンズと、
    (d)前記画像レンズの各々に対して、前記異なる画像レンズによって投影される画像を受け取るべく位置付けされ、前記対象物と前記画像化システムとの間に相対移動が生じている間、前記検出器の各々が前記対象物の異なる特性を表す出力を生成するように配置された複数の検出器と
    を備えることを特徴とする画像化システム。
  42. 対象物と画像化システムとの間に相対移動がある場合に、前記対象物からの光に基づいて、前記対象物の複数の画像から移動対象物の1つまたは複数の特性を決定するための方法であって、
    (a)前記対象物からの光を、前記対象物と前記画像化システムとの間の相対移動の方向とは異なる方向の集光光路に沿って集束させるステップと、
    (b)集束光を使用して前記対象物を画像化するステップと、
    (c)前記集光光路に沿って配置された連続する複数のポイントの各々で、予め決められて特性の光を反射するステップ、および前記予め決められた特性を持たない光を通過させるステップであって、異なる予め決められた特性の光が、連続するポイントの各々で他のポイントにおける方向とは異なる方向に反射するように、前記異なる予め決められた特性が前記複数のポイントの各々と結合しているステップと、
    (d)複数の時間遅延積分検出器の各々を使用して、連続するポイントの各々で反射した光および連続するポイントの各々を透過した光の1つを受光するステップであって、光を受光すると前記時間遅延積分検出器の各々が出力信号を生成するステップと、
    (e)前記対象物の少なくとも1つの特性を決定するために、前記時間遅延積分検出器の各々の出力信号を分析するステップと
    を備えたことを特徴とする方法。
  43. 前記画像を生成するために使用される前記複数の時間遅延積分検出器の各々と対応するレンズの間の距離を、前記距離が実質的に等しくなるように制御するステップを備えたことを特徴とする請求項42に記載の方法。
  44. 前記連続する複数のポイントの各々で反射した光を、これらの反射光を前記時間遅延積分検出器が受光する前に光補正するステップを備えたことを特徴とする請求項42に記載の方法。
  45. 前記連続する複数のポイントの各々で反射した光を光補正する前記ステップが、非点収差およびコマ収差を実質的に除去するステップを備えたことを特徴とする請求項44に記載の方法。
  46. 前記連続する複数のポイントの各々で反射した光を光補正する前記ステップが、連続するポイントの各々で導入される非点収差のレベルを相殺するために、連続する各ポイントの後段で、等しく、かつ、相対するレベルの非点収差を付与するステップを備えたことを特徴とする請求項44に記載の方法。
  47. 連続する各ポイントの後段で、等しく、かつ、相対するレベルの非点収差を付与する前記ステップが、連続する各ポイントの後段に配置された補正板であって、前記予め決められた特性の光を反射する連続する各ポイントに配置された素子に対して、それぞれ実質的に直角をなすように配向された補正板を利用するステップを備えたことを特徴とする請求項46に記載の方法。
  48. 前記異なる方向に光を反射するステップが、反射する光のスペクトル成分に基づいて特定の方向に光を反射するステップを備えたことを特徴とする請求項42に記載の方法。
  49. 前記連続するポイントの各々で反射した光を減衰させるステップで、前記連続するポイントが、光が反射した光路に沿った連続するポイントと結合した予め決められた特性を持たないことを特徴とする請求項42に記載の方法。
  50. 前記光を減衰させるステップが、光が反射した前記連続するポイントと結合した前記定義済特性を有する光のみが前記検出器に向けて通過することができるようフィルタリングするステップを備えたことを特徴とする請求項49に記載の方法。
  51. 前記光を集束させるステップが、集束光から前記対象物の画像を生成する前に、光路に沿って進行する光を平行にするステップを備えたことを特徴とする請求項42に記載の方法。
  52. 前記集束光を使用して前記対象物を画像化する前記ステップが、集束光を使用して前記対象物の画像を生成するために画像レンズを使用するステップ、および前記画像を連続するポイントの各々に導くステップを備えたことを特徴とする請求項42に記載の方法。
  53. 前記集束光を使用して前記対象物を画像化する前記ステップが、連続するポイントの各々で、前記連続するポイントの各々で反射した集束光から、前記連続するポイントの各々と結合した前記複数の時間遅延積分検出器の1つに導かれる画像が生成されるように、連続するポイントの各々に画像レンズを使用するステップを備えたことを特徴とする請求項42に記載の方法。
  54. 対象物と画像化システムとの間に相対移動がある場合に、前記対象物の複数の画像から移動対象物の1つまたは複数の特性を決定するための方法であって、
    (a)前記対象物からの光を、該対象物と前記画像化システムとの間の相対移動の方向とは異なる方向の集光光路に沿って集束させるステップと、
    (b)前記集光光路に沿って配置された連続する複数のポイントの各々で、予め決められた特性の光を反射するステップ、および前記予め決められた特性を持たない光を通過させるステップであって、前記予め決められた特性のうちの異なる予め決められた特性の光が、連続するポイントの各々で他のポイントにおける方向とは異なる方向に反射した光、および連続するポイントの各々で他のポイントにおける方向とは異なる方向に透過した光のうちの少なくとも1つであるように、前記異なる予め決められた特性が前記連続する複数のポイントの各々と結合しているステップと、
    (c)連続するポイントの各々で反射した光および連続するポイントの各々を透過した光のうちの1つから前記対象物の画像を生成するステップ、および複数の独立した時間遅延積分検出器のうちの異なる1つに向けて前記画像を導くステップと、
    (d)前記複数の時間遅延積分検出器の1つを使用して、連続するポイントの各々で反射した光から画像を受け取るステップであって、光を受光すると前記時間遅延積分検出器の各々が出力信号を生成するステップと、
    (e)前記対象物の少なくとも1つの特性を決定するために、前記時間遅延積分検出器の各々の出力信号を分析するステップと
    を備えたことを特徴とする方法。
  55. 前記少なくとも1つの連続するポイントを選択するステップ、および他の連続するポイントで反射した光および他の連続するポイントを透過した光のうちの1つから画像を生成するために使用される倍率とは異なる倍率を使用して、選択された連続するポイントで反射した光および選択された連続するポイントを透過した光のうちの1つから画像を生成するステップを備えたことを特徴とする請求項54に記載の方法。
  56. 前記複数の時間遅延積分検出器が、受け取る画像の倍率には無関係に、前記時間遅延積分検出器上に投影される画像と同期するように、異なる倍率を有する画像を受け取る前記時間遅延積分検出器と結合したクロック速度を制御するステップを備えたことを特徴とする請求項55に記載の方法。
  57. 前記少なくとも1つの連続するポイントで反射した光から画像を生成するために使用されるレンズと結合した開口数を制御するステップを備えたことを特徴とする請求項54に記載の方法。
  58. 前記開口数を制御するステップが、前記連続するポイントの1つと対応する前記時間遅延積分検出器の間に、適切なサイズの開口絞りを配置するステップを備えたことを特徴とする請求項57に記載の方法。
  59. 前記異なる方向に光を反射するステップが、反射する光のスペクトル成分に基づいて、特定の方向に光を反射するステップを備えたことを特徴とする請求項54に記載の方法。
  60. 対象物との間に相対移動がある場合に、前記対象物の画像から、流体の流れの中に流入される対象物の1つまたは複数の特性を決定するようになされた画像化システムであって、
    (a)前記流体の流れを概ね広く平坦な流れに導く、概ね細長い断面を有する流体通路と、
    (b)前記流体中に流入される前記対象物からの光を通過させ、かつ、集光光路に沿って進行するように配置された集光レンズと、
    (c)該集光レンズを通過した光を受光するべく配置され、それにより所定の位置に向けて導かれる画像を生成する少なくとも1つの画像レンズと、
    (d)前記集光レンズを通過した光を受光するべく配置され、前記対象物からの光が一度だけ通過するように、予め決められた特性の光を異なる反射光路に沿って反射し、かつ、該特性を持たない光を通過させる複数の光反射素子と、
    (e)前記各光反射素子の各々に対して1つが、前記光反射素子で反射した光および前記光反射素子を透過した光のうちの1つから前記対象物の画像を受け取るべく位置付けされ、前記対象物と前記画像化システムとの間に前記相対移動が生じている間、前記対象物の少なくとも1つの特性を表す出力信号を生成し、前記対象物の少なくとも一部からの光を時間に対して積分することによって前記出力信号を生成するように配置された複数の時間遅延積分検出器と
    を備えることを特徴とする画像化システム。
  61. 少なくとも1つの対象物と画像化システムとの間に相対移動がある場合に、前記少なくとも1つの対象物の画像から、流体の流れの中に流入される少なくとも1つの対象物の1つまたは複数の特性を決定するための画像化システムであって、
    (a)前記流体の流れを概ね広く平坦な流れに導く、概ね細長い断面を有する流体通路と、
    (b)前記流体中に流入される前記少なくとも1つの対象物からの光を通過させ、かつ、集光光路に沿って進行するように配置された集光レンズと、
    (c)前記集光レンズを通過した光を受光するべく前記集光光路に沿って配置され、前記対象物からの光が一度だけ各々を通過するように、異なる予め決められた特性の光を異なる反射光路に沿って反射し、かつ、前記異なる予め決められた特性を持たない光を通過させる複数の光反射素子と、
    (d)前記各光反射素子の各々に対して少なくとも1つが、前記光反射素子で反射した光および前記光反射素子を透過した光のうちの1つを受光するべく位置付けされ、それにより異なる所定の位置に向けて導かれる、各々によって投影される画像を生成するように配置された複数の画像レンズと、
    (e)前記各画像レンズの各々に対して1つが、前記少なくとも1つの対象物の画像を受け取るべく位置付けされ、前記少なくとも1つの対象物と前記画像化システムとの間に前記相対移動が生じている間、前記少なくとも1つの対象物の異なる特性を表す出力を生成し、前記少なくとも1つの対象物の少なくとも一部からの光を時間に対して積分することによって前記出力信号を生成するように配置された複数の時間遅延積分検出器と
    を備えることを特徴とする画像化システム。
  62. 少なくとも1つの対象物と画像化システムとの間に相対移動がある場合に、前記少なくとも1つの対象物の画像から、流体の流れの中に流入される前記少なくとも1つの対象物の1つまたは複数の特性を決定するための画像化システムであって、
    (a)前記流体の流れを概ね広く平坦な流れに導く、概ね細長い断面を有する流体通路と、
    (b)前記少なくとも1つの対象物からの光を受光するべく配置された、所定の光路に沿って導かれる画像を生成する少なくとも1つの光素子と、
    (c)前記所定の光路に沿って間隔を隔てて配置され、前記対象物からの光が一度だけ各々を通過するように、異なる予め決められた特性の光を異なる反射光路に沿って反射し、かつ、前記予め決められた特性を持たない光を通過させる複数の光反射素子と、
    (d)前記各光反射素子の各々に対して、前記光反射素子で反射した光および前記光反射素子を透過した光のうちの1つを介して前記画像を受け取るように配置され、前記少なくとも1つの対象物の少なくとも1つの特性を表す出力を生成し、各々と前記画像を生成する前記少なくとも1つの光素子の間の光路の長さが実質的に等しい複数の検出器と
    を備えることを特徴とする画像化システム。
  63. 対象物と画像化システムとの間に相対移動が存在している間に、前記対象物の画像から、流体の流れの中に流入される前記対象物の1つまたは複数の特性を決定するようになされた画像化システムであって、
    (a)前記流体の流れを概ね広く平坦な流れに導く、概ね細長い断面を有する流体通路と、
    (b)前記対象物から進行する光が前記集光レンズを通過し、かつ、集光光路に沿って進行するように配置された集光レンズと、
    (c)前記集光レンズを通過した光を受光するべく、前記集光光路に沿って配置され、前記光が複数の独立した光ビームに分散し、分散した光ビームの各々が、異なる所定の方向から導かれる分散素子と、
    (d)前記分散素子からの前記光ビームを受光するべく配置され、前記光ビームの各々に対応する複数の画像を生成し、生成された画像の各々が、異なる所定の位置へ向けて投影される画像レンズと、
    (e)前記画像レンズによって生成された前記複数の画像を受け取るべく配置され、前記対象物と前記画像化システムとの間に前記相対移動が生じている間、前記対象物の少なくとも1つの特徴を表す出力信号を、前記対象物の少なくとも一部からの光を時間に対して積分することによって前記出力信号を生成する時間遅延積分検出器と
    を備えることを特徴とする画像化システム。
JP2003504054A 2000-10-12 2001-10-12 画像化システム及びその方法 Expired - Fee Related JP4018063B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US24012500P 2000-10-12 2000-10-12
US09/820,434 US6473176B2 (en) 1999-01-25 2001-03-29 Imaging and analyzing parameters of small moving objects such as cells
PCT/US2001/042706 WO2002101339A2 (en) 2000-10-12 2001-10-12 Imaging and analyzing parameters of small moving objects such as cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007186315A Division JP5160158B2 (ja) 2000-10-12 2007-07-17 画像化システム及びその方法

Publications (3)

Publication Number Publication Date
JP2004522163A true JP2004522163A (ja) 2004-07-22
JP2004522163A5 JP2004522163A5 (ja) 2005-12-22
JP4018063B2 JP4018063B2 (ja) 2007-12-05

Family

ID=26933159

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003504054A Expired - Fee Related JP4018063B2 (ja) 2000-10-12 2001-10-12 画像化システム及びその方法
JP2007186315A Expired - Lifetime JP5160158B2 (ja) 2000-10-12 2007-07-17 画像化システム及びその方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007186315A Expired - Lifetime JP5160158B2 (ja) 2000-10-12 2007-07-17 画像化システム及びその方法

Country Status (3)

Country Link
EP (1) EP1334338A4 (ja)
JP (2) JP4018063B2 (ja)
WO (1) WO2002101339A2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524633A (ja) * 2004-12-21 2008-07-10 セダーズ−シナイ メディカル センター イオン流束分析による薬物スクリーニングおよび特徴付けのための方法
JP2008533440A (ja) * 2005-02-01 2008-08-21 アムニス コーポレイション イメージングフローサイトメータを使用した血液及び細胞の分析
US8548219B2 (en) 1999-01-25 2013-10-01 Amnis Corporation Detection of circulating tumor cells using imaging flow cytometry
US8660332B2 (en) 1999-01-25 2014-02-25 Amnis Corporation Blood and cell analysis using an imaging flow cytometer
JP2014512532A (ja) * 2011-03-31 2014-05-22 ヌビオ,インコーポレイテッド スケーラブルなスペクトル検出および計測
US8885913B2 (en) 1999-01-25 2014-11-11 Amnis Corporation Detection of circulating tumor cells using imaging flow cytometry
CN108369169A (zh) * 2015-10-14 2018-08-03 曼塔仪器股份有限公司 用于测量胶体颗粒的生长或溶解动力学的装置和方法
JP2020512540A (ja) * 2017-02-27 2020-04-23 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 光検出システム及びその使用方法
US20210404942A1 (en) * 2018-10-25 2021-12-30 Plair Sa Method and device for detection and/or measurement of impurities in droplets

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528951B2 (en) * 2006-03-23 2009-05-05 Hach Company Optical design of a measurement system having multiple sensor or multiple light source paths
US7805020B2 (en) * 2006-07-25 2010-09-28 Itt Manufacturing Enterprises, Inc. Motion compensated image registration for overlaid/fused video
EP2201352B2 (en) 2007-09-28 2018-08-29 Illumina, Inc. Fluorescence excitation and detection system and method
DE202008003977U1 (de) 2008-02-26 2009-07-02 Bürkert Werke GmbH & Co. KG Mikrospektrometer
CN101650313B (zh) * 2009-09-25 2011-08-17 开物科技股份有限公司 光学式快速检测试剂分析仪
JP5869347B2 (ja) * 2011-02-03 2016-02-24 Hoya株式会社 透過率測定装置、及び透過率測定方法
CN103620378B (zh) * 2011-04-21 2017-06-09 麻省理工学院 高度紧凑的多光学接头的光学流通池、可灵活配置的光学感测组件和用于原位实时光谱测量的系统
US8772731B2 (en) * 2012-04-15 2014-07-08 Kla-Tencor Corporation Apparatus and method for synchronizing sample stage motion with a time delay integration charge-couple device in a semiconductor inspection tool
JP6396911B2 (ja) * 2012-10-15 2018-09-26 ナノセレクト バイオメディカル, インコーポレイテッド 粒子を選別するためのシステム、装置、および、方法
US9513206B2 (en) 2013-03-29 2016-12-06 Sysmex Corporation Particle measuring apparatus
WO2015187881A1 (en) * 2014-06-03 2015-12-10 The Regents Of The University Of California Nanoparticle analyzer
WO2016031486A1 (ja) 2014-08-28 2016-03-03 シスメックス株式会社 粒子撮像装置および粒子撮像方法
KR102258807B1 (ko) * 2015-02-24 2021-06-09 (주)미디어에버 미세 먼지 및 미생물 검출 장치
CN108603825B (zh) * 2016-01-25 2021-10-08 普莱尔股份公司 用于对单独流体承载颗粒进行检测和/或形态分析的方法和设备
DE102017119284B4 (de) 2017-08-23 2023-03-30 Markus Klotz Partikelsensor
CN110927126A (zh) * 2018-09-20 2020-03-27 牛尾电机(苏州)有限公司 荧光测定容器及荧光测定装置
US11281902B1 (en) 2019-06-19 2022-03-22 Imaging Business Machines Llc Document scanning system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777525A (en) * 1985-12-23 1988-10-11 Preston Jr Kendall Apparatus and method for a multi-resolution electro-optical imaging, display and storage/retrieval system
JPH02181632A (ja) * 1989-01-06 1990-07-16 Hitachi Ltd シースフローセル
WO1992018850A1 (en) * 1991-04-10 1992-10-29 Mayo Foundation For Medical Education And Research Confocal imaging system for visible and ultraviolet light
JP3102935B2 (ja) * 1991-11-20 2000-10-23 シスメックス株式会社 イメージングフローサイトメータ
CA2228308A1 (en) * 1995-08-01 1997-02-13 Medispectra, Inc. Optical microprobes and methods for spectral analysis of materials
JP3808169B2 (ja) * 1997-05-23 2006-08-09 株式会社ルネサステクノロジ 検査方法およびその装置並びに半導体基板の製造方法
US6007775A (en) * 1997-09-26 1999-12-28 University Of Washington Multiple analyte diffusion based chemical sensor
US5900942A (en) * 1997-09-26 1999-05-04 The United States Of America As Represented By Administrator Of National Aeronautics And Space Administration Multi spectral imaging system
JP4215397B2 (ja) * 1998-05-14 2009-01-28 ルミネックス コーポレイション 多重分析物診断システム
FR2784189B3 (fr) * 1998-10-05 2000-11-03 Commissariat Energie Atomique Biopuce et dispositif de lecture d'une biopuce comportant une pluralite de zones de reconnaissance moleculaire
US6256096B1 (en) * 1999-01-11 2001-07-03 Softray Flow cytometry apparatus and method
US6249341B1 (en) * 1999-01-25 2001-06-19 Amnis Corporation Imaging and analyzing parameters of small moving objects such as cells

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8548219B2 (en) 1999-01-25 2013-10-01 Amnis Corporation Detection of circulating tumor cells using imaging flow cytometry
US8660332B2 (en) 1999-01-25 2014-02-25 Amnis Corporation Blood and cell analysis using an imaging flow cytometer
US8885913B2 (en) 1999-01-25 2014-11-11 Amnis Corporation Detection of circulating tumor cells using imaging flow cytometry
JP2008524633A (ja) * 2004-12-21 2008-07-10 セダーズ−シナイ メディカル センター イオン流束分析による薬物スクリーニングおよび特徴付けのための方法
JP2008533440A (ja) * 2005-02-01 2008-08-21 アムニス コーポレイション イメージングフローサイトメータを使用した血液及び細胞の分析
JP2014512532A (ja) * 2011-03-31 2014-05-22 ヌビオ,インコーポレイテッド スケーラブルなスペクトル検出および計測
CN108369169A (zh) * 2015-10-14 2018-08-03 曼塔仪器股份有限公司 用于测量胶体颗粒的生长或溶解动力学的装置和方法
JP2020512540A (ja) * 2017-02-27 2020-04-23 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 光検出システム及びその使用方法
JP7173978B2 (ja) 2017-02-27 2022-11-17 ベクトン・ディキンソン・アンド・カンパニー 光検出システム及びその使用方法
US20210404942A1 (en) * 2018-10-25 2021-12-30 Plair Sa Method and device for detection and/or measurement of impurities in droplets
US11808688B2 (en) * 2018-10-25 2023-11-07 Plair, SA Method and device for detection and/or measurement of impurities in droplets

Also Published As

Publication number Publication date
JP4018063B2 (ja) 2007-12-05
EP1334338A2 (en) 2003-08-13
EP1334338A4 (en) 2008-03-19
JP2007263983A (ja) 2007-10-11
WO2002101339A3 (en) 2003-05-01
JP5160158B2 (ja) 2013-03-13
WO2002101339A2 (en) 2002-12-19

Similar Documents

Publication Publication Date Title
JP5160158B2 (ja) 画像化システム及びその方法
US6608682B2 (en) Imaging and analyzing parameters of small moving objects such as cells
US6473176B2 (en) Imaging and analyzing parameters of small moving objects such as cells
CA2395627C (en) Imaging and analyzing parameters of small moving objects such as cells
US6671044B2 (en) Imaging and analyzing parameters of small moving objects such as cells in broad flat flow
US6975400B2 (en) Imaging and analyzing parameters of small moving objects such as cells
EP2024893B1 (en) A laser illumination system in fluorescent microscopy
EP2637015A1 (en) Cell analyzer
JP2019508710A (ja) ブリルアン光散乱に基づくラベルフリーサイトメトリーのシステム及び方法
JP2002542482A (ja) 高スループット蛍光検出のための新規な走査型分光光度計
US11041756B2 (en) Method and apparatus of filtering light using a spectrometer enhanced with additional spectral filters with optical analysis of fluorescence and scattered light from particles suspended in a liquid medium using confocal and non confocal illumination and imaging
US20240142366A1 (en) Methods and systems for fast recompensation of flow cytometery data
US20230221178A1 (en) Apparatus and a method for fluorescence imaging
JPH0224535A (ja) 粒子解析装置
CA2401614C (en) Imaging and analyzing parameters of small moving objects such as cells
JPS61173141A (ja) 粒子解析装置
JP2749912B2 (ja) 検体測定装置及び検体測定方法
JPH02304332A (ja) 粒子計測装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Ref document number: 4018063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees