JP3808169B2 - 検査方法およびその装置並びに半導体基板の製造方法 - Google Patents

検査方法およびその装置並びに半導体基板の製造方法 Download PDF

Info

Publication number
JP3808169B2
JP3808169B2 JP13414597A JP13414597A JP3808169B2 JP 3808169 B2 JP3808169 B2 JP 3808169B2 JP 13414597 A JP13414597 A JP 13414597A JP 13414597 A JP13414597 A JP 13414597A JP 3808169 B2 JP3808169 B2 JP 3808169B2
Authority
JP
Japan
Prior art keywords
defect
image
pixel
pattern
gray value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13414597A
Other languages
English (en)
Other versions
JPH10325711A (ja
Inventor
行広 芝田
俊二 前田
坦 牧平
実 吉田
保彦 中山
健次 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP13414597A priority Critical patent/JP3808169B2/ja
Publication of JPH10325711A publication Critical patent/JPH10325711A/ja
Application granted granted Critical
Publication of JP3808169B2 publication Critical patent/JP3808169B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造工程やフラットパネルデイスプレイの製造工程に代表される微細パターン欠陥及び異物等の微細欠陥を検査する検査方法およびその装置並びに半導体ウエハ等の半導体基板やディスプレイ等に用いられる半導体基板の製造方法に関するものである。
【0002】
【従来の技術】
従来技術1としては、特開平7―128595号公報によって知られている。この従来技術1は、光学顕微鏡を用いて緻密なライン幅構造を映像化する技術で、この技術の特徴として、偏光板を用いて直線状に偏光された偏光軸線の試料上への投射を試料の直線状の形状に対して約45°の角度に形成する。偏光板と試料の間に配置された1/4波長板の光学(遅延)軸線は、試料の主たる直線状の形状に対して最適な角度(典型的な例として25°)の方向に向けられており、この1/4波長板により直線偏光を楕円偏光に変換し、試料を照明する。この楕円偏光の照明光は試料を反射すると偏光回転を受ける。これらの光は、再び1/4波長板を透過し、検出光路に設けた偏光板を透過する向きに偏光する。検出光路の偏光板を透過した光は、光電変換素子上で、試料の像を結像する構成になっている。
【0003】
また従来技術2としては、特開平3ー160348号公報によって知られている。この従来技術2は、自動光学検査装置による欠陥検出に関する技術で、この技術の特徴として、検査対象の試料に形成したパターンのCADデータと、試料をほぼ均質に照明して試料の像をTDIセンサで検出する光学系により検出した画像を比較検査して欠陥を検出するものである。また、従来技術2には、同じ形状のパターンが繰り返して形成された試料の場合は、試料の第1のダイをほぼ均質に照明して試料の像をTDIセンサで検出した画像と、同様に第2のダイの画像を検出して2つの画像を比較検査する技術が記載されている。
【0004】
【発明が解決しようとする課題】
従来技術1では、照明光路に偏光器を配置して直線偏光の光を透過させ、この直線偏光を1/4波長板で楕円偏光に変換して試料を照明する。この光学系では、試料のパターンが直線状に形成されていれば検出した試料の画像を高コントラストに検出することが可能であるが、実際の半導体製造工程に代表される微細パターンは、様々な方向(形状)に形成されている。このため、ある方向のパターンは高コントラストに検出できるが、異なった方向のパターンはコントラストが低下する課題が生じる。
また、従来技術2は、表面が粗い試料を検査対象としているため、試料をほぼ均質に照明する必要があった。また、CADデータと試料の光学像の比較検査及び、第1のダイと第2のダイの画像を用いた比較検査では、光学像の光電変換手段としてリニアセンサを用いているため、試料を搭載したステージを定速運動させながら光学像を検出する必要がある。このため、ステージの速度変動やステージと光学系の間で相対的に振動していると、検出した光学像は実際の試料のパターンに対して歪んでしまう(以下、これを画像歪みと称する)。この画像歪みは、光学系の収差によっても生じる。この画像歪みがあると、CADデータと検出した試料の画像は画像歪みに応じて不一致となる。この不一致部は正常部であるため、欠陥として検出すべきではないが、画像歪みが大きいと誤検出することになる。また、誤検出しないように欠陥判定しきい値を大きくすると、不一致量の小さい微小欠陥を見逃す課題が生じる。この問題は、第1のダイと第2のダイの画像を用いた比較検査においても、画像歪みの様子が異なっていれば同様である。また、検査対象である試料は、様々な材質のパターンが形成されているため反射率にむらがある。このため、検出される光量は試料のパターンに応じて変化するため、高反射率部等で検出光量がセンサの飽和レベル以上に達すると、ブルーミングにより正確な検査が行えなくなる。また、検出光量がセンサの飽和レベルに達しないように照明光量を下げると、第1のダイと第2のダイの画像を用いた比較検査では、欠陥部の不一致量が低くなり、欠陥検出感度が低下する課題がある。
【0005】
本発明の目的は、上記従来技術の課題を解決すべく、被検査対象物に形成されたパターンに応じて照明光の偏光を制御することにより、高解像度の画像を検出して微小欠陥を検出できる光学系を実現する検査装置を提供することにある。
また本発明の他の目的は、ステージや検出系の振動や収差によって生じる画像歪みを補正し、欠陥検出上のノイズとなる正常部の不一致を低減し、欠陥検出感度の向上並びに誤検出の防止を図ることができるようにした検査装置およびその方法を提供することにある。
また本発明の他の目的は、同一被検査対象物上に異なる光反射率や2次電子若しくは反射電子の発生率のパターンがあっても、センサのブルーミングを防止でき、且つ高い欠陥検出感度を達成することができるようにした検査装置およびその方法を提供することにある。
【0006】
また本発明の他の目的は、画像処理において判定された欠陥または欠陥候補について、その種類(異物に代表される孤立欠陥とパターン欠陥)分類およびその大きさ(特に画素サイズ以下)を求めることができるようにした検査装置およびその方法を提供することにある。
また本発明の他の目的は、半導体基板上の微細な欠陥や欠陥候補を種類や大きさも含めて検査できることにより、不良発生原因を究明しやすくなり、半導体基板を高歩留まりで製造することができるようにした半導体基板の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、光源から出射されたインコヒーレント光を偏光ビームスプリッターを透過あるいは反射させることによって部分偏光させて1/4波長板により楕円偏光に変換して被検査対象物に対して落射照明する照明光学系と、前記被検査対象物からの反射回折光を前記1/4波長板を通して前記偏光ビームスプリッターを反射あるいは透過させることによって捕捉して被検査対象物上の像を光電変換素子上に結像させる検出光学系と、該検出光学系で検出した比較画像を参照画像と比較処理して検査する画像処理部とを具備し、前記1/4波長板の回転角を前記被検査対象物上に形成されたパターンに応じて設定することを特徴とする検査装置である。
また本発明は、光源から出射されたインコヒーレント光を被検査対象物に対して落射照明する照明光学系と、前記被検査対象物からの反射回折光を捕捉して被検査対象物上の像を、受光面あるいはその近傍のガラス部材に異なる分光透過率を有する薄膜を形成させたTDIセンサ上に結像させて被検査対象物上の波長に応じた像を高コントラストで検出して画像信号を得る検出光学系と、該検出光学系のTDIセンサから得られる画像信号を参照画像と比較処理して検査する画像処理部とを具備したことを特徴とする検査装置である。
【0008】
また本発明は、被検査対象物上に形成されたパターンに対してエネルギビーム(光ビームまたは電子ビーム等)を照射する照射系と、被検査対象物上に形成されたパターンから発生する反射光または2次電子若しくは反射電子等に基いて各画素について濃淡値を有する2次元の比較画像信号として検出する検出系と、前記検出系から得られる各画素について濃淡値を有する2次元の比較画像信号における画像の歪みに応じて画像サイズを設定し、この設定された画像サイズごとに該検出系から得られる各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定する画像処理部とを具備したことを特徴とする検査装置である。
また本発明は、被検査対象物上に形成されたパターンに対してエネルギビーム(光ビームまたは電子ビーム等)を照射する照射系と、前記被検査対象物上に形成されたパターンから発生する反射光または2次電子若しくは反射電子等に基いて各画素について濃淡値を有する2次元の比較画像信号として検出する検出系と、前記検出系から得られる各画素について濃淡値を有する2次元の比較画像信号における画像の歪みを検出する検出部を有し、該検出部から検出された画像の歪みに応じて画像サイズを設定し、この設定された画像サイズごとに該検出系から得られる各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定する画像処理部とを具備したことを特徴とする検査装置である。
【0009】
また本発明は、被検査対象物上に形成されたパターンに対してエネルギビーム(光ビームまたは電子ビーム等)を照射する照射系と、前記被検査対象物上に形成されたパターンから発生する反射光または2次電子若しくは反射電子等に基いて各画素について濃淡値を有する2次元の比較画像信号として検出する検出系と、前記被検査対象物を載置したステージまたは前記検出系若しくは照射系の振動に応じて画像サイズを設定し、この設定された画像サイズごとに該検出系から得られる各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定する画像処理部とを具備したことを特徴とする検査装置である。
また本発明は、被検査対象物上に形成されたパターンに対してエネルギビーム(光ビームまたは電子ビーム等)を照射する照射系と、前記被検査対象物上に形成されたパターンから発生する反射光または2次電子若しくは反射電子等に基いて各画素について濃淡値を有する2次元の比較画像信号として検出する検出系と、前記被検査対象物を載置したステージまたは前記検出系若しくは照射系の振動を検出する検出部と、該検出部から検出された振動に応じて画像サイズを設定し、この設定された画像サイズごとに該検出系から得られる各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定する画像処理部とを具備したことを特徴とする検査装置である。
【0010】
また本発明は、被検査対象物上に形成されたパターンに対してエネルギビームを照射する照射系と、前記被検査対象物上に形成されたパターンから各画素について濃淡値を有する2次元の比較画像信号として検出する検出系と、前記検出系若しくは照射系の収差に応じて、前記検出系から得られる各画素について濃淡値を有する2次元の比較画像信号に対して収差補正を施し、この収差補正が施された各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定する画像処理部とを具備したことを特徴とする検査装置である。
また本発明は、被検査対象物上に形成されたパターンに対してエネルギビームを照射する照射系と、前記被検査対象物上に形成されたパターンから各画素について濃淡値を有する2次元の比較画像信号として検出する検出系と、該検出系から得られる各画素について濃淡値を有する2次元の比較画像信号に対してアフィン変換を施し、このアフィン変換が施された各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定する画像処理部とを具備したことを特徴とする検査装置である。
【0011】
また本発明は、被検査対象物上に形成されたパターンに対してエネルギビームを照射する照射系と、前記被検査対象物上に形成されたパターンから各画素について濃淡値を有する2次元の比較画像信号として検出する検出系と、前記被検査対象物を載置したステージの振動を測定する振動測定系と、該振動測定系で測定された振動に応じて、前記検出系から得られる各画素について濃淡値を有する2次元の比較画像信号に対して補正し、この補正された各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定する画像処理部とを具備したことを特徴とする検査装置である。
また本発明は、前記検査装置における振動測定系として、被検査対象物(試料)が搭載されるチャックまたはステージ上に形成された格子状のパターンを光学的に検出して振動を測定するように構成したことを特徴とする。
また本発明は、被検査対象物上に形成されたパターンに対して光を照射する照射系と、前記被検査対象物上に形成されたパターンからの反射回折光をTDIセンサで捕捉して各画素について濃淡値を有する2次元の比較画像信号として検出する検出系と、該TDIセンサの時間遅延蓄積方向の蓄積画素数を電気的に変更可能に制御する制御部と、前記検出系から得られる各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定する画像処理部とを具備したことを特徴とする検査装置である。また本発明は、前記検査装置における制御部において、蓄積画素数は、被検査対象物に形成されたパターンの設計情報或いは画像情報より決定することを特徴とする。
【0012】
また本発明は、被検査対象物上に形成されたパターンに対してエネルギビームを照射する照射系と、前記被検査対象物上に形成されたパターンから各画素について濃淡値を有する2次元の比較画像信号として検出する検出系と、前記検出系から得られる各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定し、この判定された欠陥または欠陥候補の周辺画素における濃淡強度の2次微分値或いは偏差或いは分散を求め、この求められた濃淡強度の2次微分値或いは偏差或いは分散に基いて前記判定された欠陥または欠陥候補ついてその種類を分類する画像処理部とを具備したことを特徴とする検査装置である。
また本発明は、被検査対象物上に形成されたパターンに対してエネルギビームを照射する照射系と、前記被検査対象物上に形成されたパターンから各画素について濃淡値を有する2次元の比較画像信号として検出する検出系と、前記検出系から得られる各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定し、更に前記比較処理された濃淡値の差の絶対値に応じて前記判定された欠陥または欠陥候補のサイズを推定する画像処理部とを具備したことを特徴とする検査装置である。
【0013】
また本発明は、被検査対象物上に形成されたパターンに対して照射系によりエネルギビームを照射し、前記被検査対象物上に形成されたパターンから検出系により各画素について濃淡値を有する2次元の比較画像信号として検出し、画像処理部において前記検出される各画素について濃淡値を有する2次元の比較画像信号における画像の歪みに応じて画像サイズを設定し、この設定された画像サイズごとに前記検出される各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定することを特徴とする検査方法である。
また本発明は、被検査対象物上に形成されたパターンに対して照射系によりエネルギビームを照射し、前記被検査対象物上に形成されたパターンから検出系により各画素について濃淡値を有する2次元の比較画像信号として検出し、画像処理部において前記被検査対象物を載置したステージまたは前記検出系若しくは照射系の振動に応じて画像サイズを設定し、この設定された画像サイズごとに該検出系から得られる各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定することを特徴とする検査方法である。
【0014】
また本発明は、被検査対象物上に形成されたパターンに対して照射系によりエネルギビームを照射し、前記被検査対象物上に形成されたパターンから検出系により各画素について濃淡値を有する2次元の比較画像信号として検出し、画像処理部において前記検出系若しくは照射系の収差に応じて、前記検出系から得られる各画素について濃淡値を有する2次元の比較画像信号に対して収差補正を施し、この収差補正が施された各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定することを特徴とする検査方法である。
また本発明は、被検査対象物上に形成されたパターンに対して照射系によりエネルギビームを照射し、前記被検査対象物上に形成されたパターンから検出系により各画素について濃淡値を有する2次元の比較画像信号として検出し、画像処理部において振動測定系で測定された振動に応じて、前記検出系から得られる各画素について濃淡値を有する2次元の比較画像信号に対して補正し、この補正された各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定することを特徴とする検査方法である。
【0015】
また本発明は、被検査対象物上に形成されたパターンに対して照射系によりエネルギビームを照射し、前記被検査対象物上に形成されたパターンから検出系により各画素について濃淡値を有する2次元の比較画像信号として検出し、画像処理部において前記検出される各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定し、この判定された欠陥または欠陥候補の周辺画素における濃淡強度の2次微分値或いは偏差或いは分散を求め、この求められた濃淡強度の2次微分値或いは偏差或いは分散に基いて前記判定された欠陥または欠陥候補ついてその種類を分類することを特徴とする検査方法である。
また本発明は、被検査対象物上に形成されたパターンに対して照射系によりエネルギビームを照射し、前記被検査対象物上に形成されたパターンから検出系により各画素について濃淡値を有する2次元の比較画像信号として検出し、画像処理部において前記検出される各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された濃淡値の差に応じて欠陥または欠陥候補を判定し、更に前記比較処理された濃淡値の差の絶対値に応じて前記判定された欠陥または欠陥候補のサイズを推定することを特徴とする検査方法である。
また本発明は、前記検査方法を用いて、被検査対象物としての半導体基板に対して検査を行って半導体基板を製造することを特徴とする半導体基板の製造方法である。
【0016】
【発明の実施の形態】
本発明に係る実施の形態について図を用いて説明する。
図1は、本発明に係るパターン検査装置の一実施の形態を示す構成図である。即ち、試料1はチャック2に真空吸着され、このチャック2は、θステージ3、Zステージ4、Yステージ5、Xステージ6上に搭載される。試料1の上方に配置されている光学系111は、試料1に形成されているパターンの外観検査を行うために試料1の光学像を検出するものであり、主に照明光学系11と試料1の像を撮像する検出光学系45及び焦点検出光学系115とで構成される。照明光学系11に配置された光源10は、インコヒーレント光源であり、例えばハロゲンランプで構成される。光源10で発光した光は、レンズ12を介して開口絞り14の開口部を透過し、レンズ16を介して視野絞り18に到達する。この視野絞り18は、多数の仮想の点光源から形成される二次光源としての輪帯状の照明を形成するためのもので、一般にスリット状の開口を有したものが使われている。この視野絞り18は、種類の異なる輪帯状の照明をすることができるように、この視野絞り18の寸法および形状を調整制御できるように構成されている。また視野絞り18として、複数種類のものを用意して、これら視野絞り18を切り替えるように構成しても良い。また、通常の照明光源に切り替えることができるように構成しても良い。そして、視野絞り18を透過した光は、レンズ20及び光分割手段22を透過して、対物レンズ30に入射し、試料1をほぼ垂直方向から照明する。尚、光分割手段22は、部分偏光の光を透過する偏光ビームスプリッターであり、この偏光ビームスプリッター22と試料1との間に1/4波長板等を配置させる必要がある。上記照明光学系11および検出光学系45については、特開平成8−162511号公報において、具体的に記載されている。
【0017】
即ち、多数の仮想の点光源18から形成された輪帯状の拡散照明光を更に偏光を加えて形成された輪帯状の拡散照明光を対物レンズ30の瞳を通して被検査対象物1上パターンに対して集光して照射し、この集光照射された輪帯状の拡散照明光によって被検査対象物1上のパターンから反射して対物レンズ30の瞳内に入射する0次回折光を含む1次または2次の回折光を集光して得られる被検査対象物1上のパターンの画像を光電変換素子41により受光してパターンの画像信号に変換するものである。
【0018】
試料1を照明した光は、試料1上で反射、散乱、回折し、対物レンズ30のNA以内の光は再び対物レンズ30に入射し、偏光ビームスプリッター22で反射され、試料1の像を撮像する検出光学系45及び焦点検出光学系115に導かれる。偏光ビームスプリッター22を反射した光は、検出光学系の光分割手段35に入射し、透過した光は結像レンズ40を介して光電変換素子41上に試料1の像を結像させる。ここで、検出光学系の光分割手段35は、例えばハーフミラー(T:R=1:1でなくてよい)やダイクロイックミラー等であり、光電変換素子はリニアセンサやTDI或いはTVカメラ等である。また、検出光学系の光分割手段35を反射した光は、焦点検出光学系に導かれ、レンズ50で対物レンズの瞳と共役な位置或いは共役に近い位置を形成させ、この位置にナイフエッジ状のミラー80を配置させる。このナイフエッジミラー80は、試料1を照明する光の角度に応じて光を2光束に分割するものであり、結像レンズ85及び90を介して焦点検出センサ100及び110に試料1の像を結像する。ここで、焦点検出センサはリニアセンサやTDIあるいは、フォトダイオード等がある。視野絞り18と試料1と検出光学系45の光電変換素子41及び焦点検出光学系の光電変換素子100並びに110は光学的に共役である。焦点検出光学系の光電変換素子100並びに110で検出した光強度分布の信号は、ケーブル160により焦点検出信号処理回路120に入力され、この焦点検出信号処理回路120で試料1の高さと対物レンズ30の焦点位置のズレ量を検出し、CPU140に焦点ズレ量のデータを送る。この焦点ズレ量に応じて、CPU140からステージ制御部150にZステージ4を駆動させる指令を行い、所定パルスをステージ制御部150からZステージ4に送り、自動焦点機能が働く。また、検出光学系45の光電変換素子41で検出した試料1の光学像は、画像処理回路130に入力し、画像の記憶や欠陥部の判定等を行う。さらに、試料1のXY方向の移動は、Xステージ6及びYステージ5の2次元的な移動により行なわれる。また、θステージ3は、XYステージ6及び5の運動方向と試料1に形成されたパターンのθ(回転)アライメントを行うときに用いる。
【0019】
ステージ5,6の走行時に生じた振動に起因した画像歪みを補正する手段として、ステージ走行時にウエハ1の振動を測定する光学系を設ける。即ち、ウエハ1が吸着されているチャック面2には、格子状のパターンを形成し、この格子パターンをステージ振動測定光学系850で検出する。ステージ振動測定光学系850は、光源851で発光した光を対物レンズ852を介して、チャック2の格子パターンを落射照明する。チャック2の格子パターンを反射、回折した光は、再び対物レンズ852に捕捉され、チャック2の格子パターンをTDI855上に投影する。TDI855で検出した格子パターンの像の信号は、振動解析画像処理部860に伝達され、格子パターンピッチを検出して振動を測定する。この求めた振動量を画像処理部130に送り、検出した画像を補正する。
【0020】
本発明に係る実施の形態では、落射照明方式の光学系を用いているが、この光学系の解像度Rは一般的にR=λ/(2NA)で求められる。しかし、偏光を用いた光学系では先に求めたR以上の解像度が得られることが知られている。次に、部分偏光を利用した光学系について、図2を用いて説明する。図2(a)は、部分偏光を利用した光学系を示す。照明光は、照明光軸7に沿って、偏光ビームスプリッター22に入射する。このうち、S偏光成分は偏光ビームスプリッター22を構成するガラス部材22aと22bの境界面で反射し、P偏光成分は透過する。ここで注意されたいのは、偏光ビームスプリッター22を透過したP偏光成分の振動面は単一ではなく図2(d)に示す分布を持っており、部分偏光となっている。偏光ビームスプリッター22を透過したP偏光成分の光は、1/4波長板401を透過して円偏光になるが、本実施の形態では部分偏光を1/4波長板401に入射させているため楕円偏光になる。尚、1/4波長板401は回転機能880に取り付けられている。楕円偏光の光は対物レンズ30を介して、試料1を照明する。尚、試料1には凸状のパターンが形成されているものとする。試料1で反射・回折した光は再び対物レンズ30に捕捉され、再び1/4波長板401を透過する。この光は1/4波長板401を往復したことにより、180°位相差が生じ、主にS偏光になる。このため、再び偏光ビームスプリッター22に入射した光は、ガラス部材22aと22bの境界面で反射し、検出系45に導かれる。検出系45のTDIセンサ41で検出した画像の波形873を図2(b)に示す。ウエハ1に形成された段差のエッジでは、光量が低下して、画像の波形の値Iはaとなる。エッジ以外の画像の波形の値Iはbとなる。このエッジ部のコントラストCを図中の式(C=(a−b)/(a+b))で定量的に表した場合、1/4波長板401の回転角θとコントラストCの関係874は、図2(c)に示すようになる。本発明に係るウエハ1の外観検査装置では、欠陥を検出するにあたり、パターン(回路パターン)のコントラストCが高いほど微小欠陥を検出できる傾向があり、最も高コントラストな像が得られる1/4波長板401の回転角θ1に設定することが望ましい。しかし、最も高コントラストな像が得られる1/4波長板401の回転角θ1は、パターンの方向と照明する波長の振動方向とによって決まっている。このため、図3(a)に示すようなウエハ上に主として形成されたX方向のパターン(回路パターン)1aとY方向のパターン(回路パターン)1bともに、図3(b)に1a’、1b’で示す如く、高コントラストな像が得られる1/4波長板401の回転角は一致しない。そこで、ウエハ1上に主として形成された各方向のパターン(回路パターン)1a、1bが比較的高コントラストに検出される1/4波長板の回転角θ2に設定する。ここで、欠陥検出上、1/4波長板401の回転角θはパターンのコントラストが低くなる位置に設定することが望ましい場合もある。即ち、パターン(回路パターン)を有するウエハ1上に存在する微小異物等を検出する場合には、パターンの画像信号は不要となることからパターンのコントラストを低くなるように1/4波長板401の回転角θを設定する。ウエハ1上に存在するパターンは、主としてX方向およびY方向を向いており、これらパターンのコントラストを低くなるように1/4波長板401の回転角θを設定すれば良い。しかし、両方のパターンのコントラストが低くなる1/4波長板401の回転角θは存在しないので、どちからのパターンを優先して1/4波長板401の回転角θを選択する必要がある。
【0021】
図4(a)には、TDIセンサ41の受光面41aを示す。このTDIセンサ41は、ステージ移動方向にmピクセル、それと直角方向にnピクセルから構成され、蓄積時間としてt1を有している。そして、センサ面41aのステージ移動方向(電荷の積分方向)を3分割し、それぞれの表面に赤R890・緑G891・青B892色の透過膜を蒸着させる。これにより、TDIセンサ41は、分光した画像を検出することができる。尚、3色の膜の透過率特性は、図4(b)に890a、891a、892aで示すとおり、横軸の波長λに対して透過率Tが異なる分布を示している。このTDIセンサ41を用いて試料1の像を検出することにより、試料1の像が高コントラストに検出できる波長のみの像を用いて、欠陥検出することが可能となる。また、赤R890と緑G891の領域で検出した像を合成して画像とすることにより、波長幅を広げた画像を生成することが可能である。さらに、赤R890・緑G891・青B892の3色で検出した像を合成して画像とすることにより、白色光照明で検出した画像と同様の画像を生成することが可能となる。これら、色の分割や合成により、ウエハ1に形成されたパターンが高コントラストに検出できる条件を選択的に決定できる。即ち、ウエハ上に形成されたパターンにおいては、例えば赤色を帯びて形成されている場合がある。また、ウエハ上に形成された薄膜に膜厚むらがある場合などは、赤R890・緑G891・青B892の3色で検出した像を合成して画像を形成し、欠陥検出上ノイズ成分となる明るさ変動を低減できる。このため画像処理部130には、3色で検出した画像の合成或いは分割を行い1つの画像を生成する機能が必要であるが、画像の位置合わせ・比較等を行う機能は従来の数で賄える構成とすることが、装置のコスト面で重要である。
【0022】
図1に示す画像処理部130では、TDIセンサ41で光電変換した試料1の3色で分光した画像信号を入力し、これら入力された画像の合成或いは分割を行い1つの濃淡を示すデジタル画像を生成する。これら画像の合成或いは分割に対する指令は、CPU140に入力されたウエハ上に形成されたパターンの種類やその配列位置等に関する設計情報に応じてCPU140から得ることができる。画像処理部130では、図5(a)に示す通り、例えばTDI41から得られる濃淡を示すデジタル参照画像g(x,y)を遅延記憶部131に記憶しておき、位置ずれ補正回路136は、位置ずれ量検出回路137から得られる位置ずれ量に基いて遅延記憶部131に記憶されたデジタル参照画像g(x,y)とTDI41で検出された濃淡を示すデジタル比較画像f(x,y)との間の位置ずれ補正を行う。この位置ずれ補正を行うためのに2画像の位置ずれ量は、デジタル比較画像f(x,y)及びデジタル参照画像g(x,y)を画像記憶部137に記憶し、位置ずれ量検出回路138において検出するものである。位置ずれ補正回路136において位置ずれ補正されたデジタル比較画像f(x,y)及びデジタル参照画像g(x,y)は、比較部133において、例えば濃淡差がとられ、欠陥候補の特徴量検出部134において不一致として欠陥候補の特徴量が検出(算出)される。そして、欠陥判定部135において、この検出された特徴量が欠陥判定しきい値以上の場合は、欠陥と判断するような構成である。位置ずれ補正部132は、位置ずれ補正回路136と、位置ずれ量検出回路138とから構成される。ここで図5(b)に示す通り、参照画像のサイズ(ステージ走査方向XのサイズをXwとする)は予め決められているものとすると、位置ずれ量の検出は参照画像g(x,y)に対して比較画像f(x,y)F±N画素ずらした範囲内で位置ずれ量を検出し、最も比較画像と参照画像の濃淡差が小さくなる位置が位置ずれ補正すべき位置となる。連続した次の参照画像の位置合わせも同様に位置ずれ量検出することにより、連続して画像の位置合わせが可能となる。尚、参照画像と比較画像の位置ずれ量検出範囲±N画素は、ステージの走行精度やステージや光学系の振動或いは光学系の拡大倍率により異なるが、±1〜3画素が妥当である。また、画像のずれ方向が周期的或いは一定である場合は、ずれ方向を予測することにより位置ずれ検出量の範囲を狭めることが可能である。図6に示す通り、比較画像f(x,y)と遅延記憶部131に記憶されている参照画像g(x,y)の位置ずれ量が規則的あるいは、一定である場合は、予め、試料1上に形成されたパターンからTDI41によって検出される比較画像f(x,y)及び参照画像g(x,y)を画像記録部137に入力し、位置ずれ量検出回路138においてこの入力された画像に基づき、位置ずれ量を検出しておいても良い。そして、図5に示す実施例と同様に、位置ずれ補正部136で比較画像・参照画像との位置ずれ補正を行う。この位置ずれ補正した2画像を比較部133で比較し、欠陥候補の特徴量を欠陥候補の特徴量検出部134で検出し、欠陥判定部135において欠陥判定しきい値以上を欠陥と判断するような構成でも良い。
【0023】
また、画像処理の高速化を図るため、TDIセンサ41の視野を、図7(a)に示す通り、複数の画像処理領域に分割することが考えられる。即ち、図5(a)に示す位置ずれ補正回路136、比較部133、欠陥候補の特徴量抽出部134および欠陥判定部135における画像処理は、この分割された領域毎に並列に実行され、画像処理の高速化を実現することができる。当然位置ずれ量検出回路138における位置ずれ量検出を、上記分割された領域毎に並列に実行しても良い。ところで、図7(a)ではTDIセンサの視野を例えばw1〜w8に8分割しており、それぞれの領域で図7(b)に示す様に、位置ずれ検出回路138における位置合わせ部138aにおいて比較画像f(x,y)と参照画像g(x,y)との位置合わせを行い、ずれ量検出部138bにおいて2画像の差の絶対値の和(不一致量)が最小になる位置を求め、この位置における2画像の相対的な位置ずれ量を検出する。また、このずれ量を位置ずれ検出回路138において検出する場合、第一にTDIセンサ41の視野を複数分割した領域の代表的な領域でずれ量を求め、第二に他の領域では、先に求めたずれ量±p画素の領域をずれ量検出範囲とし、ずれ量の検出を行うことが考えられる。尚、±p画素は、光学系の倍率やステージ走行精度により変わるが、p=1〜3画素が妥当であると考える。以上説明したように、位置ずれ量検出回路138では、TDIセンサ41の視野を複数分割した領域毎に、並列に位置ずれ量が検出(算出)されることになる。そして位置ずれ補正回路136は、位置ずれ量検出回路137から得られる領域毎に並列に検出(算出)される位置ずれ量に基いて位置ずれ補正を行い、これら領域毎に位置ずれ補正されたデジタル比較画像f(x,y)及びデジタル参照画像g(x,y)は、比較部133において、例えば濃淡差がとられ、欠陥候補の特徴量検出部134において不一致として欠陥候補の特徴量が検出(算出)され、欠陥判定部135においてこの検出された特徴量が欠陥判定しきい値以上の場合は、欠陥として判断する。
【0024】
図8(a)には、センサ視野内で805で示すように光学倍率に誤差がある状態を示す。この光学倍率誤差は、レンズの収差等により生じるものであるため、この誤差をなくすことはできない。従って、領域w1とw4の光学倍率は異なっている。これを一様な倍率にするためには、位置ずれ検出回路138において画像処理により補正することが、実用的である。この手法として図8(b)に示す通り、位置ずれ検出回路138において、ずれ量検出部138bで検出された位置ずれ量に対して、CPU140に入力されてCPU140から得られる光学倍率誤差データに基いて、補正することにより光学倍率誤差を消去した位置ずれ量を求めることができる。なお、光学倍率の誤差は、光分割手段22および対物レンズ30を含む検出光学系45によって決まる。従って、最初に、試料上に形成された既知の寸法のパターンを照明光学系11で照明し、光分割手段22および対物レンズ30を含む検出光学系45で撮像し、CPU140は、この撮像された画像信号を取り込んで微分処理をしてパターンのエッジ位置を画像上の座標から算出してパターンの寸法を求め、この求められたパターンの寸法と既知のパターン寸法(パターン寸法設計値)とから光学倍率を含むこの誤差を算出することができる。
【0025】
図9(a)(b)には、参照画像と比較画像との間においてステージ或いは光学系が振動したために画像内のパターンが歪んで互いに相違するモデルを示す。尚、図中X方向がステージの走査方向である。図9(a)に示す参照画像は、パターン800aが直線に検出できており、画像取り込み中において、ステージや光学系の振動はなかったものとする。しかし、図9(b)に示す比較画像では画像取り込み中において、Y方向にステージ或いは光学系が振動したため、画像内のパターン801aが歪んでいる。ここで、図9(b)に示す比較画像の歪み量をΔyとする。この両者の画像の差をとると、比較画像の歪みに起因した不一致部が多数検出され、欠陥候補となる。この不一致部は正常部であるあるため、欠陥検出しないようにするためには、欠陥検出しきい値を大きくする必要がある。微小欠陥は、欠陥候補の特徴量が小さいため、欠陥検出しきい値を大きくすると欠陥として認識できなくなる。このため、画像サイズpixを小さく(Xw)し、画像歪みの影響を小さくすることが考えられる。これは、図11に示すずれ量周期判定部142で判定される画像歪みの周期をPとするとき、画素サイズ設定部143で画像サイズpixを周期Pの数分の1にすることにより、正常なパターン部における2画像の不一致を非常に小さくしようとするものである。例えば、比較画像・参照画像のサイズpixをXwとすると、2画像の位置合わせ後の歪み量Δyは小さくなる。歪み量Δyの許容値として、画素サイズpixを歪み量Δyの許容値の例えば1/10以下になるように、図11に示すずれ量周期判定部142で判定された画像歪みの周期Pに基いて、画素サイズ設定部143において画像サイズを決定する。これにより補正画像生成部141において比較画像f(x,y)および参照画像g(x,y)共に画像サイズが決定されて補正比較画像f‘(x,y)および補正参照画像g’(x,y)となって画像記憶部に記憶されて位置ずれ補正部132に入力されることになる。そして位置ずれ補正部132において、上記画素サイズで切り出された補正比較画像f‘(x,y)と補正参照画像g’(x,y)との間において位置ずれ補正される。ついで比較部133において、上記画素サイズで切り出された補正比較画像f‘(x,y)と補正参照画像g’(x,y)との間において比較され、欠陥候補の特徴量抽出部134において不一致として欠陥候補の特徴量が算出され、欠陥判定部135において歪み量Δyの許容値と比較されて欠陥の判定が行われる。尚、この歪み量Δyの許容値は、欠陥判定部135において用いられる欠陥検出アルゴリズム等に対応させて有効で、且つ適切な値に設定する必要がある。またずれ周期判定部142において、画像が図9(b)に示すように歪んだ場合、図9(a)に示す比較画像f(x,y)と図9(b)に示す参照画像g(x,y)との差をとると、不一致量が周期的に変動することになり、この変動量を画像処理して不一致量の極大値の間隔を求めることによって周期Pを算出することができる。以上説明したように、位置ずれ補正部132において、比較画像f(x,y)と参照画像g(x,y)との間において位置ずれ補正を行う際、画素サイズを画像歪みの周期Pの1/10程度以下にすることによって、画像歪みが生じたとしても、正常なパターン部における2画像の不一致を非常に小さくして歪み量Δyの許容値以内にして、誤判定をなくすことができる。
【0026】
図10(a)(b)には、参照画像と比較画像との間において互いに傾きをもって相違するモデルを示す。即ち、図10(b)に示す比較画像におけるパターン801bは、図10(a)に示す参照画像におけるパターン800bに対して、aの傾きを持っている。これを補正するには、例えば、図10(c)に補正後比較画像2で示す通り、図11に示す補正画像生成部141において比較画像の傾きaを0にするように比較画像を補正することが考えられる。また、図10(d)および図10(e)に示す通り、図11に示す補正画像生成部141において参照画像f(x,y)および比較画像g(x,y)共に画像を補正し、マッチングさせることが考えられる。これは、2つの画像共にa/2の傾きを持たせるように補正するものである。この補正はアフィン変換により実現できる。図11に示す傾き量算出部144は、検出光学系45で検出される本来のパターンの向きが既知(本来図10(a)に示す参照画像の通り、比較画像においても検出される場合)の場合には、検出光学系45で検出される比較画像に対して微分処理してパターンのエッジ位置を検出し、このパターンのエッジ位置を直線近似して本来の向きy=bに対してy=ax+bを求めて、傾きaを算出することができる。検出光学系45で検出される本来のパターンの向きがわかっていない場合には、参照画像と比較画像との差画像の不一致量の分布を最小二乗法により直線近似することによって傾き量aを算出することができる。
【0027】
以上、図8〜図10で説明した位置ずれ量の様に位置ずれが周期的である場合の補正手段の具体的構成を図11に示す。比較画像f(x,y)および参照画像g(x,y)を位置ずれ補正画像生成部141に入力する。この補正画像生成部141には、ずれ量周期判定部142と画像サイズ設定部143とにより、位置ずれ量が許容値以内となる画像サイズを伝えられる。また傾き量算出部144からは参照画像に対する比較画像の傾き量aが補正画像生成部141に入力される。補正画像生成部141は、この画像サイズに応じて傾き量aについて補正画像を生成し、補正比較画像f‘(x,y)および補正参照画像g’(x,y)を生成する。この補正比較画像f‘(x,y)および補正参照画像g’(x,y)を用いて、位置ずれ補正部132において位置合わせを行い、比較部133において2画像を比較する。この比較結果より、欠陥候補の特徴量検出部134において欠陥候補の特徴量を検出し、欠陥判定部135において欠陥判定しきい値より大きな特徴量である部分を欠陥と判断する。尚、欠陥判定しきい値は、試料1の全面にわたって一定ではなく、試料1の反射率等に応じて、変化させるしきい値(浮動しきい値)とすることも考えられる。また、画像取り込み時のステージ走査方向がX方向である場合、ウエハ全面の欠陥検出をするにはウエハの端までXステージが走査したときのみYステージが移動する。従って、Xステージの走査時にはYステージが固定であるため、Y方向の画像ずれは少ない。このため、図12に示す通り、比較画像f(x,y)および参照画像g(x,y)は,XYステージ移動判定部150’に入力し、Xステージのみの走査時にはXずれ量検出回路151においてX方向の画像ずれ量を検出し、この検出されたX方向の画像ずれ量に基いてXずれ量補正回路152においてずれ量補正を行い、比較部133において2画像を比較し、この比較結果より、欠陥候補の特徴量検出部134において欠陥候補の特徴量を検出し、欠陥判定部135において欠陥判定しきい値より大きな特徴量である部分を欠陥と判断する。また、Yステージ移動時には、XYステージ移動判定部150’により、最初の比較画像についてYずれ量検出回路153においてY方向の画像ずれ量を検出し、Yずれ量補正回路154において2画像に対してずれ量補正処理を行う。このあとXずれ量検出回路151においてX方向の画像ずれ量を検出し、この検出されたX方向の画像ずれ量に基いてXずれ量補正回路152においてずれ量補正を行い、比較部133において2画像を比較し、この比較結果より、欠陥候補の特徴量検出部134において欠陥候補の特徴量を検出し、欠陥判定部135において欠陥判定しきい値より大きな特徴量である部分を欠陥と判断する構成となる。これにより、 Y方向の画像ずれ量の検出及びずれ量の補正処理は必要に応じて行われ、処理時間の短縮を図ることができる。また、検出光学系の倍率が高いときには、Xステージのみの走査時も微小範囲でY方向の画像ずれ量の検出及びずれ量の補正処理を行う必要が生じる可能性もある。
【0028】
また、図1に示すように、ステージ5,6の走行時に生じた振動に起因した画像歪みを補正する手段として、ステージ走行時にウエハ1の振動を測定するステージ振動測定光学系850および振動解析画像処理部860を設けても良い。図13には、ウエハ1の振動を測定するためのパターンが形成されたチャック面を示す。ウエハ1が吸着されているチャック面2には、ウエハ1の振動を測定するために例えば格子状のパターンが形成されているものとする。この格子パターンをステージ振動測定光学系850で検出する。ステージ振動測定光学系850は、光源851で発光した光を対物レンズ852を介して、チャック2の格子パターンを落射照明する。チャック面2の格子パターンを反射、回折した光は、再び対物レンズ852に捕捉され、チャック2の格子パターンをTDI855上に投影する。TDI855で検出した格子パターンの像の信号は、振動解析画像処理部860に伝達され、格子パターンピッチを検出して振動を測定する。この求めた振動量を画像処理部130に送り、検出した画像を補正する。図13に、チャック面2の格子パターン2aの例を示す。チャック面2の格子パターン2aは、画像入力時のステージ走行方向が長手に形成されており、一定の間隔でXY方向にパターンが形成されている。TDI855で検出したチャック2の格子パターン2aの像の間隔を振動解析画像処理部860で検出することにより、そのピッチより振動量が求まる。
【0029】
図14(a)および(b)には、参照画像f(x,y)と比較画像g(x,y)とを示す。比較画像のパターン871は、参照画像のパターン870に対して、X方向に1画素シフトしている。この2画像の差をとり、線AA部の差の結果を図14(c)に示す。位置ずれ補正を行わずに2画像の差をとると、位置ずれに起因した濃淡差が生じる。この位置ずれに伴う差画像の濃淡差872は、▲1▼パターンの両端で生じ、▲2▼差の絶対値はほぼ同じで、▲3▼符号が反転することになる。この▲1▼、▲2▼、▲3▼に着目して、参照画像と比較画像の位置ずれを補正すれば、図14(d)に示す通り位置ずれに伴う差画像の不一致は低減し、欠陥部のみを検出することができる。以上の位置ずれ補正部132により、欠陥検出に関してノイズ成分となる位置ずれに伴う差画像の不一致が低減するため、欠陥判定部135における欠陥判定しきい値を低下させることが可能となり、微小欠陥等の低信号な欠陥を検出することが可能となる。
【0030】
試料1の像検出用光電変換素子41としてTDIを用いることにより、画像取り込み時に生じたステージ5,6あるいは光学系111の振動に伴う画像の歪みを低減する効果がある。図15(a)に示す通り、例えばステージ移動方向のTDI41の画素数をm、1画素当たりの蓄積時間をt1とする。尚、TDI41は、ステージの移動と同期して、蓄積した光情報をステージ移動方向にシフトさせ、m画素で検出した光情報を積分するものである。例えば、画像取り込み時の時間とステージ速度変動が図15(b)の様になっていたとする。ここで、ステージ速度変動の周期が約t2である場合、t2≧m×t1であれば、TDI41で検出した画像は速度変動による画像歪みは低減する。尚、t2≧m×t1の条件を満足しなくても、m画素で検出した像を積分することにより(TDIを用いることにより)、画像歪み低減効果がある。TDIを含む光電変換素子は、受光量が大きいと出力が飽和する。特に、CCDは受光量が飽和レベルに達すると、ブルーミングが生じる。このブルーミングとは、蓄積した電荷が隣接画素に蓄積される現象であり、影響を受けた隣接画素は実際に検出した光量以上の出力になる。このため、検出した画像は、センサ面に結像した光強度分布を忠実に表せなくなる。このブルーミングが生じると、▲1▼欠陥の誤検出、▲2▼検出した欠陥の寸法精度の低下、▲3▼比較画像・参照画像の位置合わせ精度低下等が発生する。これを防止するため、図16に示すように照明系11として2つの照明光路を設け、一方の光路に光量調整用のNDフィルタ861を配置し、各々の光路にシャッタ862a、862bを設置する。そして、これらのシャッタ862a、862bをステージ制御部150からの制御に基いて開閉すればよい。これは、光源11の劣化に伴う発光強度の低下、及びウエハ1の反射率の違い等により、TDIセンサ41で検出される光量が変化し、TDI41の飽和レベルに達しないように照明光量を調整するものである。尚、照明系11として1つの照明光路で構成し、NDフィルタ861として、透過率の異なる複数個のNDフィルタ861aを配置しても良い。即ち、TDIセンサ41で検出される光量を調整できる機構861.862が設けられていれば良い。また光分割手段22および対物レンズ30を含めて検出光学系に光量調整用の光学系863を設け、ステージ制御部150からの制御に基いて切り替え制御できるように構成しても良い。
【0031】
また、このブルーミングを防止する手段として、TDIセンサ41における蓄積画素を変えられるようにする制御手段がある。例えば、図17(a)に示す通り、TDIセンサ41の蓄積方向(ステージ移動方向)の画素数mが96であるとする。図17(b)に示すとおり、ウエハ1の表面には、高反射率部1aと低反射率部1bがあるとする。TDIセンサ41で高反射率部1aの画像を検出する場合は、1画素あたりの受光量が多いため、蓄積画素は32画素分とし、低反射率部1bの画像を検出する場合は、1画素あたりの受光量が少ないため、蓄積画素は96画素分とする。TDIセンサ41に対する蓄積画素の切り替え制御は、CPU140に入力されたウエハ1の表面に関する設計データ(例えば高反射率部1aと低反射率部1bについての設計データ)を用いてCPU140からの制御指令に基いて行う。あるいは、TDIセンサ41で検出した画像の形状やパターン密度等を画像処理回路130またはCPU140が認識または検出し、この認識または検出された画像の形状やパターン密度等を用いて切り替え制御することも考えられる。以上説明したように、TDIセンサ41の蓄積画素を変える制御手段を用いることにより、明るさの分解能が高くなり、欠陥検出精度も向上させることができる。
【0032】
次に、比較部133、欠陥候補の特徴量検出部134および欠陥判定部135における一実施の形態について、図18乃至図21を用いて説明する。
【0033】
図18(b)には、図18(a)に示す参照画像に対する画素サイズ以下(1,0.5画素)の欠陥をモデル化した比較画像を示す。比較部133で比較され、欠陥候補の特徴量検出部134で検出された1画素欠陥(AA部)の差画像(不一致に基づく特徴量)を図18(c)に、0.5画素欠陥(BB部)の差画像(不一致に基づく特徴量)を図18(d)に示す。尚、図に記入した欠陥は、パターンの形状不良であるため、パターン欠陥と称する。図18(c)および図18(d)に示すように、画素サイズ以下(1,0.5画素)の欠陥の差画像を比較すると、差が正負に生じる様子は欠陥サイズに係わらず同じであるが、比較的大きな1画素欠陥の方が差の絶対値が大きくなる。従って、欠陥判定部135において、1画素程度のパターン欠陥か、0.5画素程度のパターン欠陥なのかを判定することが可能となる。また、図19(b)には、図19(a)に示す参照画像に対する画素サイズ以下(1,0.5画素)の異物欠陥をモデル化した比較画像を示す。比較部133で比較され、欠陥候補の特徴量検出部134で検出された1画素欠陥(AA部)の差画像(不一致に基づく特徴量)を図19(c)に、0.5画素欠陥(BB部)の差画像(不一致に基づく特徴量)を図19(d)に示す。図19(c)および図19(d)に示すように、画素サイズ以下(1,0.5画素)の欠陥の差画像を比較すると、差が凸状に出る様子は欠陥サイズに係わらず同じであるが、比較的大きな1画素欠陥の方が差の絶対値が大きくなる。従って、欠陥判定部135において、1画素程度の異物欠陥か、0.5画素程度の異物欠陥なのかを判定することが可能となる。また、パターン欠陥と異物欠陥の差画像(不一致に基づく特徴量)を比較すると、欠陥の周辺画素における差の分布が異なっている。これに着目して、欠陥判定部135において検出した欠陥の分類をすることができる。さらに、画素サイズ以下程度の欠陥ではパターン欠陥及び異物欠陥共に、差画像の絶対値が欠陥の面積に対応している。従って、欠陥判定部135において、欠陥候補の特徴量検出部134から検出される欠陥の面積に対応した差画像の絶対値を用いて画素サイズ以下の欠陥のサイズを推測することが可能となる。
【0034】
図20には、欠陥判定部135における検出した欠陥の分類手法について示す。横軸に欠陥の種類、縦軸に欠陥を中心とする例えば3×3画素のうち欠陥画素を除いた(欠陥の周辺画素において検出される)明暗による光強度(濃淡値)の分散値σを示したものである。光強度(濃淡値)の分散値σが大きいということは、欠陥の周辺画素において、明暗が生じるパターンが存在することを意味する。光強度(濃淡値)の分散値σが小さいということは、欠陥の周辺画素において、一様な明るさが示されてパターンが存在しないことを意味する。従って、この図20から明らかなように、分散値σが小さいほど異物に代表される孤立欠陥、分散値σが大きいほどパターンのエッジ部(明暗差大)に生じたパターン欠陥に分類できることを示している。尚、実際の欠陥は、ウエハの構造等により様々な画像として検出されるため、分類成功率100%は不可能であり、大まかな自動分類に適している。なお、上記説明では、分散値σに基いて、欠陥を分類する場合について説明したが、欠陥の周辺画素で検出される光強度の2次微分値あるいは偏差でも良い。即ち、欠陥の周辺にパターンが存在すると、パターンのエッジから大きな光強度の2次微分値または偏差が検出されることになり、パターン欠陥なのか孤立欠陥(異物欠陥)なのかを分類することが可能となる。
【0035】
また、図21には、欠陥判定部135において判定する画素サイズ以下の欠陥サイズと差画像で求めた不一致量の絶対値との関係を示す。尚、孤立欠陥とパターン欠陥では、欠陥サイズと差画像で求めた不一致量の絶対値の関係が一致しないため、欠陥の種類に応じて分ける必要がある。例えば、孤立欠陥(異物)は、パターン欠陥に対して不一致量の絶対値が大きくなる。また、不一致量の絶対値は欠陥の面積に比例するため、欠陥サイズの2乗に比例する。以上説明したように、欠陥判定部135において実行される欠陥の分類手法と画素サイズ以下の欠陥サイズの決定方法により、外観検査結果を量産工程にフィードバックし易くなる。これにより、半導体製品の高歩留まり化に役立たせることが可能となる。
【0036】
以上説明した実施の形態では、光学顕微鏡を用いて半導体ウエハやディスプレイ等に用いられる半導体基板等からなる被検査対象物上の欠陥または欠陥候補について判定する検査装置およびその方法について説明したが、電子ビームを照射系で被検査対象物上に照射し、被検査対象物から発生する2次電子もしくは反射電子を検出器により検出し、その検出される2次元の画像信号を例えばA/D変換器でサンプリングして画素ごとに濃淡値で示される2次元の比較画像信号f(x,y)を得、この2次元の比較画像信号に対して画像処理部130で前記の実施の形態と同様な画像処理を行うことができる。
また、前記実施の形態による検査方法を半導体基板に適用して、発生位置座標および特徴量も含めて微小な異物やパターン欠陥からなる欠陥または欠陥候補を検査し、その検査結果に基いて欠陥または欠陥候補の発生原因を究明してその発生原因をなくすことによって、半導体基板を高歩留まりで製造することが可能となる。
【0037】
【発明の効果】
本発明によれば、試料に形成されたパターンに応じて照明光の偏光を制御することにより、高解像度の画像を検出して微小欠陥を検出できる光学系を実現することが可能となる効果を奏する。
また、本発明によれば、ステージの振動や収差によって生じた画像歪みを補正し、欠陥検出上のノイズとなる正常部の不一致を低減し、欠陥検出感度の向上並びに誤検出の防止を図ることができる効果を奏する。
また、本発明によれば、同一試料上に異なる光の反射率や電子の発生率のパターンがあっても、センサのブルーミングを防止でき、且つ高い欠陥検出感度を達成することができる効果を奏する。
【0038】
また、本発明によれば、画像処理において判定された欠陥または欠陥候補について、その種類(異物に代表される孤立欠陥とパターン欠陥)分類およびその大きさ(特に画素サイズ以下)を求めることができる効果を奏する。
また、本発明によれば、光学顕微鏡として輪帯照明を用いることによって、更に微細な欠陥または欠陥候補を検査することが可能となる。
また、本発明によれば、半導体基板上の微細な欠陥や欠陥候補を種類や大きさも含めて検査できることにより、不良発生原因を究明しやすくなり、半導体基板を高歩留まりで製造することができる効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る検査装置の一実施の形態を示す構成図である。
【図2】本発明に係る部分偏光を用いた高解像度光学系の構成を示す図である。
【図3】部分偏光を用いた高解像度光学系の利用方法を説明するための図である。
【図4】本発明に係るカラー画像検出手段の一実施例を説明するための図である。
【図5】本発明に係る画像処理回路における画像位置ずれ補正の第1の実施例を示す図である。
【図6】本発明に係る画像処理回路における画像位置ずれ補正の第2の実施例を示す図である。
【図7】本発明に係る画像処理回路における画像位置ずれ補正の第3の実施例を示す図である。
【図8】本発明に係る画像処理回路における光学歪みによる画像位置ずれ補正の実施例について説明するための図である。
【図9】本発明に係る画像処理回路における周期的な画像位置ずれ補正の実施例について説明するための図である。
【図10】本発明に係る画像処理回路における傾きを持った画像位置ずれ補正の実施例について説明するための図である。
【図11】本発明に係る画像処理回路における画像位置ずれ補正の実施例の構成を示す図である。
【図12】本発明に係る画像処理回路におけるステージ移動後の振動に起因した画像位置ずれ補正の構成を示す図である。
【図13】本発明に係るステージの振動を測定する一実施例を説明するための図である。
【図14】位置ずれ補正前と位置ずれ補正後との各々における差画像の濃淡差を示して画像位置ずれ補正による効果を説明するための図である。
【図15】TDIによる画像歪み低減効果を説明するための図である。
【図16】TDIのブルーミング防止手段を説明するための構成図である。
【図17】TDIのブルーミング防止について説明するための図である。
【図18】微小パターン欠陥の差画像について示す図である。
【図19】微小異物欠陥の差画像について示す図である。
【図20】分散値σ2によって欠陥の種類を分類する一実施例を説明するための図である。
【図21】画素サイズ以下の欠陥サイズ検出方法を説明するための図で、孤立欠陥とパターン欠陥との各々における欠陥画素サイズと不一致量の絶対値との関係を示した図である。
【符号の説明】
1…試料、2…チャック、3…θステージ、4…Zステージ、5…Yステージ、6…Xステージ、7…照明光軸、10…光源、11…照明光学系、12…レンズ、14…開口絞り、18…視野絞り、22…ビームスプリッター、30…対物レンズ、35…光分割手段、40…結像レンズ、41…光電変換素子(TDIセンサ)、42…光電変換素子(TDIセンサ)の受光面、45…検出光学系、50…レンズ、80…ナイフエッジミラー、85・90…結像レンズ、100・110…光電変換素子(リニアイメージセンサ)、100a・110a…光電変換素子(リニアイメージセンサ)の受光面、115…焦点検出光学系、120…焦点検出用信号処理回路、130…画像処理回路、131…遅延記憶部、132…位置ずれ補正部、133…比較部、134…欠陥候補の特徴量検出部、135…欠陥判定部、136…位置ずれ補正回路、137…画像記憶部、138…位置ずれ検出回路、138a…位置合わせ部、138b…ずれ量検出部、140…CPU(ホストコンピューター)、141…補正画像生成部、142…ずれ量周期判定部、143…画素サイズ設定部、144…傾き量算出部、150…ステージ制御部、150’…ステージ移動判定部、401…1/4波長板、850…ステージ振動測定光学系、860…振動解析画像処理部、

Claims (3)

  1. 被検査対象物上に形成されたパターンに対してエネルギビームを照射する照射系と、前記被検査対象物上に形成されたパターンから各画素について濃淡値を有する2次元の比較画像信号として検出する検出系と、前記検出系から得られる各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された画素単位での濃淡値の差に応じて欠陥または欠陥候補の画素を判定し、この判定された欠陥または欠陥候補の画素を中心とする周辺画素における欠陥または欠陥候補の画素を除いた濃淡強度の2次微分値或いは偏差或いは分散を求め、この求められた濃淡強度の2次微分値或いは偏差或いは分散に基いて前記判定された欠陥または欠陥候補の画素について孤立欠陥とパターン欠陥とに分類し、該分類された孤立欠陥とパターン欠陥とのそれぞれについて前記比較処理された画素単位での濃淡値の差の不一致量の絶対値に基いて前記画素サイズ以下のサイズを推定する画像処理部とを具備したことを特徴とする検査装置。
  2. 被検査対象物上に形成されたパターンに対して照射系によりエネルギビームを照射し、前記被検査対象物上に形成されたパターンから検出系により各画素について濃淡値を有する2次元の比較画像信号として検出し、画像処理部において前記検出される各画素について濃淡値を有する2次元の比較画像信号と各画素について濃淡値を有する2次元の参照画像信号とを比較処理し、この比較処理された画素単位での濃淡値の差に応じて欠陥または欠陥候補の画素を判定し、この判定された欠陥または欠陥候補の画素を中心とする周辺画素における欠陥または欠陥候補の画素を除いた濃淡強度の2次微分値或いは偏差或いは分散を求め、この求められた濃淡強度の2次微分値或いは偏差或いは分散に基いて前記判定された欠陥または欠陥候補の画素について孤立欠陥とパターン欠陥とに分類し、該分類された孤立欠陥とパターン欠陥とのそれぞれについて前記比較処理された画素単位での濃淡値の差の不一致量の絶対値に基いて前記画素サイズ以下のサイズを推定することを特徴とする検査方法。
  3. 請求項記載の検査方法を用いて、被検査対象物としての半導体基板に対して検査を行って半導体基板を製造することを特徴とする半導体基板の製造方法。
JP13414597A 1997-05-23 1997-05-23 検査方法およびその装置並びに半導体基板の製造方法 Expired - Fee Related JP3808169B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13414597A JP3808169B2 (ja) 1997-05-23 1997-05-23 検査方法およびその装置並びに半導体基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13414597A JP3808169B2 (ja) 1997-05-23 1997-05-23 検査方法およびその装置並びに半導体基板の製造方法

Publications (2)

Publication Number Publication Date
JPH10325711A JPH10325711A (ja) 1998-12-08
JP3808169B2 true JP3808169B2 (ja) 2006-08-09

Family

ID=15121527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13414597A Expired - Fee Related JP3808169B2 (ja) 1997-05-23 1997-05-23 検査方法およびその装置並びに半導体基板の製造方法

Country Status (1)

Country Link
JP (1) JP3808169B2 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688435B2 (en) 1997-09-22 2010-03-30 Kla-Tencor Corporation Detecting and classifying surface features or defects by controlling the angle of the illumination plane of incidence with respect to the feature or defect
US7714995B2 (en) 1997-09-22 2010-05-11 Kla-Tencor Corporation Material independent profiler
US6862142B2 (en) * 2000-03-10 2005-03-01 Kla-Tencor Technologies Corporation Multi-detector microscopic inspection system
EP1334338A4 (en) * 2000-10-12 2008-03-19 Amnis Corp PICTURE AND ANALYSIS OF PARAMETERS OF SMALL MOBILE OBJECTS, SUCH AS CELLS, FOR EXAMPLE
KR100360113B1 (ko) * 2000-12-11 2002-11-07 진용옥 오목 거울의 회전을 이용한 분광 촬상 시스템
JP2002181732A (ja) * 2000-12-13 2002-06-26 Saki Corp:Kk 外観検査装置および外観検査方法
US6833913B1 (en) * 2002-02-26 2004-12-21 Kla-Tencor Technologies Corporation Apparatus and methods for optically inspecting a sample for anomalies
US20060018013A1 (en) 2004-07-07 2006-01-26 Yoshimasa Suzuki Microscope imaging apparatus and biological-specimen examination system
JP2006132947A (ja) * 2004-11-02 2006-05-25 Hitachi High-Technologies Corp 検査装置および検査方法
US7397553B1 (en) 2005-10-24 2008-07-08 Kla-Tencor Technologies Corporation Surface scanning
JP2007205828A (ja) * 2006-02-01 2007-08-16 Advanced Mask Inspection Technology Kk 光学画像取得装置、パターン検査装置、光学画像取得方法、及び、パターン検査方法
JP4668809B2 (ja) * 2006-02-24 2011-04-13 株式会社日立ハイテクノロジーズ 表面検査装置
JP4927427B2 (ja) * 2006-03-28 2012-05-09 日本板硝子株式会社 外形欠点の検出方法及びプログラム
US7589869B2 (en) * 2006-04-28 2009-09-15 Electro Scientific Industries, Inc. Adjusting image quality using multi-wavelength light
US7589832B2 (en) * 2006-08-10 2009-09-15 Asml Netherlands B.V. Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device method
JP2008089489A (ja) * 2006-10-04 2008-04-17 Mitsubishi Electric Corp 形状測定方法及び形状測定装置
JP5003112B2 (ja) * 2006-11-16 2012-08-15 富士通株式会社 磁区観察方法、磁区観察装置および磁区観察プログラム
US7643140B2 (en) * 2007-03-29 2010-01-05 Hitachi High-Technologies Corporation Method and apparatus for inspecting a semiconductor device
WO2008129615A1 (ja) * 2007-04-09 2008-10-30 Shimadzu Corporation Tftアレイ検査装置
CN101918789A (zh) * 2007-09-16 2010-12-15 梅厄·本-利维 利用周期图案照明和tdi的成像测量系统
JP2009074851A (ja) * 2007-09-19 2009-04-09 Nuflare Technology Inc 検査装置及び検査方法
JP5466377B2 (ja) * 2008-05-16 2014-04-09 株式会社日立ハイテクノロジーズ 欠陥検査装置
JP2010025699A (ja) * 2008-07-17 2010-02-04 Shibaura Mechatronics Corp 基板の位置認識装置及び撮像認識方法
JP5525739B2 (ja) * 2008-09-16 2014-06-18 株式会社ニューフレアテクノロジー パターン検査装置及びパターン検査方法
JP5331771B2 (ja) * 2010-09-27 2013-10-30 株式会社日立ハイテクノロジーズ 検査装置
US9091666B2 (en) * 2012-02-09 2015-07-28 Kla-Tencor Corp. Extended defect sizing range for wafer inspection
JP2013234976A (ja) * 2012-05-11 2013-11-21 Hioki Ee Corp 外観検査装置及び外観検査方法
JP6128822B2 (ja) 2012-12-05 2017-05-17 オリンパス株式会社 光学装置
JP5995756B2 (ja) * 2013-03-06 2016-09-21 三菱重工業株式会社 欠陥検出装置、欠陥検出方法および欠陥検出プログラム
JP6021798B2 (ja) * 2013-12-27 2016-11-09 株式会社神戸製鋼所 表面欠陥検査装置
WO2017009450A1 (en) * 2015-07-16 2017-01-19 Koninklijke Philips N.V. Digital pathology system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192943A (ja) * 1983-04-15 1984-11-01 Hitachi Ltd 繰返しパタ−ンの欠陥検査装置
JPH0617778B2 (ja) * 1984-12-26 1994-03-09 株式会社日立製作所 パタ−ン欠陥検出方法及びその装置
JP2504951B2 (ja) * 1986-05-15 1996-06-05 東芝機械株式会社 パタ−ン検査方法
JP2533245B2 (ja) * 1991-03-28 1996-09-11 株式会社東芝 パタ―ン欠陥検査装置
JP3252451B2 (ja) * 1991-07-30 2002-02-04 株式会社日立製作所 薄膜トランジスタ液晶基板検査方法及びその装置
JPH0576005A (ja) * 1991-09-13 1993-03-26 Nikon Corp 画像入力装置
US5264912A (en) * 1992-02-07 1993-11-23 Tencor Instruments Speckle reduction track filter apparatus for optical inspection of patterned substrates
JPH06307826A (ja) * 1992-12-08 1994-11-04 Toshiba Corp マスク検査装置
JP3313474B2 (ja) * 1993-09-24 2002-08-12 株式会社東芝 印刷物検査装置
JP3613402B2 (ja) * 1993-10-28 2005-01-26 テンカー・インストルメンツ 光学顕微鏡を用いて緻密なライン幅構造を映像化する方法及び装置
JPH07147309A (ja) * 1993-11-25 1995-06-06 Nikon Corp 欠陥検査装置
JPH07146249A (ja) * 1993-11-25 1995-06-06 Nikon Corp 欠陥検査装置
JP3092892B2 (ja) * 1993-12-27 2000-09-25 シャープ株式会社 半導体チップの外観検査方法および装置
JP3375732B2 (ja) * 1994-06-07 2003-02-10 株式会社日立製作所 薄膜配線の形成方法
JPH089258A (ja) * 1994-06-15 1996-01-12 Canon Inc 画像読み取り装置
JPH08137093A (ja) * 1994-09-16 1996-05-31 Toshiba Corp 欠陥検査装置
JP2999679B2 (ja) * 1994-11-30 2000-01-17 大日本スクリーン製造株式会社 パターン欠陥検査装置
JP3484042B2 (ja) * 1997-05-21 2004-01-06 株式会社日立製作所 パターン検査方法およびその装置

Also Published As

Publication number Publication date
JPH10325711A (ja) 1998-12-08

Similar Documents

Publication Publication Date Title
JP3808169B2 (ja) 検査方法およびその装置並びに半導体基板の製造方法
US8233145B2 (en) Pattern defect inspection apparatus and method
JP3610837B2 (ja) 試料表面の観察方法及びその装置並びに欠陥検査方法及びその装置
US7127098B2 (en) Image detection method and its apparatus and defect detection method and its apparatus
US7299147B2 (en) Systems for managing production information
US7714997B2 (en) Apparatus for inspecting defects
US7352457B2 (en) Multiple beam inspection apparatus and method
JP3903889B2 (ja) 欠陥検査方法及びその装置並びに撮像方法及びその装置
US20080304734A1 (en) Alignment correction prio to image sampling in inspection systems
EP1117129A2 (en) Semiconductor wafer inspection machine
US20070064225A1 (en) Method and apparatus for detecting defects
JPH11237344A (ja) 欠陥検査方法およびその装置
CN101889197A (zh) 检查装置和检查方法
KR20160150018A (ko) 검사 장치 및 검사 방법
KR20180004007A (ko) 포커싱 장치, 포커싱 방법 및 패턴 검사 방법
WO2009133849A1 (ja) 検査装置
US7767982B2 (en) Optical auto focusing system and method for electron beam inspection tool
JP3784711B2 (ja) 欠陥検査方法及びその装置
JP3956942B2 (ja) 欠陥検査方法及びその装置
JP3918840B2 (ja) 欠陥検査方法及びその装置
CN114720482A (zh) 缺陷检查方法
WO2006019446A2 (en) Double inspection of reticle or wafer
JP6906823B1 (ja) マスク検査方法及びマスク検査装置
JP2002333406A (ja) 外観検査装置および外観検査方法
JP3275268B2 (ja) 位置検出方法及び装置、並びに露光方法及び装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees