JP2007075730A - Apparatus for generating electrolytic water - Google Patents

Apparatus for generating electrolytic water Download PDF

Info

Publication number
JP2007075730A
JP2007075730A JP2005266827A JP2005266827A JP2007075730A JP 2007075730 A JP2007075730 A JP 2007075730A JP 2005266827 A JP2005266827 A JP 2005266827A JP 2005266827 A JP2005266827 A JP 2005266827A JP 2007075730 A JP2007075730 A JP 2007075730A
Authority
JP
Japan
Prior art keywords
water
cathode
anode
diaphragm
permeable member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005266827A
Other languages
Japanese (ja)
Other versions
JP4600225B2 (en
Inventor
Yoshinori Tanaka
喜典 田中
Tomoyoshi Nakagawa
朋美 中川
Yasuhiro Saihara
康弘 才原
Juichi Nishikawa
壽一 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005266827A priority Critical patent/JP4600225B2/en
Publication of JP2007075730A publication Critical patent/JP2007075730A/en
Application granted granted Critical
Publication of JP4600225B2 publication Critical patent/JP4600225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for generating electrolytic water, from which electrolytic water having a desired pH value can be obtained efficiently even when an electrolytic voltage is lowered and the amount of waste water is made small. <P>SOLUTION: The apparatus for generating electrolytic water by impressing a voltage between a cathode 1 and an anode 2 is provided with: the cathode 1; the anode 2 arranged to be opposed to the cathode 1 while leaving a predetermined distance between them; a diaphragm 3 arranged between the cathode 1 and the anode 2; and a cathode flow passage 6 arranged between the cathode 1 and the diaphragm 3 for circulating raw water from an inlet to an outlet. A water-permeable member 7 through which raw water is made to pass is arranged between the anode 2 and the diaphragm 3 and abutted on each of the anode and the diaphragm so that a part of the raw water flowing through the cathode flow passage 6 is made to pass through the diaphragm 3 and then through the water-permeable member 7 and discharged to the outside together with a hydrogen ion generated on the surface of the anode 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルカリイオン整水器などに使用される電解水生成装置に関し、詳細には、所望するpHの電解水を低電圧且つ少排水量で生成する技術に関する。   The present invention relates to an electrolyzed water generating device used for an alkaline ionized water device and the like, and more particularly to a technique for generating electrolyzed water having a desired pH at a low voltage and a small amount of drainage.

従来、電解槽を用いて水の電解を行う方法には、例えば特許文献1等に記載される技術があり、これらは水道水を直接、または水道水からの水を活性炭などの吸着浄化部や、中空糸膜等のろ材部を通過させ水中の不純物を取り除いた後、対向する陰陽電極とその間に不織布、イオン交換膜などを配置した構造を有する電解槽に導き入れ、電気的エネルギーの付加を行うことによりイオン種、ガス成分、活性種等の生成を行い水の改質を行う。   Conventionally, methods for electrolyzing water using an electrolytic cell include, for example, techniques described in Patent Document 1 and the like, and these include tap water directly or water from tap water by adsorption purification unit such as activated carbon. After passing through the filter medium part such as a hollow fiber membrane and removing impurities in the water, it is introduced into an electrolytic cell having a structure in which a facing negative electrode and a nonwoven fabric, an ion exchange membrane, etc. are arranged between them, and electric energy is added. By doing so, ionic species, gas components, active species, etc. are generated and water is reformed.

電解槽に用いられる膜には、不織布のような電気的に中性の膜が主に使用されるが、陽イオン交換膜や陰イオン交換膜のようにイオン種によっては膜の通過を阻害する膜も用いられる。   The membrane used in the electrolyzer is mainly an electrically neutral membrane such as a non-woven fabric. However, depending on the ion species, such as a cation exchange membrane or an anion exchange membrane, the passage of the membrane is inhibited. A membrane is also used.

膜として中性膜を用いる目的は、水の電解により生じた水素イオン、水酸化物イオン等が水の拡散、水流により混じってしまい所望する電解水が得られないことを防止するためである。イオン交換膜を用いる目的は、さらに陽イオン、または陰イオンの移動をも防ぐことにより、さらに効率よく所望する生成水を得ることを目的とする。   The purpose of using a neutral membrane as a membrane is to prevent hydrogen ions, hydroxide ions, and the like generated by water electrolysis from being mixed by water diffusion and water flow, resulting in failure to obtain desired electrolyzed water. The purpose of using an ion exchange membrane is to obtain desired product water more efficiently by further preventing the movement of cations or anions.

水道水、河川水、井戸水等の電解質濃度の希薄な水の電解においては、電解電圧を下げるために、陽極と陰極の電極間距離を狭くすることが重要である。通常、一対の電極とその間に隔膜を挟むような電解槽の場合、電極間距離は小さくすればする程、良く、より電解電圧を下げることができる。   In electrolysis of dilute water such as tap water, river water, and well water, it is important to reduce the distance between the anode and the cathode in order to reduce the electrolysis voltage. Usually, in the case of an electrolytic cell in which a pair of electrodes and a diaphragm are sandwiched between them, the smaller the distance between the electrodes, the better, and the electrolysis voltage can be further reduced.

しかしながら実際には、電極間に水を流すために、ある程度の電極間距離を取る必要があり、水中のカルシウムなどの析出による水路詰まりも考慮すると陽極と陰極の距離は2mm〜10mmとなっており、中間に隔膜を設けるのが常である。   However, in practice, in order to allow water to flow between the electrodes, it is necessary to take a certain distance between the electrodes, and the distance between the anode and the cathode is 2 mm to 10 mm in consideration of water channel clogging due to precipitation of calcium in the water. Usually, a diaphragm is provided in the middle.

電極間距離を小さくするため、電極と隔膜を接触させた電解槽の構成としては、特許文献2等に記載される技術があり、どちらかまたは双方の電極と隔膜を接触して配列し、隔膜と接する面と反対側の電極表面に水を通過させて電解している。この場合には、隔膜に主にイオン交換膜を用い、水のpHを変化させないのが主たる目的である。
特開昭55−1822号公報 特開2003−245669号公報
In order to reduce the distance between the electrodes, the configuration of the electrolytic cell in which the electrodes and the diaphragm are brought into contact with each other includes a technique described in Patent Document 2 and the like, and either or both of the electrodes and the diaphragm are arranged in contact with each other. Water is passed through the surface of the electrode opposite to the surface in contact with the electrode to conduct electrolysis. In this case, the main purpose is to use an ion exchange membrane mainly for the diaphragm and not to change the pH of water.
JP-A-55-1822 JP 2003-245669 A

また、陰極側からの吐水を利用するためには、陽極側からの排水量を極力減らすことが必要であり、陽極側からの吐水を利用するためには、陰極側からの排水量を極力減らすことが必要である。   Also, in order to use water discharged from the cathode side, it is necessary to reduce the amount of drainage from the anode side as much as possible, and in order to use water discharged from the anode side, it is necessary to reduce the amount of water discharged from the cathode side as much as possible. is necessary.

例えば、陰極水(アルカリ水)を所望する時に、陽極側の排水量を減らすことは、陽極槽への入水量をコントロールすることにより達成することができる。しかしながら、陽極槽への入水量を極端に減らした場合には、水が陽極槽を通過する速度が下がるため、陽極槽での滞在時間が長くなる。すると、電解により生成される水素イオン濃度が陽極槽内で高くなり、隔膜を通過して陰極槽内へと入り込む水素イオンの割合が高くなる。これによって、陰極水(または陽極水)は、そのpH上昇が低く抑えられてしまう。   For example, when cathode water (alkaline water) is desired, reducing the amount of drainage on the anode side can be achieved by controlling the amount of water entering the anode tank. However, when the amount of water entering the anode tank is extremely reduced, the speed at which water passes through the anode tank decreases, so that the residence time in the anode tank becomes long. Then, the concentration of hydrogen ions generated by electrolysis increases in the anode tank, and the proportion of hydrogen ions that pass through the diaphragm and enter the cathode tank increases. As a result, the pH increase of the cathode water (or anode water) is suppressed to a low level.

そこで本発明は、このような従来の課題を解決するために、電解電圧を低く抑えると共に排水量を少なくしても所望のpH値とした電解水を効率良く提供することのできる電解水生成装置を提供することを目的とする。   Therefore, in order to solve such a conventional problem, the present invention provides an electrolyzed water generating apparatus capable of efficiently providing electrolyzed water having a desired pH value even if the electrolysis voltage is kept low and the amount of drainage is reduced. The purpose is to provide.

通常、一対の電極とその間に隔膜を設けた電解槽による水の電気分解反応では陽極表面で水の電解分解により水素イオンおよび酸素が発生し、陰極表面では水酸化物イオンおよび水素が発生する。結果として陽極側が水素イオンリッチな酸性酸素溶存水、陰極側が水酸化物イオンリッチなアルカリ性の溶存水素水になる。   Usually, in an electrolysis reaction of water in an electrolytic cell provided with a pair of electrodes and a diaphragm between them, hydrogen ions and oxygen are generated by electrolytic decomposition of water on the anode surface, and hydroxide ions and hydrogen are generated on the cathode surface. As a result, acidic oxygen-dissolved water rich in hydrogen ions is formed on the anode side, and alkaline dissolved hydrogen water rich in hydroxide ions is formed on the cathode side.

ここで、陽極を隔膜と接触させ、隔膜のもう一方の面と陰極との間に水を通過させる構造を有した場合に電解をかけると、陰極では同じように水酸化物イオンおよび水素が発生する。陽極では膜を浸透してきた水がその膜と陽極との接触面近傍において電解反応を受け酸素と水素イオンを生成する。この時、陰極と隔膜の間だけに水の抵抗があり、電解電圧は小さくなる。しかし、陽極との接触面近傍では水が少ないため水素イオンの濃度が高く、膜を通過し陰極槽内に流入してしまい、陰極で発生した水酸化物イオンと互いに打ち消しあう結果となる。   Here, when the anode is in contact with the diaphragm and water is passed between the other side of the diaphragm and the cathode, when electrolysis is performed, hydroxide ions and hydrogen are generated in the same way at the cathode. To do. At the anode, the water that has permeated the membrane undergoes an electrolytic reaction near the contact surface between the membrane and the anode to generate oxygen and hydrogen ions. At this time, there is water resistance only between the cathode and the diaphragm, and the electrolysis voltage becomes small. However, since there is little water in the vicinity of the contact surface with the anode, the concentration of hydrogen ions is high, and the hydrogen ions pass through the membrane and flow into the cathode chamber, resulting in cancellation of the hydroxide ions generated at the cathode.

これを防ぐため、まず、隔膜に通水性部材を接触させ、次に、この通水性部材を前記隔膜とで挟み込むようにして陽極を通水性部材に接触させる。この通水性部材を設けることで、原水を陰極流路から隔膜へと通過させる水の流れを強制的に作り出し、さらに通水性部材を通過させて陽極表面で電解させる。また、通水性部材を通過させた原水をさらに陽極をも通水させて電解することもできる。つまり、本発明では、陽極表面で生成される水素イオン濃度が上昇して隔膜を逆流しないように強制水流を設け、排水として系外に取り除くようにする。   In order to prevent this, the water-permeable member is first brought into contact with the diaphragm, and then the anode is brought into contact with the water-permeable member so as to be sandwiched between the water-permeable member and the diaphragm. By providing this water-permeable member, a flow of water that allows the raw water to pass from the cathode channel to the diaphragm is forcibly generated, and further, the water-permeable member is passed through and electrolyzed on the anode surface. Further, the raw water that has passed through the water-permeable member can also be electrolyzed by passing water through the anode. In other words, in the present invention, a forced water flow is provided so that the concentration of hydrogen ions generated on the anode surface does not increase and reversely flow through the diaphragm, and is removed from the system as waste water.

なお、陰極を通水性部材と接触させた場合には、陽極流路側から隔膜、さらに通水性部材を通過する水の流れ、加えて陰極を通水する水の流れを強制的に作り出し、陰極表面で生成される水酸化物イオン濃度が上昇しないように系外へ取り除く。   In addition, when the cathode is brought into contact with the water-permeable member, the flow of water passing through the diaphragm and further the water-permeable member from the anode flow path side, in addition to the flow of water passing through the cathode, is forcibly created. Is removed from the system so that the hydroxide ion concentration generated in the above does not increase.

本発明によれば、陽極と隔膜との間にそれぞれ接するように設けた通水性部材により陰極流路を流れる原水の一部が隔膜を通して通水性部材へと流れる水の流れが作り出されるため、陽極表面で生成された水素イオンが、この通水性部材を通して原水の一部と共に系外へ排水される。その結果、隔膜の両側でイオン濃度の差が無くなり、電解時に特異なイオン(水素イオン)のみが隔膜を行き来するのを防止することができ、陰極水のpHを効率良く変化させることができる。   According to the present invention, since the water-permeable member provided so as to be in contact with each other between the anode and the diaphragm, a part of the raw water flowing through the cathode channel is created to flow through the diaphragm to the water-permeable member. Hydrogen ions generated on the surface are drained out of the system together with a part of the raw water through this water-permeable member. As a result, there is no difference in ion concentration on both sides of the diaphragm, and only specific ions (hydrogen ions) can be prevented from traveling back and forth during electrolysis, and the pH of the cathode water can be changed efficiently.

また、本発明によれば、同様に、陰極と隔膜との間にそれぞれ接するように設けた通水性部材により陽極流路を流れる原水の一部が隔膜を通して通水性部材へと流れる水の流れが作り出されるため、陰極表面で生成された水酸化物イオンが、この通水性部材を通して原水の一部と共に系外へ排水される。その結果、隔膜の両側でイオン濃度の差が無くなり、電解時に特異なイオン(水酸化物イオン)のみが隔膜を行き来するのを防止することができ、陽極水のpHを効率良く変化させることができる。   Further, according to the present invention, similarly, a flow of water flowing through the diaphragm to the water permeable member through a part of the raw water flowing through the anode channel by the water permeable member provided so as to be in contact with the cathode and the diaphragm, respectively. Therefore, hydroxide ions generated on the cathode surface are drained out of the system together with a part of the raw water through this water-permeable member. As a result, there is no difference in ion concentration on both sides of the diaphragm, it is possible to prevent only specific ions (hydroxide ions) from traveling back and forth during electrolysis, and to efficiently change the pH of the anode water. it can.

したがって、本発明によれば、所望する陰極水または陽極水を、低電圧且つ少排水量で作成することができる。   Therefore, according to the present invention, desired cathode water or anode water can be produced with a low voltage and a small amount of drainage.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

「実施の形態1」
図1は、実施の形態1の電解水生成装置の断面図である。
“Embodiment 1”
FIG. 1 is a cross-sectional view of the electrolyzed water generating apparatus according to the first embodiment.

本実施の形態の電解水生成装置は、図1に示すように、陰極1と、この陰極1に対して所定距離を置いて対向配置された陽極2と、前記陰極1と前記陽極2の間に設けられた隔膜3と、陰極1と隔膜3との間に設けられ、原水を入口管4から出口管5へと流通させる陰極流路6とを備え、これら陰極1と陽極2間に電圧を印加して電解水を生成する整水器である。   As shown in FIG. 1, the electrolyzed water generating apparatus according to the present embodiment includes a cathode 1, an anode 2 disposed opposite to the cathode 1 at a predetermined distance, and a space between the cathode 1 and the anode 2. 2 and a cathode channel 6 provided between the cathode 1 and the diaphragm 3 for flowing raw water from the inlet pipe 4 to the outlet pipe 5. Is a water conditioner that generates electrolyzed water.

隔膜3には、例えばポリテトラフルオロエチレン、ポリエチレンテレフタレート、ポリエチレン等の如き不織布、セラミック膜のような通水性を有した膜が用いられる。この隔膜3は、陰極1と陽極2の間に配置される。   For the diaphragm 3, for example, a non-woven fabric such as polytetrafluoroethylene, polyethylene terephthalate, or polyethylene, or a membrane having water permeability such as a ceramic membrane is used. The diaphragm 3 is disposed between the cathode 1 and the anode 2.

陰極1と陽極2には、例えばPt(白金)メッキしたチタン平板電極が使用される。隔膜3と陰極1との間には、例えば水道水、河川水、井戸水等の原水が流通する陰極流路6が設けられる。一方、隔膜3と陽極2の間には、陰極流路6を流れる原水の一部を通水させる通水性部材7が設けられる。通水性部材7は、一面が陽極2に接し他面が隔膜3に接するように、これら陽極2と隔膜3の間に挟み込まれるようにして設けられる。   For the cathode 1 and the anode 2, for example, a platinum plate electrode plated with Pt (platinum) is used. A cathode channel 6 through which raw water such as tap water, river water, and well water flows is provided between the diaphragm 3 and the cathode 1. On the other hand, a water-permeable member 7 is provided between the diaphragm 3 and the anode 2 to allow a part of the raw water flowing through the cathode channel 6 to flow. The water-permeable member 7 is provided so as to be sandwiched between the anode 2 and the diaphragm 3 so that one surface is in contact with the anode 2 and the other surface is in contact with the diaphragm 3.

通水性部材7には、排水がスムーズに行えるように水の通水を妨げないようにすることが重要であり、例えばテフロン(デュポン株式会社の登録商標名)、フッ素樹脂、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレートなどが使用される。隔膜3と通水性部材7は接触させておくことが必要であるが、予め隔膜3と通水性部材7を一体化しておいてもよい。また、陽極2と通水性部材7とは、同様に接触していることから、陽極2と隔膜3間の水路を減少させ、電解電圧の低減を図ることが可能となる。   For the water-permeable member 7, it is important not to disturb the water flow so that drainage can be performed smoothly. For example, Teflon (registered trademark name of DuPont), fluororesin, polypropylene, polyethylene, polyethylene Terephthalate or the like is used. The diaphragm 3 and the water permeable member 7 need to be in contact with each other, but the diaphragm 3 and the water permeable member 7 may be integrated in advance. Further, since the anode 2 and the water permeable member 7 are in contact with each other in the same manner, it is possible to reduce the water channel between the anode 2 and the diaphragm 3 and reduce the electrolysis voltage.

通水性部材7は、排水路として機能し、陽極2の表面で生成された水素イオンを、陰極流路6を流れる原水(水)の一部と共に流し系外へと排水する。そのため、通水性部材7の一端側には、系外へと排水するための配水管8が接続されている。   The water-permeable member 7 functions as a drainage channel, and drains hydrogen ions generated on the surface of the anode 2 together with a part of raw water (water) flowing through the cathode channel 6 to the outside of the system. Therefore, a water distribution pipe 8 for draining outside the system is connected to one end side of the water-permeable member 7.

このように構成された電解水生成装置では、原水は入口管4を通って陰極流路6に入れられる。陰極流路6内で原水は、隔膜3を一部通水し、さらに通水性部材7を通過して排水として流れる。このとき、陽極2の表面では、次式(1)のような水の電気分解反応が起き、水素イオンと酸素が生成される。   In the electrolyzed water generating apparatus configured as described above, the raw water passes through the inlet pipe 4 and enters the cathode channel 6. In the cathode channel 6, the raw water partially passes through the diaphragm 3 and further passes through the water-permeable member 7 and flows as drainage. At this time, on the surface of the anode 2, an electrolysis reaction of water as in the following formula (1) occurs, and hydrogen ions and oxygen are generated.

2H2 O→4H+ +O2 +4e- ・・・(1)式
生成された水素イオン及び酸素は、隔膜3から通水性部材7を通過して流れる水によって陽極2の表面から除去され、当該通水性部材7を介して配水管8へと排出される。
2H 2 O → 4H + + O 2 + 4e (1) Formula The generated hydrogen ions and oxygen are removed from the surface of the anode 2 by the water flowing from the diaphragm 3 through the water-permeable member 7, It is discharged to the water distribution pipe 8 through the aqueous member 7.

陰極流路6では、陰極1の表面で、次式(2)のような反応によって水が電気分解される。   In the cathode channel 6, water is electrolyzed on the surface of the cathode 1 by a reaction such as the following formula (2).

4H2 O+4e- →4OH- +2H2 ・・・(2)式
このとき生成した水素は、陰極流路6を流れる水に部分的に溶解する。また、水素の生成と同時に、水酸化物イオンも生成される。本実施の形態の場合は、陽極2の表面で水素イオン濃度が上昇しないため、隔膜3の両側でイオン濃度の差が無く、電解時に特異なイオン(例えば水素イオン)のみが膜を行き来することが無い。このため、本実施の形態の電解水生成装置によれば、陰極水のpHを効率よく変化させることができる。つまり、陰極水のpHを、低アルカリから高アルカリの範囲で所望のpH値とすることができる。
4H 2 O + 4e → 4OH + 2H 2 (2) Formula The hydrogen generated at this time is partially dissolved in the water flowing through the cathode channel 6. At the same time as the generation of hydrogen, hydroxide ions are also generated. In the case of the present embodiment, since the hydrogen ion concentration does not increase on the surface of the anode 2, there is no difference in ion concentration on both sides of the diaphragm 3, and only specific ions (for example, hydrogen ions) move back and forth during electrolysis. There is no. For this reason, according to the electrolyzed water generating apparatus of this Embodiment, the pH of cathode water can be changed efficiently. That is, the pH of the cathode water can be set to a desired pH value in the range of low alkali to high alkali.

通常、アルカリイオン整水器の電解の場合は、陽極と陰極の間には中性の隔膜が設けられており、陽極、陰極共に隔膜に接しておらず、電解電圧は陽極と隔膜間の水、陰極と隔膜間の水の抵抗分だけ余分に必要となるが、本実施の形態の場合には、陽極と隔膜間の距離が小さいので無視でき、抵抗は陰極と隔膜間の水の抵抗のみとなる。   Usually, in the case of electrolysis of an alkaline ionized water apparatus, a neutral diaphragm is provided between the anode and the cathode, and neither the anode nor the cathode is in contact with the diaphragm, and the electrolysis voltage is the water between the anode and the diaphragm. In this embodiment, the distance between the anode and the diaphragm is small and can be ignored, and the resistance is only the resistance of water between the cathode and the diaphragm. It becomes.

また、通常のアルカリイオン整水器の電解の場合は、排水である陽極水量を絞り、減少させると隔膜の陽極側の面の水の滞在時間が長く、特異なイオン(例えば水素イオン)が多くなるため膜を移動し陰極側に行きやすくなる。これによって、陰極水のpH変化が小さくなってしまう。図2は、従来例である通常のアルカリイオン整水器の電解槽(図2中点線で示す)と本実施の形態の電解槽(図2中実線で示す)とにおいて、吐水量が同じである場合に排水量を減少させた場合の陰極流路を流れる水のpHを示す。   Moreover, in the case of electrolysis of a normal alkaline ionized water device, if the amount of anodic water that is drainage is reduced and reduced, the residence time of water on the anode side surface of the diaphragm is long and there are many unique ions (for example, hydrogen ions). Therefore, it becomes easy to move the film and go to the cathode side. This reduces the pH change of the cathode water. FIG. 2 shows that the amount of water discharged is the same in an electrolytic cell (indicated by a dotted line in FIG. 2) of a conventional alkaline ionized water device, which is a conventional example, and in an electrolytic cell of the present embodiment (indicated by a solid line in FIG. 2). The pH of the water flowing through the cathode channel when the amount of drainage is reduced in some cases is shown.

従来のアルカリイオン水の電解槽では、排水量を減少させていくと、排水量500ml/min以下では陰極側からの吐水pHが大きく下がる。したがって、この排水量以下では、電解効率が悪くなる。一方、本実施の形態の電解槽では、排水量300ml/min以下でようやく下がり始めることとなる。   In the conventional alkaline ionized water electrolyzer, when the amount of drainage is decreased, the pH of water discharged from the cathode side is greatly lowered at a drainage amount of 500 ml / min or less. Therefore, below this amount of drainage, the electrolysis efficiency becomes worse. On the other hand, in the electrolytic cell of the present embodiment, it finally begins to drop at a drainage amount of 300 ml / min or less.

本実施の形態の電解水生成装置によれば、陽極2と隔膜3との間にそれぞれ接するように設けた通水性部材7により陰極流路6を流れる原水の一部が隔膜3を通して通水性部材7へと流れる水の流れが作り出されるため、陽極表面で生成された水素イオンを、この通水性部材7を通して原水の一部と共に系外へと排水させることができる。その結果、隔膜3の両側でイオン濃度の差が無くなり、電解時に特異なイオン(水素イオン)のみが隔膜3を行き来するのを防止することができ、陰極水のpHを効率良く変化させることができる。つまり、本実施の形態の電解水生成装置によれば、陰極水のpHを、低アルカリから高アルカリの範囲で所望のpH値とすることができる。   According to the electrolyzed water generating apparatus of the present embodiment, part of the raw water flowing through the cathode channel 6 passes through the diaphragm 3 by the water-permeable member 7 provided so as to be in contact with the anode 2 and the diaphragm 3. Since the flow of water flowing to 7 is created, the hydrogen ions generated on the anode surface can be drained out of the system together with a part of the raw water through the water-permeable member 7. As a result, there is no difference in ion concentration on both sides of the diaphragm 3, and only specific ions (hydrogen ions) can be prevented from traveling back and forth during electrolysis, and the pH of the cathode water can be changed efficiently. it can. That is, according to the electrolyzed water generating apparatus of the present embodiment, the pH of the cathode water can be set to a desired pH value in the range of low alkali to high alkali.

なお、上記した例では、通水性部材7を間に挟んでこれら陽極2、通水性部材7、隔膜3を接触させる構造としたがこの限りではなく、通水性部材7を間に挟んで陰極1、通水性部材7、隔膜3を接触させ、陽極2と隔膜3との間に原水を流通させる陽極流路を形成し、陰極表面で生成された水酸化物イオンを、陽極流路を流れる原水の一部と共に通水性部材7を通過させて系外へと排水させるようにしてもよい。また、排水量については吐水量によって変化するものであり、この限りではない
このようにすれば、上記した実施の形態と同様、陰極1の表面に生成された水酸化物イオンを、陽極流路へ流出させることなく系外へと強制的に排水させることができ、陽極水のpHを効率良く変化させることができる。
In the above example, the anode 2, the water permeable member 7, and the diaphragm 3 are brought into contact with each other with the water permeable member 7 interposed therebetween, but this is not restrictive, and the cathode 1 with the water permeable member 7 interposed therebetween. Then, the water-permeable member 7 and the diaphragm 3 are brought into contact with each other to form an anode flow path through which raw water flows between the anode 2 and the diaphragm 3, and hydroxide ions generated on the cathode surface are allowed to flow through the anode flow path. The water-permeable member 7 may be allowed to pass along with a part of the water and drained out of the system. In addition, the amount of drainage varies depending on the amount of water discharged, and is not limited to this. If this is done, the hydroxide ions generated on the surface of the cathode 1 are transferred to the anode channel as in the above-described embodiment. The water can be forcibly drained out of the system without flowing out, and the pH of the anode water can be changed efficiently.

「実施の形態2」
図3は、実施の形態2の電解水生成装置の断面図である。
Embodiment 2”
FIG. 3 is a cross-sectional view of the electrolyzed water generating device according to the second embodiment.

実施の形態2においては、通水性部材7に接する陽極2または陰極1を通水性を有した電極構造とし、隔膜3及び通水性部材7を通過させた原水とイオンとを、この通水性を有した陽極2または陰極1を通過させて系外へと排水させる。   In the second embodiment, the anode 2 or the cathode 1 in contact with the water permeable member 7 has an electrode structure having water permeability, and the raw water and ions that have passed through the diaphragm 3 and the water permeable member 7 have this water permeability. The discharged anode 2 or cathode 1 is allowed to drain out of the system.

具体的には、電極自身を通水できるような形状のものを選択する。通水できる電極としては、例えばメッシュ電極、メッキ電極、ハニカム電極、パンチングメタル電極、多孔質電極等が使用できる。本実施の形態では、Ptメッキしたチタンメッシュ電極を通水性部材7に接触させることにより、陽極2と隔膜3間の水路を減少させ、電解電圧の低減を図ることができる。   Specifically, a shape that allows water to pass through the electrode itself is selected. As an electrode through which water can pass, for example, a mesh electrode, a plating electrode, a honeycomb electrode, a punching metal electrode, a porous electrode, and the like can be used. In the present embodiment, the Pt-plated titanium mesh electrode is brought into contact with the water member 7, thereby reducing the water channel between the anode 2 and the diaphragm 3 and reducing the electrolysis voltage.

陽極2または陰極1を通過する原水とイオンは、通水性部材7と接する陽極2または陰極1の裏面側に設けた排水路9に排水させ、その排水路9に接続した配水管8から系外へと排水させる。   The raw water and ions passing through the anode 2 or the cathode 1 are drained to a drainage channel 9 provided on the back side of the anode 2 or the cathode 1 in contact with the water-permeable member 7 and are discharged from the water distribution pipe 8 connected to the drainage channel 9 to the outside of the system. Let it drain into.

本実施の形態の電解水生成装置によれば、陰極流路6内を流れた原水の一部が隔膜3及び通水性部材7を通水し、さらに陽極2を通過して排水路9へと排水される水の流れが作られるので、生成された水素イオン及び酸素を、隔膜3から陽極2を通過して流れる水によって電極表面から系外へと排水させることができる。このように、本実施の形態によれば、通水性部材7のみを通過して陽極2の表面から水素イオンが取り除かれる場合に比べて、陽極2を通過する場合は、陽極表面で生成した水素イオンが確実に当該陽極2を通過して取り除かれるため効率がよい。   According to the electrolyzed water generating apparatus of the present embodiment, part of the raw water that has flowed through the cathode channel 6 passes through the diaphragm 3 and the water-permeable member 7, and further passes through the anode 2 to the drainage channel 9. Since a drained water flow is created, the generated hydrogen ions and oxygen can be drained from the electrode surface to the outside by the water flowing from the diaphragm 3 through the anode 2. As described above, according to the present embodiment, the hydrogen produced on the anode surface when passing through the anode 2 as compared with the case where hydrogen ions are removed from the surface of the anode 2 through only the water-permeable member 7. Since the ions are surely removed through the anode 2, the efficiency is high.

したがって、本実施の形態によれば、陽極面で水素イオン濃度が上昇しないため、隔膜3の両側でイオン濃度の差が無く、電解時に特異なイオン(例えば水素イオン)のみが膜を行き来することが無い。このため、本実施の形態の電解水生成装置によれば、陰極水のpHを効率よく変化(陰極水のpHを低アルカリから高アルカリの範囲で所望のpH値とする)させることができる。   Therefore, according to the present embodiment, since the hydrogen ion concentration does not increase on the anode surface, there is no difference in ion concentration on both sides of the diaphragm 3, and only specific ions (for example, hydrogen ions) go back and forth during the electrolysis. There is no. For this reason, according to the electrolyzed water generating apparatus of the present embodiment, the pH of the cathode water can be efficiently changed (the pH of the cathode water is set to a desired pH value in the range of low alkali to high alkali).

なお、図3では、通水性部材7を間に挟んでこれら陽極2、通水性部材7、隔膜3を接触させる構造としたがこの限りではなく、通水性部材7を間に挟んで陰極1、通水性部材7、隔膜3を接触させ、陽極2と隔膜3との間に原水を流通させる陽極流路を形成し、陰極表面で生成された水酸化物イオンを、陽極流路を流れる原水の一部と共に隔膜3、通水性部材7及び陰極1を通過させて系外へと排水させるようにしてもよい。   In FIG. 3, the anode 2, the water permeable member 7, and the diaphragm 3 are in contact with each other with the water permeable member 7 interposed therebetween, but this is not a limitation, and the cathode 1 with the water permeable member 7 interposed therebetween. The water-permeable member 7 and the diaphragm 3 are brought into contact with each other to form an anode flow path for circulating raw water between the anode 2 and the diaphragm 3, and hydroxide ions generated on the cathode surface are converted into raw water flowing through the anode flow path. You may make it let the diaphragm 3, the water-permeable member 7, and the cathode 1 pass along with a part, and to drain out of the system.

このようにすれば、図3の構造と同様、陰極1の表面に生成された水酸化物イオンを、陽極流路へ流出させることなく系外へと強制的に排水させることができ、陽極水のpHを効率良く変化させることができる。   In this way, as in the structure of FIG. 3, hydroxide ions generated on the surface of the cathode 1 can be forcibly drained out of the system without flowing into the anode flow path. Can be efficiently changed.

「実施の形態3」
図4は、実施の形態3の電解水生成装置の断面図である。
Embodiment 3”
FIG. 4 is a cross-sectional view of the electrolyzed water generating device according to the third embodiment.

実施の形態3では、通水性部材7に接する電極の構造を実施の形態2の構造(図3の構造)に変えて、通水性部材7の隔膜3と接する面とは反対側の面に、貴金属をメッキまたは塗布することによって電極としたものである。その他の構成は、実施の形態2の構造と同様であるため、共通部分についてはその説明は省略するものとする。   In the third embodiment, the structure of the electrode in contact with the water permeable member 7 is changed to the structure of the second embodiment (structure in FIG. 3), and the surface of the water permeable member 7 opposite to the surface in contact with the diaphragm 3 is An electrode is formed by plating or coating a noble metal. Since other configurations are the same as those of the second embodiment, description of common portions will be omitted.

具体的には、通水性部材7にTi(チタン)など水電解の電極として作用しない金属を用い、その通水性部材7の前記隔膜3と反対の面にPt(白金)、Au(金)などの貴金属をメッキまたは塗布することにより電極としての機能を持たせる。例えば、金属チタンなどは表面に酸化皮膜を形成するため、それら単体では水電解の電極としては用いられることは少ない。しかし、チタンにPtをメッキしたものは、水電解用の電極として広く用いられている。本実施の形態では、チタンからなるメッシュの片面にPt、Auなどの貴金属をメッキまたは塗布することにより、通水性を持たせながら片側のみ電極としての特性を有する通水性部材と電極との複合体を形成する。   Specifically, a metal that does not act as an electrode for water electrolysis, such as Ti (titanium), is used for the water-permeable member 7, and Pt (platinum), Au (gold), or the like is provided on the surface of the water-permeable member 7 opposite to the diaphragm 3. A function as an electrode is provided by plating or coating a noble metal. For example, since titanium metal and the like form an oxide film on the surface, they are rarely used as electrodes for water electrolysis. However, titanium plated with Pt is widely used as an electrode for water electrolysis. In the present embodiment, a composite of a water-permeable member and an electrode having characteristics as an electrode only on one side while providing water permeability by plating or applying a noble metal such as Pt or Au on one side of a mesh made of titanium. Form.

図4では、チタンメッシュからなる通水性部材7の裏面に貴金属をメッキまたは塗布することにより陽極2を形成している。   In FIG. 4, the anode 2 is formed by plating or coating a noble metal on the back surface of the water-permeable member 7 made of titanium mesh.

本実施の形態の電解水生成装置によれば、陰極流路6内を流れた原水の一部が隔膜3及び通水性部材7を通水し、さらに通水性部材7の裏面に貴金属をメッキまたは塗布して形成された陽極2を通過して排水路9へと排水される水の流れが作られるので、生成された水素イオン及び酸素を、隔膜3から陽極2を通過して流れる水によって電極表面から系外へと排水させることができる。   According to the electrolyzed water generating apparatus of the present embodiment, a part of the raw water that has flowed through the cathode channel 6 passes through the diaphragm 3 and the water-permeable member 7, and the noble metal is plated on the back surface of the water-permeable member 7. Since a flow of water drained to the drainage channel 9 through the anode 2 formed by coating is created, the generated hydrogen ions and oxygen are separated from the diaphragm 3 by the water flowing through the anode 2 and the electrode. It can be drained out of the system from the surface.

これを詳細に説明すると、陰極流路6内の原水の一部は、隔膜3を一部通水し複合化された通水性部材7及び陽極2を通過して排水路8へと排水される。通水性部材7では、水を通過するが、基材がTiであるため電極反応が起こらない。しかし、通水性部材7の裏面側に形成された部分(陽極2)では、水の電気分解が起こり生成された水素イオン及び酸素は電極表面から排水として除去される。通水性部材7の片面をメッキまたは塗布を行った場合の電極面は、陰極1側を向いていないため、水素イオン及び酸素は陰極1と正反対の面(排水路8側の面)で生成されることとなり、陰極1から最遠位置で生成されることとなる。このため、隔膜3を通って陰極1側に流れ出る水素イオン量は一層少なくなる。   Explaining this in detail, a part of the raw water in the cathode channel 6 passes through the diaphragm 3 and passes through the combined water-permeable member 7 and anode 2 and is drained to the drainage channel 8. . The water-permeable member 7 passes water, but the electrode reaction does not occur because the base material is Ti. However, in the portion (anode 2) formed on the back surface side of the water-permeable member 7, hydrogen ions and oxygen generated by electrolysis of water are removed from the electrode surface as waste water. When one side of the water-permeable member 7 is plated or coated, the electrode surface does not face the cathode 1 side, so hydrogen ions and oxygen are generated on the surface opposite to the cathode 1 (surface on the drainage channel 8 side). In other words, it is generated at the farthest position from the cathode 1. For this reason, the amount of hydrogen ions flowing out to the cathode 1 side through the diaphragm 3 is further reduced.

したがって、本実施の形態によれば、陽極面で水素イオン濃度が上昇しないため、隔膜3の両側でイオン濃度の差が無く、電解時に特異なイオン(例えば水素イオン)のみが膜を行き来することが無い。このため、本実施の形態の電解水生成装置によれば、陰極水のpHを効率よく変化(陰極水のpHを低アルカリから高アルカリの範囲で所望のpH値とする)させることができる。   Therefore, according to the present embodiment, since the hydrogen ion concentration does not increase on the anode surface, there is no difference in ion concentration on both sides of the diaphragm 3, and only specific ions (for example, hydrogen ions) go back and forth during the electrolysis. There is no. For this reason, according to the electrolyzed water generating apparatus of the present embodiment, the pH of the cathode water can be efficiently changed (the pH of the cathode water is set to a desired pH value in the range of low alkali to high alkali).

なお、図4では、チタンメッシュからなる通水性部材7の裏面(隔膜3と接する面とは反対側の面)に金属をメッキまたは塗布して陽極2を形成したが、陽極2ではなく陰極1を通水性部材7と複合化させ、陽極2と隔膜3との間に原水を流通させる陽極流路を形成し、陰極表面で生成された水酸化物イオンを、陽極流路を流れる原水の一部と共に隔膜3、通水性部材7及び陰極1を通過させて系外へと排水させるようにしてもよい。   In FIG. 4, the anode 2 is formed by plating or applying metal to the back surface (the surface opposite to the surface in contact with the diaphragm 3) of the water-permeable member 7 made of titanium mesh. The anode water passage is formed between the anode 2 and the diaphragm 3 by forming a composite with the water-permeable member 7, and hydroxide ions generated on the cathode surface are converted into a portion of the raw water flowing through the anode passage. The membrane 3, the water-permeable member 7, and the cathode 1 may be passed along with the part to drain out of the system.

このようにすれば、図4の構造と同様、陰極1の表面に生成された水酸化物イオンを、陽極流路へ流出させることなく系外へと強制的に排水させることができ、陽極水のpHを効率良く変化させることができる。   In this way, like the structure of FIG. 4, hydroxide ions generated on the surface of the cathode 1 can be forcibly drained out of the system without flowing out into the anode flow path. Can be efficiently changed.

「実施の形態4」
図5は、実施の形態4の電解水生成装置の断面図である。
Embodiment 4”
FIG. 5 is a cross-sectional view of the electrolyzed water generating device according to the fourth embodiment.

実施の形態4では、通水性部材7に接する電極の構造を実施の形態2の構造(図3の構造)に変えて、貴金属メッシュ電極、または貴金属を通水性部材7の片面若しくは両面にメッキまたは塗布することによって電極としたものである。その他の構成は、実施の形態2の構造と同様であるため、共通部分についてはその説明は省略するものとする。   In the fourth embodiment, the structure of the electrode in contact with the water-permeable member 7 is changed to the structure of the second embodiment (the structure of FIG. 3), and the noble metal mesh electrode or the noble metal is plated on one or both surfaces of the water-permeable member 7 or The electrode is formed by coating. Since other configurations are the same as those of the second embodiment, description of common portions will be omitted.

具体的には、通水性部材7にTi(チタン)など水電解の電極として作用しないチタンメッシュからなる金属を用い、電極(陽極2)にはチタンメッシュにPt、Auなどの貴金属をメッキしたチタン平板電極を使用する。または、通水性部材7にチタンメッシュからなる金属を用い、電極にはこれとは別のチタンメッシュ(メッシュ金属)の片面若しくは両面にPt、Auなどの貴金属をメッキまたは塗布した電極を使用する。例えば、金属チタンなどは表面に酸化皮膜を形成するため、それら単体では水電解の電極としては用いられることは少ない。しかし、チタンにPtをメッキしたものは、水電解用の電極として広く用いられている。   Specifically, a metal made of a titanium mesh that does not act as an electrode for water electrolysis, such as Ti (titanium), is used for the water-permeable member 7, and titanium that is plated with a noble metal such as Pt or Au is used for the electrode (anode 2). Use plate electrodes. Alternatively, a metal made of titanium mesh is used for the water-permeable member 7, and an electrode obtained by plating or applying a noble metal such as Pt or Au on one side or both sides of another titanium mesh (mesh metal) is used for the electrode. For example, since titanium metal and the like form an oxide film on the surface, they are rarely used as electrodes for water electrolysis. However, titanium plated with Pt is widely used as an electrode for water electrolysis.

図5では、隔膜3とチタンメッシュからなる通水性部材7を接触させ、さらにそのチタンメッシュからなる通水性部材7にPtメッキチタンメッシュ電極を接触させることで陽極2を形成している。   In FIG. 5, the anode 2 is formed by bringing the diaphragm 3 and the water-permeable member 7 made of titanium mesh into contact with each other, and further bringing the Pt-plated titanium mesh electrode into contact with the water-permeable member 7 made of titanium mesh.

本実施の形態の電解水生成装置によれば、陰極流路6内を流れた原水の一部が隔膜3及び通水性部材7を通水し、さらに陽極2を通過して排水路9へと排水される水の流れが作られるので、生成された水素イオン及び酸素を、隔膜3から陽極2を通過して流れる水によって電極表面から系外へと排水させることができる。したがって、本実施の形態によれば、陽極面で水素イオン濃度が上昇しないため、隔膜3の両側でイオン濃度の差が無く、電解時に特異なイオン(例えば水素イオン)のみが膜を行き来することが無い。このため、本実施の形態の電解水生成装置によれば、陰極水のpHを効率よく変化(陰極水のpHを低アルカリから高アルカリの範囲で所望のpH値とする)させることができる。   According to the electrolyzed water generating apparatus of the present embodiment, part of the raw water that has flowed through the cathode channel 6 passes through the diaphragm 3 and the water-permeable member 7, and further passes through the anode 2 to the drainage channel 9. Since a drained water flow is created, the generated hydrogen ions and oxygen can be drained from the electrode surface to the outside by the water flowing from the diaphragm 3 through the anode 2. Therefore, according to the present embodiment, since the hydrogen ion concentration does not increase on the anode surface, there is no difference in ion concentration on both sides of the diaphragm 3, and only specific ions (for example, hydrogen ions) go back and forth during the electrolysis. There is no. For this reason, according to the electrolyzed water generating apparatus of the present embodiment, the pH of the cathode water can be efficiently changed (the pH of the cathode water is set to a desired pH value in the range of low alkali to high alkali).

また、本実施の形態のように、通水性部材7にTiなど水電解の電極として作用しない金属を用いた場合、その通水部材7の導電性が活用される。つまり、陽極2として目の細かいメッシュ、薄電極などは電流を流す場合に電流密度の分布ができる恐れがある。その場合、電流密度の高い部分では水の電解が頻度高く起こり、水素イオン濃度が高くなり十分に流水で排水できなくなる恐れがある。また、電極表面の劣化が著しくなる恐れがある。このため、水電解の電極としては成立しないが、十分に導電性を有する金属を通水性部材7として用いることができる。   Moreover, when the metal which does not act as an electrode of water electrolysis, such as Ti, is used for the water permeable member 7 like this Embodiment, the electroconductivity of the water permeable member 7 is utilized. That is, a fine mesh, a thin electrode, etc. as the anode 2 may cause a current density distribution when a current is passed. In that case, electrolysis of water occurs frequently in the portion where the current density is high, and there is a possibility that the hydrogen ion concentration becomes high and the water cannot be sufficiently drained with running water. In addition, the electrode surface may be significantly deteriorated. For this reason, it does not hold as an electrode for water electrolysis, but a metal having sufficient conductivity can be used as the water-permeable member 7.

なお、図5では、チタンメッシュからなる通水性部材7に接して陽極2を形成したが、陽極2ではなく陰極1を通水性部材7と接触させ、陽極2と隔膜3との間に原水を流通させる陽極流路を形成し、陰極表面で生成された水酸化物イオンを、陽極流路を流れる原水の一部と共に隔膜3、通水性部材7及び陰極1を通過させて系外へと排水させるようにしてもよい。   In FIG. 5, the anode 2 is formed in contact with the water-permeable member 7 made of titanium mesh, but the cathode 1 is brought into contact with the water-permeable member 7 instead of the anode 2, and raw water is supplied between the anode 2 and the diaphragm 3. An anode flow path is formed, and hydroxide ions generated on the cathode surface are drained out of the system through the diaphragm 3, the water-permeable member 7 and the cathode 1 together with a part of the raw water flowing through the anode flow path. You may make it make it.

このようにすれば、図5の構造と同様、陰極1の表面に生成された水酸化物イオンを、陽極流路へ流出させることなく系外へと強制的に排水させることができ、陽極水のpHを効率良く変化させることができる。   In this way, like the structure of FIG. 5, the hydroxide ions generated on the surface of the cathode 1 can be forcibly drained out of the system without flowing into the anode flow path. Can be efficiently changed.

「実施の形態5」
図6は、実施の形態5の電解水生成装置の断面図である。
Embodiment 5”
FIG. 6 is a cross-sectional view of the electrolyzed water generating device according to the fifth embodiment.

実施の形態5では、通水性部材7を実施の形態4の構造(図5の構造)に変えて、絶縁体としたものである。その他の構成は、実施の形態4の構造と同様であるため、共通部分についてはその説明は省略するものとする。   In the fifth embodiment, the water-permeable member 7 is changed to the structure of the fourth embodiment (the structure shown in FIG. 5) to form an insulator. Since other configurations are the same as those of the fourth embodiment, description of common portions will be omitted.

具体的には、電極に接触しても劣化のない素材を使用することが好ましいことから、例えばABS(アクリロニトリル、ブタジエン、スチレンの共重合物)やフッ素系樹脂等の有機系樹脂、或いはセラミックス等の無機系物質からなる絶縁体を、通水性部材7として使用する。もちろん、この絶縁体からなる通水性部材7は、水及びイオンを通す通水性を有している。   Specifically, since it is preferable to use a material that does not deteriorate even when it comes into contact with the electrode, for example, an organic resin such as ABS (a copolymer of acrylonitrile, butadiene, styrene) or a fluorine-based resin, ceramics, or the like An insulator made of this inorganic material is used as the water-permeable member 7. Of course, the water-permeable member 7 made of this insulator has a water-permeable property for passing water and ions.

図6では、隔膜3とABSからなる通水性部材7を接触させ、さらにそのABSからなる通水性部材7にPtメッキチタンメッシュ電極を接触させることで陽極2を形成している。   In FIG. 6, the anode 2 is formed by bringing the diaphragm 3 and the water-permeable member 7 made of ABS into contact with each other, and further bringing the Pt-plated titanium mesh electrode into contact with the water-permeable member 7 made of ABS.

本実施の形態の電解水生成装置によれば、陰極流路6内を流れた原水の一部が隔膜3及び通水性部材7を通水し、さらに陽極2を通過して排水路9へと排水される水の流れが作られるので、生成された水素イオン及び酸素を、隔膜3から陽極2を通過して流れる水によって電極表面から系外へと排水させることができる。したがって、本実施の形態によれば、陽極面で水素イオン濃度が上昇しないため、隔膜3の両側でイオン濃度の差が無く、電解時に特異なイオン(例えば水素イオン)のみが膜を行き来することが無い。このため、本実施の形態の電解水生成装置によれば、陰極水のpHを効率よく変化(陰極水のpHを低アルカリから高アルカリの範囲で所望のpH値とする)させることができる。   According to the electrolyzed water generating apparatus of the present embodiment, part of the raw water that has flowed through the cathode channel 6 passes through the diaphragm 3 and the water-permeable member 7, and further passes through the anode 2 to the drainage channel 9. Since a drained water flow is created, the generated hydrogen ions and oxygen can be drained from the electrode surface to the outside by the water flowing from the diaphragm 3 through the anode 2. Therefore, according to the present embodiment, since the hydrogen ion concentration does not increase on the anode surface, there is no difference in ion concentration on both sides of the diaphragm 3, and only specific ions (for example, hydrogen ions) go back and forth during the electrolysis. There is no. For this reason, according to the electrolyzed water generating apparatus of the present embodiment, the pH of the cathode water can be efficiently changed (the pH of the cathode water is set to a desired pH value in the range of low alkali to high alkali).

ところで、水の電解時には、電極表面に電位が掛かっていることから材質によっては電位により、電極表面に焼付けを起こす場合がある。しかしながら、本実施の形態では、絶縁体からなる通水性部材7を陽極2と隔膜3の間に設置しているため、この通水性部材7で電位を絶縁して陽極2表面の焼き付けを防止することができる。   By the way, since the electric potential is applied to the electrode surface during electrolysis of water, depending on the material, the electrode surface may be baked depending on the electric potential. However, in this embodiment, since the water-permeable member 7 made of an insulator is disposed between the anode 2 and the diaphragm 3, the water-permeable member 7 insulates the potential to prevent the surface of the anode 2 from being burned. be able to.

特に、通水性部材7としてABSやフッ素系樹脂等の有機系樹脂、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレートなどを用いた場合には、水の電解時に水素や酸素などのガス成分の他にオゾンや活性酸素等の水質や電解効率に影響を及ぼす活性種が生成されるが、この活性種による影響を抑制することができる。また、通水性部材7にセラミックス等の無機系物質を使用した場合には、水の電解時に電極表面が局部的に温度上昇して通水性部材7を劣化させたり水質や電解効率に影響を及ぼすが、耐熱性に優れるセラミックスで熱の影響を抑制できる。   In particular, when an organic resin such as ABS or fluorine-based resin, polypropylene, polyethylene, polyethylene terephthalate, or the like is used as the water-permeable member 7, ozone or active oxygen is used in addition to gas components such as hydrogen and oxygen during water electrolysis. Although active species that affect water quality and electrolysis efficiency such as the above are generated, the influence of this active species can be suppressed. Further, when an inorganic material such as ceramics is used for the water-permeable member 7, the temperature of the electrode locally rises during the electrolysis of water, causing the water-permeable member 7 to deteriorate or affecting the water quality and electrolysis efficiency. However, the influence of heat can be suppressed with ceramics having excellent heat resistance.

なお、図6では、絶縁体からなる通水性部材7に接して陽極2を形成したが、陽極2ではなく陰極1を通水性部材7と接触させ、陽極2と隔膜3との間に原水を流通させる陽極流路を形成し、陰極表面で生成された水酸化物イオンを、陽極流路を流れる原水の一部と共に隔膜3、通水性部材7及び陰極1を通過させて系外へと排水させるようにしてもよい。   In FIG. 6, the anode 2 is formed in contact with the water-permeable member 7 made of an insulator, but the cathode 1 is brought into contact with the water-permeable member 7 instead of the anode 2, and raw water is supplied between the anode 2 and the diaphragm 3. An anode flow path is formed, and hydroxide ions generated on the cathode surface are drained out of the system through the diaphragm 3, the water-permeable member 7 and the cathode 1 together with a part of the raw water flowing through the anode flow path. You may make it make it.

このようにすれば、図6の構造と同様、陰極1の表面に生成された水酸化物イオンを、陽極流路へ流出させることなく系外へと強制的に排水させることができ、陽極水のpHを効率良く変化させることができる。   In this way, like the structure of FIG. 6, hydroxide ions generated on the surface of the cathode 1 can be forcibly drained out of the system without flowing out into the anode flow path. Can be efficiently changed.

「実施の形態6」
図7は、実施の形態6の電解水生成装置の断面図である。
Embodiment 6”
FIG. 7 is a cross-sectional view of the electrolyzed water generating device according to the sixth embodiment.

実施の形態6では、電極をメッシュ構造とし、通水性部材7と接する側とは反対側の前記電極のメッシュ部に、より線径の太いメッシュやパンチングメタル、多孔質体などの補強部を重ねた構造としている。その他の構成は、実施の形態5の構造と同様であるため、共通部分についてはその説明は省略するものとする。   In the sixth embodiment, the electrode has a mesh structure, and a reinforcing portion such as a mesh having a larger wire diameter, punching metal, or porous body is superimposed on the mesh portion of the electrode opposite to the side in contact with the water-permeable member 7. Structure. Since other configurations are the same as those of the structure of the fifth embodiment, description of common portions will be omitted.

通水性部材7に接触させる電極は、その径孔を小さくすると電流密度が小さくなり電解効率がよくなると考えられるが、メッシュ電極の場合に孔径を小さくすると、用いる線の径を細くする必要がある。そのため、メッシュ電極は剛性が無く、水の抵抗により大きく変形してしまう。そこで、本実施の形態では、Ptメッキしたチタンメッシュからなる陽極2の前記通水性部材7に接触する面と反対側に金属導体、有機導電体の線経の太いメッシュやパンチングメタル、多孔質体等の補強部10を接触させて、電極自体を補強すると同時にメッシュ電極に均一に電流を流すことを可能とする。なお、補強部10は、通水性部材7と陽極2との間に設けるようにしてもよい。   The electrode brought into contact with the water-permeable member 7 is considered to have a smaller current density and an improved electrolysis efficiency when the diameter hole is reduced. However, in the case of a mesh electrode, if the hole diameter is reduced, it is necessary to reduce the diameter of the wire used. . Therefore, the mesh electrode has no rigidity and is greatly deformed by the resistance of water. Therefore, in the present embodiment, a metal conductor, an organic conductor thick mesh, punching metal, porous body on the opposite side of the surface of the anode 2 made of Pt-plated titanium mesh that contacts the water-permeable member 7. The reinforcing part 10 such as the above is brought into contact to reinforce the electrode itself, and at the same time, it is possible to allow a current to flow uniformly through the mesh electrode. Note that the reinforcing portion 10 may be provided between the water-permeable member 7 and the anode 2.

本実施の形態の電解水生成装置によれば、陰極流路6内を流れた原水の一部が隔膜3及び絶縁体からなる通水性部材7を通水し、さらに補強部10で補強された陽極2を通過して排水路9へと排水される水の流れが作られるので、生成された水素イオン及び酸素を、隔膜3から陽極2を通過して流れる水によって電極表面から系外へと排水させることができる。したがって、本実施の形態によれば、陽極面で水素イオン濃度が上昇しないため、隔膜3の両側でイオン濃度の差が無く、電解時に特異なイオン(例えば水素イオン)のみが膜を行き来することが無い。このため、本実施の形態の電解水生成装置によれば、陰極水のpHを効率よく変化(陰極水のpHを低アルカリから高アルカリの範囲で所望のpH値とする)させることができる。   According to the electrolyzed water generating apparatus of the present embodiment, a part of the raw water that has flowed through the cathode channel 6 is passed through the water-permeable member 7 made of the diaphragm 3 and the insulator, and further reinforced by the reinforcing portion 10. Since a flow of water drained to the drainage channel 9 through the anode 2 is created, the generated hydrogen ions and oxygen are transferred from the electrode surface to the outside by the water flowing from the diaphragm 3 through the anode 2. It can be drained. Therefore, according to the present embodiment, since the hydrogen ion concentration does not increase on the anode surface, there is no difference in ion concentration on both sides of the diaphragm 3, and only specific ions (for example, hydrogen ions) go back and forth during the electrolysis. There is no. For this reason, according to the electrolyzed water generating apparatus of the present embodiment, the pH of the cathode water can be efficiently changed (the pH of the cathode water is set to a desired pH value in the range of low alkali to high alkali).

なお、図7では、通水性部材7に接して陽極2を形成したが、陽極2ではなく陰極1を通水性部材7と接触させ、陽極2と隔膜3との間に原水を流通させる陽極流路を形成し、陰極表面で生成された水酸化物イオンを、陽極流路を流れる原水の一部と共に隔膜3、通水性部材7及び補強部10で補強された陰極1を通過させて系外へと排水させるようにしてもよい。   In FIG. 7, the anode 2 is formed in contact with the water-permeable member 7, but the anode flow in which the cathode 1 is brought into contact with the water-permeable member 7 instead of the anode 2 and the raw water is circulated between the anode 2 and the diaphragm 3. The hydroxide ions generated on the surface of the cathode are passed through the cathode 1 reinforced by the diaphragm 3, the water-permeable member 7 and the reinforcing portion 10 together with a part of the raw water flowing through the anode flow path to form the outside of the system. You may make it drain to.

このようにすれば、図6の構造と同様、陰極1の表面に生成された水酸化物イオンを、陽極流路へ流出させることなく系外へと強制的に排水させることができ、陽極水のpHを効率良く変化させることができる。   In this way, like the structure of FIG. 6, hydroxide ions generated on the surface of the cathode 1 can be forcibly drained out of the system without flowing out into the anode flow path. Can be efficiently changed.

「実施の形態7」
図8は、実施の形態7の電解水生成装置の断面図である。
Embodiment 7”
FIG. 8 is a cross-sectional view of the electrolyzed water generating device according to the seventh embodiment.

実施の形態7では、陰極流路6または陽極流路の入口或いは出口に、陰極流路6内または陽極流路内を流れる原水の流量を調整する流量調整手段を設け、この流量調整手段によって流路内の内圧を制御して、系外へ排水される排水量を調整するようにしたものである。その他の構成は、実施の形態5の構造と同様であるため、共通部分についてはその説明は省略するものとする。   In Embodiment 7, the flow rate adjusting means for adjusting the flow rate of the raw water flowing in the cathode flow channel 6 or the anode flow channel is provided at the inlet or the outlet of the cathode flow channel 6 or the anode flow channel. By controlling the internal pressure in the road, the amount of water discharged outside the system is adjusted. Since other configurations are the same as those of the structure of the fifth embodiment, description of common portions will be omitted.

具体的には、陰極流路6の出口に流量調整手段として固定オリフィス11或いは流量調整弁(図示は省略する)を設け、この固定オリフィス11または流量調整弁を調整することによって陰極流路6の内圧を調整し、所望の排水量を排水するように制御する。   Specifically, a fixed orifice 11 or a flow rate adjusting valve (not shown) is provided at the outlet of the cathode channel 6 as a flow rate adjusting means, and the cathode channel 6 is adjusted by adjusting the fixed orifice 11 or the flow rate adjusting valve. Adjust the internal pressure and control to drain the desired amount of drainage.

電解水生成装置では、陰極流路6を原水が流れ、その原水の一部が隔膜3を通水し、さらに通水性部材7を介して陽極2を通過した後に排水路9へと流れるが、排水の量は隔膜3の孔径により決定される。このため、隔膜3によっては、所望する排水量が得られない場合がある。   In the electrolyzed water generating device, raw water flows through the cathode channel 6, and a part of the raw water flows through the diaphragm 3 and further flows through the anode 2 via the water-permeable member 7 and then flows into the drainage channel 9. The amount of drainage is determined by the pore diameter of the diaphragm 3. For this reason, depending on the diaphragm 3, a desired amount of drainage may not be obtained.

これを防ぐため、実施の形態7では、陰極流路6の出口に固定オリフィス11または流量調整弁を設けて、陰極流路6内の内圧を制御し、排水量を所望する値にする。例えば、固定オリフィス11を調整して陰極流路6内の内圧を高めれば、隔膜3から通水性部材7を介して陽極2を通して原水が流れ易くなり、隔膜3の両側でイオン濃度の差が無くなり、電解時に特異なイオン(例えば水素イオン)のみが膜を行き来するのを防止することができる。   In order to prevent this, in the seventh embodiment, the fixed orifice 11 or the flow rate adjusting valve is provided at the outlet of the cathode flow path 6 to control the internal pressure in the cathode flow path 6 so that the drainage amount becomes a desired value. For example, if the fixed orifice 11 is adjusted to increase the internal pressure in the cathode channel 6, raw water can easily flow from the diaphragm 3 through the anode 2 through the water-permeable member 7, and there is no difference in ion concentration between both sides of the diaphragm 3. It is possible to prevent only specific ions (for example, hydrogen ions) from traveling back and forth during electrolysis.

図8では、陰極流路6の出口に固定オリフィス11を設けたが、この陰極流路6の入口に固定オリフィス11を設けても同様の作用効果が得られる。固定オリフィス11を陰極流路6の出口に設ければ、陰極流路6からの吐水量を調整でき、固定オリフィス11を陰極流路6の入口に設ければ、陰極流路6への流入量を調整できることから、当該陰極流路6内の内圧を可変することができる。   Although the fixed orifice 11 is provided at the outlet of the cathode channel 6 in FIG. 8, the same effect can be obtained even if the fixed orifice 11 is provided at the inlet of the cathode channel 6. If the fixed orifice 11 is provided at the outlet of the cathode channel 6, the amount of water discharged from the cathode channel 6 can be adjusted, and if the fixed orifice 11 is provided at the inlet of the cathode channel 6, the amount of inflow into the cathode channel 6. Therefore, the internal pressure in the cathode channel 6 can be varied.

また、図8では、陽極2を絶縁体からなる通水性部材7を介して隔膜3と接触させ、陰極水を吐水させたがこの限りではなく、陰極1を通水性部材7を介して隔膜3と接触させても良い。陰極1を隔膜3に接触させた場合は、隔膜3と陽極2間の陽極流路の入口または出口に固定オリフィス11或いは流量調整弁等の流量調整手段を設ける。   Further, in FIG. 8, the anode 2 is brought into contact with the diaphragm 3 through the water-permeable member 7 made of an insulator, and the cathode water is discharged. May be contacted. When the cathode 1 is brought into contact with the diaphragm 3, a flow rate adjusting means such as a fixed orifice 11 or a flow rate adjusting valve is provided at the inlet or outlet of the anode flow path between the diaphragm 3 and the anode 2.

また、図8では、吐水量を決定する手段として固定オリフィス、流量調整弁等としたがその限りではなく、別途吐水路を設けたり、別の手段にて陰極流路6または陽極流路への流入量を変化させたりしても同様の効果がある。   Further, in FIG. 8, a fixed orifice, a flow rate adjusting valve, and the like are used as means for determining the water discharge amount. However, the present invention is not limited thereto, and a separate water discharge path is provided, or another means is used to connect the cathode flow path 6 or the anode flow path. Even if the inflow is changed, the same effect can be obtained.

「実施の形態8」
図9は、実施の形態8の電解水生成装置の断面図である。
“Eighth embodiment”
FIG. 9 is a cross-sectional view of the electrolyzed water generating device according to the eighth embodiment.

実施の形態8では、系外へと排水される量を検出する排水量検出手段を設け、制御部でその排水量をモニターし、その測定値に応じて流量調整手段を制御して流路内の内圧を制御するようにしたものである。その他の構成は、実施の形態5の構造と同様であるため、共通部分についてはその説明は省略するものとする。   In the eighth embodiment, a drainage amount detecting means for detecting the amount drained to the outside of the system is provided, the drainage amount is monitored by the control unit, and the flow rate adjusting means is controlled according to the measured value to control the internal pressure in the flow path. Is controlled. Since other configurations are the same as those of the structure of the fifth embodiment, description of common portions will be omitted.

具体的には、排水路9に接続される排水管8に、該排水管8を流れる排水量を検出する排水量検出手段としての流量センサー12を設けると共に陰極流路6の出口に流量調整手段である可変オリフィス13を設け、陰極流路6内の内圧を制御する調整部であるコントローラ14にて、該流量センサー12でモニターした排水量(測定値)に応じて前記可変オリフィス13を制御し、前記陰極流路6への流入水量または吐水量をコントロールして該陰極流路6の内圧を調整し、所望の排水量となるように調整を行う。   Specifically, the drainage pipe 8 connected to the drainage channel 9 is provided with a flow rate sensor 12 as drainage amount detection means for detecting the amount of drainage flowing through the drainage pipe 8, and is a flow rate adjustment means at the outlet of the cathode channel 6. A variable orifice 13 is provided, and the controller 14 which is an adjustment unit for controlling the internal pressure in the cathode flow path 6 controls the variable orifice 13 according to the amount of drainage (measured value) monitored by the flow sensor 12, and the cathode The internal pressure of the cathode flow path 6 is adjusted by controlling the amount of water flowing into or discharged from the flow path 6, and adjustment is performed so as to obtain a desired amount of drainage.

例えば、一般的な水道水では、蛇口の高低差や配管の太さ、浄水場からの距離によって動水圧、静水圧が大きく異なり、これにより陰極流路6内の内圧も違うため、陰極流路6から隔膜3及び陽極2を順次通過する排水量も地域により異なる。これを防ぐため、本実施の形態では、排水管8に取付けた流量センサー12により排水量をモニターし、測定値によってはコントローラ14で可変オリフィス13をコントロールし、陰極流路6内の内圧を制御して排水量を所望する値にする。可変オリフィス13の調整は、コントローラ14にて手動で行ってもよく、或いは自動で行ってもよい。   For example, in general tap water, the dynamic water pressure and the hydrostatic pressure differ greatly depending on the height difference of the faucet, the thickness of the pipe, and the distance from the water purification plant. The amount of drainage that sequentially passes through the diaphragm 3 and the anode 2 from 6 varies depending on the region. In order to prevent this, in the present embodiment, the amount of drainage is monitored by a flow rate sensor 12 attached to the drain pipe 8, and depending on the measured value, the variable orifice 13 is controlled by the controller 14, and the internal pressure in the cathode channel 6 is controlled. To the desired value. The variable orifice 13 may be adjusted manually by the controller 14 or automatically.

本実施の形態によれば、流量センサー12で排水量をモニターしながら陰極流路6への流入水量または吐水量を可変オリフィス13にてコントロールすることで、陰極流路6の内圧を調整して所望の排水量とすることができる。したがって、本実施の形態によれば、図2で示したように排水量の大小によって変動する吐水のpH値を容易且つ任意にコントロールすることができる。   According to the present embodiment, the flow rate sensor 12 monitors the amount of drainage while controlling the amount of water flowing into the cathode channel 6 or the amount of water discharged by the variable orifice 13, thereby adjusting the internal pressure of the cathode channel 6 as desired. It can be set as the amount of drainage. Therefore, according to the present embodiment, as shown in FIG. 2, the pH value of the discharged water that varies depending on the amount of drainage can be easily and arbitrarily controlled.

図9では、陰極流路6の出口に可変オリフィス13を設けたが、この陰極流路6の入口に可変オリフィス13を設けても同様の作用効果が得られる。   Although the variable orifice 13 is provided at the outlet of the cathode channel 6 in FIG. 9, the same effect can be obtained even if the variable orifice 13 is provided at the inlet of the cathode channel 6.

また、図9では、陽極2を絶縁体からなる通水性部材7を介して隔膜3と接触させ、陰極水を吐水させたがこの限りではなく、陰極1を通水性部材7を介して隔膜3と接触させても良い。陰極1を隔膜3に接触させた場合は、隔膜3と陽極2間の陽極流路の入口または出口に可変オリフィス13或いは流量調整弁等の流量調整手段を設ける。   In FIG. 9, the anode 2 is brought into contact with the diaphragm 3 through the water-permeable member 7 made of an insulator and the cathode water is discharged. However, the present invention is not limited thereto, and the cathode 1 is passed through the water-permeable member 7. May be contacted. When the cathode 1 is brought into contact with the diaphragm 3, a flow rate adjusting means such as a variable orifice 13 or a flow rate adjusting valve is provided at the inlet or outlet of the anode flow path between the diaphragm 3 and the anode 2.

また、図9では、吐水量をコントロールする手段として可変オリフィス13、流量調整弁等としたがその限りではなく、別途吐水路を設けたり、その他の手段によって陰極流路6または陽極流路への流入量をコントロールしたり、別途信号部を用いて使用者に状況表示して流入量をコントロールさせたりしても同様の効果がある。   In FIG. 9, the variable orifice 13 and the flow rate adjusting valve are used as means for controlling the water discharge amount. However, the present invention is not limited to this, and a separate water discharge path is provided, or other means is used to connect the cathode flow path 6 or the anode flow path. The same effect can be obtained by controlling the inflow amount, or by separately displaying the situation using a signal unit to control the inflow amount.

「実施の形態9」
図10は、実施の形態9の電解水生成装置の断面図である。
Embodiment 9”
FIG. 10 is a cross-sectional view of the electrolyzed water generating device according to the ninth embodiment.

実施の形態9では、実施の形態5の構成に加えて、排水路9に原水を流通させる入水管15と排水管8を設けたものである。その他の構成は、実施の形態5の構造と同様であるため、共通部分についてはその説明は省略するものとする。   In the ninth embodiment, in addition to the configuration of the fifth embodiment, a water intake pipe 15 and a drain pipe 8 for distributing raw water to the drainage channel 9 are provided. Since other configurations are the same as those of the structure of the fifth embodiment, description of common portions will be omitted.

具体的には、通水性部材7を挟んで隔膜3と接している陽極2を通過した排水を効率よく系外へ取り除くために、陽極2の裏面側(隔膜3との接触面とは反対側)に水道水、河川水、井戸水等を連続的に供給するための入水管15と排水管8を、前記排水路9に接続し、その入水管15から水道水などを入水させる。   Specifically, in order to efficiently remove the waste water that has passed through the anode 2 in contact with the diaphragm 3 with the water-permeable member 7 interposed therebetween, the back side of the anode 2 (the side opposite to the contact surface with the diaphragm 3) ) Are connected to a drainage pipe 9 for continuously supplying tap water, river water, well water, and the like to the drainage channel 9, and tap water or the like is introduced from the inlet pipe 15.

なお、本実施の形態では、排水路9に下から上へと流水を流すため、図10中下側に入水管15を設けると共に上側に排水管8を設けている。   In the present embodiment, in order to allow running water to flow through the drainage channel 9 from the bottom to the top, the inlet pipe 15 is provided on the lower side in FIG. 10 and the drainage pipe 8 is provided on the upper side.

本実施の形態によれば、陽極2を通して排水路9へと排出された水素イオンは、入水管15より流入された流水によって排水管8へと排水されるため、効率良くpHを変化させた陰極水を吐水することができる。   According to the present embodiment, since the hydrogen ions discharged to the drainage channel 9 through the anode 2 are drained to the drainage pipe 8 by the flowing water flowing in from the inlet pipe 15, the cathode whose pH is changed efficiently. Can discharge water.

図10では、陽極2を絶縁体からなる通水性部材7を介して隔膜3と接触させ、陰極水を吐水させたがこの限りではなく、陰極1を通水性部材7を介して隔膜3と接触させても良い。陰極1を隔膜3に接触させた場合は、陰極1の裏面に設けられる排水路9に原水を流通させる入水管15と排水管8を設ける。このようにすることで、陰極1を通して排水路9へと排出された水酸化物イオンは、入水管15より流入された流水によって排水管8へと排出される。   In FIG. 10, the anode 2 is brought into contact with the diaphragm 3 through the water-permeable member 7 made of an insulating material, and the cathode water is discharged. However, this is not restrictive, and the cathode 1 is brought into contact with the diaphragm 3 through the water-permeable member 7. You may let them. When the cathode 1 is brought into contact with the diaphragm 3, a water inlet pipe 15 and a drain pipe 8 for supplying raw water to a drainage channel 9 provided on the back surface of the cathode 1 are provided. By doing in this way, the hydroxide ion discharged | emitted to the drainage channel 9 through the cathode 1 is discharged | emitted to the drainage pipe 8 with the flowing water which flowed in from the inlet pipe 15. FIG.

また、図10では、排水路9に下から上へと水道水などを流水させたがこの限りではなく、上から下、下から真ん中、真ん中から上下、手前から奥、奥から手前などの流水経路が考えられる。   In FIG. 10, tap water is allowed to flow through the drainage channel 9 from the bottom to the top. However, the present invention is not limited to this. Flowing water from top to bottom, from the bottom to the middle, from the middle to the top and bottom, from the front to the back, from the back to the front A route is considered.

また、図10では、排水路9に水道水などを流水させたが、水素イオン、酸素の濃度が高いと考えられる通水性部材7に水を流すようにしても同様の作用効果が得られる。通水性部材7に水を流す場合は、電極は通水性を有した電極構造である必要はなく、平板電極であってもよい。   In FIG. 10, tap water or the like is caused to flow through the drainage channel 9, but the same effect can be obtained even if water is allowed to flow through the water-permeable member 7 that is considered to have high concentrations of hydrogen ions and oxygen. When water is allowed to flow through the water-permeable member 7, the electrode need not have a water-permeable electrode structure, and may be a flat plate electrode.

「実施の形態10」
図11は、実施の形態10の電解水生成装置の断面図である。
Embodiment 10”
FIG. 11 is a cross-sectional view of the electrolyzed water generating device according to the tenth embodiment.

実施の形態10においては、実施の形態5の構成に加えて陰極流路6の出口から吐水された電解水の一部を排水路9へと供給する分岐管16を設ける。具体的には、隔膜3と接触している陽極2を通過した水素イオンを効率よく系外へ取り除くために、陰極流路6で電解され吐水された電解水(陰極水)の一部を、排水路9の上部に設けられた入水管15と接続する分岐管16を通して当該排水路9に供給する。   In the tenth embodiment, in addition to the configuration of the fifth embodiment, a branch pipe 16 for supplying a part of the electrolyzed water discharged from the outlet of the cathode channel 6 to the drainage channel 9 is provided. Specifically, in order to efficiently remove hydrogen ions that have passed through the anode 2 in contact with the diaphragm 3 to the outside of the system, a part of the electrolyzed water (cathode water) electrolyzed and discharged in the cathode channel 6 is The water is supplied to the drainage channel 9 through a branch pipe 16 connected to a water intake pipe 15 provided at the upper part of the drainage channel 9.

本実施の形態によれば、電解時には陰極流路6で電解された電解水が分岐管16を通って排水路9に流れ、当該排水路9を上部から下部へと流れるので、陽極2の表面に生成された水素イオンはこの流水(電解水)と一緒に排水管8から系外へ排水される。したがって、本実施の形態によれば、効率良くpHを変化させた電解水(陰極水)を吐水することができる。   According to the present embodiment, during electrolysis, the electrolyzed water electrolyzed in the cathode channel 6 flows through the branch pipe 16 to the drainage channel 9, and flows through the drainage channel 9 from the upper part to the lower part. The hydrogen ions generated in the step are drained out of the system from the drainage pipe 8 together with the flowing water (electrolyzed water). Therefore, according to this Embodiment, the electrolyzed water (cathode water) which changed pH efficiently can be discharged.

図11では、陽極2を絶縁体からなる通水性部材7を介して隔膜3と接触させ、陰極水を吐水させがこの限りではなく、陰極1を通水性部材7を介して隔膜3と接触させても良い。陰極1を隔膜3に接触させた場合は、陽極流路の出口から吐水された電解水の一部を、分岐管16を通して排水路9に供給する。このようにすることで、陰極1を通して排水路9へと排出された水酸化物イオンは、分岐管16より流入された電解水(陽極水)によって排水管8へと排出される。   In FIG. 11, the anode 2 is brought into contact with the diaphragm 3 through the water-permeable member 7 made of an insulator, and the cathode water is discharged. However, the cathode 1 is brought into contact with the diaphragm 3 through the water-permeable member 7. May be. When the cathode 1 is brought into contact with the diaphragm 3, a part of the electrolyzed water discharged from the outlet of the anode channel is supplied to the drainage channel 9 through the branch pipe 16. By doing in this way, the hydroxide ion discharged | emitted to the drainage channel 9 through the cathode 1 is discharged | emitted to the drainage pipe 8 by the electrolyzed water (anode water) which flowed in from the branch pipe 16. FIG.

また、図11では、排水路9に上から下へと電解水を流水させたがこの限りではなく、下から上、上下から真ん中、真ん中から上下、手前から奥、奥から手前などの流水経路が考えられる。   In FIG. 11, the electrolyzed water is allowed to flow from the top to the bottom in the drainage channel 9, but this is not limited to this, and the water flow paths such as bottom to top, top to bottom, middle to top and bottom, front to back, back to front, etc. Can be considered.

また、図11では、排水路9に吐水された電解水を流水させたが、水素イオン、酸素の濃度が高いと考えられる通水性部材7に水を流すようにしても同様の作用効果が得られる。通水性部材7に水を流す場合は、電極は通水性を有した電極構造である必要はなく、平板電極であってもよい。   In FIG. 11, the electrolyzed water discharged into the drainage channel 9 is made to flow, but the same effect can be obtained even if water is made to flow through the water-permeable member 7 that is considered to have high concentrations of hydrogen ions and oxygen. It is done. When water is allowed to flow through the water-permeable member 7, the electrode need not have a water-permeable electrode structure, and may be a flat plate electrode.

実施の形態1の電解水生成装置の断面図である。2 is a cross-sectional view of the electrolyzed water generating device according to Embodiment 1. FIG. 従来例である通常のアルカリイオン整水器の電解槽と本実施の形態の電解槽とにおいて、吐水量が同じである場合に排水量を減少させた場合の陰極流路を流れる水のpHを示す特性図である。In the electrolytic cell of the conventional alkaline ionized water device that is a conventional example and the electrolytic cell of the present embodiment, the pH of water flowing through the cathode channel when the amount of discharged water is reduced when the amount of discharged water is the same is shown. FIG. 実施の形態2の電解水生成装置の断面図である。It is sectional drawing of the electrolyzed water generating apparatus of Embodiment 2. 実施の形態3の電解水生成装置の断面図である。It is sectional drawing of the electrolyzed water generating apparatus of Embodiment 3. 実施の形態4の電解水生成装置の断面図である。It is sectional drawing of the electrolyzed water generating apparatus of Embodiment 4. 実施の形態5の電解水生成装置の断面図である。It is sectional drawing of the electrolyzed water generating apparatus of Embodiment 5. 実施の形態6の電解水生成装置の断面図である。It is sectional drawing of the electrolyzed water generating apparatus of Embodiment 6. 実施の形態7の電解水生成装置の断面図である。It is sectional drawing of the electrolyzed water generating apparatus of Embodiment 7. 実施の形態8の電解水生成装置の断面図である。It is sectional drawing of the electrolyzed water generating apparatus of Embodiment 8. 実施の形態9の電解水生成装置の断面図である。It is sectional drawing of the electrolyzed water generating apparatus of Embodiment 9. 実施の形態10の電解水生成装置の断面図である。It is sectional drawing of the electrolyzed water generating apparatus of Embodiment 10. FIG.

符号の説明Explanation of symbols

1…陰極(電極)
2…陽極(電極)
3…隔膜
4…入口管
5…出口管
6…陰極流路
7…通水性部材
8…排水管
9…排水路
10…補強部
11…固定オリフィス(流量調整手段)
12…流量センサー(排水量検出手段)
13…可変オリフィス(流量調整手段)
14…コントローラ(調整部)
15…入水管
16…分岐管
1 ... Cathode (electrode)
2 ... Anode (electrode)
DESCRIPTION OF SYMBOLS 3 ... Diaphragm 4 ... Inlet pipe 5 ... Outlet pipe 6 ... Cathode flow path 7 ... Water-permeable member 8 ... Drain pipe 9 ... Drain path 10 ... Reinforcement part 11 ... Fixed orifice (flow rate adjustment means)
12 ... Flow sensor (Drainage detection means)
13. Variable orifice (flow rate adjusting means)
14 ... Controller (Adjustment unit)
15 ... Inlet pipe 16 ... Branch pipe

Claims (11)

陰極と、前記陰極に対して所定距離を置いて対向配置された陽極と、前記陰極と前記陽極の間に設けられた隔膜と、前記陰極と前記隔膜との間に設けられ、原水を入口から出口へと流通させる陰極流路とを備え、前記陰極と前記陽極間に電圧を印加して電解水を生成する電解水生成装置であって、
前記陽極と前記隔膜の間にそれぞれ接するように前記原水を通過させる通水性部材を設け、前記陰極流路を流れる原水の一部を、前記隔膜を通過させ、さらに通水性部材を通過させて、前記陽極表面で生成された水素イオンと共に前記原水の一部を系外へと排水させる
ことを特徴とする電解水生成装置。
A cathode, an anode disposed opposite to the cathode at a predetermined distance, a diaphragm provided between the cathode and the anode, and provided between the cathode and the diaphragm; An electrolyzed water generator comprising a cathode flow path that circulates to an outlet, and generates electrolyzed water by applying a voltage between the cathode and the anode,
Providing a water permeable member for allowing the raw water to pass between the anode and the diaphragm, respectively, passing a part of the raw water flowing through the cathode channel through the diaphragm, and further allowing the water permeable member to pass; A part of the raw water is drained out of the system together with hydrogen ions generated on the anode surface.
陽極と、前記陽極に対して所定距離を置いて対向配置された陰極と、前記陽極と前記陰極の間に設けられた隔膜と、前記陽極と前記隔膜との間に設けられ、原水を入口から出口へと流通させる陽極流路とを備え、前記陽極と前記陰極間に電圧を印加して電解水を生成する電解水生成装置であって、
前記陰極と前記隔膜の間にそれぞれ接するように前記原水を通過させる通水性部材を設け、前記陽極流路を流れる原水の一部を、前記隔膜を通過させ、さらに通水性部材を通過させて、前記陰極表面で生成された水酸化物イオンと共に前記原水の一部を系外へと排水させる
ことを特徴とする電解水生成装置。
An anode, a cathode disposed opposite to the anode at a predetermined distance, a diaphragm provided between the anode and the cathode, and provided between the anode and the diaphragm; An electrolyzed water generator comprising an anode flow channel that circulates to an outlet, and generates electrolyzed water by applying a voltage between the anode and the cathode,
Providing a water permeable member for allowing the raw water to pass between the cathode and the diaphragm, passing a part of the raw water flowing through the anode channel through the diaphragm, and further allowing the water permeable member to pass; A part of the raw water is drained out of the system together with hydroxide ions generated on the cathode surface.
請求項1または請求項2に記載の電解水生成装置であって、
前記通水性部材に接する前記陽極または前記陰極を通水性を有した電極構造とし、前記隔膜及び前記通水性部材を通過させた原水とイオンとを、この通水性を有した前記陽極または前記陰極を通過させて系外へと排水させる
ことを特徴とする電解水生成装置。
It is an electrolyzed water generating apparatus of Claim 1 or Claim 2, Comprising:
The anode or the cathode in contact with the water-permeable member has an electrode structure having water permeability, and the anode and the cathode having water permeability are used as raw water and ions that have passed through the diaphragm and the water-permeable member. An electrolyzed water generator characterized by passing the water out of the system.
請求項3に記載の電解水生成装置であって、
前記通水性部材と接する前記陽極または前記陰極は、前記通水性部材の前記隔膜と接する面とは反対側の面に貴金属をメッキまたは塗布して電極とされた
ことを特徴とする電解水生成装置。
The electrolyzed water generating device according to claim 3,
The electrolyzed water generating apparatus characterized in that the anode or the cathode in contact with the water-permeable member is used as an electrode by plating or coating a noble metal on a surface opposite to the surface in contact with the diaphragm of the water-permeable member. .
請求項3に記載の電解水生成装置であって、
前記通水性部材と接する前記陽極または前記陰極は、貴金属メッシュ電極からなる電極とされ、または貴金属をメッシュ金属の片面若しくは両面にメッキまたは塗布して電極とされた
ことを特徴とする電解水生成装置。
The electrolyzed water generating device according to claim 3,
The anode or the cathode in contact with the water-permeable member is an electrode made of a noble metal mesh electrode, or an electrode obtained by plating or coating a noble metal on one or both sides of a mesh metal. .
請求項3から請求項5の何れか一つに記載の電解水生成装置であって、
前記通水性部材を絶縁体から形成した
ことを特徴とする電解水生成装置。
The electrolyzed water generating device according to any one of claims 3 to 5,
The electrolyzed water generating apparatus, wherein the water-permeable member is formed of an insulator.
請求項3から請求項6の何れか一つに記載の電解水生成装置であって、
前記通水性部材に接する前記陽極または前記陰極は、メッシュ構造とされ且つ前記通水性部材と接する側とは反対側に補強部が設けられた構造からなる
ことを特徴とする電解水生成装置。
The electrolyzed water generating device according to any one of claims 3 to 6,
The electrolyzed water generating apparatus, wherein the anode or the cathode in contact with the water-permeable member has a structure having a mesh structure and a reinforcing portion provided on a side opposite to the side in contact with the water-permeable member.
請求項1から請求項7の何れか一つに記載の電解水生成装置であって、
前記陰極流路または前記陽極流路の入口或いは出口に、陰極流路内または陽極流路内を流れる原水の流量を調整する流量調整手段を設け、この流量調整手段によって流路内の内圧を制御して、系外へ排水される排水量を調整する
ことを特徴とする電解水生成装置。
The electrolyzed water generating device according to any one of claims 1 to 7,
A flow rate adjusting means for adjusting the flow rate of raw water flowing in the cathode flow path or the anode flow path is provided at the inlet or outlet of the cathode flow path or the anode flow path, and the internal pressure in the flow path is controlled by the flow rate adjusting means. The electrolyzed water generating device is characterized in that the amount of drained water discharged outside the system is adjusted.
請求項8に記載の電解水生成装置であって、
前記系外へと排水される量を検出する排水量検出手段と、
排水量をモニターし、その測定値に応じて前記流量調整手段を制御して流路内の内圧を制御する調整部とを備えた
ことを特徴とする電解水生成装置。
It is an electrolyzed water generating apparatus of Claim 8, Comprising:
Waste water detection means for detecting the amount drained out of the system;
An electrolyzed water generating apparatus comprising: an adjusting unit that monitors the amount of drainage and controls the flow rate adjusting means according to the measured value to control the internal pressure in the flow path.
請求項3から請求項9の何れか一つに記載の電解水生成装置であって、
前記通水性部材と接する前記陽極または前記陰極の裏面側に排水路を設け、その排水路に原水を流通させる入水管と配水管を設けた
ことを特徴とする電解水生成装置。
The electrolyzed water generating device according to any one of claims 3 to 9,
An electrolyzed water generating apparatus characterized in that a drainage channel is provided on the back surface side of the anode or the cathode in contact with the water-permeable member, and a water intake pipe and a water distribution pipe for distributing raw water are provided in the drainage channel.
請求項10に記載の電解水生成装置であって、
前記陰極流路または前記陽極流路の出口から吐水された電解水の一部を、前記排水路に供給する分岐管を設けた
ことを特徴とする電解水生成装置。
It is an electrolyzed water generating apparatus of Claim 10, Comprising:
An electrolyzed water generating apparatus, comprising: a branch pipe that supplies part of the electrolyzed water discharged from the cathode channel or the outlet of the anode channel to the drainage channel.
JP2005266827A 2005-09-14 2005-09-14 Electrolyzed water generator Expired - Fee Related JP4600225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005266827A JP4600225B2 (en) 2005-09-14 2005-09-14 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266827A JP4600225B2 (en) 2005-09-14 2005-09-14 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2007075730A true JP2007075730A (en) 2007-03-29
JP4600225B2 JP4600225B2 (en) 2010-12-15

Family

ID=37936554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266827A Expired - Fee Related JP4600225B2 (en) 2005-09-14 2005-09-14 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP4600225B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023472A (en) * 2006-07-24 2008-02-07 Sanyo Electric Co Ltd Apparatus for generating electrolytic water
JP2008023473A (en) * 2006-07-24 2008-02-07 Sanyo Electric Co Ltd Apparatus for generating electrolytic water
WO2015178063A1 (en) * 2014-05-20 2015-11-26 株式会社バイオレドックス研究所 Electrolyzed water-manufacturing apparatus and electrolyzed water-manufacturing method using same
JP6169762B1 (en) * 2016-08-02 2017-07-26 MiZ株式会社 Hydrogen water generation method
JP2018114449A (en) * 2017-01-18 2018-07-26 株式会社日本トリム Electrolyzed water-generating device
CN108383210A (en) * 2018-04-08 2018-08-10 李向华 A kind of flow-type nano bubble hydrogen-rich water generating device
KR20200051638A (en) 2017-08-24 2020-05-13 가부시키가이샤 유니피드 엔지니어링 Electrolytic cells and electrode plates for electrolytic cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5688104B2 (en) 2013-01-31 2015-03-25 中国電機製造株式会社 Hydrogen-containing water generating electrode and hydrogen-containing water generating apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189090A (en) * 1982-04-30 1983-11-04 Advance Res & Dev Co Ltd Device for forming ionized water
JPS60114392A (en) * 1983-11-25 1985-06-20 Tatsuo Okazaki Continuous forming device for electrolytic water
JP2000246249A (en) * 1999-03-01 2000-09-12 First Ocean Kk Production of electrolytic water
JP2004058006A (en) * 2002-07-31 2004-02-26 First Ocean Kk Method of manufacturing electrolytic water
JP2004351317A (en) * 2003-05-29 2004-12-16 Ebara Corp Electrochemical liquid treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189090A (en) * 1982-04-30 1983-11-04 Advance Res & Dev Co Ltd Device for forming ionized water
JPS60114392A (en) * 1983-11-25 1985-06-20 Tatsuo Okazaki Continuous forming device for electrolytic water
JP2000246249A (en) * 1999-03-01 2000-09-12 First Ocean Kk Production of electrolytic water
JP2004058006A (en) * 2002-07-31 2004-02-26 First Ocean Kk Method of manufacturing electrolytic water
JP2004351317A (en) * 2003-05-29 2004-12-16 Ebara Corp Electrochemical liquid treatment apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023473A (en) * 2006-07-24 2008-02-07 Sanyo Electric Co Ltd Apparatus for generating electrolytic water
JP2008023472A (en) * 2006-07-24 2008-02-07 Sanyo Electric Co Ltd Apparatus for generating electrolytic water
US10071920B2 (en) 2014-05-20 2018-09-11 Bio-Redox Laboratory, Inc. Electrolyzed water-manufacturing apparatus and electrolyzed water-manufacturing method using same
WO2015178063A1 (en) * 2014-05-20 2015-11-26 株式会社バイオレドックス研究所 Electrolyzed water-manufacturing apparatus and electrolyzed water-manufacturing method using same
JP6169762B1 (en) * 2016-08-02 2017-07-26 MiZ株式会社 Hydrogen water generation method
KR20180015081A (en) * 2016-08-02 2018-02-12 미즈 가부시키가이샤 Method for producing hydrogen water
JP2018020279A (en) * 2016-08-02 2018-02-08 MiZ株式会社 Hydrogen water generating method
JP2018114449A (en) * 2017-01-18 2018-07-26 株式会社日本トリム Electrolyzed water-generating device
WO2018135077A1 (en) * 2017-01-18 2018-07-26 株式会社日本トリム Electrolyzed water generation device
CN109071276A (en) * 2017-01-18 2018-12-21 日本多宁股份有限公司 Electrolytic water generating device
CN109071276B (en) * 2017-01-18 2022-04-19 日本多宁股份有限公司 Electrolyzed water generation device
KR20200051638A (en) 2017-08-24 2020-05-13 가부시키가이샤 유니피드 엔지니어링 Electrolytic cells and electrode plates for electrolytic cells
CN108383210A (en) * 2018-04-08 2018-08-10 李向华 A kind of flow-type nano bubble hydrogen-rich water generating device

Also Published As

Publication number Publication date
JP4600225B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4600225B2 (en) Electrolyzed water generator
WO2016043072A1 (en) Electrolytic device, electrode unit, and method for generating electrolytic water
JP2010088972A (en) Hydrogen-containing electrolytic water generation device and hot water supply device
JP3820248B2 (en) Electrolytic water conditioner
WO2017141284A1 (en) Electrolyzed water generation device
JP2005105289A (en) Hydrogen water feeder
JP6825871B2 (en) Electrolyzed water generator
JP5282201B2 (en) Electrolyzed water generator
JP4353159B2 (en) Electrolyzed water generator
JP2008168180A (en) Hydrogen-containing electrolytic water conditioner, bathtub facility, and method for producing hydrogen-containing electrolytic water
JP2007090147A (en) Electrolytic water generator
JP4677993B2 (en) Electrolyzed water generator
WO2016147439A1 (en) Electrolysis tank and electrolyzed water-generating method
KR100533706B1 (en) manufacturing apparatus of electrolyzed-reduced water
JP2002273428A (en) Electrolytic water generator
KR100944209B1 (en) A electrolysis water purifier
CN116547242A (en) CDI device
JP2008000730A (en) Electrolytic water generator
JP2006175384A (en) Radical oxygen water generating device and system
JP2002361251A (en) Electrolytic water generator
JP6885776B2 (en) Electrolyzed water generator
JPH10314742A (en) Electrolyzed water producing apparatus
WO2017135207A1 (en) Electrolyzed water generation device and production device for water for dialysate preparation and method for electrolyzed water generation that use same
JP4442752B2 (en) Alkaline ion water conditioner
JP2006159072A (en) Electrolytic water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees