JP2004514272A - 基板のクリーニング装置及び方法 - Google Patents

基板のクリーニング装置及び方法 Download PDF

Info

Publication number
JP2004514272A
JP2004514272A JP2002511375A JP2002511375A JP2004514272A JP 2004514272 A JP2004514272 A JP 2004514272A JP 2002511375 A JP2002511375 A JP 2002511375A JP 2002511375 A JP2002511375 A JP 2002511375A JP 2004514272 A JP2004514272 A JP 2004514272A
Authority
JP
Japan
Prior art keywords
substrate
gas
temperature
chamber
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002511375A
Other languages
English (en)
Inventor
ヤン チュン
リ クィ
マ ダイアナ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2004514272A publication Critical patent/JP2004514272A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02071Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a delineation, e.g. RIE, of conductive layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/427Stripping or agents therefor using plasma means only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

基板(30)は、基板(30)を第1の温度に保ちながら、基板(30)を活性化したストリッピングガスに曝し、前記基板を第2の温度に保ちながら、前記基板を活性化した不動態化ガスに曝すことによってクリーニングされる。他の形態では、基板(30)は、離れたチャンバ内でストリップ及び不動態化される。基板の上部を加熱するために、ヒータ(320)がクリーニングチャンバ(120)に設けられる。

Description

【0001】
(発明の属する技術分野)
集積回路の製造において、能動及び受動デバイスは、誘電体の層を交互に堆積し及びエッチングし、例えば二酸化シリコン、ポリシリコン、及び金属化合物や金属合金のような材料を半導電性にしたり、導電性にすることによって、例えば半導体ウエハのような基板上に形成される。これらの層は、基板上にホトレジストのレジスト層及び/または酸化物のハードマスクを与えることによって、またレジスト層を露出したり、パターン化するためにリソグラフを用いることによってエッチングされ、エッチングされたフィーチャのパターンを形成する。このパターン化されたレジストのフィーチャに隣接する層の部分がエッチングされて、ゲート、ビア、コンタクトホール、トレンチ、及び/または金属の相互接続ラインを形成する。エッチングは、一般にハロゲン含有ガスの容量性または誘導性に結合されたプラズマを用いて行われる。これについては、例えば、”Silicon Processing for the VLSI Era, Vol. 1, Chapter 16, by Wolf and Tauber, Lattice Press, 1986に記載されており、レファレンスによってここに取り込まれる。
【0002】
このエッチングプロセスは、(i)残余のレジスト、(ii)エッチャント副産物、及び(iii)エッチングされたフィーチャの側壁上に側壁堆積物を残す。残余のレジストは、エッチャントガスによってエッチングされず、そしてエッチングプロセス後に基板上に残るこれらの残りのレジスト部分である。エッチャント副産物は、エッチングされたフィーチャ上でハロゲンを含むエッチャントの吸収によって生じる。側壁の堆積物は、エッチングプロセス中に、エッチャントガス、金属を含む層、及びレジストの反応によって、及びフィーチャの側壁上での反応副産物の凝縮によって形成される。エッチングされた基板をクリーニングする方法の一つは、ドライクリーニング方法であり、この方法において、ガスのプラズマがストリッピング(または、アッシング)プロセスにおいて基板上に残っている残余のレジストを除去するため、及び不動態化(パッシベーション)プロセスにおいて基板上のエッチャント副産物を除去するために用いられる。基板上の側壁堆積物は、ウエットな化学エッチング方法によって除去されるか、またはそれらは、ドライクリーニングプロセスにおいて少なくとも部分的に除去される。
【0003】
酸素、窒素、または水蒸気のプラズマを用いる従来のストリッピング方法は、基板から残余のレジストをストリップするために用いられる。これら、従来のストリッピング技術は、特に、ポリマー化したレジストがプラズマへの露出によって硬化された場合、基板から全てのレジストをストリップするのにはどきどき有効ではない。酸化物の硬いマスクレジストに対して、酸化物層をストリップするか、基板上に残すことができる。一般に、残余の酸化物の硬いマスクは、基板上に残され、続くプロセスステップで、誘電体層が残余の酸化物上に堆積される。さらに、一般に、適当なストリッピングプロセスがプロセスのスループットを低下させる。また、ストリッピングプロセスは、側壁堆積物を硬化して、その堆積物を除去するのを困難にする。
【0004】
不動態化(パッシベーティング)技術において、基板上のエッチャント副産物が除去または不活性化され、例えば、アンモンニア及び/または水のような不動態化ガスを用いることによって、エッチングごの腐蝕問題を減少する。従来の不動態化技術は、幾つかの制限を有している。一つの制限は、受け入れることができるプロセススループットを有している従来の技術が短期間、即ち、基板の周囲の湿気への露出後約1〜5時間の間だけ基板のエッチング後の腐蝕を防ぐことができことである。この短い耐腐蝕期間は望ましくない。何故ならば、基板が先ず雰囲気に曝された後、エッチング後のプロセスステップが1〜2時間以内に行われることが必要であり、これは厳しい、柔軟性のない製造スケジュールを生じるからである。しばしは、基板をエッチングすることができないか、または、既にエッチングされていれば、不動態化及びストリッピングチャンバから取り出すことができない。
【0005】
したがって、例えば、基板上の残余のレジスト及びエッチャント残留物を除去するために基板をクリーニングすることができる必要性がある。また、エッチング後の腐蝕を減少することが望まれる。さらに、プロセススループットを低下させることなく基板をクリーニングすることができることが望まれる。
【0006】
(発明の概要)
本発明は、これらの必要性を満足する。本発明の1つの特徴においては、基板をクリーニングする方法は、基板を第1の温度に保ちながら、基板を活性化されたストリップピングガス(ストリップするためのガス、以下、ストリップガスと呼ぶ)に曝すステップ、および基板を第2の温度に保ちながら、基板を活性化された不動態化ガスに曝すステップを有する。この不動態化ガスは、少なくとも約20体積%のHOを有する。
【0007】
本発明の他の特徴においては、基板をクリーニングする方法は、基板を第1のチャンバ内に支持するステップ、第1のチャンバに活性化されたストリップガスを与えるステップ、基板を第2のチャンバ内に支持するステップ及び第2のチャンバに活性化された不動態化ガスを与えるステップを有する。
【0008】
本発明の他の特徴においては、チャンバ内で基板をクリーニングする方法は、基板をチャンバ内に支持するステップ、基板を第1の温度に維持し、チャンバに活性化されたストリップガスを与えるステップ、基板を第2の温度に維持し、チャンバに活性化された不動態化ガスを与えるステップ、及び基板をチャンバ内で冷却するステップを有する。
【0009】
本発明の他の特徴においては、基板をクリーニングする方法は、基板を基板の上方から加熱しながら、基板を活性化されたクリーニングガスに曝すステップを有する。
【0010】
本発明の他の特徴においては、基板を処理する方法は、基板を上方から加熱し、そして基板を下から冷却しながら、基板を活性化されたプロセスガスに曝すステップを有する。
【0011】
本発明の他の特徴においては、基板を処理する方法は、少なくとも約50℃/秒の速度で、基板を上方から加熱しながら、基板を活性化されたプロセスガスに曝すステップを有する。
【0012】
本発明の他の特徴においては、基板をクリーニングする装置は、基板支持体、ガスディストリビュータ(分配器)、ガスエナジャイザー、ガス排気装置、及び支持体の上方にヒータを有し、それにより支持体上の基板がヒータによって加熱され、ガスディストリビュータを通して導入され、ガスエナジャイザーによって活性化され、そしてガス排気装置によって排気されるガスによってクリーニングされる。
【0013】
本発明の他の特徴においては、基板処理装置は、基板支持体、ガスディストリビュータ、ガスエナジャイザー、ガス排気装置、及び支持体上にあるヒータを有し、それにより支持体上の基板がヒータによって加熱され、ガスディストリビュータを通して導入され、ガスエナジャイザーによって活性化され、そしてガス排気装置によって排気されるガスによってクリーニングされ、前記ヒータは、少なくとも約50℃/秒の割合で、基板の上部を加熱することができる。
【0014】
(発明の実施の形態)
本発明の方法及び装置は、例えば半導体ウエハのような基板を処理するのに有用であるが、例えばプリント回路基板、平坦なパネルディスプレイ、及び液晶ディスプレイのような他の基板を処理するためにも用いられる。したがって、本説明は、本発明の実施の形態を示し、本発明を限定するように意図されない。
【0015】
例示的プロセスにおいて、基板30上の層がエッチャントガスによってエッチングされる。図1Aは、ワークピース35上に形成された層を有する基板30を示す。ワークピース35は、例えばシリコン、ガリウム砒素化物等のような半導体材料を有する。これらの層は、1つの形態では、(i)例えば、シリコンオキシニトライド、有機ARC、チタニウム、タングステン、チタニウム−タングステン、またはチタニウムナイトライドを有する拡散バリア層40、(ii)例えば、アルミニウムまたはアルミニウムと銅の合金、及び選択的にシリコンを含む電気的導電層45、及び(iii)例えば、シリコン、チタニウムナイトライド、またはチタニウムタングステンを有する非反射層50を有する。例えばSiOのような酸化物層(図示せず)を拡散バリア層40の下に設けることもできる。例えば、ホトレジストまたは電子ビームレジストのパターン化された耐エッチング層60がこれらの層の上に置かれる。層の露出した部分にエッチングガスが与えられて、図1Bに図示されたように1またはそれ以上の層を通して延びるライン、トレンチ、ホール、またはビアを形成する。
【0016】
エッチングプロセス後、基板30上に残るエッチャント副産物75と共に残余のレジスト70が1またはそれ以上のクリーニングプロセスにおいて除去され、腐蝕に耐える続く処理用のきれいな基板を提供する。残余のレジスト70は、基板30上で下にある層のエッチングを防ぐために用いられるあらゆる保護材料を有することができる。残余のレジスト70は、エッチング後、基板30上に残るレジスト60の一部である。1つ形態では、残余のレジスト70は残留のポリマー化ホトレジストまたは酸化物の硬いマスクを有する。適切なポリマー化ホトレジスト材料は、Shipley Co., Marlboro, Massachusetts,または、Tokyo Ohka Kogyo (TOK) Co., Ltd., Kawasaki, Japanから商業的に利用可能である。フィーチャ上のエッチャント副産物75は、エッチング後基板上に残る、例えば塩素またはフッ素のような残留ハロゲンのラジカルを含む。また、エッチャント副産物75は、残留ハロゲンのラジカルがエッチングされた層の金属と反応するときに形成される副産物の化合物を有する。1つのクリーニングプロセスにおいて、残余のレジスト70は、活性化されたストリッピング(または、アッシング)ガスを用いてストリップされる。他のクリーニングプロセスにおいて、基板30上のエッチャント副産物75は、活性化された不動態化ガスを用いて不動態化される。
【0017】
エッチングされたフィーチャの側壁上の側壁堆積物80は、エッチングプロセス中に形成される。この側壁堆積物80は、(i)炭素と水素、(ii)例えば、アルミニウムまたはチタニウムのような金属含有層からの金属、及び(iii)例えば、塩素、ホウ素及び/又は窒素のようなエッチャントガス種を含む有機化合物を有する。側壁堆積物80の構成物および化学量論は、金属含有層の化学的構成物、レジスト、及びフィーチャをエッチングするために用いられるエッチャントガスに依存する。側壁堆積物80の少なくとも一部は、ストリップガス及び/又は不動態化ガスによって除去され得る。一般に、ウエットな化学的エッチングプロセスが、ドライクリーニングプロセス後フィーチャ上に残っている側壁堆積物80を除去するために用いられる。
【0018】
図2を参照すると、基板30は、基板30をエッチングするための1またはそれ以上のエッチングチャンバ110、及びエッチングプロセス後基板30上に残っている残余のレジスト70とエッチャント副産物75を除去するための1またはそれ以上のクリーニングチャンバ120を有するマルチチャンバ装置内でエッチングされ、及びクリーニングされる。エッチングチャンバ110、クリーニングチャンバ120、移送チャンバ125、及びロードロックチャンバ130は、全て、基板30の汚染を減少するために、低圧に維持された真空にシールされた雰囲気に相互接続されている。プロセス中、ロボットのアーム135が基板30をロードロックチャンバ130から移送チャンバ125ヘ移送し、その後プロセスチャンバの1つヘ移送する。
【0019】
基板30上の金属含有層は、例えば、図3に概略示され、Applied Materials Inc. in Santa Clara, Californiaから商業的に利用可能なDPS Metal Etch Centura chamberのようなプロセスチャンバ内でエッチングされる。ここに示されているプロセスチャンバ110の特定の実施の形態は、本発明のみを示すために設けられており、本発明の範囲を制限するために用いられるべきではない。チャンバ110は、このチャンバ110のプロセスゾーン145内に支持体140を有する。基板30がロボットのアーム135によってこの支持体140上に配置される。基板30は、基板30の温度を制御するために、例えばヘリウムのような冷却ガスが保たれる溝155を有する機械的チャック、又は静電チャック150を用いて、エッチング中、正しい位置に保持される。
【0020】
基板を処理している間、チャンバ110は、低圧に保たれ、プロセスガスが基板30の周辺の周りに配置されたガスディストリビュータ160を通してチャンバ110へ導入される。プロセスガスは、例えば、誘導性、容量性、又はマイクロ波フィールドのようなプロセスゾーン145に活性の電磁界を結合するガスエナジャイザーによって活性化される。図示された形態において、プロセスチャンバ110に隣接している誘導性コイル165は、例えば、約200ワットから約2000ワットまで可能である電源電力レベルのRF電圧を用いて動作されるコイル電源によって電力供給されると、チャン110内に誘導性電界を形成する。代わりに又はさらに、容量性電界をチャンバ110内に形成することができる。支持体140の少なくとも一部は、カソード電極175として働くように電気的に導電性にすることができる。このカソード電極175は、アノード電極180として働くように電気的に接地されるチャンバ110の側壁と共に、プロセスガスを活性化するために容量的に結合することができるプロセスゾーン145にプロセス電極を形成する。このカソード175は、例えば、約10ワットから約1000ワットまでの電力レベルにあるRF電圧を用いて動作される電極電源185によって電力供給される。容量性電界は、基板30の面に実質的に垂直であり、基板30へプラズマ種を加速して、基板30の垂直に向けられた異方性エッチングを与える。プロセス電極175、180及び/又は誘導性コイル165に印加されたRF電圧の周波数は、一般に約50KHzから約60KHzまでであり、より一般的には、約13.56KHzである。
【0021】
プロセスチャンバ110の天井は、平坦又は矩形形状、アーチ状、円錐形状、ドーム形状、または多くの丸みのあるドーム形状にすることができる。1つの形態において、インダクターコイル165は、プラズマソース電力のより効率的な使用、及び基板30の中心上に増大したプラズマイオンフラックスの均一性を直接与える“平坦にされた”ドーム形状を有する多重半径ドーム形状のインダクターコイルの形状でプロセスチャンバ110の側壁180の周りに巻かれる。
【0022】
プラズマが容量性に生成されると、プロセスゾーン145に形成されたプラズマは、磁気的に増強されたリアクタ(図示せず)を用いて増強され、このリアクタにおいて、例えば永久磁石又は電磁コイルのような磁界発生器が用いられ、プラズマの密度及び均一性を増すためにプロセスゾーン145に磁界を与える。磁界は、レファレンスによってここに取り込まれる米国特許第4,842,683号に記載されているように、基板30の面に平行に回転する磁界の軸を有する回転磁界を有する。
【0023】
使用済みのプロセスガス及びエッチャント副産物は、プロセスチャンバ110内に低圧を達成することができる排気システム195によってプロセスチャンバ110から排気される。チャンバ110の圧力を制御するためのスロットルバルブ200が排気装置に設けられる。また、光学的終点測定システム(図示せず)が、例えば、感知できるガス状の種に相当する特定の波長の光放射の変化を測定することによって、又は干渉技術によって、特定の層に対するエッチングプロセスの終了を決めるために用いられることができる。
【0024】
エッチャントガスの配合は、高いエッチング速度、及びエッチングされている層に高い選択性エッチングを与えるために、選択される。エッチャントガスは、Cl、BCl、CCl、SiCl、CF、NF、SF、Br、HBr、BBr、CHF、N等の1つまたはそれ以上を含むことができる。例示的プロセスにおいて、非反射層50が、約8mTorrの圧力、約1600ワットのソース電力レベル、約145ワットのバイアス電力レベル、約4Torrの裏側のヘリウム圧力、および約50℃のカソード温度で、約90sccmのClおよび約30sccmのBClを含む活性化されたエッチャントガスでエッチングされる。その後、導電性の層45が、約14mTorrの圧力、約1600ワットのソース電力レベル、約150ワットのバイアス電力レベル、約8Torrの裏側のヘリウム圧力、および約50℃のカソード温度で、約80sccmのBClおよび約10sccmのCHFを含む活性化されたエッチャントガスでエッチングされる。その後、拡散バリア層40と選択的に酸化物層の一部が、約10mTorrの圧力、約1600ワットのソース電力レベル、約125ワットのバイアス電力レベル、約8Torrの裏側のヘリウム圧力、および約50℃のカソード温度で、約30sccmのCl、約5sccmのBClおよび約30sccmのNまたはArを含む活性化されたエッチャントガスでエッチングされる。
【0025】
エッチングの完了後、基板30は、例えば支持体140においてリフトピン(図示せず)を上昇する空気昇降装置によってチャックが外され、支持体140の面から基板30を上昇する。ロボット転送アーム135は、基板30と支持体140間に挿入され、基板をリフトピンから離して上昇する。その後、リフトピンは、支持体140へ引き込まれ、ロボットアーム135は、基板をエッチングチャンバ110から、移送チャンバ125へ転送する。
【0026】
エッチャント副産物75と残余のレジスト70を除去するために、基板30は移送チャンバ125から、例えば図4に概略示され、Applied Materials Inc. in Santa Clara, Cliforniaから商業的に利用できる“APS”チャンバのようなクリーニングチャンバ120へ移送される。ここに示されるクリーニングチャンバ120は、本発明のプロセスを示すためにのみ与えられており、本発明の範囲を制限するために用いられるべきでない。何故ならば、エッチャント副産物75を除去したり、基板30から残余のレジストをストリップするために他のクリーニングチャンバを用いることができるからである。基板30は、ロボットアーム135によって支持体210上に配置され、機械的又は静電チャック212によって処理の間正しい位置に任意に保持される。
【0027】
クリーニングチャンバ120において、プロセスゾーン215の支持体上210上に保持された基板30をクリーニングするために、活性化されたクリーニングガスが形成される。支持体210は、プロセスゾーン215に基板30を支持する。支持体210内または支持体の下に、例えば赤外線ランプ220のような加熱源が用いられ、下記に説明されるように基板30を加熱する。クリーニングガスは、ガスディストリビュータ222によってリモートチャンバ230にあるリモートプラズマ発生ゾーン225へ導かれる。用語“リモート”によって、リモートチャンバ230の中心は、クリーニングチャンバ120のプロセスゾーン215から一定の上流の距離にあることを意味している。リモートチャンバ230において、クリーニングガスは、拡散器235、例えばシャワーヘッド拡散器を通してプロセスゾーン215へ導入する前に、クリーニングガスにエネルギーが与えられ、クリーニングガスの成分のイオン化又は解離を生じるように、マイクロ波又はRFエネルギーをリモートチャンバ230へ結合することによって活性化される。使用済みのクリーニングガス及び副産物は、クリーニングチャンバ内に低圧を達成することができる排気装置240によって、クリーニングチャンバ120から排気される。約300〜約3000mTorrの圧力を維持するために、排気装置240にスロットルバルブ240が使用される。
【0028】
図4に示された形態において、リモートチャンバ230は、リモートプラズマゾーン225の少なくとも一部を含むチューブ形状のキャビティを有する。リモートチャンバ230へのクリーニングガスの流れは、マスフローコントローラ又はガスバルブ250によって調整される。リモートチャンバ230は、マイクロ波を透過し、クリーニングガスと反応しない、クオーツ、アルミニウム酸化物、又は単結晶サファイアのような誘電体材料から作られる壁を有する。マイクロ波発生器255は、リモートチャンバ230のリモートプラズマゾーン225へマイクロ波放射を結合するために、用いられる。適切なマイクロ波発生器225は、Applied Science & Technology, Inc. Woburn, Massachusettsから商業的に利用可能な“ASTEX”マイクロ波プラズマ発生器である。一般に、マイクロ波発生装置225は、マイクロ波アプリケータ260、マイクロ波同調装置265、およびマグネトロンマイクロ波発生器270を有する。このマイクロ波発生器は、約200から約3000ワットの電力レベルで、及び約800MHzから約3000MHzの周波数で動作される。
【0029】
1つの形態において、リモートプラズマゾーン225は、プロセスゾーン215から充分離れていて、解離又はイオン化したガス状の化学種の幾らかの再結合を可能にする。活性化したクリーニングガスにおける自由電子及び帯電種の、その結果の減少した濃度が基板30上の能動デバイスへのチャージアップ損傷を最小にし、リモートプラズマゾーン225に形成された活性化したガスの化学反応性の良好な制御を行なう。1つの形態において、リモートプラズマゾーン225の中心は、プロセスゾーン215の中心から少なくとも約50cmの距離に保たれる。
【0030】
残余のレジスト70は、クリーニングチャンバ120内で行われるストリッピング(又は、アッシング)プロセスにおいて基板30から除去される。ストリップガスは、O、N、HO、NH、CF、C、CHF、C、C、またはCHFの1つまたはそれ以上を有する。ポリマー化したレジストをストリップするのに適したストリップガスは、(i)酸素、及び(ii)酸素活性ガス又は蒸気、例えば水蒸気、窒素ガス、又はフルオロカーボンガス、上に挙げられたもののいずれかを含むフルオロカーボンガスを有する。酸素活性ガスは、ストリップガスの酸素ラジカルの濃度を増加する。好適なストリップガスの配合は、約6:1〜約200:1、より好ましくは、約10:1〜約12:1の体積流量比の酸素と窒素を含む。5リットルのプロセスチャンバ120に対して、適切なガス流速は、酸素の3000〜3500sccm及び窒素の300sccmを有する。1つの形態において、ストリップガスは、約1400ワットの電力レベルで活性化され、約2トルの圧力で約15秒間クリーニングチャンバ120へ導入された約3500sccmのO、約200sccmのN、及び任意のHOを有する。1つの形態において、ストリップガスにおける水蒸気の含有量は、適当なストリップ速度を得るために、混合された酸素と窒素のガスの含有量の体積に対して約20%以下であるべきである。水蒸気の容積流量VH20と酸素及び窒素の混合容積流量(VO2+VN2)の好適な比は、約1:4〜約1:40、より好ましくは、約1:10である。残余のレジストが酸素のハードマスクを有するとき、好適なストリップガスは、CF、C、CHF、C、C、およびHFを含む、例えばハロゲン含有ガスのような、酸化物をストリップすることができるガスである。基板は、約10秒間〜約1000秒間、より好適には、約45秒間ストリップガスに曝される。米国特許第5,545,289号(ここにレファレンスによって取り込まれる)に記載されるように、単一のストリッピングステップが行われるか、又は多重ストリッピングステップが行われる。
【0031】
また、クリーニングチャンバは、基板から腐蝕性のエッチャント副産物75を除去し、エッチングされた基板30上に腐蝕性物質又は汚染物質が形成しないように、基板30を不動態化するために用いられる。不動態化ガスは、HO、NH、H、O、N、CF、C、CHF、C、C、CHFの1つまたはそれ以上を含むことができる。1つの形態において、水素を含むガスまたは蒸気は、水素、水蒸気、アンモニア、メタノール、硫化水素、及びそれらの混合物を含む不動態化ガスとして働くことができる。他の形態では、不動態化ガスは、(i)アンモニアと酸素、又は(ii)任意の酸素と窒素を有する水蒸気を含む。不動態化ガスがアンモニアと酸素を含むとき、アンモニアと酸素の体積流量比は、好ましくは、約1:1〜約1:50であり、より好ましくは、約1:5〜約1:20であり、最も好ましくは、約1:10である。5リットルの容積チャンバに対して、好適なガス流量は300sccmのNHと3000sccmのOを含む。代わりに、少なくとも約80体積%のHO、及び好ましくは約100体積%のHOを含む不動態化ガスは、エッチャント副産物75を不動態化するために用いることができる。1つの形態において、不動態化ガスは、約1400ワットの電力レベルで活性化され、約2Torrの圧力で約15秒間クリーニングチャンバ120へ導入された約500sccmのHOを有する。バブラーが用いられた場合、アルゴンかヘリウムのような不活性のキャリアガスは、水蒸気を真空チャンバヘ移送するためにバブラーを通過することができる。不動態化を増大するために、酸素、窒素、又は他の添加物を任意に加えることができる。この形態では、不動態化ガスは、少なくとも約20体積%のHOを有する。酸素及び窒素の追加の効果は、水蒸気(VH20)体積流量と酸素及び窒素(VO2+VN2)の組合された体積流量の比に依存する。不動態化ガスとして使用される水蒸気VH20の体積流量と酸素及び窒素(VO2+VN2)の組合された体積流量の好ましい比は、少なくとも約1:2、より好ましくは、約1:2〜約2:1、そして最も好ましくは、約1:1である。ストリッピングプロセスと同様に、及び米国特許第5,545,289号に記載されているように、不動態化は、単一ステップ又はマルチステップのいずれかで行われる。1つの形態において、基板は、約10秒〜約100秒間、好ましくは、約45秒間不動態化ガスに曝される。1つの形態において、マルチサイクル不動態化プロセス、例えば、3サイクルプロセスが腐蝕を防止するのに特に効果的であることが発見された。
【0032】
比較的低い温度のストリップ及び比較的高い温度の不動態化を有するプロセスは、改善された残余のレジスト70とエッチャント副産物75の除去、及び改善された耐腐蝕性を提供する。耐腐蝕性の期間が延びることは、部分的に処理された基板が次の処理ステップを待つ間蓄積することができるので望ましいことである。従来の不動態化プロセスは、一般にこれらの耐腐蝕性の期間を延ばすことができない。さらに、低い温度のストリップと高い温度の不動態化は、側壁の堆積80の硬化を減少し、それによって、プロセスのスループットを増加するつづくウエットな化学エッチングプロセスにおける堆積の除去を容易にする。
【0033】
したがって、本発明の1つの形態において、基板30は、クリーニンチャンバ内で、第1温度でストリップされ、第2の温度で不動態化される。このストリッピングステップと不動態化ステップは、如何なる順番で行なってもよいし、多くの中間処理を伴って、又多くの繰返し処理を伴って行ってもよい。図5に示されるように、1つの形態において、エッチングされた基板30は、第1の温度に基板の温度を保ち、その後不動態化のために基板を第2の温度に加熱することによって、クリーニングチャンバ内でクリーニングされる。1つの形態において、支持体210の加熱源220は、ストリップ中基板を約150℃、より好ましくは約20℃〜約100℃、そして最も好ましくは約50℃以下の第1の温度に保つ。その後、加熱は増加され、不動態化中基板を約150℃、より好ましくは200℃、さらにより好ましくは約200℃〜約350℃、そして最も好ましくは約250℃以上の第2の温度に保つ。
【0034】
基板の製造効率を増加するために、図5の発明のクリーニングプロセスのスループットが増大される。クリーニングプロセスのスループットによって、それはある時間に処理されることができる基板の数を意味する。クリーニングチャンバ120の支持体210にある加熱源220は、基板30の処理に悪影響を与えることなく、第1の温度から第2の温度へ基板を加熱するのに必要な時間を最小にするために、充分強力であるべきである。1つの形態において、支持体にある加熱源220は、少なくとも10℃/秒の割合で基板30を加熱することが効果的である。また、スループットは、他の基板がクリーニングチャンバ120内でクリーニングされている間に、クリーニングされた基板30の冷却を可能にするために、分離した冷却チャンバを設けることによって増加される。
【0035】
スループットをさらに向上するのに有用なクリーニングプロセスの他の形態が図6に示され、そこで、クリーニングチャンバが基板30をクリーニングするために提供される。例えば、第1のクリーニングチャンバが所望のストリップ温度に保たれ、第2のクリーニングチャンバが所望の不動態化温度に保たれる。温度の異なる2つのクリーニングチャンバを備えることによって、第1の温度から第2の温度へチャンバ内で基板を加熱するステップが除かれ、それによって、基板に対する処理時間を減少することができる。また、1つの基板をストリップしている間に他の基板を不動態化することができるので、クリーニングプロセスのスループットはさらに減少される。
【0036】
図7に示されるように、プロセススループット及びストリップ性を向上するために、クリーニングチャンバ120の他の形態が開発された。図7のクリーニングチャンバ120は、基板30の上部を直接加熱するために配置されたヒータ320を有する。例えば、ヒータ320は、図示されるように基板30上に直接配置されるか、基板の周りに(図示せず)配置されてもよい。1つの形態において、ヒータ320は、基板30の上面を加熱するために、クリーングチャンバ120内、またはクリーニングチャンバ上に配置することができる1つまたはそれ以上のランプモジュールに、1つまたはそれ以上の赤外線ランプを有する。1つの形態において、加熱源220は、少なくとも50℃/秒、より好ましくは、少なくとも100℃/秒の割合で基板30の上面を加熱することができる。図7に示される形態では、支持体210は、冷却された基体330を有する。例えば、基体330には、チャネル335が設けられ、それを通して、熱交換器から熱の移送流体が基体330の温度及び支持体210上の基板30の温度を冷却するために通される。1つの形態では、基体330は、少なくとも約50℃/秒、より好ましくは、少なくとも約100℃/秒の割合で基板30を冷却することができる。代わりに、基板30の温度を制御するために、例えばヘリウムのような冷却ガスが保たれる溝を静電チャックに設けることができる。
【0037】
図8に示すように、エッチングされた基板30は、冷却のために図7のクリーニングチャンバ120へ移送される。ヒータ320は、基板をストリップするために、基板を、例えば約150℃、より好ましくは約20℃〜約100℃、最も好ましくは約50℃以下の第1の温度に加熱し、維持するように第1のレベルで動作される。その後、ヒータは、基板を不動態化するために、基板を、例えば約150℃、より好ましくは約200℃、さらに好ましくは約200℃〜約350℃、最も好ましくは約250℃以上の第2の温度に加熱し、維持するように第2のレベルで動作される。不動態化に続いて、基体330は、クリーニングチャンバ120において基板120のさらなる処理または蓄積のために約70℃の温度に基板を冷却するために用いられる。代わりに、分離した冷却チャンバを備えることもできる。
【0038】
図7のクリーニングチャンバは、基板30の上部を急速に加熱し、さらに基板を急速に冷却することができる。したがって、異なる温度で基板をストリップし、不動体化するために、単一チャンバを用いることができ、従来技術に比してスループットを向上する。この予測されない結果は、図7に示されたクリーニングチャンバにおけるヒータ320と基体330の配列によると考えられる。クリーニングチャンバ120における冷却期間は、従来の冷却チャンバにおける冷却期間以下である。これは、基体330の急速な冷却能力、及び組合された上面加熱と底部冷却の協働温度効果によると考えられる。基板30が下から加熱されるとき、基板30の上部を所望の温度に効率的に加熱するために、基板の底部は、所望の処理温度より高い温度でなければならない。反対に、図7に示されるように、基板が上方から加熱される場合、上面は底面より高い温度である。したがって、上面が所望の温度に達すると、基板30上のヒータ320で加熱される基板30から消散される熱は殆どない。この効果は、処理中に基板30の底部を冷却することによって増加され、それにより、基板の上部から基板の底部への大きな温度傾斜を有するウエハを処理することができる。
【0039】
本発明は、その好適な実施の形態に関してかなり詳細に説明したけれども、他の実施の形態も可能である。例えば、ストリップと不動体化のステップの順序は逆であってもよいし、または、上部の加熱及び底部の冷却を伴うマルチクリーングチャンバが図6のプロセスと同様であるが、冷却チャンバが除かれたプロセスを順次行うようにすることもできる。他の同様の変更が本発明の範囲から逸脱することなく行われることができる。従って、請求項はここに含まれる好適な実施の形態の説明に限定されるべきでない。
【図面の簡単な説明】
【図1A】
基板上に金属含有層を有する基板の概略横断面図である。
【図1B】
エッチングに続く図1Aの基板の断面図である。
【図2】
エッチングチャンバとクリーニングチャンバを有するマルチチャンバ装置の平面図である。
【図3】
エッチングチャンバの概略横断面図である。
【図4】
クリーニングチャンバの概略横断面図である。
【図5】
基板のクリーニングプロセスを示すフローチャートである。
【図6】
基板のクリーニングプロセスの他の形態を示すフローチャートである。
【図7】
クリーニングチャンバの他の形態の概略横断面図である。
【図8】
基板のクリーニングプロセスの他の形態を示すフローチャートである。

Claims (50)

  1. 基板のクリーニング方法であって、前記方法は、
    基板を第1の温度に保ちながら、基板を活性化されたストリップガスに曝すステップと、
    基板を第2の温度に保ちながら、基板を活性化された不動態化ガスに曝すステップとを有し、前記不動態化ガスは、少なくとも約20体積%のH2Oを有することを特徴とする方法。
  2. 前記ストリップガスは、前記基板から残余のレジストを除去するために選択された体積流量速度のO、N、HO、NH、CF、C、CHF、C、C、またはCHFの1つまたはそれ以上を含むことを特徴とする請求項1に記載の方法。
  3. 前記不動態化ガスは、前記基板からエチャント副産物を除去するために選択された堆積流量速度のNH、H、O、N、CF、C、CHF、C、C、またはCHFの1つまたはそれ以上を含むことを特徴とする請求項1に記載の方法。
  4. 前記第2の温度は、前記第1の温度より高いことを特徴とする請求項1に記載の方法。
  5. 前記第1の温度は、約150℃以下であることを特徴とする請求項1に記載の方法。
  6. 前記第2の温度は、約150℃以上であることを特徴とする請求項1に記載の方法。
  7. 前記第1の温度は、約150℃以下であり、前記第2の温度は、約150℃以上であることを特徴とする請求項1に記載の方法。
  8. 前記第1の温度は、約20℃〜約100℃であり、前記第2の温度は、約200℃〜約350℃であることを特徴とする請求項1に記載の方法。
  9. 前記不動態化ガスは、少なくとも約80体積%のHOを有することを特徴とする請求項1に記載の方法。
  10. 基板のクリーニング方法であって、前記方法は、
    第1のチャンバ内に基板支持するステップと、
    前記第1のチャンバ内に活性化したストリップガスを与えるステップと、
    第2のチャンバに前記基板を支持するステップと、
    前記第2のチャンバ内に活性化した不動態化ガスを与えるステップと、
    を有することを特徴とする方法。
  11. 前記ストリップガスは、前記基板から残余のレジストを除去するために選択された体積流量速度のO、N、HO、NH、CF、C、CHF、C、C、またはCHFの1つまたはそれ以上を含むことを特徴とする請求項10に記載の方法。
  12. 前記不動態化ガスは、前記基板からエチャント副産物を除去するために選択された体積流量速度のHO、NH、H、O、N、CF、C、CHF、C、C、またはCHFの1つまたはそれ以上を含むことを特徴とする請求項10に記載の方法。
  13. 前記基板は、前記第1のチャンバ内で第1の温度に維持され、前記第2のチャンバ内で第2の温度に維持されることを特徴とする請求項10に記載の方法。
  14. 前記第1の温度は、約150℃以下であることを特徴とする請求項13に記載の方法。
  15. 前記第2の温度は、約150℃以上であることを特徴とする請求項13に記載の方法。
  16. 前記第1の温度は、約150℃以下であり、前記第2の温度は、約150℃以上であることを特徴とする請求項13に記載の方法。
  17. 前記第1の温度は、約20℃〜約100℃であり、前記第2の温度は、約200℃〜約350℃であることを特徴とする請求項13に記載の方法。
  18. 前記ストリップガスは、酸素と窒素を有することを特徴とする請求項10に記載の方法。
  19. 前記ストリップガスは、HOを含むことを特徴とする請求項18に記載の方法。
  20. 前記不動態化ガスは、少なくとも約20体積%のHOを有することを特徴とする請求項10記載の方法。
  21. チャンバ内で基板をクリーニングする方法であって、前記方法は、
    前記チャンバ内に基板を支持するステップと、
    前記基板を第1の温度に保ち、前記チャンバ内に活性化したストリップガスを与えるステップと、
    前記基板を第2の温度に保ち、前記チャンバ内に活性化した不動態化ガスを与えるステップと、
    前記チャンバ内で前記基板を冷却するステップと、
    を有することを特徴とする方法。
  22. 前記ストリップガスは、前記基板から残余のレジストを除去するために選択された体積流量速度のO、N、HO、NH、CF、C、CHF、C、C、またはCHFの1つまたはそれ以上を含むことを特徴とする請求項21に記載の方法。
  23. 前記不動態化ガスは、前記基板からエチャント副産物を除去するために選択された体積流量速度のHO、NH、H、O、N、CF、C、CHF、C、C、またはCHFの1つまたはそれ以上を含むことを特徴とする請求項21に記載の方法。
  24. 前記基板は、約150℃以下の温度に冷却されることを特徴とする請求項21に記載の方法。
  25. 前記第2の温度は、約150℃以上であることを特徴とする請求項21に記載の方法。
  26. 前記第1の温度は、約150℃以下であり、前記第2の温度は、約150℃以上であることを特徴とする請求項21に記載の方法。
  27. 基板のクリーニング方法であって、前記方法は、
    前記基板の上方から前記基板を加熱しながら、前記基板を活性化したクリーニングガスに曝すステップを有することを特徴とする方法。
  28. 前記クリーニングガスは、前記基板から残余のレジストを除去するために選択された体積流量速度のO、N、HO、NH、CF、C、CHF、C、C、またはCHFの1つまたはそれ以上を含むストリップガスを有することを特徴とする請求項27に記載の方法。
  29. 前記クリーニングガスは、前記基板からエチャント副産物を除去するために選択された堆積流量速度のHO、NH、H、O、N、CF、C、CHF、C、C、またはCHFの1つまたはそれ以上を含む不動態化ガスを有することを特徴とする請求項27に記載の方法。
  30. 前記基版は、前記基板の上方から前記基板を加熱することによって第1と第2の温度に保たれることを特徴とする請求項27に記載の方法。
  31. 基板を処理する方法であって、前記方法は、
    上方から前記基板を加熱し、下方から前記基板を冷却しながら、前記基板を活性化したプロセスガスに曝すステップを有することを特徴とする方法。
  32. 前記基板は、少なくとも50℃/秒の割合で前記基板の上部を加熱することができるヒータによって上方から加熱されることを特徴とする請求項31に記載の方法。
  33. 前記基板は、少なくとも150℃/秒の割合で前記基板の上部を加熱することができるヒータによって上方から加熱されることを特徴とする請求項31に記載の方法。
  34. 基板を処理する方法であって、前記方法は、
    少なくとも50℃/秒の割合で上方から前記基板を加熱しながら、基板を活性化したプロセスガスに曝スステップを有することを特徴とする方法。
  35. 前記基板は、少なくとも約150℃/秒の割合で加熱されることを特徴とする請求項34に記載の方法。
  36. 基板のクリーニング装置であって、
    基板支持体と、
    ガスディストリビュータと、
    ガスエナジャイザーと、
    ガス排気装置と、
    前記基板支持体より上方にあるヒータと、
    を有し、
    それにより、前記支持体上に置かれた基板は、前記ヒータによって加熱され、且つ前記ガスガスディストリビュータを通して導入され、前記ガスエナジャイザーによって活性化され、且つ前記ガス排気装置によって排気されるガスによってクリーニングされることを特徴とする装置。
  37. 前記ガスディストリビュータは、ストリップガスを導入するのに適していることを特徴とする請求項36に記載の装置。
  38. 前記ストリップガスは、O、N、HO、NH、CF、C、CHF、C、C、またはCHFの1つまたはそれ以上を含み、且つ前記ガスディストリビュータは、基板から残余のレジストを除去するために選択された体積流量速度で前記ストリップガスを導入するのに適していることを特徴とする請求項37に記載の装置。
  39. 前記ガスディストリビュータは、不動体化ガスを導入するのに適していることを特徴とする請求項36に記載の装置。
  40. 前記不動態化ガスは、前記基板からエチャント副産物を除去するために選択された堆積流量速度のHO、NH、H、O、N、CF、C、CHF、C、C、またはCHFの1つまたはそれ以上を含み、前記ガスディストリビュータは、前記基板からエッチャント副産物を除去するために選択された体積流量速度で前記不動態化ガスを導入するのに適していることを特徴とする請求項39に記載の装置。
  41. 前記ヒータは、少なくとも約50℃/秒の割合で前記基板の上部を加熱することができることを特徴とする請求項36に記載の装置。
  42. 前記ヒータは、少なくとも約150℃/秒の割合で前記基板の上部を加熱することができることを特徴とする請求項36に記載の装置。
  43. 前記支持体は、熱移送流体を含むのに適したチャンネルを有することを特徴とする請求項36に記載の装置。
  44. 前記支持体は、少なくとも約50℃/秒の割合で前記基板を冷却することができることを特徴とする請求項36に記載の装置。
  45. 前記ヒータは、1つまたはそれ以上の赤外線ランプを有することを特徴とする請求項36に記載の装置。
  46. 基板処理装置であって、
    基板支持体と、
    ガスディストリビュータと、
    ガスエナジャイザーと、
    ガス排気装置と、
    前記基板支持体より上方にあるヒータと、
    を有し、
    それにより、前記支持体上に置かれた基板は、前記ヒータによって加熱され、且つ前記ガスガスディストリビュータを通して導入され、前記ガスエナジャイザーによって活性化され、且つ前記ガス排気装置によって排気されるガスによってクリーニングされ、及び前記ヒータは、少なくとも約50℃/秒の割合で前記基板の上部を加熱することができることを特徴とする装置。
  47. 前記ヒータは、少なくとも約150℃/秒の割合で前記基板の上部を加熱することができることを特徴とする請求項46に記載の装置。
  48. 前記支持体は、熱移送流体を含むのに適したチャネルを有することを特徴とする請求項46に記載の装置。
  49. 前記支持体は、少なくとも約50℃/秒の割合で前記基板を冷却することができることを特徴とする請求項46に記載の装置。
  50. 前記ヒータは、1つまたはそれ以上の赤外線ランプを有することを特徴とする請求項44に記載の装置。
JP2002511375A 2000-06-14 2001-06-14 基板のクリーニング装置及び方法 Withdrawn JP2004514272A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59533600A 2000-06-14 2000-06-14
PCT/US2001/019218 WO2001097270A2 (en) 2000-06-14 2001-06-14 Substrate cleaning apparatus and method

Publications (1)

Publication Number Publication Date
JP2004514272A true JP2004514272A (ja) 2004-05-13

Family

ID=24382834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002511375A Withdrawn JP2004514272A (ja) 2000-06-14 2001-06-14 基板のクリーニング装置及び方法

Country Status (3)

Country Link
EP (1) EP1297566A2 (ja)
JP (1) JP2004514272A (ja)
WO (1) WO2001097270A2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235562A (ja) * 2007-03-20 2008-10-02 Taiyo Nippon Sanso Corp プラズマcvd成膜装置のクリーニング方法
JP2011513783A (ja) * 2008-03-05 2011-04-28 アルカテル−ルーセント フォトマスクを作製する方法、およびその方法を実施するための装置
US8383296B2 (en) 2008-01-04 2013-02-26 Alcatel Lucent Method for manufacturing photomasks and device for its implementation
JP2013080940A (ja) * 2007-05-30 2013-05-02 Applied Materials Inc 基板洗浄チャンバ及び構成部品
JP2015008183A (ja) * 2013-06-25 2015-01-15 株式会社日立ハイテクノロジーズ プラズマ処理方法および真空処理装置
KR20220097679A (ko) * 2020-12-30 2022-07-08 세메스 주식회사 기판 처리 장치 및 기판 처리 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758763B2 (en) 2006-10-31 2010-07-20 Applied Materials, Inc. Plasma for resist removal and facet control of underlying features
WO2009150018A1 (en) * 2008-06-10 2009-12-17 Asml Netherlands B.V. Method and system for thermally conditioning an optical element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950010044B1 (ko) * 1990-06-27 1995-09-06 후지쓰 가부시끼가이샤 반도체 집적회로의 제조방법 및 그에 사용된 제조장치
US5221424A (en) * 1991-11-21 1993-06-22 Applied Materials, Inc. Method for removal of photoresist over metal which also removes or inactivates corosion-forming materials remaining from previous metal etch
US5545289A (en) * 1994-02-03 1996-08-13 Applied Materials, Inc. Passivating, stripping and corrosion inhibition of semiconductor substrates
US6209551B1 (en) * 1997-06-11 2001-04-03 Lam Research Corporation Methods and compositions for post-etch layer stack treatment in semiconductor fabrication

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235562A (ja) * 2007-03-20 2008-10-02 Taiyo Nippon Sanso Corp プラズマcvd成膜装置のクリーニング方法
JP2013080940A (ja) * 2007-05-30 2013-05-02 Applied Materials Inc 基板洗浄チャンバ及び構成部品
US8383296B2 (en) 2008-01-04 2013-02-26 Alcatel Lucent Method for manufacturing photomasks and device for its implementation
JP2011513783A (ja) * 2008-03-05 2011-04-28 アルカテル−ルーセント フォトマスクを作製する方法、およびその方法を実施するための装置
JP2015008183A (ja) * 2013-06-25 2015-01-15 株式会社日立ハイテクノロジーズ プラズマ処理方法および真空処理装置
KR20220097679A (ko) * 2020-12-30 2022-07-08 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
KR102614922B1 (ko) 2020-12-30 2023-12-20 세메스 주식회사 기판 처리 장치 및 기판 처리 방법

Also Published As

Publication number Publication date
WO2001097270A3 (en) 2003-01-23
WO2001097270A2 (en) 2001-12-20
EP1297566A2 (en) 2003-04-02

Similar Documents

Publication Publication Date Title
US6692903B2 (en) Substrate cleaning apparatus and method
US6440864B1 (en) Substrate cleaning process
US6136211A (en) Self-cleaning etch process
US6014979A (en) Localizing cleaning plasma for semiconductor processing
US6893893B2 (en) Method of preventing short circuits in magnetic film stacks
US9287124B2 (en) Method of etching a boron doped carbon hardmask
JP4907827B2 (ja) ポリシリコンのエッチングの均一性を向上し、エッチング速度の変動を低減するための方法
US6008139A (en) Method of etching polycide structures
US20090277874A1 (en) Method and apparatus for removing polymer from a substrate
KR20160084314A (ko) 이방성 텅스텐 에칭을 위한 방법 및 장치
US20040137749A1 (en) Method for removing conductive residue
US6325861B1 (en) Method for etching and cleaning a substrate
TW201405656A (zh) 具有高選擇性之多晶矽及原生氧化層的移除
JP2001520463A (ja) エッチングチャンバ洗浄方法
US20040229470A1 (en) Method for etching an aluminum layer using an amorphous carbon mask
JP2005508078A (ja) 高アスペクト比形態のエッチング方法
US5880033A (en) Method for etching metal silicide with high selectivity to polysilicon
JP4167268B2 (ja) 基板をパッシベーションするプロセス
CN103247525A (zh) 用于蚀刻有机硬掩膜的方法
JP2011517368A (ja) 基板からポリマーを除去するための方法及び装置
JP2004514272A (ja) 基板のクリーニング装置及び方法
US20030181056A1 (en) Method of etching a magnetic material film stack using a hard mask
JP5642427B2 (ja) プラズマ処理方法
JPH01200628A (ja) ドライエッチング方法
JP3172340B2 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902