JP2004351317A - Electrochemical liquid treatment apparatus - Google Patents

Electrochemical liquid treatment apparatus Download PDF

Info

Publication number
JP2004351317A
JP2004351317A JP2003151971A JP2003151971A JP2004351317A JP 2004351317 A JP2004351317 A JP 2004351317A JP 2003151971 A JP2003151971 A JP 2003151971A JP 2003151971 A JP2003151971 A JP 2003151971A JP 2004351317 A JP2004351317 A JP 2004351317A
Authority
JP
Japan
Prior art keywords
chamber
electrode
exchange membrane
ion
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003151971A
Other languages
Japanese (ja)
Other versions
JP4384444B2 (en
Inventor
Shoji Akahori
晶二 赤堀
Souta Nakagawa
創太 中川
Yohei Takahashi
洋平 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003151971A priority Critical patent/JP4384444B2/en
Priority to US10/556,057 priority patent/US20070056847A1/en
Priority to PCT/JP2004/007633 priority patent/WO2004106243A1/en
Priority to CNA2004800147443A priority patent/CN1795147A/en
Publication of JP2004351317A publication Critical patent/JP2004351317A/en
Application granted granted Critical
Publication of JP4384444B2 publication Critical patent/JP4384444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/52Accessories; Auxiliary operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/06Column or bed processes during which the ion-exchange material is subjected to a physical treatment, e.g. heat, electric current, irradiation or vibration
    • B01J47/08Column or bed processes during which the ion-exchange material is subjected to a physical treatment, e.g. heat, electric current, irradiation or vibration subjected to a direct electric current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • C02F2001/46166Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Molecular Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode chamber structure of an electrochemical liquid treatment apparatus which can inhibit a harmful electrode reaction and perform a stable operation by using pure water as an electrode liquid not requiring concentration adjustment. <P>SOLUTION: This electrochemical liquid treatment apparatus is formed by arranging an ion exchange membrane between positive and negative electrodes. An anode chamber is demarcated by the anode and a cation exchange membrane, and a cathode chamber is demarcated by the cathode and an anion exchange membrane. The anode chamber and the cathode chamber are respectively packed with ion exchangers made of a fibrous material. The anode and the cathode are respectively made of liquid and a gas-permeable conductive material, and an electrode liquid flow chamber is formed behind each of the anode and the cathode. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気透析装置、電気分解装置、電気式脱塩装置などの電気化学的液体処理装置における極室の構造に関する。
【0002】
【従来の技術】
電気透析装置、電気分解装置、電気式脱塩装置などの電気化学的液体処理装置は、電極から液体中に電気を通電させることによって液体中の成分を電気分解又は電気透析することにより、種々の処理を行うものであるが、このような装置においては、電極板が配置されている部分をイオン交換膜で隔離することで、電極を液体と接触させる目的の極室を形成して、処理液とは別に、極室に別系統の液体を循環流通させる場合が多い。この極室に流す液体は、極液又は電極液と呼ばれ、一般に、導電性を確保するために電解質成分を含んだ溶液を用いている。しかし、このような電解質成分を含んだ溶液を用いると、運転時間の経過に伴って、極液中に、電極反応によって生成する酸化性又は還元性の生成物が含まれるようになり、電極やイオン交換膜を劣化させるといった問題があった。また、極液の電解質濃度が減少すると、極液の抵抗が増大することに伴って装置の運転電圧の増加を招くため、電極液中の電解質の補充を行う必要があった。更に、電極反応の生成物が、製品回収液中に混入して製品の質を低下させたり、或いは、極液のpHが変化することにより極液成分の析出が生じるなどの問題があり、電極反応生成物の除去や電解質成分の補充などの調整を行うことが必要であった。
【0003】
このため、極室回りの設計及び運転は複雑となり、且つ極室を構成する電極材料及びイオン交換膜として耐食性の高い高価な材料を用いることが必要であった。例えば、電気透析装置で鹹水を脱塩して飲用水を製造する場合には、陽極で塩素ガスが発生し、これが水と反応して酸化性の強い遊離塩素や次亜塩素酸(HOCl)が生成するため、陽極室を構成するイオン交換膜としては、耐酸化性の強い高価なフッ素系イオン交換膜を用いる必要があった。
【0004】
また、電気透析装置において、電気透析槽の陽極室及び陰極室を構成する隔膜としてイオン交換膜に代えてバイポーラ膜を用い、陽極室及び陰極室の極液をそれぞれ別々に単独で循環する方法が提案されている。バイポーラ膜は、電解質成分を殆ど透過しないので、バイポーラ膜で極室を形成する隔膜を構成すると、極室に流入するイオンとしては、バイポーラ膜で発生する水素イオン(陰極室)又は水酸イオン(陽極室)だけとなり、水素イオンは陰極表面で水素ガスに、水酸イオンは陽極表面で酸素ガスと水になるので、極液成分を殆ど変化させることがない。このため、上記のバイポーラ膜を用いる方法によれば、運転中に陽極室及び陰極室への酸、アルカリ等の薬液を電解質として補充しなくとも連続して電気透析を行うことができる。しかしながら、この方法の場合、極液の循環系統を2系統必要とすること、高価なバイポーラ膜を使用すること、バイポーラ膜は高い電流密度で運転することが難しいために装置が大きくなること、バイポーラ膜のアニオン交換体部を耐酸化性を有するフッ素系材料で形成することが困難であるという問題があった。
【0005】
また、電気透析法を用いて廃TMAH(水酸化テトラメチルアンモニウム)溶液からTMAHの濃縮回収を行う方法においては、回収するTMAH溶液への不純物の混入を少なくするために、陽極室及び陰極室にTMAH溶液を供給し、且つ、陽極室でTMAHが酸化分解されて生成する強いアミン臭を発する不純物がイオン交換膜を透過して濃縮液中に混入しないように、極室中に別液室を設けて、別液室中にもTMAH溶液を供給することにより、濃縮液への不純物の混入を抑制する方法が提案されている。しかしながら、この方法には、別液室に供給するTMAH溶液の調整が煩雑であること、不純物を生成する有害な電極反応自体は回避できていないため、電極室及び別液室を循環するTMAH溶液には不純物が混入し、これらを回収して再利用することは不可能であるという欠点があった。
【0006】
更に、電気式脱塩装置においては、陽極液を循環再利用するために、陽極室から排出される遊離性塩素などの酸化性物質を含む陽極水を活性炭吸着塔によって処理する方法が提案されている。しかしながら、この方法は、活性炭吸着塔及びその後置のフィルターが必要であり設備が高価になることと、陽極室内では酸化性物質が生成されているために陽極室を構成するイオン交換膜の劣化防止という点では不十分であるという問題があった。
【0007】
また、電気式脱塩装置でフッ酸含有水を処理する方法において、極液に電解質成分が希薄な電気式脱塩装置の処理水を使用することができるように、極室内の極液の流路に斜交網状のイオン伝導スペーサーを充填し、且つ、隣室からの電解質成分の混入を防止するために極室を脱塩室として機能させることにより、有害な電極反応を抑制する方法も提案されている。かかる方法において提案されている極室の形態を図1に示す。図1に示す従来の極室構造体1は、電極2とイオン交換膜3とによって極室4が画定されており、極室4内に、イオン伝導機能が付与されたイオン伝導スペーサー5が充填されており、更に極室4には、極液流入口6と極液流出口7が接続されている。純水相当の処理水が極液として流入口6から供給され、イオン伝導スペーサー5の働きによりイオンの伝導が行われ、流出口7より排出される。このような極室にイオン伝導スペーサーを充填する方法は、電極室に純水相当の処理水が供給されるので、有害な電極反応が回避できるという点で有利な方法であるが、極室内での液流を確保する必要から極室へ充填するスペーサーとしてはある程度の大きさの網目を有する斜交網を用いる必要があり、このため、電極面とイオン伝導スペーサー並びにイオン伝導スペーサーとイオン交換膜との接触面積が小さいために、イオンの伝導面積が小さく、運転電圧の低減という面では不十分であった。また、電極反応で生じたガス成分がスペーサーの網目部に捕捉されて気泡に成長し、これが電極面に付着して電極室の電圧降下を大きくするという問題があった。このため、気泡を極室から排出するために処理水量を大きくする必要があり、その際の圧損を小さくするために、高価なイオン伝導スペーサーを複数枚充填して流路を大きく確保する必要があり、コストの増大を招いていた。これらの問題のために、極室内にイオン伝導斜交網スペーサーを充填するという上記の構成では、運転電圧が高くなって、使用できる電流密度の範囲が限定されてしまい、例えば、0.02〜0.2A/dmのように運転電流密度が小さい純水製造用の電気式脱塩装置には適用することができるが、1〜20A/dmのように運転電流密度が大きな電気透析装置には適用しがたいものであった。
【0008】
上記のように、電気分解装置、電気透析装置、電気式脱塩装置などのような電気化学的液体処理装置においては、電極室の極液に関する問題が未だ未解決の課題として存在している。通常の電気透析槽の極室においては、プラスチック製のスペーサーを充填して水の流路を確保しているが、この極室に純水を供給したのでは、純水は絶縁体であるため電流が流れない。このため、従来の装置においては、極室に電解質溶液を供給する必要があった。
【0009】
ところが、例えば、フッ素イオンを含有する液を極液として用いると、電極がフッ酸によって腐食してしまい、電極の耐久性、経済性に問題があると共に、回収液に電極から溶解した金属イオンが拡散して不純物として混入してしまうという問題があった。また、塩素イオンを含有する液を極液として用いようとすると、陽極で遊離塩素が生成してイオン交換膜を酸化劣化させてしまうという問題があり、このため、陽極室を構成するイオン交換膜として、酸化劣化に強い高価なフッ素系膜を用いる必要があった。また、有機アルカリを含有する液を極液として用いようとすると、上述のように電極反応で有害な酸化分解生成物が生じるという問題があった。
【0010】
これらの理由のために、極液の成分として用いられる電解質成分としては、水酸化ナトリウム等の無機アルカリ水溶液、硫酸などの酸水溶液、又は硫酸ナトリウムなどの塩水溶液が一般に用いられるが、運転中の電極室は脱塩室又は濃縮室のいずれかの機能を有するため、極液の濃度が変化する。このため、循環する極液に、常に電解質成分を補充したり、極液を一部抜き出して希釈するなどの操作が必要であり、運転中の極液成分の濃度の調整及び維持管理という煩雑な処理が必要であった。また、電気化学的液体処理装置によって回収しようとする成分と異なる電解質を極液として用いると、これが回収液に不純物として混入してしまうという問題があった。
【0011】
【発明が解決しようとする課題】
本発明は、上記のような従来技術の課題を解決し、有害な電極反応が起こらず、且つ濃度調整が不要な極液として純水を用いて、安定した運転を行うことができる、電気化学的液体処理装置の極室構造を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記の課題を解決するために、本発明は、正負の両電極間にイオン交換膜が配置されてなる電気化学的液体処理装置であって、陽極とカチオン交換膜によって陽極室が画定され、陰極とアニオン交換膜によって陰極室が画定されており、陽極室及び陰極室には、それぞれ、繊維状材料で構成されるイオン交換体が充填されており、陽極及び陰極がそれぞれ通液性且つ通ガス性の導電性材料から形成されていて、陽極及び陰極のそれぞれの背後に極液流通室が形成されていることを特徴とする電気化学的液体処理装置を提供する。
【0013】
【発明の実施の形態】
以下、図面を参照しながら、本発明に係る電気化学的液体処理装置の具体的な構成例について説明する。
【0014】
図2は、本発明の一態様に係る電気化学的液体処理装置の極室構造体を示す概念図である。電気化学的液体処理装置Aの極室構造体10は、電極11とイオン交換膜12によって画定される極室14と、電極11の背後の極液流通室15とを具備する。電気化学的液体処理装置Aは、図1に示す極室構造体10と向かい合うように配置された反対側の極室構造体(即ち、図1では、極室構造体10の右側に、反対向きに、即ちイオン交換膜12を左側にして配置される)を有しており、その間に、必要に応じてイオン交換膜が配置されている。例えば、電気化学的液体処理装置が電気式脱塩装置である場合には、向かい合った極室構造体の間にカチオン交換膜とアニオン交換膜とが少なくとも一部交互に配列されて、脱塩室と濃縮室とを形成している。或いは、電気化学的液体処理装置が、酸及びアルカリを回収する電気透析装置である場合には、向かい合った極室構造体の間にカチオン交換膜とアニオン交換膜とが少なくとも一部交互に配列されて、酸室、電離室、アルカリ室及び水解室が形成されている。
【0015】
即ち、本発明において、「電極の背後」とは、対向する反対側の電極からみて「背後」という意味であり、二つの対向する電極によって構成される電気化学的液体処理装置の「外側」ということもできる。
【0016】
極液流通室15には、極液流入口16と、極液流出口17とが接続されている。また、必要により、極液流出口17と接続したガス抜き口18を形成してもよい。また、極室14には、繊維状材料で構成されるイオン交換体13が充填されている。イオン交換体としては、織布又は不織布などの形態の繊維状材料から構成されるものを用いることができる。
【0017】
電極11は、通液性且つ通ガス性の導電性材料から形成されている。このような目的で用いることのできる通液性且つ通ガス性の導電性材料としては、例えば、エキスパンデッドメタル、金属斜交網材料、格子状金属材料、網状金属材料、発泡金属材料、焼結金属繊維シートなどを挙げることができる。具体的には、福沢金網製作所製のハイ−エキスパンドメタル、三菱マテリアル製の発泡金属材料などを電極11として使用することができる。
【0018】
このような構成の電気化学的液体処理装置の各室に供給水を供給すると共に、極液流入口16を通して極室構造体の極液流通室15に純水を供給する。極液流通室15に供給された純水は、通水性の電極11を通過して極室14内に導入され、極室14内に充填されている繊維状材料のイオン交換体13に含浸される。イオン交換体13を極室内に配置したことにより、それ自体では絶縁体である純水を極液として用いて、良好に通電を行うことができる。更に、極室14自体の内部には極液の水流を発生させる必要がないため、従来の斜交網などの形態のイオン伝導スペーサーと比べて、より密な構造体である織布、不織布の形態の繊維材料から構成されるイオン交換体を極室内に充填することができる。これにより、イオン交換体と電極面との接触面積を従来のイオン伝導スペーサーと比べて大きくすることができ、電気的抵抗が減少するので、運転電圧の低減効果がより増大する。特に、電流密度が高い場合には、電流による局部的な発熱を減少させることができるので、発熱によるイオン交換体の劣化の問題を解消することができる。例えば図1に示されるような従来の構造の極室にこのような繊維材料から構成されるイオン交換体を充填すると、極液の流れが著しく阻害され、流動抵抗が増大するという問題が避けられないと共に、後述する電極表面で発生した気泡が繊維材料内に閉じこめられて残留し、運転電圧を著しく増大させるという問題も生じる。
【0019】
更に、極室構造体を上記のように構成することにより、電極反応により発生する気体による障害も排除することができる。
【0020】
電極の表面では、通電時に電極反応による電気分解が起こる。極液として純水を流すと、以下のような水の電気分解反応が起こる。
【0021】
陽極においては、以下の反応が起こる。
【0022】
【式1】

Figure 2004351317
【0023】
これを一つの式で表すと、次のように表される。
【0024】
【式2】
Figure 2004351317
【0025】
一方、陰極においては、以下の反応が起こる。
【0026】
【式3】
Figure 2004351317
【0027】
これを一つの式で表すと、次のように表される。
【0028】
【式4】
Figure 2004351317
【0029】
即ち、陽極の表面では酸素ガスが発生し、同時に水素イオンが生じ、一方、陰極の表面では水素ガスが発生し、同時に水酸イオンが生じる。例えば図1に示すような従来の極室構造では、このように極室内で酸素ガス及び水素ガスが発生して気泡を形成するために、極液のみかけの抵抗値が増大し、運転電圧の増大につながっていた。
【0030】
これに対して、本発明に係る極室構造によれば、電極表面で発生した酸素ガス及び水素ガスは、水分を含んだイオン交換繊維材料の中には入りにくく、一方、通ガス性の電極は容易に通過するので、電極を通過してその背後に設けられている極液流通室15に容易に移動し、流通室内を流れる極液(純水)中を気泡20となって上昇する。従って、極室内での気泡の発生に起因する運転電圧の増大という従来の極室構造における問題点が解決される。極液中を上昇した気泡は、極液流出口17にガス抜き口18が形成されている場合には、ここから装置外に排出される。
【0031】
本発明において、電極に要求される機能は以下の三つである。
まず一つ目として、耐食性を有していて、良好な電極反応が起こるような材料であることが望まれる。即ち、通電によって酸化による劣化が生じたり、容易に電気分解してしまうような材料はあまり好ましくない。二つ目は、イオン交換膜にイオン交換繊維材料を圧接させる構造部材としての強度を有することが望まれる。例えば、繊維状の炭素材料や金属材料を単独で電極として用いると、強度が小さいために補強材を必要とし、構造が複雑になってしまうという問題が起こり得る。三つ目は、最も重要で必須の要件で、電気分解によって消耗する純水を、電極の背後の極液流通室から電極を通して極室内に補充することのできる機能(通水性)と、極室内で発生したガスを電極を通して電極背後の極液流通室へ通過させることのできる機能(通ガス性)である。このような機能を満足する電極材料としては、上記に記したエキスパンデッドメタル、金属斜交網材料、格子状金属材料、網状金属材料、発泡金属材料、焼結金属繊維シートなどの形態が、開口部が大きく、通水性、通ガス性ともに問題ないので、好ましい。一方、例えばパンチングメタルなどのように、平滑な板材に多数の孔を形成したような材料は、イオン交換繊維材料と電極材料との接触面で発生したガスが電極の背後に抜けにくく、電解電圧を増加させる可能性があるので、あまり好ましくない。また、材質としては、ステンレス、ニッケル、チタン白金コーティングなどが好ましく用いられる。
【0032】
また、上記のような要求を満足する電極材料の開口部の寸法としては、開口部の目開きの寸法が2mm以上であれば、発生初期の細かな電解気泡が容易に通過するので好ましい。目開きの寸法が1mm以下であると気泡が開口部に付着しやすく、0.5mm以下になると気泡が通過しにくくなる。従って、電極材料は、1mm以上、好ましくは2mm以上の開口部目開きを有することが好ましい。但し、開口部の大きさがあまり大きくなると、イオン交換繊維材料との接触面積が小さくなり、電流密度が不均一となって局部的にイオンの移動が生じるので、好ましくない。従って、実施上、電極材料は1mm〜20mm、より好ましくは2mm〜10mmの開口部目開きを有することが好ましい。また、電極材料の厚さとしては、イオン交換繊維材料をイオン交換膜に密着させるために、湾曲しないでイオン交換繊維材料を保持できるような強度を有することが望ましく、ある程度の厚さを有していることが好ましいが、あまり厚いと加工が困難になると共に、電極室が厚くなりすぎてしまう。これらの点から、電極材料は0.6mm〜1.2mm程度の厚さを有することが好ましい。
【0033】
また、本発明に係る極室構造において、極室内に充填するイオン交換繊維材料の機能は三つある。まず一つ目に、電極表面からイオン交換膜までのイオンの移動抵抗を小さくして、運転電圧の増大を抑制することができる。また二つ目として、細い繊維で作られた織布、不織布などの繊維材料の全面がイオン交換膜と密に接触することで、イオン交換膜の全面でイオンが透過することになり、イオン交換膜の電気抵抗が小さくなり、発熱によるエネルギー損失が小さくなる。三つ目は、電極とイオン交換膜との接触部の緩衝材としての機能である。エキスパンデッドメタル材や金属斜交網材料などは、開口部が大きいために、電極をイオン交換膜に直接圧接すると、イオン交換膜に対して不均一な圧力がかかり、膜破損の発生率が高まるという問題があると共に、電極表面で生じたイオンがイオン交換膜との接触部を通じて流れてしまうため、イオン交換膜に局所電流が流れてイオン交換膜の寿命を低下させる原因となる。本発明においては、電極とイオン交換膜とで画定される極室内に繊維材料から構成されるイオン交換体を充填したので、上記の問題が解消される。
【0034】
本発明において極室への充填材料として用いることのできる繊維材料の形態のイオン交換体としては、不織布、織布などの高分子繊維基材に放射線グラフト重合法によってイオン交換基を導入したものを、特に好ましく用いることができる。
【0035】
放射線グラフト重合法とは、高分子基材に放射線を照射してラジカルを形成させ、これにモノマーを反応させることによってモノマーを基材中に導入するという技法である。
【0036】
本発明において極室に充填するイオン交換体を製造する目的で用いることのできる高分子繊維基材としては、ポリオレフィン系高分子、例えばポリエチレンやポリプロピレンなどの一種の単繊維であってもよく、また、軸芯と鞘部とが異なる高分子によって構成される複合繊維であってもよい。用いることのできる複合繊維の例としては、ポリオレフィン系高分子、例えばポリエチレンを鞘成分とし、鞘成分として用いたもの以外の高分子、例えばポリプロピレンを芯成分とした芯鞘構造の複合繊維が挙げられる。
【0037】
放射線グラフト重合法に用いることができる放射線としては、β線、ガンマ線、電子線等を挙げることができるが、本発明においてはガンマ線や電子線を好ましく用いる。放射線グラフト重合法には、グラフト基材に予め放射線を照射した後、グラフトモノマーと接触させて反応させる前照射グラフト重合法と、基材とモノマーの共存下に放射線を照射する同時照射グラフト重合法とがあるが、本発明においては、いずれの方法も用いることができる。また、モノマーと基材との接触方法により、モノマー溶液に基材を浸漬させたまま重合を行う液相グラフト重合法、モノマーの上記に基材を接触させて重合を行う気相グラフト重合法、基材をモノマー溶液に浸漬した後モノマー溶液から取り出して気相中で反応を行わせる含浸気相グラフト重合法などを挙げることができるが、いずれの方法も本発明において用いることができる。
【0038】
本発明において極室への充填材として用いられるイオン交換体を製造するために高分子繊維基材に導入するイオン交換基としては、特に限定されることなく種々のイオン交換基を用いることができる。例えば、カチオン交換基としては、スルホン基などの強酸性カチオン交換基、リン酸基などの中酸性カチオン交換基、カルボキシル基、フェノール性水酸基などの弱酸性カチオン交換基など、アニオン交換基としては、第1級〜第3級アミノ基などの弱塩基性アニオン交換基、第4級アンモニウム基などの強塩基性アニオン交換基などを挙げることができる。或いは、上記のようなカチオン交換基及びアニオン交換基の両方を併有するイオン交換体を用いることもできる。
【0039】
これらのイオン交換基は、これらのイオン交換基を有するモノマーを用いてグラフト重合、好ましくは放射線グラフト重合を行うか、又はこれらのイオン交換基に転換可能な基を有する重合性モノマーを用いてグラフト重合を行った後に当該基をイオン交換基に転換することによって、高分子繊維基材に導入することができる。この目的で用いることのできるイオン交換基を有するモノマーとしては、アクリル酸(AAc)、メタクリル酸、スチレンスルホン酸ナトリウム(SSS)、メタリルスルホン酸ナトリウム、アリルスルホン酸ナトリウム、ビニルスルホン酸ナトリウム、ビニルベンジルトリメチルアンモニウムクロライド(VBTAC)、ジエチルアミノエチルメタクリレート、ジメチルアミノプロピルアクリルアミドなどを挙げることができる。例えば、スチレンスルホン酸ナトリウムをモノマーとして用いて放射線グラフト重合を行うことにより、高分子基材に直接、強酸性カチオン交換基であるスルホン基を導入することができ、また、ビニルベンジルトリメチルアンモニウムクロライドをモノマーとして用いて放射線グラフト重合を行うことにより、高分子基材に直接、強塩基性アニオン交換基である第4級アンモニウム基を導入することができる。また、イオン交換基に転換可能な基を有するモノマーとしては、アクリロニトリル、アクロレイン、ビニルピリジン、スチレン、クロロメチルスチレン、メタクリル酸グリシジル(GMA)などが挙げられる。例えば、メタクリル酸グリシジルを放射線グラフト重合によって高分子繊維基材に導入し、次に亜硫酸ナトリウムなどのスルホン化剤を反応させることによって強酸性カチオン交換基であるスルホン基を基材に導入したり、或いはクロロメチルスチレンをグラフト重合した後に、高分子基材をトリメチルアミン水溶液に浸漬して4級アンモニウム化することによって、強塩基性アニオン交換基である第4アンモニウム基を基材に導入することができる。
【0040】
なお、繊維基材にカチオン交換基を導入する場合には少なくともスルホン基を、アニオン交換基を導入する場合には少なくとも第4アンモニウム基を導入することが好ましい。これは、極液として純水を用いるので、処理水のpHが中性領域であり、したがって存在するイオン交換基がこの領域でも解離しているスルホン基や第4アンモニウム基でなければ運転電圧が高くなってしまい、所定の性能を発揮することが困難になる可能性があるからである。勿論、弱酸性のカチオン交換基であるカルボキシル基や、弱塩基性のアニオン交換基である第3級アミノ基やより低級のアミノ基が、イオン交換繊維材料に同時に存在していてもよいが、スルホン基又は第4級アンモニウムが、それぞれ中性塩分解容量として0.5〜3.0meq/gの範囲で存在していることが好ましい。なお、イオン交換容量は、グラフト率を変化させることによって増減させることができ、グラフト率が大きいほど、イオン交換容量が大きくなる。
【0041】
なお、本発明に係る電気化学的液体処理装置においては、陽極室にカチオン交換体を、陰極室にアニオン交換体をそれぞれ充填することが好ましい。これらを各極室に充填することにより、陽極室で発生した水素イオンH及び陰極室で発生した水酸イオンOHが、それぞれ、カチオン交換体及びアニオン交換体を伝って移動するので、移動に要する電位差が小さくて済む。陽極室内で移動した水素イオン及び陰極室内で移動した水酸イオンは、それぞれ、陽極室を画定するカチオン交換膜及び陰極室を画定するアニオン交換膜を通過して隣室に移動する。
【0042】
上記に説明したように、本発明に係る極室構造によれば、極室内に繊維材料の形態のイオン交換体が充填されているので、純水を極液として使用することができる。この場合、極室への最低限の水供給量は、電極反応によって分解される水の補給分である。しかしながら、消費される純水分だけを補給するのでは、極室に隣接する室から、電解質が濃度拡散によって微量ではあるがイオン交換膜を通して透過してくるので、極液中の電解質濃度が次第に上昇するという問題が生じる。そこで、極室へは、純水を常時供給して電解質濃度の上昇を抑えることが望ましい。電解質の濃度拡散による極液中への混入の度合いは、電解質の種類等によって異なるので、極室への純水供給量は、当業者が経験的に適宜決定することができる。
【0043】
純水の使用量を節約するために、極液中に純水を所定量補給しながら循環運転すると共に、循環路にカートリッジ式イオン交換樹脂を配置して、電解質を除去しながら運転することもできる。
【0044】
本発明に係る電気化学的液体処理装置において、極室の厚さは、他の室の大きさ等にもよるが、一般に、2.0〜10mmが好ましく、2.5〜3.5mmがより好ましい。この寸法の極室の中に種々のイオン交換繊維材料を充填して数多くの実験を行った結果、良好で安定な処理水質を得るためには、極室内に充填するイオン交換繊維材料としては、厚さが0.1〜1.0mm、目付が10〜100g/m、空隙率が50〜98%、繊維径が10〜70μmの不織布基材を用いることが最も好ましいことが分かった。
【0045】
本発明に係る電気化学的液体処理装置において、極室並びに他の室を構成するのに用いることができる枠体の材料としては、例えば、硬質塩化ビニール、ポリプロピレン、ポリエチレン、EPDM等が、容易に入手可能で、加工が容易で、且つ形状安定性に優れているので、好適であるが、これらに特に限定されるものではなく、電気透析槽、電気分解槽、電気式脱塩槽の枠体として、当該技術において使用されている任意の材料を用いることができる。
【0046】
本発明に係る電気化学的液体処理装置は、具体的には、上記に説明したように、電気分解装置、電気透析装置、電気式脱塩装置などの形態をとることができる。例えば、図2に示す本発明に係る極室構造体をイオン交換膜が内側に配置されるように対向して二つ配置し、その間にカチオン交換膜とアニオン交換膜とを少なくとも一部交互に配列して、脱塩室と濃縮室を形成することにより、電気式脱塩装置の形態の本発明に係る電気化学的液体処理装置を構成することができる。なお、その場合には、当該技術において既に提案されているように、脱塩室及び濃縮室に、適宜、種々の形態のイオン交換体を充填することが好ましい。
【0047】
【実施例】
以下、実施例により本発明をより具体的に説明する。以下の実施例は、本発明の技術思想を具現化する一具体例を説明するものであり、本発明はこれらの記載によって限定されるものではない。
【0048】
イオン交換不織布及びイオン伝導スペーサーの製造
表1に、本実施例においてイオン交換不織布の製造に使用した基材不織布の仕様を示す。この不織布は、芯がポリプロピレン、鞘がポリエチレンから構成される複合繊維を熱融着によって不織布にしたものである。
【0049】
【表1】
Figure 2004351317
【0050】
表2に、本実施例においてイオン伝導スペーサーの製造に使用した基材斜交網の仕様を示す。
【0051】
【表2】
Figure 2004351317
【0052】
表1に示した不織布に、ガンマ線を、窒素雰囲気下で照射した後、メタクリル酸グリシジル(GMA)溶液に浸漬して反応させ、グラフト率175%を得た。次に、このグラフト処理済不織布を、亜硫酸ナトリウム/イソプロピルアルコール/水の混合液中に浸漬して反応させ、スルホン化を行った。得られたイオン交換不織布のイオン交換容量を測定したところ、中性塩分解容量が2.82meq/gの強酸性カチオン交換不織布が得られたことが分かった。
【0053】
一方、上記のようにガンマ線を照射した不織布を、クロロメチルスチレン(CMS)溶液に浸漬して反応させたところ、148%のグラフト率が得られた。このグラフト処理済不織布を、トリメチルアミン10%水溶液中に浸漬して反応させ、4級アンモニウム化を行った。得られたイオン交換不織布は、中性塩分解容量が2.49meq/gの強塩基性アニオン交換不織布であった。
【0054】
表2に示した斜交網基材に、N雰囲気下でガンマ線を照射した後、メタクリル酸グリシジル(GMA)/ジメチルホルムアミド(DMF)の混合液中に浸漬して反応させ、グラフト率53%を得た。このグラフト処理済ネットを、亜硫酸ナトリウム/イソプロピルアルコール/水の混合液に浸漬して反応させてスルホン化を行ったところ、中性塩分解容量が0.62meq/gの強酸性カチオン伝導スペーサーが得られた。
【0055】
表2に示す斜交網基材に上記と同様の照射を行い、ビニルベンジルトリメチルアンモニウムクロライド(VBTAC)/ジメチルアクリルアミド(DMAA)/水の混合液中に浸漬して反応させてグラフト率36%を得た。このスペーサーは、中性塩分解容量が0.44meq/gの強塩基性アニオン伝導スペーサーであった。
【0056】
実施例1
上記で得られたイオン交換不織布及びイオン伝導スペーサー並びに市販のイオン交換膜を用いて、電気式脱塩装置を形成した。カチオン交換膜として株式会社トクヤマ製のカチオン交換膜(商品名:C66−10F)を、アニオン交換膜として株式会社トクヤマ製のアニオン交換膜(商品名:AMH)をそれぞれ用い、脱塩室のセルを11個並列に有する電気式脱塩装置を形成した。脱塩室においては、カチオン交換膜に隣接して上記で得られたカチオン交換不織布を、アニオン交換膜に隣接して上記で得られたアニオン交換不織布を充填し、更に、上記で得られたカチオン伝導スペーサーをカチオン交換不織布側に、アニオン伝導スペーサーをアニオン交換不織布側に、それぞれ1枚ずつ装填した。濃縮室内には、イオン伝導性を付与していない未処理のポリエチレン製斜交網を1枚装填した。また、電極室は、図2に示す構造のものを用い、電極としては、福沢金網製作所製のエキスパンデッドメタル材(商品名ハイ−エキスパンドメタル:目開き4.0×8.0mm、厚さ0.8mm)をそれぞれ用い、陽極とカチオン交換膜とで画定される陽極室には上記で得られたカチオン交換不織布を、陰極とアニオン交換膜とで画定される陰極室には上記で得られたアニオン交換不織布を、それぞれ1枚装填した。なお、各室の寸法は、それぞれ、400mm×600mmであった。
【0057】
この構成の電気式脱塩装置を用いて、図3に示す水処理システムを構築した。ウエット洗浄工程からの排水(回収原水)51を、原水タンク52に貯槽し、被処理水配管61を通して、送水ポンプ55によって、活性炭カートリッジ58及びフィルタ59を経由して、電気式脱塩装置54の脱塩室に供給した。
【0058】
電気式脱塩装置54の濃縮室への供給水としては、原水タンク52から送水ポンプ56によって濃縮水循環タンク53に送られた回収原水を使用した。濃縮水タンク53に貯槽された回収原水を、送水ポンプ57によって、濃縮水配管67を通して、電気式脱塩装置54の濃縮室に供給した。濃縮室からの出口水(濃縮水)は、濃縮室排水配管68を通して、濃縮水循環タンク53に循環した。濃縮室排水配管68に導電率計60を設置して、濃縮水の導電率を測定することによって、濃縮水のイオン濃度をモニターした。濃縮水のイオン濃度が2〜4mS/mのレベルを超えたら、バルブ72を開放して、濃縮水排水配管69を通して、排水溝70へ排水した。この排水による循環の減量分は、送水ポンプ56によって原水51を濃縮水循環タンク53に補給することによって補填した。
【0059】
電気式脱塩装置54の両電極室には、脱塩室からの出口水(脱塩水)の一部を供給した。これは、脱塩室出口配管63から電極水供給配管64を分岐して両電極室に接続することによって行った。それぞれの電極室からの出口水は、陽極室出口配管65及び陰極室出口配管66を通して、原水タンク52に戻した。
【0060】
以上に説明した装置を用いて、フッ酸濃度が0.7〜0.8mg/Lの溶液を、流量1m/hrで定電流運転(0.05A/dm)で1000時間通水したところ、処理水(脱塩室出口水)63の比抵抗は16MΩ・cm以上が安定して確保された。それぞれの極室内での電圧降下を、電極面とイオン交換不織布との間並びにイオン交換不織布とイオン交換膜との間に白金線を装入して電圧を計ることによって測定した。それぞれの極室の電圧降下は、陽極室で0.6V、陰極室で0.9Vと、両極室とも安定していた。
【0061】
通水試験の後に、電極の腐食並びにイオン交換膜及びイオン交換体の劣化の状態を調べたが、実用上全く問題がなかった。
【0062】
比較例1
電気式脱塩装置の極室の構造を図1に示す従来のものとし、極室には、陽極室に上記で得られたカチオン伝導スペーサーを、陰極室に上記で得られたアニオン伝導スペーサーを、それぞれ充填した他は、実施例1と同様に電気式脱塩装置を構成し、これを用いて図3の水処理システムを構築した。
【0063】
このシステムを用いて、フッ酸濃度が0.7〜0.8mg/Lの溶液を、流量1m/hrで定電流運転(0.05A/dm)で1000時間通水したところ、処理水(脱塩室出口水)63の比抵抗は15MΩ・cm以上が安定して確保された。それぞれの極室内での電圧降下は、陽極室で約2.4V、陰極室で約2.8Vであったが、運転中、プラスマイナス0.2V程度の変動がみられた。
【0064】
通水試験の後に、電極の腐食並びにイオン交換膜及びイオン交換体の劣化の状態を調べたが、実施例1と同様に異常は認められなかった。
【0065】
実施例2
実施例1と同じ装置を用いて、フッ酸濃度が約100mg/Lの溶液を流量1m/hで定電流運転(2.5A/dm)で200時間通水したところ、処理水(脱塩室出口水)63の比抵抗は2MΩ・cm以上が安定して確保された。それぞれの極室内での電圧降下を、電極面とイオン交換不織布との間、並びにイオン交換不織布とイオン交換膜との間に白金線を装入して電圧を計ることによって測定した。それぞれの極室内での電圧降下は、陽極室で2.8V、陰極室で4.7Vと、両極室とも安定していた。
【0066】
比較例2
比較例1と同じ装置を用いて、実施例2と同じく、フッ酸濃度が約100mg/Lの溶液を流量1m/hで定電流運転(2.5A/dm)で50時間通水したところ、処理水(脱塩室出口水)63の比抵抗は1.5〜2MΩ・cmが得られた。それぞれの極室内での電圧降下は、運転時間の経過と共に次第に増加し、運転開始時点では陽極室で約7V、陰極室で12Vであったが、50時間後には、陽極室で13V、陰極室では約25Vとなった。通水試験後のイオン伝導スペーサーの劣化の状態を調べたところ、イオン伝導スペーサーの電極面との接触部、及び積層したイオン伝導スペーサー同士の接触部において茶色の変色が見られ、劣化が認められた。これは、局部的に大きな電流が流れたことによる発熱が原因であると思われる。電極及びイオン交換膜には異常は見られなかった。
【0067】
【発明の効果】
本発明に係る極室の構造を有する電気化学的液体処理装置によれば、従来の極室構造に起因した不具合を生じさせることなく、安定した運転電圧で水処理を行うことができる。
【図面の簡単な説明】
【図1】従来の電気化学的液体処理装置における極室構造の一例を示す概念図である。
【図2】本発明に係る電気化学的液体処理装置の一具体例の構造を示す概念図である。
【図3】本発明の実施例及び比較例において用いた水処理システムの概念図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure of an electrode room in an electrochemical liquid treatment device such as an electrodialysis device, an electrolysis device, and an electric desalination device.
[0002]
[Prior art]
Electrochemical liquid treatment devices such as an electrodialysis device, an electrolysis device, and an electric desalination device perform various processes by electrolyzing or electrodialyzing components in a liquid by passing electricity from the electrodes into the liquid. In such an apparatus, a part where the electrode plate is disposed is separated by an ion exchange membrane to form an electrode chamber for bringing the electrode into contact with the liquid, and the processing liquid is formed. Separately, a separate system of liquid is often circulated and circulated in the pole room. The liquid flowing into the electrode chamber is called an electrode solution or an electrode solution, and generally uses a solution containing an electrolyte component in order to secure conductivity. However, when a solution containing such an electrolyte component is used, as the operation time elapses, the oxidizing or reducing product generated by the electrode reaction is contained in the polar solution, and the electrode or There is a problem that the ion exchange membrane is deteriorated. Further, when the electrolyte concentration of the electrolyte decreases, the operating voltage of the apparatus increases due to an increase in the resistance of the electrolyte, and thus it is necessary to replenish the electrolyte in the electrode solution. Further, there is a problem that the product of the electrode reaction is mixed into the product recovery liquid to lower the quality of the product, or that the pH of the polar solution changes, thereby causing precipitation of the component of the polar solution. It was necessary to make adjustments such as removal of reaction products and replenishment of electrolyte components.
[0003]
Therefore, the design and operation around the pole room are complicated, and it is necessary to use an expensive material having high corrosion resistance as the electrode material and the ion exchange membrane constituting the pole room. For example, when desalinating brine with an electrodialyzer to produce drinking water, chlorine gas is generated at the anode, and this reacts with water to produce strong oxidizing free chlorine and hypochlorous acid (HOCl). Therefore, an expensive fluorine-based ion exchange membrane having high oxidation resistance had to be used as the ion exchange membrane constituting the anode chamber.
[0004]
Further, in the electrodialysis apparatus, there is a method in which a bipolar membrane is used instead of the ion exchange membrane as a diaphragm constituting the anode chamber and the cathode chamber of the electrodialysis tank, and the anolyte in the anode chamber and the cathode chamber is circulated separately and independently. Proposed. Since the bipolar membrane hardly permeates the electrolyte component, if the bipolar membrane constitutes a diaphragm forming an pole chamber, the ions flowing into the pole chamber include hydrogen ions (cathode chamber) or hydroxyl ions generated in the bipolar membrane (cathode chamber). (Anode chamber) only, and hydrogen ions are converted into hydrogen gas on the cathode surface and hydroxyl ions are converted into oxygen gas and water on the anode surface. For this reason, according to the method using the above-mentioned bipolar membrane, electrodialysis can be performed continuously without replenishing the anode chamber and the cathode chamber with a chemical solution such as an acid or an alkali as an electrolyte during operation. However, in the case of this method, two circulating systems for the polar liquid are required, expensive bipolar membranes are used, the bipolar membrane is difficult to operate at a high current density, and the apparatus becomes large. There is a problem that it is difficult to form the anion exchanger portion of the membrane from a fluorine-based material having oxidation resistance.
[0005]
In addition, in the method of concentrating and recovering TMAH from a waste TMAH (tetramethylammonium hydroxide) solution by using an electrodialysis method, the anode chamber and the cathode chamber are provided in the anode chamber and the cathode chamber in order to reduce the contamination of the recovered TMAH solution with impurities. A separate solution chamber is provided in the electrode chamber so that the TMAH solution is supplied and impurities that emit a strong amine odor generated by oxidative decomposition of TMAH in the anode chamber do not enter the concentrated solution through the ion exchange membrane. There has been proposed a method in which a TMAH solution is supplied to a separate liquid chamber to prevent impurities from being mixed into the concentrated liquid. However, in this method, since the adjustment of the TMAH solution to be supplied to the separate liquid chamber is complicated and the harmful electrode reaction itself that generates impurities cannot be avoided, the TMAH solution circulating through the electrode chamber and the separate liquid chamber is not used. Has a drawback that impurities are mixed therein and it is impossible to collect and reuse them.
[0006]
Furthermore, in the electric desalination apparatus, in order to recycle the anolyte, a method has been proposed in which anolyte containing oxidizing substances such as free chlorine discharged from the anode chamber is treated by an activated carbon adsorption tower. I have. However, this method requires an activated carbon adsorption tower and a subsequent filter, which makes the equipment expensive, and prevents the deterioration of the ion exchange membrane constituting the anode chamber due to the generation of oxidizing substances in the anode chamber. There was a problem that it was insufficient in that respect.
[0007]
Further, in the method of treating hydrofluoric acid-containing water with an electric desalination apparatus, the flow of the electrolyzed liquid in the electrode chamber is controlled so that the treated water of the electric desalination apparatus having a low electrolyte component can be used as the polar liquid. A method has also been proposed in which harmful electrode reactions are suppressed by filling the passages with oblique net-like ion conductive spacers and making the pole chamber function as a desalination chamber in order to prevent the mixing of electrolyte components from the adjacent chamber. ing. FIG. 1 shows the configuration of the pole room proposed in such a method. In the conventional electrode chamber structure 1 shown in FIG. 1, an electrode chamber 4 is defined by an electrode 2 and an ion exchange membrane 3, and the electrode chamber 4 is filled with an ion conductive spacer 5 provided with an ion conductive function. Further, the polar chamber 4 is connected to an anolyte inlet 6 and an anolyte outlet 7. Treated water equivalent to pure water is supplied from the inlet 6 as the polar liquid, ions are conducted by the action of the ion-conducting spacer 5, and discharged from the outlet 7. Such a method of filling the electrode chamber with the ion conductive spacer is an advantageous method in that harmful electrode reactions can be avoided because treated water equivalent to pure water is supplied to the electrode chamber. It is necessary to use an oblique net having a mesh of a certain size as a spacer to be filled into the pole chamber because of the need to secure the liquid flow of the electrode, and therefore, the electrode surface and the ion conductive spacer, and the ion conductive spacer and the ion exchange membrane The contact area with the ion is small, so that the ion conduction area is small and the operation voltage is insufficient. Further, there has been a problem that gas components generated by the electrode reaction are captured by the mesh portion of the spacer and grow into bubbles, which adhere to the electrode surface and increase the voltage drop in the electrode chamber. For this reason, it is necessary to increase the amount of treated water in order to discharge bubbles from the electrode chamber, and to reduce pressure loss at that time, it is necessary to fill a plurality of expensive ion conductive spacers to secure a large flow path. There was an increase in cost. Due to these problems, in the above-described configuration in which the ion-conducting oblique mesh spacer is filled in the electrode chamber, the operating voltage is increased, and the range of usable current density is limited. 0.2A / dm 2 Can be applied to an electric desalination apparatus for producing pure water having a low operating current density as described above, but 1 to 20 A / dm 2 It is difficult to apply to an electrodialyzer having a large operating current density as described above.
[0008]
As described above, in an electrochemical liquid treatment apparatus such as an electrolyzer, an electrodialyzer, an electric desalination apparatus, and the like, the problem relating to the electrode solution in the electrode chamber still remains as an unsolved problem. In the pole room of a normal electrodialysis tank, a plastic spacer is filled to secure the flow path of water, but if pure water is supplied to this pole room, pure water is an insulator. No current flows. For this reason, in the conventional apparatus, it was necessary to supply an electrolyte solution to the pole room.
[0009]
However, for example, when a solution containing fluorine ions is used as an electrode solution, the electrode is corroded by hydrofluoric acid, and there is a problem in the durability and economy of the electrode. There is a problem that they are diffused and mixed as impurities. In addition, when an attempt is made to use a solution containing chlorine ions as an electrode solution, there is a problem that free chlorine is generated at the anode and oxidatively degrades the ion exchange membrane. As a result, it was necessary to use an expensive fluorine-based film resistant to oxidative degradation. Further, when a liquid containing an organic alkali is used as an electrode solution, there is a problem that harmful oxidative decomposition products are generated by the electrode reaction as described above.
[0010]
For these reasons, as an electrolyte component used as a component of the polar solution, an inorganic alkaline aqueous solution such as sodium hydroxide, an acid aqueous solution such as sulfuric acid, or a salt aqueous solution such as sodium sulfate is generally used. Since the electrode chamber has a function of either a desalting chamber or a concentrating chamber, the concentration of the polar solution changes. For this reason, it is necessary to constantly replenish the circulating polar solution with an electrolyte component or to extract and dilute a part of the polar solution, which is a complicated operation of adjusting and maintaining the concentration of the polar solution component during operation. Processing was required. Further, when an electrolyte different from the component to be recovered by the electrochemical liquid processing apparatus is used as the polar liquid, there is a problem that this is mixed into the recovered liquid as an impurity.
[0011]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and can perform stable operation using pure water as an electrode solution that does not cause harmful electrode reactions and does not require concentration adjustment. It is an object of the present invention to provide an electrode chamber structure of a liquid processing apparatus.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is an electrochemical liquid treatment apparatus in which an ion exchange membrane is disposed between positive and negative electrodes, wherein an anode chamber is defined by an anode and a cation exchange membrane, and a cathode is formed. And an anion exchange membrane, a cathode chamber is defined, and the anode chamber and the cathode chamber are filled with an ion exchanger composed of a fibrous material, respectively. The present invention provides an electrochemical liquid treatment apparatus, which is made of a conductive material having a polarity, and has an anolyte circulation chamber formed behind each of an anode and a cathode.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a specific configuration example of the electrochemical liquid treatment apparatus according to the present invention will be described with reference to the drawings.
[0014]
FIG. 2 is a conceptual diagram illustrating an electrode compartment structure of the electrochemical liquid treatment apparatus according to one embodiment of the present invention. The electrode compartment structure 10 of the electrochemical liquid treatment apparatus A includes an electrode compartment 14 defined by an electrode 11 and an ion exchange membrane 12, and an electrode compartment 15 behind the electrode 11. The electrochemical liquid treatment apparatus A is provided with an opposite pole chamber structure disposed so as to face the pole chamber structure 10 shown in FIG. 1 (that is, in FIG. (That is, the ion exchange membrane 12 is disposed on the left side), and between them, an ion exchange membrane is disposed as necessary. For example, when the electrochemical liquid treatment device is an electric desalination device, at least a part of the cation exchange membrane and the anion exchange membrane are alternately arranged between the facing polar chamber structures, and And a concentration chamber. Alternatively, when the electrochemical liquid treatment apparatus is an electrodialysis apparatus for recovering an acid and an alkali, the cation exchange membrane and the anion exchange membrane are arranged at least partially alternately between the facing polar chamber structures. Thus, an acid chamber, an ionization chamber, an alkali chamber and a water decomposition chamber are formed.
[0015]
That is, in the present invention, "behind the electrode" means "behind" when viewed from the opposite electrode on the opposite side, and is referred to as "outside" of the electrochemical liquid treatment apparatus constituted by two opposed electrodes. You can also.
[0016]
The polar liquid flow chamber 15 is connected to a polar liquid inlet 16 and a polar liquid outlet 17. If necessary, a gas vent 18 connected to the polar liquid outlet 17 may be formed. Further, the electrode chamber 14 is filled with the ion exchanger 13 made of a fibrous material. As the ion exchanger, those made of a fibrous material such as a woven fabric or a nonwoven fabric can be used.
[0017]
The electrode 11 is formed of a liquid-permeable and gas-permeable conductive material. Examples of the liquid-permeable and gas-permeable conductive material that can be used for such a purpose include expanded metal, metal oblique mesh material, lattice metal material, mesh metal material, foamed metal material, and sintered metal. A bonded metal fiber sheet can be used. Specifically, a high-expanded metal manufactured by Fukuzawa Wire Mesh Works, a foamed metal material manufactured by Mitsubishi Materials, or the like can be used as the electrode 11.
[0018]
Supply water is supplied to each chamber of the electrochemical liquid treatment apparatus having such a configuration, and pure water is supplied to the anolyte circulation chamber 15 of the anolyte structure through the anolyte inlet 16. The pure water supplied to the anolyte flow chamber 15 is introduced into the anodic chamber 14 through the water-permeable electrode 11, and is impregnated in the fibrous material ion exchanger 13 filled in the anodic chamber 14. You. By arranging the ion exchanger 13 in the electrode chamber, it is possible to conduct electricity satisfactorily using pure water, which is itself an insulator, as the electrode liquid. Furthermore, since it is not necessary to generate a flow of polar liquid inside the polar chamber 14 itself, compared to a conventional ion-conducting spacer in the form of a diagonal net or the like, a woven or non-woven fabric having a denser structure is used. An ion exchanger composed of a fibrous material in the form can be filled in the pole room. As a result, the contact area between the ion exchanger and the electrode surface can be increased as compared with the conventional ion conductive spacer, and the electrical resistance decreases, so that the effect of reducing the operating voltage further increases. In particular, when the current density is high, local heat generation due to the current can be reduced, so that the problem of deterioration of the ion exchanger due to heat generation can be solved. For example, if an ion exchanger composed of such a fiber material is filled in an electrode chamber having a conventional structure as shown in FIG. 1, the problem that the flow of the electrode solution is significantly inhibited and the flow resistance increases is avoided. In addition, there is a problem that bubbles generated on the electrode surface, which will be described later, are trapped and remain in the fibrous material, and the operating voltage is significantly increased.
[0019]
Furthermore, by configuring the pole chamber structure as described above, it is possible to eliminate the obstacle caused by the gas generated by the electrode reaction.
[0020]
On the surface of the electrode, electrolysis occurs due to an electrode reaction when electricity is supplied. When pure water flows as the polar liquid, the following electrolysis reaction of water occurs.
[0021]
At the anode, the following reactions take place.
[0022]
(Equation 1)
Figure 2004351317
[0023]
This can be expressed as one expression as follows.
[0024]
[Equation 2]
Figure 2004351317
[0025]
On the other hand, the following reaction occurs at the cathode.
[0026]
[Equation 3]
Figure 2004351317
[0027]
This can be expressed as one expression as follows.
[0028]
(Equation 4)
Figure 2004351317
[0029]
That is, oxygen gas is generated on the surface of the anode and hydrogen ions are generated at the same time, while hydrogen gas is generated on the surface of the cathode and hydroxyl ions are generated at the same time. For example, in the conventional polar chamber structure as shown in FIG. 1, since the oxygen gas and the hydrogen gas are generated in the polar chamber to form bubbles, the apparent resistance value of the polar liquid increases, and the operating voltage decreases. Led to an increase.
[0030]
On the other hand, according to the polar chamber structure according to the present invention, oxygen gas and hydrogen gas generated on the electrode surface are unlikely to enter the ion-exchange fiber material containing water, while the gas-permeable electrode Easily passes through the electrode, easily moves to the polar liquid flow chamber 15 provided behind the electrode, and rises as bubbles 20 in the polar liquid (pure water) flowing in the flow chamber. Therefore, the problem in the conventional pole room structure that the operating voltage increases due to the generation of bubbles in the pole room is solved. Bubbles that have risen in the polar liquid are discharged out of the apparatus when a gas vent 18 is formed in the polar liquid outlet 17.
[0031]
In the present invention, the functions required for the electrodes are the following three.
First, it is desired that the material has corrosion resistance and that a favorable electrode reaction occurs. That is, a material that is degraded by oxidation or easily electrolyzed when energized is not preferable. Second, it is desired to have strength as a structural member for pressing the ion exchange fiber material against the ion exchange membrane. For example, if a fibrous carbon material or a metal material is used alone as an electrode, there is a problem that a reinforcing material is required due to low strength, and the structure becomes complicated. The third is the most important and essential requirement: a function (water permeability) that allows pure water consumed by electrolysis to be replenished from the polar liquid circulation chamber behind the electrode through the electrode (water permeability). This is a function (gas permeability) that allows the gas generated in step (1) to pass through the electrode to the anolyte flow chamber behind the electrode. Examples of the electrode material that satisfies such a function include the above-described expanded metal, metal oblique net material, lattice metal material, net metal material, foam metal material, sintered metal fiber sheet, and the like. This is preferable because the opening is large and there is no problem in both water permeability and gas permeability. On the other hand, for a material such as punched metal having a large number of holes formed in a smooth plate, gas generated at the contact surface between the ion exchange fiber material and the electrode material is unlikely to escape behind the electrode, and the electrolytic voltage Is not preferred because it may increase the As the material, stainless steel, nickel, titanium platinum coating, or the like is preferably used.
[0032]
As for the size of the opening of the electrode material that satisfies the above requirements, it is preferable that the size of the opening of the opening is 2 mm or more, since fine electrolytic bubbles in the early stage of generation easily pass through. When the size of the opening is 1 mm or less, the air bubbles easily adhere to the opening, and when the size is 0.5 mm or less, the air bubbles are difficult to pass. Therefore, it is preferable that the electrode material has an opening of 1 mm or more, preferably 2 mm or more. However, if the size of the opening is too large, the contact area with the ion-exchange fiber material becomes small, the current density becomes nonuniform, and ions move locally, which is not preferable. Therefore, in practice, it is preferable that the electrode material has an opening of 1 mm to 20 mm, more preferably 2 mm to 10 mm. In addition, as for the thickness of the electrode material, it is desirable that the electrode material has such a strength that it can hold the ion exchange fiber material without being curved, in order to adhere the ion exchange fiber material to the ion exchange membrane, and has a certain thickness. However, if it is too thick, processing becomes difficult and the electrode chamber becomes too thick. From these points, the electrode material preferably has a thickness of about 0.6 mm to 1.2 mm.
[0033]
Further, in the pole room structure according to the present invention, the ion exchange fiber material filled in the pole room has three functions. First, it is possible to reduce the movement resistance of ions from the electrode surface to the ion-exchange membrane, thereby suppressing an increase in operating voltage. Secondly, the whole surface of the fiber material such as woven fabric and non-woven fabric made of fine fibers is in close contact with the ion exchange membrane, so that the ions permeate the entire surface of the ion exchange membrane. The electric resistance of the film is reduced, and the energy loss due to heat generation is reduced. The third function is to function as a buffer at a contact portion between the electrode and the ion exchange membrane. Expanded metal materials and metal oblique net materials have large openings, so if the electrode is pressed directly against the ion exchange membrane, uneven pressure will be applied to the ion exchange membrane and the incidence of membrane breakage will decrease. In addition to the problem that the ion exchange membrane is increased, ions generated on the electrode surface flow through the contact portion with the ion exchange membrane, so that a local current flows through the ion exchange membrane, which causes a reduction in the life of the ion exchange membrane. In the present invention, the above-mentioned problem is solved because the ion exchanger composed of a fiber material is filled in the electrode chamber defined by the electrode and the ion exchange membrane.
[0034]
In the present invention, as the ion exchanger in the form of a fiber material that can be used as a filling material for an electrode room, a material obtained by introducing an ion exchange group into a polymer fiber base material such as a nonwoven fabric or a woven fabric by a radiation graft polymerization method. Can be particularly preferably used.
[0035]
The radiation graft polymerization method is a technique of irradiating a polymer substrate with radiation to form radicals and reacting the monomers with the radicals to introduce the monomers into the substrate.
[0036]
In the present invention, the polymer fiber substrate that can be used for the purpose of producing an ion exchanger to be filled in the pole chamber may be a polyolefin-based polymer, for example, a single fiber such as polyethylene or polypropylene, Alternatively, a composite fiber in which the core and the sheath are made of different polymers may be used. Examples of conjugate fibers that can be used include polyolefin-based polymers, for example, polyethylene as a sheath component, and polymers other than those used as the sheath component, for example, conjugate fibers with a core-sheath structure using polypropylene as a core component. .
[0037]
Examples of the radiation that can be used in the radiation graft polymerization include β-rays, gamma rays, and electron beams. In the present invention, gamma rays and electron beams are preferably used. The radiation graft polymerization method includes a pre-irradiation graft polymerization method in which a graft substrate is irradiated with radiation in advance and then brought into contact with a graft monomer to react, and a simultaneous irradiation graft polymerization method in which radiation is irradiated in the coexistence of a substrate and a monomer. However, in the present invention, any method can be used. Further, by a contact method between the monomer and the base material, a liquid phase graft polymerization method in which the polymerization is performed while the base material is immersed in the monomer solution, a gas phase graft polymerization method in which the base material is brought into contact with the base material to perform the polymerization, An immersion gas-phase graft polymerization method in which a substrate is immersed in a monomer solution, taken out of the monomer solution and reacted in a gas phase, and the like can be mentioned, and any method can be used in the present invention.
[0038]
In the present invention, various ion exchange groups can be used without particular limitation as the ion exchange group to be introduced into the polymer fiber base material in order to produce an ion exchanger used as a filler for the pole chamber in the present invention. . For example, as the cation exchange group, a strongly acidic cation exchange group such as a sulfone group, a medium acidic cation exchange group such as a phosphate group, a carboxyl group, a weakly acidic cation exchange group such as a phenolic hydroxyl group, and the like, as an anion exchange group. Examples include a weakly basic anion exchange group such as a primary to tertiary amino group and a strongly basic anion exchange group such as a quaternary ammonium group. Alternatively, an ion exchanger having both a cation exchange group and an anion exchange group as described above can be used.
[0039]
These ion-exchange groups are subjected to graft polymerization, preferably radiation graft polymerization, using monomers having these ion-exchange groups, or graft-polymerization using polymerizable monomers having groups convertible to these ion-exchange groups. By converting the group into an ion-exchange group after the polymerization, it can be introduced into the polymer fiber base material. Monomers having an ion exchange group that can be used for this purpose include acrylic acid (AAc), methacrylic acid, sodium styrenesulfonate (SSS), sodium methallylsulfonate, sodium allylsulfonate, sodium vinylsulfonate, vinyl Examples thereof include benzyltrimethylammonium chloride (VBTAC), diethylaminoethyl methacrylate, and dimethylaminopropylacrylamide. For example, by performing radiation graft polymerization using sodium styrenesulfonate as a monomer, a sulfone group that is a strongly acidic cation exchange group can be directly introduced into a polymer base material, and vinylbenzyltrimethylammonium chloride can be used. By performing radiation graft polymerization using the monomer, a quaternary ammonium group which is a strongly basic anion exchange group can be directly introduced into the polymer base material. Examples of the monomer having a group convertible to an ion exchange group include acrylonitrile, acrolein, vinylpyridine, styrene, chloromethylstyrene, glycidyl methacrylate (GMA), and the like. For example, glycidyl methacrylate is introduced into a polymer fiber base material by radiation graft polymerization, and then a sulfonate group, which is a strongly acidic cation exchange group, is introduced into the base material by reacting a sulfonating agent such as sodium sulfite. Alternatively, a quaternary ammonium group, which is a strongly basic anion exchange group, can be introduced into the substrate by immersing the polymer substrate in a trimethylamine aqueous solution to quaternary ammonium after graft polymerization of chloromethylstyrene. .
[0040]
It is preferable to introduce at least a sulfone group when introducing a cation exchange group into the fiber base material, and at least a quaternary ammonium group when introducing an anion exchange group into the fiber base material. This is because pure water is used as the polar solution, so that the pH of the treated water is in a neutral region, and therefore, the operating voltage is not unless the existing ion exchange group is a dissociated sulfone group or quaternary ammonium group in this region. This is because it may be difficult to exhibit the predetermined performance. Of course, a carboxyl group which is a weakly acidic cation exchange group and a tertiary amino group or a lower amino group which is a weakly basic anion exchange group may be simultaneously present in the ion exchange fiber material, It is preferable that the sulfone group or the quaternary ammonium is present in a range of 0.5 to 3.0 meq / g as a neutral salt decomposition capacity, respectively. The ion exchange capacity can be increased or decreased by changing the graft ratio. The higher the graft ratio, the larger the ion exchange capacity.
[0041]
In the electrochemical liquid treatment apparatus according to the present invention, it is preferable that the cation exchanger is filled in the anode chamber and the anion exchanger is filled in the cathode chamber. By filling these in each of the electrode chambers, hydrogen ions H generated in the anode chamber + And hydroxyl ion OH generated in the cathode chamber Move through the cation exchanger and the anion exchanger, respectively, so that the potential difference required for the transfer can be small. Hydrogen ions that have moved in the anode chamber and hydroxyl ions that have moved in the cathode chamber pass through the cation exchange membrane that defines the anode chamber and the anion exchange membrane that defines the cathode chamber, respectively, and move to the adjacent chamber.
[0042]
As described above, according to the electrode compartment structure of the present invention, since the ion exchanger in the form of a fiber material is filled in the electrode compartment, pure water can be used as the electrode solution. In this case, the minimum supply amount of water to the electrode chamber is a supply amount of water decomposed by the electrode reaction. However, if only pure water consumed is supplied, the electrolyte will permeate through the ion exchange membrane, albeit in a trace amount, from the chamber adjacent to the pole chamber due to concentration diffusion, so the electrolyte concentration in the pole liquid will gradually increase. Problem arises. Therefore, it is desirable to always supply pure water to the pole room to suppress an increase in electrolyte concentration. Since the degree of mixing of the electrolyte into the polar solution due to concentration diffusion varies depending on the type of the electrolyte and the like, the amount of pure water supplied to the electrode chamber can be appropriately determined empirically by those skilled in the art.
[0043]
In order to save the amount of pure water used, it is possible to operate while circulating while supplying a predetermined amount of pure water to the polar solution, and to operate while removing the electrolyte by disposing a cartridge type ion exchange resin in the circulation path. it can.
[0044]
In the electrochemical liquid treatment apparatus according to the present invention, the thickness of the electrode chamber depends on the size of other chambers and the like, but is generally preferably 2.0 to 10 mm, more preferably 2.5 to 3.5 mm. preferable. As a result of conducting numerous experiments by filling various ion-exchange fiber materials into the electrode chamber of this size, in order to obtain a good and stable treated water quality, as the ion-exchange fiber material to be charged into the electrode chamber, 0.1-1.0mm in thickness, 10-100g / m in basis weight 2 It was found that it is most preferable to use a nonwoven fabric substrate having a porosity of 50 to 98% and a fiber diameter of 10 to 70 µm.
[0045]
In the electrochemical liquid treatment apparatus according to the present invention, as a material of the frame body that can be used to constitute the pole chamber and other chambers, for example, hard vinyl chloride, polypropylene, polyethylene, EPDM, etc. are easily used. Since it is available, easy to process, and excellent in shape stability, it is preferable, but not particularly limited thereto, and a frame of an electrodialysis tank, an electrolysis tank, and an electro-type desalination tank. , Any material used in the art can be used.
[0046]
The electrochemical liquid treatment apparatus according to the present invention can specifically take the form of an electrolyzer, an electrodialyzer, an electric desalination apparatus, etc., as described above. For example, two pole chamber structures according to the present invention shown in FIG. 2 are arranged facing each other such that the ion exchange membrane is disposed inside, and the cation exchange membrane and the anion exchange membrane are at least partially alternately arranged therebetween. By arranging and forming a desalination chamber and a concentration chamber, the electrochemical liquid treatment apparatus according to the present invention in the form of an electric desalination apparatus can be configured. In this case, as already proposed in the art, it is preferable to appropriately fill the desalting chamber and the concentrating chamber with various forms of ion exchangers.
[0047]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. The following examples describe one specific example that embodies the technical idea of the present invention, and the present invention is not limited by these descriptions.
[0048]
Manufacture of ion exchange nonwoven fabric and ion conductive spacer
Table 1 shows the specifications of the base nonwoven fabric used in the production of the ion-exchange nonwoven fabric in this example. This nonwoven fabric is a nonwoven fabric obtained by heat-sealing a composite fiber having a core made of polypropylene and a sheath made of polyethylene.
[0049]
[Table 1]
Figure 2004351317
[0050]
Table 2 shows the specifications of the oblique network of the substrate used in the production of the ion-conductive spacer in this example.
[0051]
[Table 2]
Figure 2004351317
[0052]
After irradiating the nonwoven fabric shown in Table 1 with a gamma ray under a nitrogen atmosphere, the nonwoven fabric was immersed in a glycidyl methacrylate (GMA) solution and reacted to obtain a graft ratio of 175%. Next, the grafted nonwoven fabric was immersed in a mixed solution of sodium sulfite / isopropyl alcohol / water and reacted to perform sulfonation. When the ion exchange capacity of the obtained ion exchange nonwoven fabric was measured, it was found that a strongly acidic cation exchange nonwoven fabric having a neutral salt decomposition capacity of 2.82 meq / g was obtained.
[0053]
On the other hand, when the nonwoven fabric irradiated with gamma rays as described above was immersed in a chloromethylstyrene (CMS) solution and reacted, a graft ratio of 148% was obtained. This grafted non-woven fabric was immersed in a 10% aqueous solution of trimethylamine to react and quaternize ammonium. The obtained ion-exchange nonwoven fabric was a strongly basic anion-exchange nonwoven fabric having a neutral salt decomposition capacity of 2.49 meq / g.
[0054]
The oblique net base shown in Table 2 2 After irradiation with gamma rays in an atmosphere, the substrate was immersed in a mixed solution of glycidyl methacrylate (GMA) / dimethylformamide (DMF) and reacted to obtain a graft ratio of 53%. The grafted net was immersed in a mixture of sodium sulfite / isopropyl alcohol / water and reacted to perform sulfonation. As a result, a strongly acidic cation conductive spacer having a neutral salt decomposition capacity of 0.62 meq / g was obtained. Was done.
[0055]
The oblique network base material shown in Table 2 was irradiated in the same manner as described above, and was immersed in a mixture of vinylbenzyltrimethylammonium chloride (VBTAC) / dimethylacrylamide (DMAA) / water to react, and the graft ratio was 36%. Obtained. This spacer was a strong basic anion conductive spacer having a neutral salt decomposition capacity of 0.44 meq / g.
[0056]
Example 1
Using the ion-exchange nonwoven fabric, ion-conducting spacer, and commercially available ion-exchange membrane obtained above, an electric desalination apparatus was formed. Using a cation exchange membrane (trade name: C66-10F) manufactured by Tokuyama Corporation as a cation exchange membrane and an anion exchange membrane (trade name: AMH) manufactured by Tokuyama Corporation as an anion exchange membrane, the cells in the desalination chamber were used. An electric desalination apparatus having 11 units in parallel was formed. In the desalting chamber, the cation exchange nonwoven fabric obtained above adjacent to the cation exchange membrane is filled with the anion exchange nonwoven fabric obtained above adjacent to the anion exchange membrane. One conductive spacer was loaded on the cation exchange nonwoven fabric side, and one anion conductive spacer was loaded on the anion exchange nonwoven fabric side. One untreated polyethylene oblique net to which no ion conductivity was imparted was loaded into the concentration chamber. The electrode chamber has the structure shown in FIG. 2, and the electrode is an expanded metal material manufactured by Fukuzawa Wire Mesh Works (trade name: High-expanded metal: mesh size 4.0 × 8.0 mm, thickness: 4.0 × 8.0 mm). 0.8 mm) respectively, the cation exchange nonwoven fabric obtained above in the anode chamber defined by the anode and the cation exchange membrane, and the above obtained cation exchange nonwoven fabric in the cathode chamber defined by the cathode and the anion exchange membrane. One anion exchange nonwoven fabric was loaded. The dimensions of each chamber were 400 mm × 600 mm.
[0057]
The water treatment system shown in FIG. 3 was constructed using the electric desalination apparatus having this configuration. The wastewater (recovered raw water) 51 from the wet cleaning step is stored in a raw water tank 52, passed through a treated water pipe 61, by a water supply pump 55, through an activated carbon cartridge 58 and a filter 59, and then into the electric desalination device 54. It was supplied to a desalting room.
[0058]
The recovered raw water sent from the raw water tank 52 to the concentrated water circulation tank 53 by the water supply pump 56 was used as the supply water to the concentration chamber of the electric desalination device 54. The recovered raw water stored in the concentrated water tank 53 was supplied to the concentration chamber of the electric desalination device 54 by the water supply pump 57 through the concentrated water piping 67. The outlet water (concentrated water) from the concentration chamber was circulated to the concentrated water circulation tank 53 through the concentration chamber drainage pipe 68. The conductivity meter 60 was installed in the drain pipe 68 of the concentration chamber, and the conductivity of the concentrated water was measured to monitor the ion concentration of the concentrated water. When the ion concentration of the concentrated water exceeded the level of 2 to 4 mS / m, the valve 72 was opened and drained to the drain 70 through the concentrated water drain pipe 69. The reduced amount of the circulation due to the drainage was compensated by supplying the raw water 51 to the concentrated water circulation tank 53 by the water supply pump 56.
[0059]
Part of the outlet water (desalinated water) from the desalination chamber was supplied to both electrode chambers of the electric desalination device 54. This was carried out by branching the electrode water supply pipe 64 from the desalting chamber outlet pipe 63 and connecting it to both electrode chambers. Outlet water from each electrode chamber was returned to the raw water tank 52 through the anode chamber outlet pipe 65 and the cathode chamber outlet pipe 66.
[0060]
Using the apparatus described above, a solution having a hydrofluoric acid concentration of 0.7 to 0.8 mg / L was supplied at a flow rate of 1 m 3 / Hr constant current operation (0.05 A / dm 2 ), The specific resistance of the treated water (water at the outlet of the desalting chamber) 63 was stably maintained at 16 MΩ · cm or more. The voltage drop in each electrode room was measured by charging a platinum wire between the electrode surface and the ion exchange nonwoven fabric and between the ion exchange nonwoven fabric and the ion exchange membrane and measuring the voltage. The voltage drop in each of the pole chambers was 0.6 V in the anode chamber and 0.9 V in the cathode chamber, and both pole chambers were stable.
[0061]
After the water flow test, the state of corrosion of the electrode and the deterioration of the ion exchange membrane and the ion exchanger were examined, but there was no problem in practical use.
[0062]
Comparative Example 1
The structure of the electrode chamber of the electric desalination apparatus is the conventional one shown in FIG. 1, in which the cation conductive spacer obtained above in the anode chamber and the anion conductive spacer obtained above in the cathode chamber. An electric desalination apparatus was constructed in the same manner as in Example 1 except that each was filled, and the water treatment system of FIG. 3 was constructed using this apparatus.
[0063]
Using this system, a solution having a hydrofluoric acid concentration of 0.7 to 0.8 mg / L was supplied at a flow rate of 1 m. 3 / Hr constant current operation (0.05 A / dm 2 ), The specific resistance of the treated water (water at the outlet of the desalting chamber) 63 was stably secured to 15 MΩ · cm or more. The voltage drop in each of the pole chambers was about 2.4 V in the anode chamber and about 2.8 V in the cathode chamber, but a fluctuation of about ± 0.2 V was observed during operation.
[0064]
After the water flow test, the state of corrosion of the electrode and the deterioration of the ion exchange membrane and the ion exchanger were examined. As in Example 1, no abnormality was observed.
[0065]
Example 2
Using the same apparatus as in Example 1, a solution having a hydrofluoric acid concentration of about 100 mg / L was supplied at a flow rate of 1 m. 3 / H constant current operation (2.5 A / dm 2 ), The specific resistance of the treated water (water at the outlet of the desalting chamber) 63 was stably maintained at 2 MΩ · cm or more. The voltage drop in each electrode room was measured by charging a platinum wire between the electrode surface and the ion exchange nonwoven fabric and between the ion exchange nonwoven fabric and the ion exchange membrane and measuring the voltage. The voltage drop in each pole room was 2.8 V in the anode compartment and 4.7 V in the cathode compartment, and both pole compartments were stable.
[0066]
Comparative Example 2
Using the same apparatus as in Comparative Example 1, a solution having a hydrofluoric acid concentration of about 100 mg / L was flowed at a flow rate of 1 m as in Example 2. 3 / H constant current operation (2.5 A / dm 2 ), The treated water (water at the outlet of the desalting chamber) 63 had a specific resistance of 1.5 to 2 MΩ · cm. The voltage drop in each pole room gradually increased with the elapse of the operation time. At the start of the operation, the voltage was about 7 V in the anode chamber and 12 V in the cathode chamber, but after 50 hours, 13 V in the anode chamber and 13 V in the cathode chamber. It became about 25V. When the state of deterioration of the ion conductive spacer after the water flow test was examined, brown discoloration was observed at the contact portion between the electrode surface of the ion conductive spacer and the contact portion between the laminated ion conductive spacers, and deterioration was observed. Was. This is considered to be due to heat generation due to a large current flowing locally. No abnormality was found in the electrode and the ion exchange membrane.
[0067]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the electrochemical liquid treatment apparatus which has the structure of the pole room which concerns on this invention, a water treatment can be performed by the stable operation voltage, without producing the trouble resulting from the conventional pole room structure.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of an electrode chamber structure in a conventional electrochemical liquid processing apparatus.
FIG. 2 is a conceptual diagram showing the structure of a specific example of an electrochemical liquid treatment apparatus according to the present invention.
FIG. 3 is a conceptual diagram of a water treatment system used in Examples and Comparative Examples of the present invention.

Claims (8)

正負の両電極間にイオン交換膜が配置されてなる電気化学的液体処理装置であって、陽極とカチオン交換膜によって陽極室が画定され、陰極とアニオン交換膜によって陰極室が画定されており、陽極室及び陰極室には、それぞれ、繊維状材料で構成されるイオン交換体が充填されており、陽極及び陰極がそれぞれ通液性且つ通ガス性の導電性材料から形成されていて、陽極及び陰極のそれぞれの背後に極液流通室が形成されていることを特徴とする電気化学的液体処理装置。An electrochemical liquid treatment apparatus in which an ion exchange membrane is disposed between both positive and negative electrodes, wherein an anode chamber is defined by an anode and a cation exchange membrane, and a cathode chamber is defined by a cathode and an anion exchange membrane, The anode chamber and the cathode chamber are each filled with an ion exchanger composed of a fibrous material, and the anode and the cathode are formed of a liquid-permeable and gas-permeable conductive material, respectively. An electrochemical liquid processing apparatus, wherein an anolyte circulation chamber is formed behind each of the cathodes. 通液性且つ通ガス性の導電性材料が、エキスパンデッドメタル、金属斜交網、格子状金属材料、網状金属材料、発泡金属材料、焼結金属繊維シートから選択される請求項1に記載の電気化学的液体処理装置。2. The liquid-permeable and gas-permeable conductive material is selected from an expanded metal, an oblique metal net, a grid metal material, a mesh metal material, a foam metal material, and a sintered metal fiber sheet. Liquid processing equipment. 繊維状材料で構成されるイオン交換体が、放射線グラフト重合法を利用して製造されたイオン交換不織布又は織布である請求項1又は2に記載の電気化学的液体処理装置。The electrochemical liquid treatment apparatus according to claim 1 or 2, wherein the ion exchanger composed of a fibrous material is an ion-exchange nonwoven fabric or a woven fabric manufactured using a radiation graft polymerization method. 陽極室にカチオン交換体が充填され、陰極室にアニオン交換体が充填されている請求項1〜3のいずれかに記載の電気化学的液体処理装置。The electrochemical liquid treatment apparatus according to any one of claims 1 to 3, wherein a cation exchanger is filled in the anode chamber, and an anion exchanger is filled in the cathode chamber. 陽極室及び陰極室の少なくとも一方に、極液として純水又は超純水が供給される請求項1〜4のいずれかに記載の電気化学的液体処理装置。The electrochemical liquid treatment apparatus according to any one of claims 1 to 4, wherein pure water or ultrapure water is supplied as at least one of the anode chamber and the cathode chamber as an extreme liquid. 極液流通室にガス抜き口が設けられている請求項1〜5のいずれかに記載の電気化学的液体処理装置。The electrochemical liquid treatment device according to any one of claims 1 to 5, wherein a gas vent is provided in the electrode solution flow chamber. 正負の両電極間に、カチオン交換膜及びアニオン交換膜を少なくとも一部交互に配列することによって脱塩室と濃縮室とが形成されている電気式脱塩装置である請求項1〜6のいずれかに記載の装置。The electric desalination apparatus according to any one of claims 1 to 6, wherein a desalination chamber and a concentration chamber are formed by alternately arranging a cation exchange membrane and an anion exchange membrane at least partially between the positive and negative electrodes. An apparatus according to any one of the above. 正負の両電極間に、カチオン交換膜及びアニオン交換膜を少なくとも一部交互に配列することによって、酸室、電離室、アルカリ室及び水解室が形成されている電気透析装置である請求項1〜6のいずれかに記載の装置。An electrodialysis apparatus in which an acid chamber, an ionization chamber, an alkali chamber and a water decomposition chamber are formed by arranging at least a part of the cation exchange membrane and the anion exchange membrane alternately between the positive and negative electrodes. 7. The apparatus according to any one of 6.
JP2003151971A 2003-05-29 2003-05-29 Electric demineralizer and electrodialyzer Expired - Lifetime JP4384444B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003151971A JP4384444B2 (en) 2003-05-29 2003-05-29 Electric demineralizer and electrodialyzer
US10/556,057 US20070056847A1 (en) 2003-05-29 2004-05-25 Electrochemical liquid treatment equipments
PCT/JP2004/007633 WO2004106243A1 (en) 2003-05-29 2004-05-25 Electrochemical liquid treatment equipments
CNA2004800147443A CN1795147A (en) 2003-05-29 2004-05-25 Electrochemical liquid treatment equipments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151971A JP4384444B2 (en) 2003-05-29 2003-05-29 Electric demineralizer and electrodialyzer

Publications (2)

Publication Number Publication Date
JP2004351317A true JP2004351317A (en) 2004-12-16
JP4384444B2 JP4384444B2 (en) 2009-12-16

Family

ID=33487245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151971A Expired - Lifetime JP4384444B2 (en) 2003-05-29 2003-05-29 Electric demineralizer and electrodialyzer

Country Status (4)

Country Link
US (1) US20070056847A1 (en)
JP (1) JP4384444B2 (en)
CN (1) CN1795147A (en)
WO (1) WO2004106243A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014827A (en) * 2005-06-09 2007-01-25 Ebara Corp Electrodialyzer, waste water treatment method and fluorine treatment system
JP2007075730A (en) * 2005-09-14 2007-03-29 Matsushita Electric Works Ltd Apparatus for generating electrolytic water
JP2015221397A (en) * 2014-05-22 2015-12-10 株式会社 クリア Method and apparatus for production of electroreduction water containing hydrogen molecule
JP2021519686A (en) * 2018-03-30 2021-08-12 ハイドロオクシス ホールディングス リミテッドHydroxsys Holdings Limited Asymmetric composite membranes and modified substrates used to prepare them

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083733B2 (en) 2003-11-13 2006-08-01 Usfilter Corporation Water treatment system and method
US20050103717A1 (en) 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
US8377279B2 (en) 2003-11-13 2013-02-19 Siemens Industry, Inc. Water treatment system and method
US7658828B2 (en) 2005-04-13 2010-02-09 Siemens Water Technologies Holding Corp. Regeneration of adsorption media within electrical purification apparatuses
US20060231406A1 (en) * 2005-04-13 2006-10-19 Usfilter Corporation Regeneration of adsorption media within electrical purification apparatuses
US20080067069A1 (en) 2006-06-22 2008-03-20 Siemens Water Technologies Corp. Low scale potential water treatment
MX2010005876A (en) 2007-11-30 2010-06-15 Siemens Water Tech Corp Systems and methods for water treatment.
CA2751454C (en) * 2009-02-03 2013-08-06 Purdue Research Foundation Method and apparatus for improving local hypoxicity for enhanced therapy
US9095822B2 (en) * 2010-10-04 2015-08-04 Aquatech International Corporation Split flow EDI apparatus for treating second pass RO permeate water with high flow rate
JP6188813B2 (en) * 2012-11-19 2017-08-30 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Electrochemical separator
KR101564921B1 (en) * 2014-02-12 2015-11-02 (주)동양화학 Electrodialysis device for desalination containing metal fibers
JP6258515B2 (en) * 2014-09-19 2018-01-10 株式会社東芝 Electrode unit, electrolyzer, and electrode used in electrolyzer
EP3253716B1 (en) * 2015-02-04 2024-05-08 Spraying Systems Co. An electrolytic cartridges system
CN105668726B (en) * 2016-03-23 2018-05-08 东北大学 PCB etching waste liquors and ink method for treating waste liquid and device
CN106926140A (en) * 2017-04-24 2017-07-07 南华大学 A kind of Magnetorheologicai polishing liquid electrochemistry preserving device and method
US12083780B2 (en) 2018-03-30 2024-09-10 Hydroxsys Holdings Limited Asymmetric composite membranes and hydrophilicitized microporous sheets of polyolefin used in their preparation
CN112479450B (en) * 2020-12-22 2022-03-04 中国石油大学(北京) Method for treating acrylonitrile four-effect evaporation condensate
EP4039655B1 (en) * 2021-02-05 2024-07-03 Université Gustave Eiffel Reactor allowing the continuous filtering of a fluid flowing through a filter and with an on-site electrochemical regeneration of the filter
CN115028242B (en) * 2021-06-17 2024-07-02 上海安江环保科技合伙企业(有限合伙) Electrochemical component, device and method for realizing particle confinement
CN114275861B (en) * 2022-01-24 2024-07-26 爱之馨(上海)家化有限公司 Water body deionized filter equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198086A (en) * 1990-12-21 1993-03-30 Allied-Signal Electrodialysis of salts of weak acids and/or weak bases
DE69204187T2 (en) * 1991-03-13 1996-01-25 Ebara Corp Electrically regenerable demineralization device.
US5376240A (en) * 1991-11-04 1994-12-27 Olin Corporation Process for the removal of oxynitrogen species for aqueous solutions
SE511003C2 (en) * 1992-03-16 1999-07-19 Eka Chemicals Ab Process and apparatus for producing sulfuric acid and alkali metal hydroxide
DE4415678A1 (en) * 1994-05-04 1995-11-09 Hoechst Ag Electrochemical cell
DE4418812C2 (en) * 1994-05-30 1999-03-25 Forschungszentrum Juelich Gmbh Single and multiple electrolysis cells and arrangements thereof for the deionization of aqueous media
JP3801821B2 (en) * 1999-10-29 2006-07-26 株式会社荏原製作所 Electric desalination equipment
US6607647B2 (en) * 2001-04-25 2003-08-19 United States Filter Corporation Electrodeionization apparatus with expanded conductive mesh electrode and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014827A (en) * 2005-06-09 2007-01-25 Ebara Corp Electrodialyzer, waste water treatment method and fluorine treatment system
JP2007075730A (en) * 2005-09-14 2007-03-29 Matsushita Electric Works Ltd Apparatus for generating electrolytic water
JP4600225B2 (en) * 2005-09-14 2010-12-15 パナソニック電工株式会社 Electrolyzed water generator
JP2015221397A (en) * 2014-05-22 2015-12-10 株式会社 クリア Method and apparatus for production of electroreduction water containing hydrogen molecule
JP2021519686A (en) * 2018-03-30 2021-08-12 ハイドロオクシス ホールディングス リミテッドHydroxsys Holdings Limited Asymmetric composite membranes and modified substrates used to prepare them
JP7292742B2 (en) 2018-03-30 2023-06-19 ハイドロオクシス ホールディングス リミテッド Asymmetric composite membranes and modified substrates used in their preparation

Also Published As

Publication number Publication date
CN1795147A (en) 2006-06-28
WO2004106243A1 (en) 2004-12-09
US20070056847A1 (en) 2007-03-15
JP4384444B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP4384444B2 (en) Electric demineralizer and electrodialyzer
JP3801821B2 (en) Electric desalination equipment
US6423205B1 (en) Electric deionization apparatus
KR20070029248A (en) Bipolar chamber and electrochemical liquid treatment apparatus having such bipolar chamber
JP4867720B2 (en) Pure water production method and apparatus
US4352864A (en) Metal/acid ion permeable membrane fuel cell
US20080023334A1 (en) Liquid Treatment Apparatus
WO2006132336A1 (en) Electrodialyzer, waste water treatment method, and fluorine treatment system
JP2007007655A (en) Electrodialyzer
CN1537078A (en) Electric demineralizer
EP3475468A1 (en) Electrochemical process and reactor
US4443522A (en) Metal/acid ion permeable membrane fuel cell
EP3260578A1 (en) Hydrogen peroxide production
JP4065386B2 (en) Electrodialysis machine
JP3952127B2 (en) Electrodeionization treatment method
JP4377104B2 (en) Desalination equipment
JP2007313421A (en) Pure water circulating feed system, pure water recycling method, and method for treating substrate
JPH081165A (en) Electrolytic cell
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP3727586B2 (en) Electric desalination equipment
JP4494612B2 (en) Method for producing hydroxyl group-containing salt
JPH0824868A (en) Water treatment apparatus
US20240166538A1 (en) Water treatment process incorporating a split cell electrochemical reactor
JP2003190960A (en) Electric demineralizer
KR20070022854A (en) Liquid treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150