JP2004503907A - 高効率の光放射発生用の光マグネトロンおよび1/2λ誘起πモード動作 - Google Patents

高効率の光放射発生用の光マグネトロンおよび1/2λ誘起πモード動作 Download PDF

Info

Publication number
JP2004503907A
JP2004503907A JP2002511359A JP2002511359A JP2004503907A JP 2004503907 A JP2004503907 A JP 2004503907A JP 2002511359 A JP2002511359 A JP 2002511359A JP 2002511359 A JP2002511359 A JP 2002511359A JP 2004503907 A JP2004503907 A JP 2004503907A
Authority
JP
Japan
Prior art keywords
anode
magnetron
cathode
resonant
cathode space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002511359A
Other languages
English (en)
Other versions
JP4970697B2 (ja
Inventor
スモール、ジェームス・ジー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of JP2004503907A publication Critical patent/JP2004503907A/ja
Application granted granted Critical
Publication of JP4970697B2 publication Critical patent/JP4970697B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/165Manufacturing processes or apparatus therefore
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/18Resonators
    • H01J23/20Cavity resonators; Adjustment or tuning thereof
    • H01J23/213Simultaneous tuning of more than one resonator, e.g. resonant cavities of a magnetron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/18Resonators
    • H01J23/22Connections between resonators, e.g. strapping for connecting resonators of a magnetron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/50Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microwave Tubes (AREA)

Abstract

光マグネトロンが与えられ、これは半径rcを有する円筒形の陰極と、半径raを有し、幅wa=ra−rcを有する陽極−陰極空間を規定するため陰極と同軸に整列する環状形陽極とを含んでいる。光マグネトロンはさらに陽極と陰極間にdc電圧を与え陽極−陰極空間を横切って電界を設定するための電気接触部と、電界にほぼ垂直な陽極−陰極空間内にdc磁界を与えるように配置されている少なくとも1つの磁石を含んでいる。陽極−陰極空間を規定する陽極表面に沿って開口をそれぞれ有する複数の共振空洞が設けられている。陰極から放射される電子は電界および磁界により影響されて陽極−陰極空間を通る通路を移動し、共振空洞に共振フィールドを発生するために共振空洞の開口に近接して通過する。共振空洞は波長λを有する周波数で共振するようにそれぞれ設計され、陽極の表面の円周2πraはλよりも大きい。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は光源、特に光マグネトロン形態の高効率の光源に関する。
【0002】
【従来の技術】
マグネトロンは技術でよく知られている。マグネトロンはマイクロ波エネルギの高効率ソースとして長い間使用されている。例えばマグネトロンは種々の食品を加熱および調理するのに十分なマイクロ波エネルギを発生するために電子レンジで普通に使用される。マグネトロンの使用は、これが高効率で動作し、したがって過剰な電力消費、熱放散に関連する高いコストを避ける点で望ましい。
【0003】
マイクロ波マグネトロンは回転する電子空間電荷を発生するために一定の磁界を使用する。空間電荷はマイクロ波放射を発生するため複数のマイクロ波共振空洞と相互作用する。マグネトロンは約100ギガヘルツ(Ghz)より下の最大の動作周波数に通常限定される。さらに高い周波数動作は従来は恐らく種々の理由で実用的であるとは考えられていなかった。例えば、非常に高い磁界はマグネトロンを非常に小型にするために必要とされた。さらに非常に小さいマイクロ波共振器を製造するすることはかなり困難である。このような問題によって従来はもっと高い周波数のマグネトロンは不可能で非実用的であった。
【0004】
一般的なマイクロ波マグネトロンに関連する前述の欠点を考慮すると、100ギガヘルツを超える周波数で動作するための実用的な物として適切であるマグネトロン(即ち光マグネトロン)が強く必要とされた。例えば、一般的なタイプの光源(例えば白熱灯、蛍光灯、レーザ等)と比較して高い効率で光を発生できる光源が技術で強く必要とされている。このような光源は光通信、商用、産業用照明、製造等を含む種々の応用で有効であるがそれらに限定されない。
【0005】
【発明が解決しようとする課題】
本発明は通常のマグネトロンでは従来可能でなかった周波数で動作するのに適した光マグネトロンを提供する。本発明の光マグネトロンは、赤外線、可視光領域から紫外線、X線等の高い周波数帯域まで延在する周波数で高効率の高パワー電磁エネルギを発生できる。結果として、本発明の光マグネトロンは長距離光通信、商用および産業上の照明、製造等の種々の応用の光源として機能することができる。
【0006】
【課題を解決するための手段】
本発明の光マグネトロンは非常に高い磁界を必要としないので有効である。むしろ光マグネトロンはさらに合理的な強度の磁界を使用することが好ましく、永久磁石から得られる磁界の使用はさらに好ましい。磁界強度は(ここでは陽極−陰極空間とも呼ばれる)陰極と陽極との間の相互作用区域内の電子空間電荷の回転半径を決定する。陽極は所望の動作周波数にしたがって寸法を定められた複数の小さい共振空洞を含んでいる。πモードとして知られているモードで動作するために複数の共振空洞を拘束する機構が設けられる。特に、各共振空洞はそれにすぐ隣接する共振空洞と逆位相でπ放射を発振するために拘束される。出力結合器または結合器アレイは有効な出力パワーを出力するために共振空洞から光放射を外部に結合するために設けられている。
【0007】
本発明はまたこのような光マグネトロンを生成するための多くの適切な方法を提供する。このような方法は陽極−陰極空間を規定する陽極壁に沿った非常に多数の共振空洞の生成を含んでいる。例えば種々の半導体装置の製造で普通に使用されているフォトリソグラフおよび/またはマイクロ機械加工技術を使用して共振空洞が形成される。所定の陽極はこのような技術に基づいて、数万、数十万、または数百万の共振空洞を含んでもよい。πモードで発振するように共振空洞を拘束することによって、通常のマグネトロンに匹敵するパワーレベルおよび効率を生成することが可能である。
【0008】
本発明の1特徴によって光マグネトロンが提供される。この光マグネトロンは複数の共振空洞を使用して電気エネルギを光放射へ変換する。
【0009】
本発明の1つの特別な特徴による光マグネトロンは、陽極−陰極空間により分離された陽極および陰極と、陰極と陽極との間にdc電圧を供給して陽極−陰極空間を横切って電界を設定するための電気接触部と、電界にほぼ垂直なdc磁界を陽極−陰極空間内に与えるように配置されている少なくとも1つの磁石と、陽極−陰極空間を規定する陽極表面に沿って開口をそれぞれ有する複数の共振空洞とを含んでおり、それによって陰極から放射された電子は電界および磁界により影響されて陽極−陰極空間を通る通路を移動し、共振空洞に共振フィールドを生成するために共振空洞の開口に近接して通過し、共振空洞は約10ミクロン以下の波長λを有する周波数で共振するようにそれぞれ設計される。
【0010】
本発明の別の特徴にしたがって光マグネトロンが提供され、これは半径rcを有する円筒形の陰極と、半径raを有し、幅wa=ra−rcを有する陽極−陰極空間を規定するため陰極と同軸に整列する環状形陽極と、陽極と陰極との間にdc電圧を与え、陽極−陰極空間を横切って電界を設定する電気接触部と、電界にほぼ垂直なdc磁界を陽極−陰極空間内に与えるように配置されている少なくとも1つの磁石と、陽極−陰極空間を規定する陽極表面に沿って開口をそれぞれ有する複数の共振空洞を含んでおり、それによって陰極から放射される電子は電界および磁界により影響されて陽極−陰極空間を通る通路を移動し、共振空洞に共振フィールドを生成するために共振空洞の開口に近接して通過し、共振空洞は波長λで共振するようにそれぞれ設計され、陽極の表面の円周2πraはλよりも大きい。
【0011】
本発明の別の特徴によれば、光マグネトロンは、陽極−陰極空間により分離された陽極および陰極と、陰極と陽極の間にdc電圧を供給して陽極−陰極空間を横切って電界を設定する電気接触部と、電界にほぼ垂直なdc磁界を陽極−陰極空間内に与えるように配置されている少なくとも1つの磁石と、陽極−陰極空間を規定する陽極表面に沿って形成されたN個の共振空洞の高密度アレイとを含んでおり、N個の各共振空洞は開口を有し、それによって陰極から放射された電子は電界および磁界により影響されて陽極−陰極空間を通る通路を移動し、共振空洞に共振フィールドを発生するため共振空洞の開口に近接して通過し、ここでNは1000よりも大きい整数である。
【0012】
本発明のさらに別の特徴によれば、マグネトロンは、陽極−陰極空間により分離された陽極および陰極と、陰極と陽極との間にdc電圧を供給して陽極−陰極空間を横切って電界を設定する電気接触部と、電界にほぼ垂直なdc磁界を陽極−陰極空間内に与えるように配置されている少なくとも1つの磁石と、陽極−陰極空間を規定する陽極表面に沿って開口をそれぞれ有する複数の共振空洞とを含んでおり、それによって陰極から放射された電子は電界および磁界により影響されて陽極−陰極空間を通る通路を移動し、共振空洞に共振フィールドを発生するために共振空洞の開口に近接して通過し、さらにマグネトロンは陽極の外周を囲んでいる共通の共振器を含んでおり、少なくとも複数の共振器空洞のうちの幾つかがπモード動作が行われるようにその共通の共振器に結合されている。
【0013】
本発明のさらに別の特徴によれば、マグネトロンは、陽極−陰極空間により分離された陽極および陰極と、陽極と陰極との間にdc電圧を供給して陽極−陰極空間を横切って電界を設定する電気接触部と、電界にほぼ垂直なdc磁界を陽極−陰極空間内に与えるように陽極の対向端部に配置されている1対の磁石と、陽極−陰極空間を規定する陽極表面に沿って開口をそれぞれ有する複数の共振空洞とを含んでおり、それによって陰極から放射された電子は電界および磁界により影響されて陽極−陰極空間を通る通路を移動し、共振空洞に共振フィールドを生成するために共振空洞の開口に近接して通過し、陽極は少なくとも1つの上部陽極と下部陽極を具備し、上部陽極の共振空洞は第1の波長を有する周波数で共振するようにそれぞれ設計され、下部陽極の共振空洞は第1の波長とは異なる第2の波長を有する周波数で共振するようにそれぞれ設計されている。
【0014】
本発明のさらに別の特徴によれば、光マグネトロンの陽極を形成する方法が提供される。この方法は第1の材料から作られている円筒形コアの外部表面の周囲にフォトレジスト層を形成し、フォトレジスト層をパターン化しエッチングして複数のスロットを規定するように円筒形コアの外部表面から放射的に延在する複数のベーンを形成し、フォトレジストおよび第1の材料とは異なる第2の材料により円筒形コアおよびベーンをメッキし、複数のスロットを有する円筒形の陽極を生成するためにメッキからベーンと円筒形コアを除去するステップを含んでいる。
【0015】
さらに別の特徴によれば、光マグネトロンの陽極を形成する方法が提供され、この方法は陽極が作られる材料の層を形成し、この層をパターン化しエッチングして陽極の内周に沿って形成される複数の共振空洞を有する円筒形陽極の第1の層を形成し、材料の少なくとも1つのその次の層を形成し、陽極の垂直の高さを増加するためにパターン化し、エッチングするステップを反復するステップを含んでいる。
【0016】
本発明の別の特徴によればマグネトロンが提供され与えられ、これは、陽極−陰極空間により分離される陽極および陰極と、陰極と陽極間に電圧を供給して陽極−陰極空間を横切って電界を設定する電気接触部と、陽極−陰極空間内に磁界を与えるように配置されている1対の磁石とを含んでいる。陽極は中空シリンダを形成するために並んで配置されている複数のウェッジを含み、各ウェッジは陽極−陰極空間に露出されている開口を有する共振空洞を部分的に規定する第1の凹部を具備している。
【0017】
本発明の別の特徴により提供されるマグネトロンは、陽極−陰極空間により分離された陽極および陰極と、陰極と陽極との間に電圧を供給して陽極−陰極空間を横切って電界を設定する電気接触部と、電界にほぼ垂直な磁界を陽極−陰極空間内に与えるように配置されている少なくとも1つの磁石とを含んでいる。陽極は中空シリンダを形成するために相互に重ねてスタックされている複数の座金形の層を含み、複数の層はそれぞれ複数の層の他の層の凹部と整列されている内部直径に沿って複数の凹部を含んでおり、陽極−陰極空間への開口をそれぞれ有するシリンダの軸に沿って複数の共振空洞を規定する。
【0018】
本発明の別の特徴によれば、マグネトロンが提供され、これは陽極−陰極空間により分離された陽極および陰極と、陽極と陰極との間に電圧を提供し陽極−陰極空間を横切って電界を設定するための電気接触部と、電界に垂直な陰極−陽極空間内に磁界を与えるように配置されている少なくとも1つの磁石と、陽極−陰極空間を規定する陽極表面に沿って開口をそれぞれ有する複数の共振空洞とを含んでおり、それによって陰極から放射された電子は電界および磁界により影響されて陽極−陰極空間を通る通路を移動し、共振空洞に共振フィールドを発生するために共振空洞の開口に近接して通過し、さらにマグネトロンは陽極の外周を囲んでいる共通の共振器を含んでおり、少なくとも複数の共振器空洞のうちの幾つかがπモード動作を誘起するように結合ポートを介して結合されており、少なくとも幾つかの結合ポートは他の結合ポートに関して付加的に1/2λの遅延を生成し、λはマグネトロンの動作波長である。
【0019】
本発明の別の特徴はマグネトロンの陽極を製造する方法にある。この方法は、陽極−陰極空間が位置されている中空シリンダを形成するために並べて複数のウェッジを並べて配置し、各ウェッジに陽極−陰極空間において、露出される開口を有する少なくとも部分的に共振空洞を規定する第1の凹部を形成することを含んでいる。この方法はまた陽極−陰極空間が位置されている中空シリンダを複数の座金形層を重ねて形成し、複数の層の各層において、複数の層の他の層の凹部と整列されている複数の凹部を内部直径に沿って形成し、陽極−陰極空間への開口をそれぞれ有するシリンダの軸に沿って複数の共振空洞を規定する。
【0020】
前述および関連する目的を実現するため、本発明は以下十分に説明し特に特許請求の範囲で指摘されている特徴を含んでいる。以下の説明および添付図面は本発明の詳細なある例示的な実施形態を説明するものである。しかしながら、これらの実施形態は本発明の原理が使用されてもよい種々の方法の幾つかを単に示したものである。本発明のその他の目的、利点、優れた特徴は本発明の以下の詳細な説明を図面を伴って考察するときに明白になるであろう。
【0021】
【発明の実施の形態】
本発明を図面を参照して詳細に説明する。同一の参照符号を全体を通じて同一の素子を示すために使用する。
【0022】
図1を最初に参照すると、光通信システム20が示されている。本発明により、光通信システム20は光マグネトロン22を含んでいる。光マグネトロン22は地点間で光学的に情報を通信するために使用されることのできる出力光の高効率の光源の役目をする。光マグネトロン22をここでは光通信システム20で使用する文脈で説明しているが、光マグネトロン22は種々の他の応用で有効であることが認識されよう。本発明は任意のおよび全てのこのような応用を考慮に入れている。
【0023】
図1で示されているように、光マグネトロン22は例えば赤外線、紫外線または可視光領域のコヒーレントな光のような光放射24を出力するように機能する。光放射は好ましくは100Ghz以上の周波数に対応する波長を有する放射である。さらに特別な実施形態では、光マグネトロン22は約10ミクロンから約0.5ミクロンの範囲の波長を有する光放射を出力する。さらに特別な実施形態によると、光マグネトロンは約3.5ミクロンから約1.5ミクロンの範囲の波長を有する光放射を出力する。
【0024】
光マグネトロン22により発生される光放射24は変調器26を通過し、この変調器26は既知の技術を使用して放射24を変調する。例えば、変調器26は通信されるデータに基づいて制御されるコンピュータである光シャッタであってもよい。放射24は変調された放射28として変調器26により選択的に送信される。受信装置30は変調された放射28を受信し、その後復調し、送信されたデータを獲得する。
【0025】
通信システム20は動作dc電圧を光マグネトロン22へ与える電源32をさらに含んでいる。以下さらに詳細に説明するように、光マグネトロン22は陰極と陽極の間に与えられるdc電圧で動作する。例示的な実施形態では、動作電圧は30キロボルト(kV)乃至50kV程度である。しかしながら、他の動作電圧も可能であることが認識されよう。
【0026】
図2、3を参照すると、光マグネトロン22の第1の実施形態が示されている。マグネトロン22は半径rcを有する円筒形の陰極40を含んでいる。陰極40のそれぞれの端部にはエンドキャップ41が含まれている。陰極40はそれと同軸に整列されている中空円筒形状の陽極42内に含まれている。陽極42はrcよりも大きい内部半径raを有し、これによって陰極40の外部表面48と陽極42の内部表面50との間の相互動作区域または陽極−陰極空間44を規定している。
【0027】
端子52と54は絶縁体55をそれぞれ通り、陰極40を加熱するためのパワーを与えさらに負(−)の高電圧を陰極40へ供給するために陰極40に電気的に接続されている。陽極42は端子56を経て高電圧供給の正(+)または接地端子へ電気的に接続されている。動作中、電源32(図1)は端末52と54を経て陰極40へヒータ電流を与える。同時に電源32は端子52と54を経てdc電圧を陰極40と陽極42へ与える。dc電圧はdc電界Eを発生し、これは陽極−陰極空間44を通じて陰極40と陽極42間に放射状に延在する。
【0028】
光マグネトロン22はさらに陽極42のそれぞれの端部に位置する1対の磁石58と60を含んでいる。磁石58と60は陽極−陰極空間44を通って電界Eに垂直な軸方向のdc磁界Bを与えるように構成されている。図3で示されているように、磁界Bは陽極−陰極空間44内に紙面に向かう方向である。例示的な実施形態の磁石58と60は例えば2キロガウス程度の磁界Bを発生する永久磁石である。認識されるように、磁界を発生する他の手段(例えば電磁石)が代わりに使用されてもよい。しかしながら1以上の永久磁石58および60は、光マグネトロン22が例えばある程度の可搬性を与えることが所望される場合には特に好ましい。
【0029】
交差した磁界Bと電界Eは陰極40から放出された電子に影響を与えて、陽極−陰極空間44を通じる湾曲した通路を移動する。十分なdc磁界Bにより、電子は陽極42に到達しないで、陰極40へ戻る。
【0030】
図4のa−cを伴って以下詳細に説明するように、例えば陽極42の内部表面50は周辺に沿って分布されている複数の共振空洞を含んでいる。好ましい実施形態では、共振空洞は軸方向で延在する偶数の等間隔のスロットにより形成される。陰極40から放出された電子が陽極−陰極空間44を通る前述の湾曲した通路を移動し、これらの共振空洞の開口に近接して通過するとき、共振フィールドが共振空洞内に生成される。特に、陰極40から放出された電子は共振空洞に近接して通過する回転電子雲を形成する傾向がある。電子雲は共振空洞の電磁界を励起して、これらを発振または“リング”させる。これらの永続的な振動フィールドはさらに通過する電子を加速または減速して、電子雲を集群させて、電荷の回転スポークを形成させる。
【0031】
陰極、陽極、交差した電界および磁界、共振空洞を含むこのような動作は100Ghzより下の周波数で動作する通常のマグネトロンに関しては一般的に知られている。しかしながら前述したように、さらに高い周波数動作は種々の理由で過去においては実用されていない。本発明は100Ghzよりも高い周波数で動作する実用的な装置を与えることにより、このような欠点を克服する。通常のマグネトロンと異なって、本発明は少数の共振空洞に限定されず、この共振空洞を経て所望の出力放射を発生する。さらに、本発明は装置内に非常に高い磁界とパワー密度を必要とする非常に小さい装置に限定されない。
【0032】
特に、光マグネトロン22は陽極42内に比較的多数の共振空洞を含んでいる。これらの共振空洞は以下十分に説明するように、フォトリソグラフィ、マイクロ機械加工、電子ビームリソグラフィ、反応性イオンエッチング等のような高い正確度の技術を使用して形成されることが好ましい。光マグネトロン22は動作波長λと比較して比較的大きい陽極42を有し、それによって2πraに等しい内部陽極表面50の周囲は実質上動作波長λよりも大きい。結果として、非常に高い磁界を必要とせず、例えばマイクロ波帯域で使用される通常のマグネトロンと同一サイズであるという両者の意味で光マグネトロン22は実用的である。
【0033】
図2の例示的な実施形態では、1つおきの共振空洞はそれぞれの共振空洞から共通の共振空洞66へエネルギを結合する結合ポート64を含んでいる。結合ポート64は陽極42の壁を通して設けられた穴またはスロットにより形成される。共振空洞66は陽極42の外部周囲に形成され、陽極42の外部表面68と、共振空洞構造72内に形成される空洞規定壁70により規定されている。図2と図3で示されているように、共振空洞構造72は陽極42の周辺に適合する円筒形のスリーブを形成する。共振空洞66はそれぞれの共振空洞から結合ポート64と整列されるように位置付けられる。共振空洞66は図4のcと共に以下さらに十分説明されるようにπモードで動作するために複数の共振空洞を拘束する。
【0034】
さらに、空洞構造72は多くの例では非常に薄い陽極42に対する構造上の支持体を与える役目をしてもよい。空洞構造72はまた高温動作の場合に陽極42の冷却を容易にする。
【0035】
共通の共振空洞66は出力光放射24として共振空洞66から透明な出力ウィンドウ76を通ってエネルギを結合するように作用する少なくとも1以上の出力ポート74を含んでいる。出力ポート74は共振空洞構造72の壁を通して設けられる穴またはスロットにより形成される。
【0036】
図2と図3で示されている構造は、ここで説明されている他の実施形態と共に、陽極−陰極空間44と共振空洞66が真空内に維持されるように構成されることが好ましい。これは塵または屑が装置に入りその動作を妨害することを阻止する。
【0037】
図4のaは一般的な実施形態による陽極42の一部分の断面図を表している。認識されるように、断面は陽極42と陰極40の共通軸に垂直な平面で取られたものである。陽極42の湾曲は図示を容易にするために示されていない。図示されているように、陽極42内の各共振空洞は陽極42の表面50に形成されるスロット80により表されている。例示的な実施形態では、スロット80は共振を可能にするためλ/4に等しい深さdを有し、ここでλは所望の動作周波数における出力光放射24の波長を表している。スロット80はλ/2以下の距離だけ隔てられ、各スロットはλ/8以下に等しい幅wを有する。スロット幅wはλ/8以下でなければならず、それによって示されているように電界がπモード動作で反対になる前に電子がスロット80を通過することを可能にする。
【0038】
陽極42のスロット80の総数Nは、陽極−陰極空間44を通って移動する電子が好ましくは光の速度cよりも実質上遅く(例えば約0.1乃至0.3c程度で)移動するように選択される。スロット80は陽極42の内部周囲面に均等な間隔で配置され、総数Nはπモード動作を許容するために偶数であるように選択される。スロット80の長さはやや任意であってもよいが、陰極40の長さと類似であることが好ましい。説明を簡単にするため、N個のスロット80は陽極42の周囲に1からNの順序で番号を付けられると考えられている。
【0039】
図4のbは所望の動作周波数でπモード発振を容易にするように設計された陽極42の特定の実施形態を表している。前述のスロット80は実際に長いスロット80aと短いスロット80bからなる。長いスロット80aと短いスロット80bは図4のbで示されているように交互の方法でλ/4の間隔で配置されている。長いスロット80aと短いスロット80bは好ましい実施形態では、深さの比が2:1で平均的な深さλ/4を有する。結果として、長いスロット80aはλ/3に等しい深さdlを有し、短いスロット80bはλ/6に等しい深さdsを有する。長いスロットと短いスロットのこのような配置は“ライジングサン”構造としてマイクロ波帯域で知られている。このような構造は長いスロット80aの長いスロット80aの位相を遅らせ、短いスロット80bの位相を進ませてπモードの発振を容易にする。
【0040】
図4のaおよびbでは示されていないが、それぞれのスロット80により形成される1以上の共振空洞は1以上の結合ポート64を含み、これは例えば図2および3で表されているようにスロット80内から共通の共振空洞66へエネルギを結合する。代わりに、結合ポート64は例えば図9および10の実施形態を伴って以下後述するように出力ウィンドウ76を通って直接それぞれのスロット80内からエネルギを結合する役目を行う。結合ポート64は好ましくは構造的に加算されるように相互に同位相であるスロット80に関して設けられている。代わりに1以上の位相シフタが全て同位相であるように結合ポート64からの放射の位相を調節するために使用されてもよい。
【0041】
図4のcは所望の動作周波数でπモード発振を助長するように設計されている陽極42の別の特別な実施形態を表している。陽極42のこのような実施形態は特に図2、3の実施形態で表されている。共通の共振空洞66の形態の外部安定化共振器は本発明にしたがってπモード発振を容易にする役目を行う。特に1つおきのスロット80(即ち偶数のスロットまたは奇数のスロット)は全て同位相であるようにそれぞれの結合ポート64を経て共振空洞66へ結合される。スロット80はλ/2の間隔で隔てられ、そうでなければそれぞれλ/4に等しい深さdを有する。
【0042】
認識されるように、ここで説明されている各実施形態のスロット80はマイクロ共振器を表している。以下の表は本発明にしたがった光マグネトロン22の例示的な寸法等を与えている。陰極40の半径rcが2ミリメートル(mm)で、陽極42の内部半径raが7mmで、長さが1センチメートル(cm)、磁界Bが2キロガウス、電界Eの電位が30kV乃至50kVである実際的な寸法の装置の場合、図4のcの構造のケースのスロット80に関する寸法は例えば以下のように示される。
Figure 2004503907
このようなマグネトロン22の出力は連続波で1キロワット(kW)程度でありパルスでは1メガワット(MW)である。さらに、効率は85%程度である。結果として、本発明のマグネトロン22は、通信、照明、製造等の高効率、高パワー出力を使用する任意の応用で良好に適切である。
【0043】
スロット80により形成されるマイクロ共振器または共振空洞は半導体製造工業から利用可能な種々の異なる技術を使用して製造されることができる。例えば既存のマイクロ機械加工技術は幅2.5ミクロン程度のスロットの形成に適している。特別な製造技術を以下説明するが、導電性の中空シリンダ陽極本体が所望の幅と深さを有するスロット80を生成するためレーザビームにより制御可能にエッチングされてもよいことが認識されよう。代わりに、フォトリソグラフ技術が使用されてもよく、そこでは陽極42はスロット80を表す歯により相互に積層された導電層の連続によって形成される。さらに高い周波数の供給(例えばλ=0.5×10−4mm)では、半導体処理で使用される電子ビーム(eビーム)技術は陽極42内にスロット80を形成するために使用されてもよい。しかしながら最も広い意味では、本発明は任意の特定の製造方法に限定されない。
【0044】
図5を参照すると、本発明にしたがった光マグネトロンの別の実施形態が22aで示されている。このような実施形態は以下の点を除いて図2と図3の実施形態と事実上同一である。この実施形態の共通の共振空洞66は、トロイダル形状の共振空洞66を形成するために湾曲された外部壁70を有する。外部壁70の曲率半径は動作周波数に応じて、2.0cm乃至2.0m程度である。トロイダル形状の共振空洞66は所望の動作周波数でπモード発振を制御する共通の共振空洞66の能力を改良する役目をする。
【0045】
偶数番号のスロット80からの各結合ポート64は例えば湾曲した外部壁70の頂点と陽極42の中心で水平に整列されていることに留意する。これは陽極42の中心方向に共振光放射を集中し、円筒形陽極42の端部からの光の漏洩を減少する傾向がある。奇数番号のスロット80はこのような結合ポート64を含まず、したがって偶数番号のスロット80と異なる位相で発振するように駆動される。
【0046】
図6は22bで示されている光マグネトロンの別の実施形態を示している。図6の実施形態は事実上以下の点を除いて図5の実施形態と同一である。この特定の実施形態ではマグネトロン22bは二重トロイダルの共通共振器を具備している。特にマグネトロン22bは共振空洞構造72中に形成されている第1のトロイダル形状の共通共振器66aと第2のトロイダル形状の共通共振器66bを含んでいる。全体でN個の総数のスロット80中の各偶数番号のスロット80は結合ポート64aにより第1の空洞66aへ結合されている。N個のスロット80中の各奇数番号のスロット80は結合ポート64bにより第2の空洞66bへ結合されている。
【0047】
第1の共振空洞66aは所望の動作周波数よりも僅かに高い周波数で共振モードをロックするように設計された高い周波数の共振器である。第2の共振空洞66bは所望の周波数よりも僅かに低い周波数で共振モードをロックするように設計された低い周波数共振器であり、したがって装置全体は所望の動作周波数に対応する中間平均周波数で発振する。第1の共振空洞66a内の高い周波数モードは所望の動作周波数について位相を進ませ、第2の共振空洞66b内の低い周波数モードは位相を遅らせ、短いスロット80bの位相を進ませる傾向がある。したがってπモード動作が生じる。
【0048】
出力放射24は出力ポート74aと74bの一方または両者から与えられることができる。両ポートからの出力が相互に関して逆位相であるので、出力ポート74aと74bの一方に位相シフタ(図示せず)を含むことが望ましい。
【0049】
先の実施形形態のように、空洞66aと66bの外部壁70aと70bの曲率半径はそれぞれ2.0cm乃至2.0m程度である。しかしながら曲率半径は所望の動作周波数に関して所望の高い/低い周波数動作を行うように、壁70aと70bでそれぞれ僅かに短いか長く設計される。
【0050】
異なる実施形態では、2よりも多数の共振空洞66が動作をπモードに制限するため陽極42の周辺で形成されてもよい。本発明は必ずしも特定の数に限定されるわけではない。さらに、図6の実施形態の空洞66aと66bは代わりに先に説明し認識されるように、オフセットではない所望の周波数で両者とも動作するように設計されてもよい。
【0051】
図7のaと7のbを参照すると、光マグネトロンの別の実施形態が示され、22cで示されている。この実施形態は1つおきのスロット80(即ち全ての偶数番号のスロットまたは全ての奇数番号のスロット)がどのようにそれぞれの共振空洞から共通の共振空洞66へエネルギを結合するための1より多数の結合ポート64を含んでいるかを示している。例えば図7のaは陽極42中に形成される偶数番号のスロット80がどのようにそれぞれのスロット80に3または4の結合ポート64を交互に有しているかを示している。他の実施形態のように、結合ポート64はエネルギを共通の共振空洞66に結合し、それによって発振モードをさらに良好に制御し、πモード動作を誘起する。また、図7のaと7のbで示されているように、光マグネトロン22cは共振空洞66から出力ウィンドウ76を経て出力光放射24を結合するための多数の出力ポート74a、74b、74c等を含んでもよい。ここで説明されているように、出力ポート74および/または結合ポート64のアレイを形成することによって、認識されるように行われる結合量を制御することが可能である。
【0052】
図7のaでは示されていないが、共通の共振空洞66が例えば図5の実施形態のようなトロイダル形状の空洞と置換できることが認識されるであろう。さらに、本発明による光マグネトロン22はここで説明されている種々の特徴および実施形態の任意の組合わせ、即ち(i)光波長程度の小さい寸法まで所望の動作波長にしたがってスケールされてもよい複数の共振空洞80を具備した陽極構造と、(ii)共振空洞80をいわゆるπモードで動作させ、それによって各共振空洞80を最も近い隣接する空洞とπラジアン異なる位相で発振させる構造と、(iii )有効な出力パワーを転送するために共振空洞から光放射を結合する手段により構成されてもよいことが容易に認識されよう。異なるスロット80構造がここで説明され、これは共振空洞を拘束する1以上の共通の共振空洞の異なる形態である。さらに、ここでの説明は結合ポート64と出力ポート74の種々の形態および配置により共振空洞からパワーを結合する手段を与える。他方で、本発明は最も広い意味において、ここで説明する特定の構造に限定されることを意図しない。
【0053】
図8を簡単に参照すると、本発明の垂直に積層されたマルチ周波数の実施形態が示されている。この実施形態では、陽極42は上部陽極42aと下部陽極42bとに分割されている。上部陽極42aには、スロット80aが第1の動作周波数λ に対応する幅、間隔、数で設計されている。他方で、下部陽極42bのスロット80bは第1の動作周波数λ とは異なる第2の動作周波数λ に対応する幅、間隔、数で設計されている。
【0054】
上部陽極42aの偶数番号のスロット80aは、例えば上部陽極42aで形成された回転電子雲から上部の共通の共振空洞66aへエネルギを結合する結合ポート64aを含んでいる。同様に、下部陽極42bの偶数(または奇数)番号のスロット80bは下部陽極42b中に形成された回転電子雲から下部の共通の共振空洞66bへエネルギを結合する結合ポート64bを含んでいる。上部および下部の共通の共振空洞66aと66bは上部陽極42aと下部陽極42bのそれぞれの周波数λ とλ でπモード発振を行うように作用する。共通の共振空洞66aと66bからのエネルギはそれぞれ1以上の出力ポート74aと74bを経て出力ウィンドウ76を通って出力される。
【0055】
したがって、図8で示されているように本発明は異なる動作周波数(例えばλ とλ )をそれぞれ有する2以上の陽極共振器を垂直に積層する方法を提供する。陽極(例えば上部陽極42aと下部陽極42b)は1対の磁石58と60間に垂直に積層されてもよい。積層された装置はそれ故多数の周波数を放出する。例えば可視光周波数で動作するマグネトロンでは、赤、緑、青波長で発振する陽極共振器は1つの装置で垂直に積層されてもよい。光出力は色ディスプレイの一部として別々に使用してもよく、例えば白色光源を生成するために結合されてもよい。
【0056】
図9および図10は結合ポート64を経て出力ウィンドウ76を通って直接出力結合を与える本発明の1実施形態を示している。図10は陽極−陰極空間44内の回転する電子雲が通過するとき、それがどのようにしてスロット80の開口と結合ポート64にフリンジフィールド90を生成するかを示している。結合ポートの開口のフリンジフィールド90は出力放射フィールド92として陽極42の反対側から放射される。
【0057】
図9は図10で表されているように出力放射フィールド92が直接出力ウィンドウ76を通って出力されている1実施形態を示している。ここで説明されている他の実施形態では、結合ポート64を通る放射は図10で表されている方法と同様に、最初に共通の共振空洞66へ導入される。共通の共振空洞66は前述したようにπモード動作の改良された制御を与える。それにもかかわらず、本発明は恐らく効率は劣るが、結合ポート64が出力ウィンドウ76へ直接的に出力放射を与える場合に有効である1実施形態を考慮する。このような場合、図9で示されているように、出力放射を出力ウィンドウ76へ誘導する以外にはスロット80に結合ポート64は必要ではない。しかしながら、図10の結合原理は認識されるようにここで説明した全ての結合ポート64と出力ポート74へ適用される。
【0058】
図11のa−cは、本発明によるTEM20モードの動作用に設計された光マグネトロン22eの1実施形態を示している。この実施形態は、湾曲した外部壁70を有するトロイダル形状の共振空洞66を含んでいる点で、図5を伴って前述した実施形態と類似している。この実施形形態は、偶数番号のスロット80が図11のbで示されているように湾曲した外部壁70の頂点と整列している単一の結合ポート64aを有する点で図5の実施形態と異なる。結果として、偶数番号のスロット80は共振空洞66の中心スポット100 を励起する傾向がある。他方で、奇数番号のスロット80は図11のcで示されているように、湾曲した外部壁70の頂点の反対側で垂直にオフセットする2つの結合ポート64bと64cを含んでいる。したがって、奇数番号のスロット80は共振空洞66の中心スポット102 を励起する傾向がある。結果はトロイダル形状の共振空洞66内のTEM20の単一モードである。中心スポット100 は外部スポット102 の電界の方向(例えば紙面の方向)と反対の電界の方向(例えば図11のbと図11のcの紙面から上方へ出る)を有する。電界は各半サイクルの振動で方向を変更する。偶数番号のスロット80はしたがって、奇数番号のスロット80に関して逆位相で駆動された電界を有し、スロット80を所望のπモードで動作させるように作用する。
【0059】
図11のd−fは、本発明によるTEM10モードの動作用に設計された光マグネトロン22fの1実施形態を示している。この実施形態は、湾曲した外部壁70を有するトロイダル形状の共振空洞66を含んでいる点で、図5に関して前述した実施形態と類似している。この実施形形態は、偶数番号のスロット80が図11のeで示されているように湾曲した外部壁70の頂点の上方にオフセットされている結合ポート64aを有する点で図5の実施形態と異なる。結果として、偶数番号のスロット80は共振空洞66の上部スポット104 を励起する傾向がある。
【0060】
反対に、奇数番号のスロット80は図11のfで示されているように湾曲した外部壁70の頂点の下方にオフセットされている結合ポート64bを含んでいる。結果として奇数番号のスロット80は共振空洞66の下部スポット106 を励起する傾向がある。この場合、結果はトロイダル形状の共振空洞66内のTEM10の単一モードが得られる。上部スポット104 は、下部スポット106 の電界の方向(例えば紙面から上方へ)と反対の電界方向(例えば図11のeと図11のfの紙面方向)を有する。小さい突出部108 または“スポイラ”はTEM00モードの抑制を助けるために湾曲した外部壁70の頂点で共振空洞66の周囲に設けられてもよい。上部および下部スポットのそれぞれの電界は振動の半サイクル毎に方向を変化する。したがって偶数番号のスロット80は奇数番号のスロット80に関して逆位相で駆動される電界を有し、スロット80を所望のπモードで動作させる。
【0061】
図11のa−fは本発明にしたがった2つの可能な単一モードを示している。しかしながら、他のTEMモードも本発明の技術的範囲を逸脱せずにπモード制御で使用されてもよいことが認識されよう。
【0062】
製造に関する限り、マグネトロン22の陰極40は認識されるように任意の種々の導電性金属で形成されてもよい。陰極40は固体であってもよく、または銅、金または銀等の導電性金属で単にメッキされるか、例えば螺旋状に巻付けられたトリウムタングステンフィラメントから製造されてもよい。代わりに、炭素微小管等のマイクロ構造から構成される電界放出陰極40が使用されてもよい。
【0063】
陽極42は導電性金属から形成され、および/または銅、金または銀等の導電層でメッキされた非導電性金属から形作られている。共振空洞構造72は導電性であっても導電性でなくてもよく、共振空洞66と出力ポート74の壁は銅、金または銀等の導電材料でメッキされるかその材料で形成される。陽極42と共振空洞構造72は認識されるように別々または1つの一体化した部材として形成されてもよい。
【0064】
図12のaおよびbは、電子ビームリソグラフィ方法を使用して陽極42を製造する1つの例示的な方法を示している。円筒形の中空アルミニウムロッド110 は陽極42の所望の内部半径r に等しい半径を有するように選択されている。ポジのフォトレジストの層112 は例えば図12のaで示されているようにロッド110 の周面に形成されている。ロッド110 の軸に沿ったレジスト層112 の長さlは陽極42の所望の長さの程度で作られるべきである(例えば1センチメートル(cm)乃至2cm)。レジスト層112 の厚さは共振空洞またはスロット80の所望の深さに等しいように制御される。
【0065】
ロッド110 は図12のbで表されているように例えば半導体の製造に使用される電子ビームパターン化装置内のジグ114 に配置されている。それから、電子ビーム116 はロッド110 の軸に平行にレジスト層112 の長さに沿って個々のラインを露光することによりパターン化するように制御される。認識されるように、これらのラインは陽極42中に共振器空洞またはスロット80の側面を形成する役目をする。ラインは隣接スロット80間の間隔に等しい幅(例えば図4のaおよびcのような実施形態の場合、量λ/2−λ/8)を有するように制御される。ラインはスロット80の所望の幅w(例えば図4のaおよびcのような実施形態の場合、λ/8)相互から隔てられている。
【0066】
パターン化されたレジスト層112 はその後現像され、レジスト層112 の露光された部分が除去されるようにエッチングされる。この結果、陽極42に形成されるスロット80にそれぞれ対応してレジストから作られた幾つかの小さいフィンまたはベーンを有するロッド110 が得られる。ロッド110 および対応するフィンまたはベーンはその後、陽極42の所望の外部直径に対応する厚さ(例えば2mm)まで銅で電子メッキをされる。認識されるように、銅のメッキはメッキが最終的にロッド110 を実質上均等にカバーするまでフィンまたはベーンを囲んで形成される。
【0067】
レジストから作られるアルミニウムロッド110 およびフィンまたはベーンはその後、アルミニウム/レジストと銅間で選択されることが知られている任意の利用可能な溶剤によりアルミニウムとレジストを化学的に溶解することによって銅メッキから除去される。ロストワックスキャスティングとして知られる技術と類似して、残っている銅メッキは所望の共振空洞またはスロット80を有する陽極42を形成する。
【0068】
ネガのフォトレジストによりスロットの逆パターンの形成を除いて、等価の構造が同一技術により形成されてもよいことが認識されよう。
【0069】
図4のbの実施形態のような異なる深さを有するスロット80は同じ技術を使用して形成されてもよいが多数の層のレジストを使用する。第1のレジスト層112 は長いスロット80aと短いスロット80b(図4のb)との両者に対応してアルミニウムロッド110 上にフィンまたはベーンを形成するようにパターン化されエッチングされる。第1のレジスト層112 は短いスロットの深さに対応する厚さdsを有する。第2の、後続するレジスト層112 は第1のパターン化層上に形成される。第2の層112 は長いスロット80の形成に使用されるフィンまたはベーンの残りの部分を形成するようにパターン化される。換言すると、第2の層112 は厚さdl−dsを有する。種々の結合ポート64は同じ方法で形成されてもよいが、所望の位置に結合ポート64を規定するため付加的なレジスト層112 を有する。ロッド110 とレジストはその後銅メッキされ、それによって例えばロッド110 とその後溶解されるレジストを有する陽極42を形成する。結合ポート64を形成する同じ技術は認識されるように、図4のcの前述した製造技術に適用されてもよい。
【0070】
図13は既知のマイクロ機械加工/フォトリソグラフィ技術を使用して陽極42が垂直な積層として形成されてもよい方法を示している。銅のような第1の金属層は基体上に形成される。フォトレジスト層が銅に形成され、その後銅は(例えば電子ビームにより)パターン化またはエッチングされて、陽極42の軸に垂直な平面で共振空洞またはスロット80を規定する。その後銅層がオリジナル層の上部に形成されエッチングされ、後に所望の長さの陽極42である積層を生成する。認識されるように、酸化物または幾つかの他の材料の平坦化が銅層の間で形成され、その後除去され、例えばその後銅層を付着するとき存在しているスロットを充填することを防止する。またこのような酸化物は、所望ならば結合ポート64を規定するために使用されてもよく、このような酸化物は選択的な酸化物/銅エッチングにより次の工程で除去される。
【0071】
認識されるように、半導体装置の製造に使用される既知のフォトリソグラフィおよびマイクロ機械加工技術は、陽極42および対応する共振空洞(例えばスロット80)の所望の溶解を得るために使用されてもよい。それにもかかわらず本発明は最も広い意味において、ここで説明されている特別な方法に限定されることを意図するものではない。
【0072】
図14のa−cはここで説明されているようにトロイダル形状を有する共振洞構造72を形成する技術を示している。例えば、アルミニウムロッド120 は図14のaで示されているように中間に隆起部122 を有するように機械加工される。上部および下部124 のロッドの半径は、陽極42の外部半径にほぼ等しく設定され、その陽極42周辺に構造72が適合する。隆起部122 は構成される構造72の頂点に対応した半径を有するように機械加工される。
【0073】
その後、隆起部122 は前述したように壁70の湾曲したトロイダル形状を規定するように丸くされる。次に、このように機械加工されたロッド122 は図14のbで表されているように構造体72をその周囲に形成するため銅で電気メッキされる。アルミニウムロッド120 は図14のcに示されているように構造体72が得られるように銅の構造体72から化学的に溶解される。出力ポート74は例えばマイクロ機械加工(例えばレーザミリング)を使用して必要なときに形成されることができる。
【0074】
本発明により、光マグネトロンの別の実施形態で使用するのに適した種々の異なる陽極構造42に関連して図15乃至38を参照する。認識されるように、図15乃至38で示されている陽極42はここで前述した他の実施形態、例えば図5乃至9の実施形態の陽極42で置換されることができる。各陽極42は陰極40(図示せず)が同軸に位置される陽極−陰極空間を規定する内部表面50を有する中空の円筒形状を有している。特定の実施形態に応じて、1以上の共通共振空洞66(図示せず)は前述の実施形態のように共振空洞構造72(図示せず)を介して陽極42の外部周囲周辺に形成される。陽極42自体の構造だけがここで説明する種々の実施形態に関して関連部分において異なるので、以下の説明は簡潔にする目的で陽極42に限定される。本発明はここで前述したような任意または全ての異なる陽極構造42を具備する光マグネトロンを考慮していることが当業者により認識されるであろう。さらに、陽極構造42は光範囲外の帯域幅のマグネトロンの一部として有用性を有し、本発明の一部として考慮されることが認識されるであろう。
【0075】
特に、図15−図18は本発明の別の実施形態による陽極42を表している。図15で示されているように、陽極42は内部表面50と外部表面68とを有する中空の円筒形状を有する。前述の実施形態のように、複数のN個(ここでNは偶数)のスロットまたは空洞80は内部表面50に沿って形成される、スロット80は共振空洞として機能する。スロットまたは空洞80の数および寸法は前述したように所望の動作波長λに依存している。陽極42はここでは単にウェッジと呼ぶ複数のパイ形のウェッジ素子150 により形成されている。並んで結合されるとき、ウェッジ150 は図15で示されているような陽極構造42を形成する。
【0076】
図16は例示的なウェッジ150 の平面図である。各ウェッジ150 は(2π/N)ラジアンに等しい角度幅φと、陽極42の内部半径raに等しい内部半径raを有する。ウェッジ150 の外部半径roは陽極42の外部半径ro(即ち外部表面68までの半径方向の距離)に対応する。各ウェッジ150 はその頂点に沿って形成される凹部152 をさらに含んでおり、隣接ウェッジ150 の側壁154 と組合わせてN個のうち1つの共振空洞80を規定する。
【0077】
図16に示されているように、各凹部152 はdに等しい長さを有し、この長さは各共振空洞80の深さに等しい。さらに各凹部152 は幅wを有し、これは各共振空洞80の幅に等しい。したがって、共に並んで結合されるとき、ウェッジ150 は陽極42の内部表面50を囲んでN個の共振空洞80を形成する。数N、深さ、幅、共振空洞80の間の間隔は前述したように所望の動作波長に基づいて選択され、ウェッジ150 の寸法はそれに応じて選択される。各ウェッジ150 の長さL(例えば図17参照)は認識されるように、陽極42の所望の高さに等しく設定される。
【0078】
前述の実施形態のように、ウェッジ150 は陽極42の周囲に配置されている偶数番号および奇数番号のウェッジ150 として公称上考慮されてもよい。偶数番号のウェッジ150 は偶数番号の空洞80を生成する凹部152 を含み、奇数番号のウェッジ150 は奇数番号の空洞80を生成する凹部152 を含んでいる。図17および図18はそれぞれ偶数番号と奇数番号のウェッジ 150aと 150bの前側部を示している。偶数番号と奇数番号のウェッジ 150aと 150bの前方部分はそれぞれ図17および図18で示されているように凹部152 を含んでいる。しかしながら、さらに各奇数番号のウェッジ 150bは図18で示されているように結合ポート凹部164 を含んでいる。各結合ポート凹部164 は隣接ウェッジ 150aの後側壁154 と組合わせて奇数番号の空洞80から共通の共振空洞72へエネルギを結合する単一モード導波体として動作する結合ポート64を形成する。ただ1つのこのような結合ポート64が例示により図15で示されていることに注意すべきである。認識されるように、各ウェッジ150 の後側壁154 は各ウェッジ150 の前側壁166 と同様に実質上平面である。したがって、凹部152 と164 は所望の共振空洞80と結合ポート64を形成するため隣接ウェッジ150 の後側壁154 と結合する。
【0079】
ウェッジ150 は所望ならばメッキ(例えば金)されている銅、アルミニウム、真鍮等の種々の導電材料から作られてもよい。代わりに、ウェッジ150 は少なくとも共振空洞80と結合ポート64が形成される領域において導電性材料でメッキされている幾つかの非導電性の材料から作られてもよい。
【0080】
ウェッジ150 は任意の種々の既知の製造技術を使用して形成されることができる。例えばウェッジ150 は正確なミリング機械を使用して機械加工されてもよい。代わりにレーザ切断および/またはミリング装置がウェッジの形成に使用されてもよい。別の方法として、リソグラフ技術が所望のウェッジの形成に使用されてもよい。このようなウェッジの使用は所望されるようにそれぞれの寸法の正確な制御を可能にする。
【0081】
ウェッジ150 の形成後、これらは陽極42を形成するため適切な順序(即ち偶数番号−奇数番号−偶数番号−奇数番号)で配置される。ウェッジ150 は対応するジグによって位置に保持され、はんだ付け、鑞付、または、一体化した装置を形成するためにその他の方法でウェッジが共に結合される。
【0082】
図15−図18の実施形態は、偶数番号/奇数番号の空洞80が結合ポート64を有し、奇数番号/偶数番号の空洞80がこのような結合ポート64を持たない点でのみ図5の実施形態と類似している。1つおきの空洞80の共通の共振空洞66への結合は同じ方法でπモード動作を誘起する。
【0083】
図19−図23は陽極42の別の実施形態に関する。このような実施形態はウェッジベースの構造である限りでは類似しており、簡単にするために違いのみを説明する。図19は概略断面図で陽極42を示している。この特別な実施形態では、各共振空洞80は、さらにπモード動作を誘起するために、共振空洞80と1以上の共通の共振空洞66との間でエネルギを結合するための単一モードの導波体としてそれぞれ作用する結合ポート64を含んでいる。奇数番号のウェッジ 150bにより形成される結合ポート64は、適切な位相関係を与えるように、偶数番号のウェッジ 150aにより形成される結合ポート64に関して付加的に1/2λの遅延を誘起する。
【0084】
図19は特定の実施形態の奇数番号のウェッジ 150bが、対応する共振空洞80を形成する凹部152 と陽極42の外部表面68との間でH平面方向の角度で放射状に延在する凹部 164bをどのように含んでいるかを示している。他方で偶数番号のウェッジ 150aは対応する共振空洞80を形成する凹部152 と外部表面68との間の中心軸に垂直に放射状にそれぞれ延在する1対の凹部 164aをそれぞれ含んでいる。(図19で示されているように偶数番号のウェッジ150 は凹部 164aを明白に図示するためその目的とする方向付けに関してフリップされていることが認識されよう。)
凹部 164bが奇数番号のウェッジで形成される角度は、凹部 164aと比較して全体的に付加的1/2λ遅延をそれぞれ導入するように選択されている。したがって偶数番号および奇数番号のウェッジ150 により形成される共振空洞80間で結合される放射は共通の共振空洞66に関して適切な位相関係を有する。
【0085】
図22および図23は図19の実施形態の奇数番号のウェッジ 150bが上方向と下方向の角度間でどのように交差しているかを示している。これによって、認識されるように、陽極−陰極空間と共通の共振空洞66(図示せず)内の軸方向に関するエネルギのより多くの分布が可能である。
【0086】
図24−図27は偶数番号のウェッジにより形成された結合ポート64に関して付加的な1/2λ遅延を導入するように、奇数番号のウェッジにより形成される結合ポート64のH平面湾曲を使用する陽極42の別の実施形態を示している。偶数番号のウェッジ 150aは図19−図23の実施形態のウェッジに類似している。しかしながら奇数番号のウェッジ 150bはそれぞれH平面に関する角度で示されている1対の凹部 164bを含んでいる。各凹部 164bは隣接するウェッジ 150aの後側壁154 と組合わせて単一モードの導波体を形成するように設計されている。凹部 164bは偶数番号のウェッジの凹部 164aと比較してそれぞれ付加的に1/2λ遅延を与えるようにH平面に沿って湾曲される。したがって、共振空洞80と1以上の周囲の共通の共振空洞66(図示せず)との間の所望の位相関係がπモード動作に対して与えられる。さらに、各凹部 164bは1対の湾曲部170 および172 を含んでいるので、凹部 164bにより形成される結合ポート64は陽極42の軸方向に沿って均一に分布される。したがってこのような実施形態は2つの異なる奇数番号のウェッジ 150b1と 150b2と呼ばれる図19−図23の実施形態よりも好ましい。図24で示されているような偶数番号のウェッジ 150aは凹部 164aを明白に図示するためにその目的とする方向付けに関してフリップされていることも認識されよう。
【0087】
図28と図29は陽極42のウェッジベースの構造のさらに別の実施形態を示している。この実施形態は以下の方法で図19−図23の実施形態と異なる。偶数番号のウェッジ 150aは2つではなく3つの凹部 164aを含んでいる。奇数番号のウェッジ 150b1と 150b2は1つではなく2つの凹部 164bを含んでいる。認識されるように、それぞれのウェッジ150 で形成される凹部164 の数は本発明において任意であり特定の数に限定されない。凹部164 の数は認識されているように、陽極−陰極空間と共通の共振空洞66との間の所望の結合量に基づいて選択されることができる。図28で示されているように偶数番号のウェッジ 150aは凹部 164aを明白に図示するためにその目的とする方向付けに関してフリップされていることが再度認識されよう。
【0088】
図30−図33を参照すると、陽極42のさらに別の実施形態が与えられ、これはπモード動作を誘起するために奇数番号のウェッジ 150bと比較して偶数番号のウェッジ 150aにより形成される結合ポート64において付加的な1/2λの遅延を使用する。しかしながら、この実施形態では付加的な1/2λの遅延は(H平面湾曲を導入するものと比較して)凹部164 の相対的な幅を調節することにより与えられる。特に、各奇数番号のウェッジ 150bは結合ポート64の役目をする単一モードの導波体を形成するために、隣接ウェッジ 150aの後側壁154 と結合する1対の凹部 164bを含んでいる。他方で偶数番号のウェッジ 150aは凹部 164bの幅よりも比較的広い幅174 を有する凹部 164aを含んでいる。導波体理論から知られているように、凹部 164aの適切に選択された広い幅174 は凹部 164bと比較して付加的な1/2λ遅延を与えるように選択されてもよい。したがって、奇数番号および偶数番号のウェッジにより形成される結合ポート64間の所望の位相関係がπモード動作に対して得られる。
【0089】
図34−図38は、πモード動作で所望の付加的な1/2λの遅延を与えるため結合ポート64のE平面における湾曲を使用する陽極42の1実施形態に関する。図34に示されているように、陽極42は間にスペーサ部材(図示せず)が存在しまたは存在しないで重ねて積層されている幾つかの層180 から構成されている。層180 は積層内で交互の偶数番号の層 180aまたは奇数番号の層 180bと公称上呼ばれている。偶数番号の層 180aは陽極−陰極空間と1以上の共通の共振空洞66(図示せず)との間でエネルギを結合するように機能する結合ポート64を形成する線形導波体を含んでいる。奇数番号の層 180bは、E平面で湾曲され、陽極−陰極空間と1以上の共通の共振空洞66との間でエネルギを結合するように機能する結合ポート64を形成する導波体を含んでいる。奇数番号の層 180bの導波体は所望のπモード動作を与えるために偶数番号の層 180aの導波体と比較して付加的な1/2λ遅延を導入するように湾曲される。
【0090】
図35および図36は例示的な偶数番号の層 180aを示している。各層 180aはN/2個の誘導素子182 からなり、ここでNは前述の共振空洞80の所望の数である。ガイド素子182 はそれぞれ図36に示されているようにウェッジの形状で形成されている。ガイド素子182 は陽極42の内部表面50と外部表面68を規定する層を形成するため図35で示されているように並んで配置されている。各ウェッジのチップはそこに共振空洞80を規定するスロットを含んでいる。さらに、隣接するガイド素子182 は図36で示されているように間に共振空洞80を形成するように隔てられている。認識されるように、各層180 に形成される共振空洞80は層180 が共に積層されるとき整列される。層間のこのような整列を容易にするためガイド素子182 に穴またはマーク184 が整列して設けられてもよい。
【0091】
図36で最良に示されているように、ガイド素子182 間の空間は偶数番号の共振空洞80と陽極42の外部表面68との間の結合ポート64として役目をする放射状にテーパーを有する導波体を規定している。ガイド素子182 の厚さは、結合ポート64が所望の動作波長λに対応してH平面の高さを有するように定められる。同様に、共振空洞80の寸法と、ガイド素子182 の間隔は所望の波長λに対して選択される。
【0092】
ガイド素子182 は共振空洞と結合ポート64の導電壁を規定するために銅、ポリシリコン等の導電材料から作られている。代わりに、ガイド素子182 は少なくとも共振空洞と結合ポート64の壁を規定する部分を導電メッキした非導電性材料から作られてもよい。
【0093】
(図36に部分的に示されている)スペーサ素子186 は陽極42を形成する積層の隣接層180 間で形成されている。スペーサ素子186 は層180 の結合ポート64の導電性のE平面壁を与えるように少なくとも関連部分では導電性である。スペーサ素子186 は陽極42の内部半径raに等しい内部半径を有する座金形のものであってもよい。
【0094】
図37と図38は例示的な奇数番号の層 180bを示している。奇数番号の層 180bは、ガイド素子182 が結合ポート64を形成するテーパーを有する導波体のE平面方向で所望の湾曲を与えるように湾曲されている点を除いて偶数番号の層と類似した構造である。湾曲の特定の曲率半径はπモード動作で偶数番号の層 180aの結合ポート64に関して所望の付加的な1/2λの遅延を与えるように計算される。また、奇数番号の層 180b中の結合ポート64は、偶数番号の層 180aのような偶数番号の共振空洞80ではなく陽極42の外部表面68へ奇数番号の共振空洞80を結合する役目を行う。
【0095】
図34−図38の実施形態は認識されるように既知のフォトリソグラフ製造方法に特に適している。大型の陽極42は真直ぐの導波体の層 180a間に挿入されたE平面湾曲部の層 180bから構成されることができる。層はフォトリソグラフ技術を使用して形成され組立てられてもよい。高い光波長における動作に対しても適切な寸法によって所望の解像度で実現されることができる。ガイド素子182 は例えば銅またはポリシリコンから形成されてもよい。結合ポート64を形成する導波体は所望ならば層180 間に平面化を与えるように適切な誘電体で充填されてもよい。層180 間のスペーサ186 は認識されるように銅、ポリシリコン等から形成されてもよい。
【0096】
別の実施形態では、各層180 は陽極の外部表面68へ向けて放射状に外方向に各共振空洞80から延在する結合ポート64と同一である。しかしながらこの場合、奇数番号の共振空洞80に対応する結合ポート64の高さは、偶数番号の共振空洞80に対応する結合ポート64の高さよりも大きい。高さの差は図30−図33の実施形態に関して前述したように幅の差に対応し、πモード動作に対する偶数番号の共振空洞80の結合ポート64に関して所望の付加的な1/2λの遅延を発生するために与えられる。
【0097】
それ故、本発明の光マグネトロンは通常のマグネトロンでは可能ではない周波数で動作するのに適していることが認識されよう。本発明の光マグネトロンは赤外線および可視光領域内および紫外線、x線等のさらに高い周波数の帯域を超える周波数で高効率で高いパワー電磁エネルギを発生できる。その結果として、本発明の光マグネトロンは長距離光通信、商用および産業用の照明、製造等のような種々の応用の光源として機能する。
【0098】
ある好ましい実施形態に関して本発明を示し説明したが、当業者には明細書を読み理解したときその均等物と変形が可能であることは明白である。例えば、スロットは共振空洞の最も簡単な形態として設けられるが、他の形態の共振空洞が本発明の技術的範囲を逸脱せずに陽極において使用されてもよい。
【0099】
さらに、πモード動作を行うための好ましい実施形態を詳細に説明したが、他の技術も本発明の技術的範囲内に含まれる。例えば、交差結合がスロット間で行われてもよい。スロット80は1/2λだけ隔てられ、結合チャンネルは隣接スロット80間に設けられる。スロットからスロットへの結合チャンネルは3/2λである。別の実施形態では、複数の光共振器は隣接しないスロットが対応する1つの光共振器で単一発振モードに結合することによって逆位相で発振するように制限されている陽極構造の周辺に埋設される。他の手段もここでの説明に基づいて明白であろう。
【0100】
さらに、πモード発振を制御するために湾曲した表面とTEMモードを使用するここで説明したトロイダル共振器はその他の一般的なマグネトロンで使用されてもよいことが認識されよう。特に、トロイダル共振器に関する本発明の特徴は100Ghzよりも下のマイクロ波周波数で動作するような非光学的なマグネトロンのπモード発振を制御するのに使用されてもよい。
【0101】
本発明は全てのこのような均等物および変形を含んでおり、特許請求の範囲に記載された技術的範囲によってのみ限定される。
【図面の簡単な説明】
【図1】
光通信システムの一部として本発明による光マグネトロンの使用を示した環境図。
【図2】
本発明の1実施形態にしたがった光マグネトロンの断面図。
【図3】
図2の破線I−Iに沿った光マグネトロンの水平断面図。
【図4】
各陽極が本発明の1実施形態にしたがって共振空洞を含んでいる本発明による陽極の一部分の拡大断面図。
【図5】
本発明の別の実施形態にしたがった光マグネトロンの断面図。
【図6】
本発明のさらに別の実施形態にしたがった光マグネトロンの断面図。
【図7】
本発明の別の実施形態にしたがった光マグネトロンの断面図と、その光マグネトロンの断面の平面図。
【図8】
本発明のマルチ波長の実施形態にしたがった光マグネトロンの断面図。
【図9】
本発明の別の実施形態にしたがった光マグネトロンの断面図。
【図10】
出力結合を示している陽極の一部分の拡大斜視図。
【図11】
TEM20モードで動作するように設計された本発明の1実施形態と、TEM10モードで動作するように設計された本発明の1実施形態とを示す概略図。
【図12】
本発明の1実施形態にしたがって陽極構造を形成するために使用されるステップを示す説明図。
【図13】
本発明にしたがって陽極構造を形成する別の方法を示す説明図。
【図14】
本発明にしたがってトロイダル光共振器を形成するために使用されるステップを示す説明図。
【図15】
本発明のウェッジベースの実施形態によって形成された陽極構造の平面図。
【図16】
本発明にしたがって図15の陽極構造を形成するために使用される例示的なウェッジの平面図。
【図17】
本発明にしたがって図15の陽極構造を形成するために使用される各偶数番号のウェッジの側面図。
【図18】
本発明にしたがって図15の陽極構造を形成するために使用される各奇数番号のウェッジの側面図。
【図19】
本発明にしたがった陽極構造のH平面湾曲の実施形態の概略断面図。
【図20】
本発明にしたがった図19の陽極構造の形成に使用される例示的なウェッジの平面図。
【図21】
本発明にしたがった図19の陽極構造の形成に使用される偶数番号のウェッジの側面図。
【図22】
本発明にしたがった図19の陽極構造の形成に使用される交互の奇数番号のウェッジの側面図。
【図23】
本発明にしたがった図19の陽極構造の形成に使用される交互の奇数番号のウェッジの側面図。
【図24】
本発明にしたがった陽極構造の別のH平面湾曲の実施形態の概略断面図。
【図25】
本発明にしたがった図24の陽極構造の形成に使用される例示的なウェッジの平面図。
【図26】
本発明にしたがった図24の陽極構造の形成に使用される偶数番号のウェッジの側面図。
【図27】
本発明にしたがった図24の陽極構造の形成に使用される奇数番号のウェッジの側面図。
【図28】
本発明にしたがった陽極構造の別のH面湾曲の実施形態の概略断面図。
【図29】
図28の陽極構造の形成に使用される1つおきの奇数番号のウェッジの側面図。
【図30】
本発明にしたがった陽極構造の分散ベースの実施形態の概略断面図。
【図31】
本発明にしたがった図30の陽極構造の形成に使用される例示的なウェッジの平面図。
【図32】
本発明にしたがった図30の陽極構造の形成に使用される偶数番号と奇数番号のウェッジの側面図。
【図33】
本発明にしたがった図30の陽極構造の形成に使用される偶数番号と奇数番号のウェッジの側面図。
【図34】
本発明にしたがった陽極構造のE平面湾曲の実施形態の側面図。
【図35】
本発明にしたがった図34の陽極構造の形成に使用される線形のE面層の上面図。
【図36】
本発明にしたがった図35の線形のE平面層の一部分の拡大図。
【図37】
本発明にしたがった図34の陽極構造の形成に使用される湾曲したE平面層の平面図。
【図38】
図37の湾曲したE面層の一部分の拡大図。

Claims (77)

  1. 光マグネトロンにおいて、
    陽極−陰極空間により分離された陽極および陰極と、
    陽極−陰極間にdc電圧を供給して陽極−陰極空間を横切って電界を設定するための電気接触部と、
    電界にほぼ垂直なdc磁界を陰極−陽極空間内に与えるように配置されている少なくとも1つの磁石と、
    陽極−陰極空間を規定する陽極表面に沿って開口をそれぞれ有する複数の共振空洞とを含んでおり、
    前記陰極から放射された電子は電界および磁界により影響されて陽極−陰極空間を通る通路を移動し、前記共振空洞に共振フィールドを生成するために前記共振空洞の開口に近接して通過し、
    前記各共振空洞は約10ミクロン以下の波長λを有する周波数で共振するようにそれぞれ設計される光マグネトロン。
  2. 前記複数の共振空洞は、陽極に形成される実質上等しい深さの複数の放射状スロットを具備している請求項1記載のマグネトロン。
  3. 前記複数の共振空洞は、陽極に形成される少なくとも2つの異なる深さの交互に配置された放射状スロットを具備している請求項1記載のマグネトロン。
  4. 前記複数の共振空洞は、複数の放射状スロットを具備し、それら複数の放射状スロットの少なくとも幾つかは共通の共振器に結合されている請求項1記載のマグネトロン。
  5. 前記共通の共振器は陽極の外周を囲んでいる少なくとも1つの共通の共振空洞を具備している請求項4記載のマグネトロン。
  6. 前記共通の共振器は1つの共通の共振空洞を具備し、陽極に形成される複数の放射状スロット中で1つおきのみの放射状スロットがその共振空洞に結合されている請求項5記載のマグネトロン。
  7. 前記共通の共振器は陽極の外周を囲んでいる複数の共通の共振空洞を具備している請求項5記載のマグネトロン。
  8. 前記陽極に形成される複数の放射状スロット中で奇数番号のスロットが複数の共通の共振空洞の第1の空洞に結合され、偶数番号のスロットが複数の共通の共振空洞の第2の空洞に結合されている請求項7記載のマグネトロン。
  9. 前記共通の共振空洞は空洞の外部壁を規定する湾曲した表面を有している請求項5記載のマグネトロン。
  10. 前記複数の共振空洞の少なくとも1つは波長λを有する電磁エネルギを出力するために少なくとも1つの出力ポートに結合されている請求項1記載のマグネトロン。
  11. 前記出力ポートは波長λを有する電磁エネルギに透明である出力ウィンドウを具備している請求項10記載のマグネトロン。
  12. 請求項1の光マグネトロンと、
    情報を送信するために光マグネトロンの出力を変調する手段とを具備している通信システム。
  13. 半径rcを有する円筒形の陰極と、
    半径raを有し、幅wa=ra−rcを有する陽極−陰極空間を規定するため陰極と同軸に整列する環状形陽極と、
    陽極と陰極との間にdc電圧を与え、陽極−陰極空間を横切って電界を設定するための電気接触部と、
    電界にほぼ垂直なdc磁界を陽極−陰極空間内に与えるように配置されている少なくとも1つの磁石と、
    陽極−陰極空間を規定する陽極表面に沿って開口をそれぞれ有する複数の共振空洞を含んでおり、
    前記陰極から放射される電子は電界および磁界により影響されて陽極−陰極空間を通る通路を移動し、前記共振空洞に共振フィールドを生成するために共振空洞の開口に近接して通過し、
    前記共振空洞は波長λで共振するようにそれぞれ設計され、陽極の表面の円周2πraはλよりも大きい光マグネトロン。
  14. 前記複数の共振空洞は陽極に形成された実質上等しい深さの複数の放射状スロットを具備している請求項13記載のマグネトロン。
  15. 前記複数の共振空洞は,陽極に形成された少なくとも2つの異なる深さの交互に配置された放射状スロットを具備している請求項13記載のマグネトロン。
  16. 前記複数の共振空洞は複数の放射状スロットを具備し、前記複数の放射状スロットの少なくとも幾つかは共通の共振器に結合されている請求項13記載のマグネトロン。
  17. 前記複数の共振空洞は陽極の外周を囲んでいる少なくとも1つの共通の共振空洞を具備している請求項18記載のマグネトロン。
  18. 前記共通の共振器は1つの共通の共振空洞を具備し、前記陽極に形成される複数の放射状スロット中で1つおきの放射状スロットが共振空洞に結合されている請求項17記載のマグネトロン。
  19. 前記共通の共振器は陽極の外周を囲んでいる複数の共通の共振空洞を具備している請求項17記載のマグネトロン。
  20. 前記陽極に形成された複数の放射状スロット中で奇数番号のスロットが複数の共通の共振空洞の第1の空洞に結合され、偶数番号のスロットが複数の共通の共振空洞の第2の空洞に結合されている請求項19記載のマグネトロン。
  21. 前記共通の共振空洞は空洞の外部壁を規定する湾曲した表面を有している請求項17記載のマグネトロン。
  22. 前記複数の共振空洞の少なくとも1つは波長λを有する電磁エネルギを出力するために少なくとも1つの出力ポートに結合されている請求項13記載のマグネトロン。
  23. 前記出力ポートは波長λを有する電磁エネルギに透明である出力ウィンドウを具備している請求項22記載のマグネトロン。
  24. 陽極−陰極空間により分離される陽極および陰極と、
    陽極と陰極との間にdc電圧を供給して陽極−陰極空間を横切って電界を設定するための電気接触部と、
    電界にほぼ垂直なdc磁界を陽極−陰極空間内に与えるように配置されている少なくとも1つの磁石と、
    陽極−陰極空間を規定する陽極表面に沿って形成されたN個の共振空洞の高密度アレイとを含んでおり、N個の各共振空洞は開口を有し、それによって陰極から放射された電子は電界および磁界により影響されて陽極−陰極空間を通る通路を移動し、共振空洞に共振フィールドを生成するために共振空洞の開口に近接して通過し、
    ここで、Nは1000よりも大きい整数である光マグネトロン。
  25. Nは10,000よりも大きい請求項24記載のマグネトロン。
  26. Nは100,000よりも大きい請求項24記載のマグネトロン。
  27. Nは500,000よりも大きい請求項24記載のマグネトロン。
  28. 陽極−陰極空間により分離された陽極および陰極と、
    陽極−陰極との間にdc電圧を供給して陽極−陰極空間を横切って電界を設定するための電気接触部と、
    電界にほぼ垂直なdc磁界を陽極−陰極空間内に与えるように配置されている少なくとも1つの磁石と、
    陽極−陰極空間を規定する陽極表面に沿って開口をそれぞれ有する複数の共振空洞とを含んでおり、前記陰極から放射された電子は電界および磁界により影響されて陽極−陰極空間を通る通路を移動し、共振空洞に共振フィールドを生成するために共振空洞の開口に近接して通過し、
    さらに陽極の外周を囲んでいる共通の共振器を含んでおり、少なくとも前記複数の共振空洞のうちの幾つかがπモード動作を誘起するようにその共通の共振器に結合されているマグネトロン。
  29. 前記共通の共振器は単一の共通の共振空洞を具備し、前記陽極に形成される複数の共振空洞の中で1つおきの共振空洞だけが前記共通の共振空洞に結合されている請求項28記載のマグネトロン。
  30. 前記共通の共振器は陽極の外周を囲んでいる複数の共通の共振空洞を具備している請求項29記載のマグネトロン。
  31. 前記陽極で形成される複数の共振空洞中で奇数番号のスロットが複数の共通の共振空洞の第1の空洞に結合され、偶数番号のスロットが複数の共通の共振空洞の第2の空洞に結合されている請求項30記載のマグネトロン。
  32. 前記共通の共振空洞は空洞の外部壁を規定する湾曲した表面を有している請求項28記載のマグネトロン。
  33. 前記共通の共振器は波長λを有する電磁エネルギを出力するために出力ポートに結合されている請求項28記載のマグネトロン。
  34. マグネトロンは100ギガヘルツ以上の周波数で電磁エネルギを出力する出力部を含んでいる請求項28記載のマグネトロン。
  35. マグネトロンは100ギガヘルツ以下の周波数で電磁エネルギを出力する出力部を含んでいる請求項28記載のマグネトロン。
  36. 陽極−陰極空間により分離された陽極および陰極と、
    陽極−陰極との間にdc電圧を供給して陽極−陰極空間を横切って電界を設定するための電気接触部と、
    電界にほぼ垂直なdc磁界を陽極−陰極空間内に与えるように陽極の両端部に配置されている1対の磁石と、
    陽極−陰極空間を規定する陽極表面に沿って開口をそれぞれ有する複数の共振空洞とを含んでおり、その前記陰極から放射された電子は電界および磁界により影響されて陽極−陰極空間を通る通路を移動し、共振空洞に共振フィールドを生成するために共振空洞の開口に近接して通過し、
    陽極は少なくとも上部陽極と下部陽極を具備し、上部陽極の共振空洞は第1の波長を有する周波数で共振するようにそれぞれ設計され、下部陽極の共振空洞は第1の波長とは異なる第2の波長を有する周波数で共振するようにそれぞれ設計されているマグネトロン。
  37. 陽極と、陰極と、複数の共振空洞と、
    電気エネルギを陽極と陰極を供給して、複数の共振空洞を使用して電気エネルギを光放射へ変換する手段とを具備しているマグネトロン。
  38. 光マグネトロンの陽極を形成する方法において、
    第1の材料から作られている円筒形コアの外部表面の周囲にフォトレジスト層を形成し、
    フォトレジスト層をパターン化しエッチングして複数のスロットを規定するように円筒形コアの外部表面から放射的に延在する複数のベーンを形成し、
    フォトレジストおよび第1の材料とは異なる第2の材料により円筒形コアおよびベーンをメッキし、
    複数のスロットを有する円筒形の陽極を生成するためにメッキからベーンと円筒形コアを除去するステップを含んでいる方法。
  39. ベーンと円筒形コアは溶剤によって化学的に除去される請求項38記載の方法。
  40. パターン化ステップはフォトリソグラフ技術により行われる請求項38記載の方法。
  41. フォトリソグラフ技術は電子ビームリソグラフである請求項40記載の方法。
  42. 光マグネトロンの陽極を形成する方法において、
    陽極が作られる材料の層を形成し、
    前記層をパターン化しエッチングして陽極の内周に沿って形成される複数の共振空洞を有する円筒形陽極の第1の層を形成し、
    材料の少なくとも1つのその次の層を形成し、陽極の垂直の高さを増加するためにパターン化し、エッチングするステップを反復するステップを含んでいる方法。
  43. 陽極−陰極空間により分離される陽極および陰極と、
    陰極と陽極間に電圧を供給して陽極−陰極空間を横切って電界を設定するための電気接触部と、
    電界にほぼ垂直な磁界を陽極−陰極空間内に与えるように配置されている少なくとも1つの磁石とを含んでおり、
    前記陽極は中空のシリンダを形成するために並んで配置されている複数のウェッジを含み、各ウェッジはそこに位置されている陽極−陰極空間を有し、各ウェッジは陽極−陰極空間に露出されている開口を有する共振空洞を少なくとも部分的に規定している第1の凹部を具備しているマグネトロン。
  44. 各ウェッジはパイ形であり、ウェッジの狭い端部に沿って形成される凹部を含んでいる請求項43記載のマグネトロン。
  45. 複数のウェッジの第1のサブセットのウェッジはそれぞれ第2の凹部を含んでおり、それらの第2の凹部はウェッジと陽極の外部表面とにより規定される共振空洞間でエネルギを結合するための第1の結合ポートを少なくとも部分的に規定する請求項43記載のマグネトロン。
  46. 前記複数のウェッジは偶数番号と奇数番号のウェッジの交互のパターンとして配置され、複数のウェッジの第1のサブセットは偶数番号のウェッジを含んでいる請求項45記載のマグネトロン。
  47. 前記複数のウェッジの第2のサブセットのウェッジはそれぞれ第3の凹部を含んでおり、この第3の凹部はウェッジと陽極の外部表面とにより規定される共振空洞間でエネルギを結合するための第2の結合ポートを少なくとも部分的に規定している請求項46記載のマグネトロン。
  48. 複数のウェッジの第2のサブセットは奇数番号のウェッジを含んでいる請求項47記載のマグネトロン。
  49. 第2の結合ポートは第1の結合ポートに関して付加的に1/2λの遅延を与え、λはマグネトロンの動作波長を表している請求項48記載のマグネトロン。
  50. 第2の結合ポートは第1の結合ポートでは見られない少なくとも1つの湾曲部を含んでいる請求項49記載のマグネトロン。
  51. 湾曲部はH平面湾曲部である請求項50記載のマグネトロン。
  52. 第2の結合ポートは付加的な1/2λの遅延を与えるように第1の結合ポートに比較して幅が広くされている請求項49記載のマグネトロン。
  53. 陽極の外部表面を包囲する少なくとも1つの共通の共振空洞をさらに具備している請求項49記載のマグネトロン。
  54. 第1のサブセットと第2のサブセットの少なくとも1つのウェッジはそれぞれ複数の第2の凹部または第3の凹部を具備している請求項49記載のマグネトロン。
  55. 複数のウェッジは金属材料から形成されている請求項43記載のマグネトロン。
  56. マグネトロンは光波長スペクトル内の動作波長λを有している請求項43記載のマグネトロン。
  57. 陽極−陰極空間により分離される陽極および陰極と、
    陽極−陰極との間に電圧を供給して陽極−陰極空間を横切って電界を設定するための電気接触部と、
    電界にほぼ垂直な磁界を陽極−陰極空間内に与えるように配置されている少なくとも1つの磁石とを含んでおり、
    前記陽極は陽極−陰極空間が位置されている中空形のシリンダを形成するために重ねてスタックされている複数の座金形の層を含み、それら複数の層のそれぞれは複数の層の他の層の凹部と整列されている内部直径に沿った複数の凹部を含んでおり、陽極−陰極空間への開口をそれぞれ有するシリンダの軸に沿って複数の共振空洞を規定しているマグネトロン。
  58. 前記複数の層の第1のサブセットの層は層と陽極の外部表面により規定される1つの共振空洞間でエネルギを結合するために少なくとも1つの第1の結合ポートをそれぞれ含んでいる請求項57記載のマグネトロン。
  59. 前記複数の層は偶数番号と奇数番号の層の交互のパターンとして配置され、複数の層の第1のサブセットは偶数番号の層を含んでいる請求項58記載のマグネトロン。
  60. 前記複数の層の第2のサブセットの層は層と陽極の外部表面により規定される1つの共振空洞間でエネルギを結合するために少なくとも1つの第2の結合ポートをそれぞれ含んでいる請求項59記載のマグネトロン。
  61. 前記複数の層の第2のサブセットは奇数番号の層を具備している請求項60記載のマグネトロン。
  62. 前記第2の結合ポートは第1の結合ポートに関して付加的に1/2λの遅延を与え、λはマグネトロンの動作波長を表している請求項61記載のマグネトロン。
  63. 第2の結合ポートは第1の結合ポートでは見られない少なくとも1つの湾曲部を含んでいる請求項62記載のマグネトロン。
  64. 少なくとも1つの前記湾曲部は対応する層の平面にある請求項63記載のマグネトロン。
  65. 前記湾曲部はH平面の湾曲部である請求項63記載のマグネトロン。
  66. 前記複数の層のそれぞれは、層と陽極の外部表面により規定される1つの共振空洞間でエネルギを結合するための少なくとも1つの第1の結合ポートと、層と陽極の外部表面により規定される別の共振空洞間でエネルギを結合するための少なくとも1つの第2の結合ポートとを具備し、複数の隣接層の少なくとも1つの第1の結合ポートは結合されて、結合された第1の結合ポートを生成し、この結合された第1の結合ポートは、複数の隣接層の少なくとも1つの第2の結合ポートの組合わせにより形成された結合された第2の結合ポートに比較して幅が広くされている請求項57記載のマグネトロン。
  67. 結合された第1の結合ポートは結合された第2の結合ポートに関して付加的に1/2λの遅延を与え、λはマグネトロンの動作波長を表している請求項66記載のマグネトロン。
  68. 前記陽極の外部表面を包囲する少なくとも1つの共通の共振空洞をさらに具備している請求項57記載のマグネトロン。
  69. 前記複数の層のそれぞれは第1および第2の結合ポートを規定するため導電性の側壁を有するガイド素子の配置により形成されている請求項57記載のマグネトロン。
  70. 複数の層はそれぞれリソグラフで形成された層である請求項57記載のマグネトロン。
  71. マグネトロンは光波長スペクトル内の動作波長λを有している請求項57記載のマグネトロン。
  72. 陽極−陰極空間により分離される陽極および陰極と、
    陽極と陰極との間に電圧を供給して陽極−陰極空間を横切って電界を設定するための電気接触部と、
    電界にほぼ垂直な磁界を陽極−陰極空間内に与えるように配置されている少なくとも1つの磁石と、
    陽極−陰極空間を規定する陽極表面に沿って開口をそれぞれ有する複数の共振空洞とを含んでおり、前記陰極から放射された電子は電界および磁界により影響されて陽極−陰極空間を通る通路を移動し、共振空洞に共振フィールドを生成するために共振空洞の開口に近接して通過し、さらに、
    陽極の外周を囲んでいる共通の共振器を含んでおり、少なくとも複数の共振空洞のうちの幾つかがπモード動作を誘起するように結合ポートを介して結合されており、
    少なくとも幾つかの結合ポートは他の結合ポートに関して付加的に1/2λの遅延を生成し、λはマグネトロンの動作波長であるマグネトロン。
  73. 少なくとも幾つかの結合ポートは湾曲部をそれぞれ含んでいる請求項72記載のマグネトロン。
  74. 前記湾曲部は結合ポートのH平面にある請求項73記載のマグネトロン。
  75. 湾曲部は結合ポートのE平面にある請求項73記載のマグネトロン。
  76. 陽極−陰極空間が位置されている中空シリンダを形成するために複数のウェッジを並べて配置し、各ウェッジにおいて陽極−陰極空間に露出される開口を有する少なくとも部分的に共振空洞を規定する第1の凹部を形成するマグネトロンの陽極を製造する方法。
  77. 複数の座金形層を重ねて陽極−陰極空間が位置されている中空シリンダを形成し、複数の層の各層において、複数の層の他の層の凹部と整列されている複数の凹部を内部直径に沿って形成し、陽極−陰極空間への開口をそれぞれ有するシリンダの軸に沿って複数の共振空洞を規定するマグネトロンの陽極を製造する方法。
JP2002511359A 2000-06-01 2001-05-21 高効率の光放射発生用の光マグネトロンおよび1/2λ誘起πモード動作 Expired - Lifetime JP4970697B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/584,887 2000-06-01
US09/584,887 US6373194B1 (en) 2000-06-01 2000-06-01 Optical magnetron for high efficiency production of optical radiation
US09/798,623 US6504303B2 (en) 2000-06-01 2001-03-01 Optical magnetron for high efficiency production of optical radiation, and 1/2λ induced pi-mode operation
US09/798,623 2001-03-01
PCT/US2001/016622 WO2001097250A2 (en) 2000-06-01 2001-05-21 Magnetrons and methods of making them

Publications (2)

Publication Number Publication Date
JP2004503907A true JP2004503907A (ja) 2004-02-05
JP4970697B2 JP4970697B2 (ja) 2012-07-11

Family

ID=24339181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002511359A Expired - Lifetime JP4970697B2 (ja) 2000-06-01 2001-05-21 高効率の光放射発生用の光マグネトロンおよび1/2λ誘起πモード動作

Country Status (9)

Country Link
US (3) US6373194B1 (ja)
EP (1) EP1230662A2 (ja)
JP (1) JP4970697B2 (ja)
CN (1) CN1249768C (ja)
AU (1) AU767479B2 (ja)
CA (1) CA2381265C (ja)
IL (2) IL147631A (ja)
NZ (1) NZ516754A (ja)
WO (1) WO2001097250A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043942A1 (ja) * 2017-09-04 2019-03-07 三菱電機株式会社 電磁波発生器

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7257327B2 (en) 2000-06-01 2007-08-14 Raytheon Company Wireless communication system with high efficiency/high power optical source
US6724146B2 (en) * 2001-11-27 2004-04-20 Raytheon Company Phased array source of electromagnetic radiation
ES2324701T3 (es) * 2000-09-12 2009-08-13 Massachusetts Institute Of Technology Metodos y productos relacionados con heparina de peso molecular bajo.
JP2005056785A (ja) * 2003-08-07 2005-03-03 Matsushita Electric Ind Co Ltd マグネトロン
JP2005209539A (ja) * 2004-01-23 2005-08-04 Matsushita Electric Ind Co Ltd マグネトロン
US7473914B2 (en) * 2004-07-30 2009-01-06 Advanced Energy Systems, Inc. System and method for producing terahertz radiation
US20070034518A1 (en) * 2005-08-15 2007-02-15 Virgin Islands Microsystems, Inc. Method of patterning ultra-small structures
US7626179B2 (en) * 2005-09-30 2009-12-01 Virgin Island Microsystems, Inc. Electron beam induced resonance
US7791290B2 (en) * 2005-09-30 2010-09-07 Virgin Islands Microsystems, Inc. Ultra-small resonating charged particle beam modulator
US7586097B2 (en) * 2006-01-05 2009-09-08 Virgin Islands Microsystems, Inc. Switching micro-resonant structures using at least one director
US20060035173A1 (en) * 2004-08-13 2006-02-16 Mark Davidson Patterning thin metal films by dry reactive ion etching
US7609001B2 (en) * 2004-11-05 2009-10-27 Raytheon Company Optical magnetron for high efficiency production of optical radiation and related methods of use
US7265360B2 (en) * 2004-11-05 2007-09-04 Raytheon Company Magnetron anode design for short wavelength operation
US8324811B1 (en) * 2005-08-04 2012-12-04 Stc.Unm Magnetron having a transparent cathode and related methods of generating high power microwaves
US7696696B2 (en) * 2005-08-04 2010-04-13 Stc.Unm Magnetron having a transparent cathode and related methods of generating high power microwaves
WO2007064358A2 (en) * 2005-09-30 2007-06-07 Virgin Islands Microsystems, Inc. Structures and methods for coupling energy from an electromagnetic wave
US7579609B2 (en) * 2005-12-14 2009-08-25 Virgin Islands Microsystems, Inc. Coupling light of light emitting resonator to waveguide
US7470920B2 (en) * 2006-01-05 2008-12-30 Virgin Islands Microsystems, Inc. Resonant structure-based display
US20070152781A1 (en) * 2006-01-05 2007-07-05 Virgin Islands Microsystems, Inc. Switching micro-resonant structures by modulating a beam of charged particles
US7619373B2 (en) * 2006-01-05 2009-11-17 Virgin Islands Microsystems, Inc. Selectable frequency light emitter
US7282776B2 (en) * 2006-02-09 2007-10-16 Virgin Islands Microsystems, Inc. Method and structure for coupling two microcircuits
US20070190794A1 (en) * 2006-02-10 2007-08-16 Virgin Islands Microsystems, Inc. Conductive polymers for the electroplating
US7443358B2 (en) * 2006-02-28 2008-10-28 Virgin Island Microsystems, Inc. Integrated filter in antenna-based detector
US20070200063A1 (en) * 2006-02-28 2007-08-30 Virgin Islands Microsystems, Inc. Wafer-level testing of light-emitting resonant structures
US20070200071A1 (en) * 2006-02-28 2007-08-30 Virgin Islands Microsystems, Inc. Coupling output from a micro resonator to a plasmon transmission line
US7605835B2 (en) * 2006-02-28 2009-10-20 Virgin Islands Microsystems, Inc. Electro-photographic devices incorporating ultra-small resonant structures
US20070200646A1 (en) * 2006-02-28 2007-08-30 Virgin Island Microsystems, Inc. Method for coupling out of a magnetic device
US20070205096A1 (en) * 2006-03-06 2007-09-06 Makoto Nagashima Magnetron based wafer processing
US7558490B2 (en) * 2006-04-10 2009-07-07 Virgin Islands Microsystems, Inc. Resonant detector for optical signals
US7876793B2 (en) * 2006-04-26 2011-01-25 Virgin Islands Microsystems, Inc. Micro free electron laser (FEL)
US7492868B2 (en) * 2006-04-26 2009-02-17 Virgin Islands Microsystems, Inc. Source of x-rays
US20070252089A1 (en) * 2006-04-26 2007-11-01 Virgin Islands Microsystems, Inc. Charged particle acceleration apparatus and method
US7646991B2 (en) * 2006-04-26 2010-01-12 Virgin Island Microsystems, Inc. Selectable frequency EMR emitter
US20070264023A1 (en) * 2006-04-26 2007-11-15 Virgin Islands Microsystems, Inc. Free space interchip communications
US20070258492A1 (en) * 2006-05-05 2007-11-08 Virgin Islands Microsystems, Inc. Light-emitting resonant structure driving raman laser
US7728397B2 (en) * 2006-05-05 2010-06-01 Virgin Islands Microsystems, Inc. Coupled nano-resonating energy emitting structures
US7476907B2 (en) * 2006-05-05 2009-01-13 Virgin Island Microsystems, Inc. Plated multi-faceted reflector
US20070258720A1 (en) * 2006-05-05 2007-11-08 Virgin Islands Microsystems, Inc. Inter-chip optical communication
US7746532B2 (en) * 2006-05-05 2010-06-29 Virgin Island Microsystems, Inc. Electro-optical switching system and method
US7986113B2 (en) * 2006-05-05 2011-07-26 Virgin Islands Microsystems, Inc. Selectable frequency light emitter
US7443577B2 (en) * 2006-05-05 2008-10-28 Virgin Islands Microsystems, Inc. Reflecting filtering cover
US20070258675A1 (en) * 2006-05-05 2007-11-08 Virgin Islands Microsystems, Inc. Multiplexed optical communication between chips on a multi-chip module
US7442940B2 (en) * 2006-05-05 2008-10-28 Virgin Island Microsystems, Inc. Focal plane array incorporating ultra-small resonant structures
US7436177B2 (en) * 2006-05-05 2008-10-14 Virgin Islands Microsystems, Inc. SEM test apparatus
US7741934B2 (en) * 2006-05-05 2010-06-22 Virgin Islands Microsystems, Inc. Coupling a signal through a window
US7586167B2 (en) * 2006-05-05 2009-09-08 Virgin Islands Microsystems, Inc. Detecting plasmons using a metallurgical junction
US7728702B2 (en) * 2006-05-05 2010-06-01 Virgin Islands Microsystems, Inc. Shielding of integrated circuit package with high-permeability magnetic material
US7656094B2 (en) * 2006-05-05 2010-02-02 Virgin Islands Microsystems, Inc. Electron accelerator for ultra-small resonant structures
US7359589B2 (en) * 2006-05-05 2008-04-15 Virgin Islands Microsystems, Inc. Coupling electromagnetic wave through microcircuit
US7342441B2 (en) * 2006-05-05 2008-03-11 Virgin Islands Microsystems, Inc. Heterodyne receiver array using resonant structures
US20070272931A1 (en) * 2006-05-05 2007-11-29 Virgin Islands Microsystems, Inc. Methods, devices and systems producing illumination and effects
US7723698B2 (en) * 2006-05-05 2010-05-25 Virgin Islands Microsystems, Inc. Top metal layer shield for ultra-small resonant structures
US7718977B2 (en) * 2006-05-05 2010-05-18 Virgin Island Microsystems, Inc. Stray charged particle removal device
US7554083B2 (en) * 2006-05-05 2009-06-30 Virgin Islands Microsystems, Inc. Integration of electromagnetic detector on integrated chip
US8188431B2 (en) * 2006-05-05 2012-05-29 Jonathan Gorrell Integration of vacuum microelectronic device with integrated circuit
US7583370B2 (en) * 2006-05-05 2009-09-01 Virgin Islands Microsystems, Inc. Resonant structures and methods for encoding signals into surface plasmons
US7569836B2 (en) * 2006-05-05 2009-08-04 Virgin Islands Microsystems, Inc. Transmission of data between microchips using a particle beam
US7732786B2 (en) * 2006-05-05 2010-06-08 Virgin Islands Microsystems, Inc. Coupling energy in a plasmon wave to an electron beam
US20070257273A1 (en) * 2006-05-05 2007-11-08 Virgin Island Microsystems, Inc. Novel optical cover for optical chip
US7557647B2 (en) * 2006-05-05 2009-07-07 Virgin Islands Microsystems, Inc. Heterodyne receiver using resonant structures
US7710040B2 (en) * 2006-05-05 2010-05-04 Virgin Islands Microsystems, Inc. Single layer construction for ultra small devices
US7573045B2 (en) * 2006-05-15 2009-08-11 Virgin Islands Microsystems, Inc. Plasmon wave propagation devices and methods
US7679067B2 (en) * 2006-05-26 2010-03-16 Virgin Island Microsystems, Inc. Receiver array using shared electron beam
US20070274365A1 (en) * 2006-05-26 2007-11-29 Virgin Islands Microsystems, Inc. Periodically complex resonant structures
US7655934B2 (en) * 2006-06-28 2010-02-02 Virgin Island Microsystems, Inc. Data on light bulb
US8454810B2 (en) 2006-07-14 2013-06-04 4D-S Pty Ltd. Dual hexagonal shaped plasma source
US8308915B2 (en) * 2006-09-14 2012-11-13 4D-S Pty Ltd. Systems and methods for magnetron deposition
US7450794B2 (en) * 2006-09-19 2008-11-11 Virgin Islands Microsystems, Inc. Microcircuit using electromagnetic wave routing
US7560716B2 (en) * 2006-09-22 2009-07-14 Virgin Islands Microsystems, Inc. Free electron oscillator
US7659513B2 (en) * 2006-12-20 2010-02-09 Virgin Islands Microsystems, Inc. Low terahertz source and detector
US7893621B2 (en) * 2007-01-24 2011-02-22 Stc.Unm Eggbeater transparent cathode for magnetrons and ubitrons and related methods of generating high power microwaves
US7990336B2 (en) * 2007-06-19 2011-08-02 Virgin Islands Microsystems, Inc. Microwave coupled excitation of solid state resonant arrays
US7791053B2 (en) 2007-10-10 2010-09-07 Virgin Islands Microsystems, Inc. Depressed anode with plasmon-enabled devices such as ultra-small resonant structures
US20100252514A1 (en) * 2009-04-03 2010-10-07 Min-Ju Chung Foldable baseball equipment rack
US8264150B2 (en) * 2009-07-17 2012-09-11 Fusion Uv Systems, Inc. Modular magnetron
SE539552C2 (en) 2015-01-26 2017-10-10 Ab Halmstads Gummifabrik Fender system
EP3283873A4 (en) 2015-04-14 2019-01-16 HRL Laboratories, LLC VACUUM NANO-SPACE DEVICE HAVING ENVELOPING GRID CATHODE
WO2017044909A1 (en) * 2015-09-11 2017-03-16 L-3 Communications Cincinnati Electronics Corporation Hyperspectral optical element for monolithic detectors
US9711315B2 (en) 2015-12-10 2017-07-18 Raytheon Company Axial strapping of a multi-core (cascaded) magnetron
CN109855766B (zh) * 2019-01-21 2020-10-30 浙江工业大学 一种基于光学微谐振腔热光振荡的热耗散率测量方法
CN111900066B (zh) * 2020-07-15 2024-06-04 清华大学 磁控管
CN112908810B (zh) * 2021-02-08 2022-01-25 电子科技大学 一种楔形共焦波导回旋器件高频电路

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860880A (en) * 1973-05-18 1975-01-14 California Inst Of Techn Travelling wave optical amplifier and oscillator
US4410833A (en) * 1981-06-02 1983-10-18 The United States Of America As Represented By The Secretary Of The Navy Solid state magnetron
US4465953A (en) * 1982-09-16 1984-08-14 The United States Of America As Represented By The Secretary Of The Air Force Rippled-field magnetron apparatus
US4588965A (en) * 1984-06-25 1986-05-13 Varian Associates, Inc. Coaxial magnetron using the TE111 mode
JPS62223945A (ja) * 1986-03-26 1987-10-01 Hitachi Ltd マグネトロン
US5280218A (en) * 1991-09-24 1994-01-18 Raytheon Company Electrodes with primary and secondary emitters for use in cross-field tubes
JPH08287819A (ja) * 1995-03-29 1996-11-01 Samsung Display Devices Co Ltd 電界効果電子放出素子及びその製造方法
JPH09185948A (ja) * 1995-12-12 1997-07-15 Lg Electron Inc マグネトロン
US6064154A (en) * 1998-06-10 2000-05-16 Raytheon Company Magnetron tuning using plasmas

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL137275C (ja) * 1969-01-06
US3792306A (en) * 1972-12-04 1974-02-12 Raytheon Co Multisignal magnetron having plural signal coupling means
US4056756A (en) * 1975-04-25 1977-11-01 Raytheon Company Anode assembly for electron discharge devices
US4288721A (en) * 1979-06-20 1981-09-08 Dodonov J I Microwave magnetron-type device
JPS60127638A (ja) * 1983-12-13 1985-07-08 Sanyo Electric Co Ltd マグネトロン
GB8507721D0 (en) * 1985-03-25 1985-05-01 M O Valve Co Ltd Magnetrons
JPS61281435A (ja) * 1985-05-02 1986-12-11 Sanyo Electric Co Ltd マグネトロン
JP2594262B2 (ja) * 1986-10-16 1997-03-26 松下電器産業株式会社 マグネトロン
JPH0817943A (ja) * 1994-06-30 1996-01-19 Texas Instr Japan Ltd 半導体装置の製造方法
GB9723478D0 (en) * 1997-11-07 1998-01-07 Eev Ltd Magnetrons

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860880A (en) * 1973-05-18 1975-01-14 California Inst Of Techn Travelling wave optical amplifier and oscillator
US4410833A (en) * 1981-06-02 1983-10-18 The United States Of America As Represented By The Secretary Of The Navy Solid state magnetron
US4465953A (en) * 1982-09-16 1984-08-14 The United States Of America As Represented By The Secretary Of The Air Force Rippled-field magnetron apparatus
US4588965A (en) * 1984-06-25 1986-05-13 Varian Associates, Inc. Coaxial magnetron using the TE111 mode
JPS62223945A (ja) * 1986-03-26 1987-10-01 Hitachi Ltd マグネトロン
US5280218A (en) * 1991-09-24 1994-01-18 Raytheon Company Electrodes with primary and secondary emitters for use in cross-field tubes
JPH08287819A (ja) * 1995-03-29 1996-11-01 Samsung Display Devices Co Ltd 電界効果電子放出素子及びその製造方法
JPH09185948A (ja) * 1995-12-12 1997-07-15 Lg Electron Inc マグネトロン
US6064154A (en) * 1998-06-10 2000-05-16 Raytheon Company Magnetron tuning using plasmas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043942A1 (ja) * 2017-09-04 2019-03-07 三菱電機株式会社 電磁波発生器

Also Published As

Publication number Publication date
JP4970697B2 (ja) 2012-07-11
US20020070671A1 (en) 2002-06-13
AU767479B2 (en) 2003-11-13
CN1249768C (zh) 2006-04-05
US6373194B1 (en) 2002-04-16
IL147631A (en) 2011-07-31
CA2381265C (en) 2006-10-17
NZ516754A (en) 2004-10-29
AU7490001A (en) 2001-12-24
CA2381265A1 (en) 2001-12-20
WO2001097250A3 (en) 2002-06-06
US6504303B2 (en) 2003-01-07
US20020140356A1 (en) 2002-10-03
EP1230662A2 (en) 2002-08-14
IL211172A0 (en) 2011-04-28
US6538386B2 (en) 2003-03-25
IL211172A (en) 2013-10-31
WO2001097250A2 (en) 2001-12-20
CN1383572A (zh) 2002-12-04

Similar Documents

Publication Publication Date Title
JP4970697B2 (ja) 高効率の光放射発生用の光マグネトロンおよび1/2λ誘起πモード動作
US6525477B2 (en) Optical magnetron generator
EP1449229B1 (en) Phased array source of electromagnetic radiation
JP4006980B2 (ja) マグネトロン装置
GB2045520A (en) Slow-wave circuit for travelling wave tubes
US7265360B2 (en) Magnetron anode design for short wavelength operation
NZ533139A (en) Optical magnetron for high efficiency production of optical radiation, and 1/2 wavelength induced pi-mode
EP0862198B1 (en) A plate-type magnetron
JP3209952B2 (ja) 高周波無電極放電ランプ装置
US4742271A (en) Radial-gain/axial-gain crossed-field amplifier (radaxtron)
JPH04215232A (ja) 近接した空胴群を備えるマルチビームマイクロ波管
Fuks et al. Relativistic magnetron with diffraction antenna
RU2244980C1 (ru) Многолучевой прибор о-типа
GB2238903A (en) Magnetron cathode
GB2175439A (en) Crossed-field amplifier tube
WO2007040713A2 (en) Coupled nano-resonating energy emitting structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4970697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120417

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term