JP4377104B2 - Desalination equipment - Google Patents

Desalination equipment Download PDF

Info

Publication number
JP4377104B2
JP4377104B2 JP2002119002A JP2002119002A JP4377104B2 JP 4377104 B2 JP4377104 B2 JP 4377104B2 JP 2002119002 A JP2002119002 A JP 2002119002A JP 2002119002 A JP2002119002 A JP 2002119002A JP 4377104 B2 JP4377104 B2 JP 4377104B2
Authority
JP
Japan
Prior art keywords
liquid
pipe
desalting
chamber
desalted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002119002A
Other languages
Japanese (ja)
Other versions
JP2003311130A (en
Inventor
英治 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2002119002A priority Critical patent/JP4377104B2/en
Publication of JP2003311130A publication Critical patent/JP2003311130A/en
Application granted granted Critical
Publication of JP4377104B2 publication Critical patent/JP4377104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

【0001】
【発明の属する技術分野】
本発明は、電気透析を利用した脱塩装置に関する。更に詳しくは、地盤注入用材として有用な脱アルカリ水ガラス水溶液等の工業用薬液を製造するための脱塩装置、ゴミ焼却灰洗浄液から環境汚染の原因となるイオンを除去するための脱塩装置等の各種用途で使用される脱塩装置に関する。
【0002】
【従来の技術】
土木工事において、掘削等により崩壊のおそれのある地盤、湧水などにより掘削が困難な地盤などに対して、外部より地盤改良材を注入して地盤を改良する薬液注入工法が汎用されている。現在使用される地盤改良材は種々のものが知られているが、最近では注入による固化物の強度が高くその耐久性に優れること、注入液が一液でありゲルタイムの調節も容易で取り扱いに便利なことから、水ガラスを主成分とするシリカゾル系地盤改良注入材が多く用いられている。
【0003】
ところで、このシリカゾル系地盤改良注入材にはアルカリ金属塩が多く含まれており、これが得られる固結体の強度の低下原因になったり、時間の経過に伴って固結体からアルカリあるいは塩が遊離ないし逸脱して固結体が収縮してその耐久性が低下したりするといった問題があり、このような欠点を改良するために水ガラスをイオン交換樹脂法によりアルカリ分を除去する方法が採用されている(特開平11−279552号公報)。しかしながら、イオン交換樹脂法による脱アルカリ処理は樹脂の再生を必要とするため長期間の脱アルカリ処理は不可能であり、さらに再生廃液が排出されることやSiO濃度の高い水ガラスは樹脂近傍でゲル化するため、使用する条件に制約が生じてしまう。
【0004】
そこで、最近ではイオン交換膜法電気透析装置により水ガラスを脱アルカリする方法が採用されている(特開平11−61124号公報)。この方法では、電気透析槽と、この槽内部の対向する両端面にそれぞれ配置された一対の陽極および陰極と、これら陽陰電極間の最も陽極側には陰イオン交換膜が、最も陰極側には陽イオン交換膜がそれぞれ位置して、交互に、かつ複数の区画を形成するように配置された陽および陰イオン交換膜とからなり、これら複数の区画のうち、陽極および陰極の位置する区画に水を填充するとともに、その他の区画にそれぞれ水ガラスおよび水を交互に填充し、かつ陽陰電極間に電流を通電することにより、水ガラス中のNaイオンが陽イオン交換膜を介して隣接する一方の側の区画に填充された水中に該膜を通して透過放出され、かつOHイオンが陰イオン交換膜を介して隣接する他方の側の区画に填充された水中に該膜を通して放出され、これにより前記水ガラスが脱アルカリ処理されて脱アルカリ水ガラスを得ている。
【0005】
【発明が解決しようとする課題】
ところが、上記方法を長期間連続して実施したところ、透析時間の経過と共に脱塩室の膜や流路に珪酸塩を主成分とする析出物が付着し、膜抵抗が増大したり原料供給が困難となったりして透析時間の経過と共に脱アルカリ処理能力が低下し、そのまま運転を続けると膜が劣化して運転不能の状態となることが判明した。流路はフラッシングや洗浄により回復可能であり、また、劣化した膜はアルカリ洗浄等の処理により再生させることが可能であることが分かった(特願2001−025323号)が、通常そのような膜再生処理は現場で行うことは困難であり、脱塩装置メーカーのサービスマンが劣化した膜を(通常はスタクッと呼ばれるモジュールの形で)取り外して新しい膜(スタック)交換し、取り外した膜(スタック)を脱塩装置メーカーに持ち帰り処理を行う必要がある。このような緊急保守作業の発生は、製品の生産計画に影響を及ぼす。また、装置の緊急停止を避けるために定期点検を頻繁に行うことはコストの点で問題がある。
【0006】
また、このような問題は、脱アルカリ水ガラスの製造時に限らず、珪酸イオン、カルシウムイオン、マグネシウムイオン等の析出物(スケール)源となるイオンが含まれる被脱塩液を脱塩する場合の共通の問題でもある。例えば、上記と同様の脱塩装置を用いて本発明者はゴミ焼却灰の洗浄水から塩素イオンを除去することについて検討を行っているが、該洗浄液にはカルシウムイオンが含まれているため該イオンに由来する析出物(スケール)の発生により同様の問題が起こることを経験している。
【0007】
そこで、本発明は、上記のような問題の発生を防止するために、膜や脱塩室内環境の劣化状況をモニターし、自動的に再生処理を行うことのできる脱塩装置を提供することを目的とする。
【0008】
なお、前記特願2001−025323号には、イオン交換膜電気透析法により水ガラスを脱塩(脱アルカリ)して脱アルカリ水ガラスを製造するに際し、電気透析中にイオン交換膜内およびその表面に珪酸塩を主成分とするスケールが付着して脱塩効率が低下した場合に、脱塩室及び濃縮室に高濃度のアルカリ溶液を供給することにより上記スケールが除去でき、このような洗浄工程を行うことにより脱塩効率が回復することが実例(実施例1)と共に記載されている。即ち、その実施例1には、トクヤマ社製の電気透析装置(TS2−10型)を用い、JIS規格3号水ガラス水溶液を水で希釈して4.6wt%(NaO濃度1.45wt%)に調整した水ガラス水溶液を脱塩室に、水酸化ナトリウム水溶液(0.5mol/l)を濃縮室に供給して2(l)の原料水ガラスを脱塩処理したところ、NaO濃度が0.49wt%になるまでの処理に要した時間は52分でそのときの平均電流密度は1.4(A/dm)であったのが、同様の電気透析を繰り返し、通算で250時間の通電後には同じ原料を水ガラス水溶液2(l)を用いて脱塩処理したところ、NaO濃度が0.49wt%になるまでの処理に要した時間は104分でそのときの平均電流密度は0.7(A/dm)と脱塩効率が低下したが、0.5(mol/l)の水酸化ナトリウム水溶液で、脱塩室、濃縮室及びこれらに通じる配管内を4時間循環洗浄した場合には脱塩効率が回復することが示されている。
【0009】
【課題を解決するための手段】
本発明者らは上記課題を解決すべく鋭意検討を行った。その結果、膜の劣化状況は、互いに隣接する一組の脱塩室及び塩濃縮室からなるユニットの両端の隔膜間の電圧又はその指標となる電圧、脱塩室に供給される被脱塩液の流量あるいは圧力、脱塩された液の電気伝導度をモニターすることにより把握することができること、このようにして把握された劣化状況が特定の範囲にある場合には脱塩室にアルカリ水溶液のような洗浄液を流すことにより膜を含めた室内環境を初期状態に近い状態に回復させることができ、膜(或いはスタック)交換の頻度を大幅に少なくできることを見出し、本発明を完成するに至った。
【0010】
本発明は、水ガラス水溶液やごみ焼却灰を水洗したときの廃液(ごみ焼却灰洗浄液)のような電気透析中に析出物(スケール)を発生させる物質(例えば珪酸イオンやカルシウムイオン等)を含む被脱塩液を脱塩するのに好適に使用できる脱塩装置であり、以下の構造を有する装置である。
即ち、(A)陽極と陰極との間に陰イオン交換膜及び陽イオン交換膜を交互に配置して、陽極側が陰イオン交換膜で仕切られ陰極側が陽イオン交換膜で仕切られた脱塩室、及び陽極側が陽イオン交換膜で仕切られ陰極側が陰イオン交換膜で仕切られた塩濃縮室が形成された電気透析槽と、(B)前記脱塩室に被脱塩液を供給するための被脱塩液供給用配管と、(C)前記脱塩室から脱塩された被脱塩液を抜き出すための脱塩液抜出用配管と、(D)前記塩濃縮室に塩吸収液を供給するための塩吸収液供給用配管と、(E)前記塩濃縮室から塩が濃縮された塩吸収液である濃縮液を抜き出すための濃縮液抜出用配管とを具備する脱塩装置において、
(1)前記脱塩室に洗浄液を供給するための洗浄液供給用配管、
(2)前記脱塩室に供給する液を被脱塩液又は洗浄液の何れかに切替える供給液切替え手段、
(3)前記脱塩室から洗浄液を抜き出すための洗浄液抜出用配管、
(4)前記脱塩液から抜き出される液の流路を脱塩液抜出用配管又は洗浄液抜出用配管に切替える抜出流路切替え手段、
(5)前記脱塩室に供給される被脱塩液の流量を検知する被脱塩液流量検知器、前記脱塩室に供給される被脱塩液の圧力を検知する被脱塩液圧力検知器、前記脱塩液抜出用配管を流れる脱塩液の電気伝導度を検知する脱塩液電気伝導度検知器、及び前記電解槽内に配置された互いに隣接する一組の脱塩室及び塩濃縮室からなるユニットの両端の隔膜間の電圧又はその指標となる電圧を検知する電圧検知器、並びに
(6)前記検知器の検出値に基づき陰イオン交換膜、陽イオン交換膜及び脱塩室内環境の劣化状況をモニターし、洗浄液を流通させることにより回復可能な劣化状況の範囲内で予め定めた劣化状況に達したときに前記供給液切替え手段及び前記抜出流路切替え手段を作動させて、脱塩室内に洗浄液を流通させるように脱塩室に供給する供給液の切替えの制御及び脱塩室から抜き出す液の流路の制御を行う制御手段
を有することを特徴とする脱塩装置である。
【0011】
【発明の実施の形態】
本発明の該脱塩装置は、従来の脱塩装置と同様に、(A)陽極と陰極との間に陰イオン交換膜(以下、AE膜とも言う。)及び陽イオン交換膜(以下、CE膜とも言う。)を交互に配置して、陽極側がAE膜で仕切られ陰極側がCE膜で仕切られた脱塩室、及び陽極側がCE膜で仕切られ陰極側がAE膜で仕切られた塩濃縮室が形成された電気透析槽と、(B)前記脱塩室に被脱塩液を供給するための被脱塩液供給用配管と、(C)前記脱塩室から脱塩された被脱塩液を抜き出すための脱塩液抜出用配管と、(D)前記塩濃縮室に塩吸収液を供給するための塩吸収液供給用配管と、(E)前記塩濃縮室から塩が濃縮された塩吸収液である濃縮液を抜き出すための濃縮液抜出用配管とを具備する。
【0012】
ここで、脱塩室とは、該室に塩がイオンの形で含まれる被脱塩液を供給して電気透析を行った場合にその塩に由来するアニオンが陽極側のAE膜を透過して拡散すると共に、塩に由来するカチオンが陰極側のCE膜を透過して拡散し、結果として該室内の塩濃度が低下する室を意味する。また、塩濃縮室とは、該室に水又は電解質の水溶液からなる塩吸収液を供給して同様に電気透析を行なったときに、AE膜及びCE膜からそれぞれ隣接する脱塩室に供給された塩由来のアニオン及びカチオンが各膜を透過して流入し、結果として該室内の塩濃度が増大する室を意味する。例えば、脱塩室に被脱塩液として水ガラス水溶液を供給し、塩濃縮室に水酸化アルカリ水溶液等の電解質水溶液からなる塩吸収液を供給して電気透析を行なうことにより、脱塩室に供給された水ガラス中に存在するNaイオン等のアルカリ金属イオンがCE膜を透過して該CE膜を介して隣接する塩濃縮室に拡散するとともに、同じく水ガラス中に存在するOHイオンがAE膜を透過して該AE膜を介して隣接する塩濃縮室に拡散し、結果として脱塩液として水ガラス中のアルカリ濃度が低下した水ガラスを得ることができる。また、このとき、濃縮室では、両隣の脱塩室から拡散してきたNaイオン等のアルカリ金属イオン及びOHイオンが閉じ込められ、濃縮液として濃度の上昇した水酸化アルカリ水溶液が得られる。
【0013】
なお、上記のような装置を構成するのに必要な部材である電極及び各イオン交換膜についても従来の電気透析装置で使用されているものが特に制限なく使用される。即ち、上記電気透析槽で使用する陽極及び陰極としては、水電解や食塩電解などの電気化学工業で採用されている電極が制限なく用いられる。例えば、陽極材料としてはニッケル、鉄、鉛、チタン、白金、黒鉛などが、また、陰極材料としてはニッケル、鉄、ステンレススチール、白金、チタンなどが好適に用いられる。
【0014】
また、陰イオン交換膜(AE膜)は、陰イオン交換基が結合した樹脂からなる陰イオン選択透過性を有する膜であれば特に制限されず公知の陰イオン交換膜が使用できる。陰イオン交換基としては、水溶液中で正の電荷となり得る官能基が特に制限なく採用できる。具体的には、1〜3級アミノ基、ピリジル基、4級アンモニウム塩基、4級ピリジニウム塩基、さらにこれらのイオン交換基が混在したものなどが挙げられる。AE膜としては、重合型、縮合型、均質型、不均質型等の区別無く使用することができ、さらに、補強のために使用する補強材の有無や、イオン交換基が結合する樹脂の材質(通常、炭化水素系樹脂またはフッ素系樹脂が使用されている)も特に制限されない。
【0015】
また、陽イオン交換膜(CE膜)は、陽イオン交換基が結合した樹脂からなる陽イオン選択透過性を有する膜であれば特に制限されず公知の陽イオン交換膜が使用できる。陽イオン交換基としては、水溶液中で負の電荷となり得る官能基が特に制限なく採用できる。具体的には、スルホン酸基、カルボン酸基、ホスホン酸基、硫酸エステル基、リン酸エステル基、さらにこれらのイオン交換基が混在したものなどが挙げられる。CE膜としては、重合型、縮合型、均質型、不均質型等の区別無く使用することができ、さらに、補強のために使用する補強材の有無や、イオン交換基が結合する樹脂の材質(通常、炭化水素系樹脂またはフッ素系樹脂が使用されている)も特に制限されない。
【0016】
また、本発明の脱塩装置は、脱塩中に膜や脱塩室内環境の劣化状況をモニターし、自動的に再生処理を行うために、(1)前記脱塩室に洗浄液を供給するための洗浄液供給用配管、(2)前記脱塩室に供給する液を被脱塩液又は洗浄液の何れかに切替える供給液切替え手段、(3)前記脱塩室から洗浄液を抜き出すための洗浄液抜出用配管、(4)前記脱塩液から抜き出される液の流路を脱塩液抜出用配管又は洗浄液抜出用配管に切替える抜出流路切替え手段、(5)前記脱塩室に供給される被脱塩液の流量を検知する被脱塩液流量検知器、前記脱塩室に供給される被脱塩液の圧力を検知する被脱塩液圧力検知器、前記脱塩液抜出用配管を流れる脱塩液の電気伝導度を検知する脱塩液電気伝導度検知器、及び前記電解槽内に配置された互いに隣接する一組の脱塩室及び塩濃縮室からなるユニットの両端の隔膜間の電圧又はその指標となる電圧を検知する電圧検知器、並びに(6)前記検知器の検出値に基づき陰イオン交換膜、陽イオン交換膜及び脱塩室内環境の劣化状況をモニターし、洗浄液を流通させることにより回復可能な劣化状況の範囲内で予め定めた劣化状況に達したときに前記供給液切替え手段及び前記抜出流路切替え手段を作動させて、脱塩室内に洗浄液を流通させるように脱塩室に供給する供給液の切替えの制御及び脱塩室から抜き出す液の流路の制御を行う制御手段を有している。
【0017】
本発明の脱塩装置では、上記検出器により膜や脱塩室内環境の劣化状況をモニターし、脱塩室内に洗浄液を供給し好ましくはこれを流通させることにより回復可能な劣化状況の範囲内で予め定めた劣化状況に達したときに自動的に上記制御手段を作動させて、流路切替えを行って脱塩室内に洗浄液を流通させて膜や脱塩室内の環境を回復させることが可能になっている。上記制御手段を作動させる設定値は、予め被脱塩液の種類や脱塩条件に応じて各検出器で検出される検出知と劣化状況との関係、さらには洗浄操作によって回復可能な劣化状況を調べておくことにより適宜決定される。また、洗浄液条件(洗浄液の流量や流通時間、さらには洗浄液温度)についても、劣化状況及び用いる洗浄液の種類に応じて予備的な実験を行うことにより決定することができる。洗浄処理終了後は再び流路を切替えて脱塩を再開することができる。このときの流路の切替えは自動で行うことも、マニュアル操作で行うこともできる。なお、洗浄液の種類はスケールの種類(換言すれば被脱塩液の種類)によってスケールを溶解することができる液を適宜選択して用いればよい。例えば、水ガラス水溶液の脱塩を行う場合には水酸化ナトリウム水溶液等のアルカリ性水溶液が使用でき、ごみ焼却灰の洗浄液(ごみ焼却灰を水洗したときの廃液)を脱塩する場合には塩酸水溶液等の酸水溶液が使用できる。
以下、図1及び図2を参照して本発明の脱塩装置について詳しく説明する。図1は、代表的な本発明の脱塩装置100の概略図である。該脱塩装置100は、基本的に電気透析槽110、該電気透析槽110に接続する被脱塩液供給用配管120、脱塩液抜出用配管121、塩吸収液供給用配管130、濃縮液抜出用配管131、洗浄液供給用配管140、及び洗浄液抜出用配管141で構成されている。そして、被脱塩液供給用配管120には被脱塩液タンク301からポンプ310aを用いて被脱塩液が供給できるようになっており、脱塩液抜出用配管121を通して抜き出された脱塩液は脱塩液タンク301に循環されるようになっている。同様に、塩吸収液供給用配管130には塩吸収液タンク302からポンプ310bを用いて塩吸収液が供給できるようになっており、濃縮液抜出用配管131を通して抜き出された濃縮液は塩吸収液タンク302に循環されるようになっている。さらに、洗浄液供給用配管140には洗浄液タンク303にポンプ310cを用いて洗浄液を供給できるようになっており、洗浄液抜出用配管141通して抜き出された洗浄液は洗浄液タンク303に循環されるようになっている。
上記電気透析装置110は、図2に示すように、陽極111と陰極112との間に、隣接する脱塩室211及び塩濃縮室212からなるユニット210が2以上連結してモジュール化されたスタック200が複数個設けられている。(図1においては、スタック内の構造は省略し、液の流れのみを示している。)このようなスタックを用いることにより、配管も簡略化できるばかりでなく、例えばイオン交換膜の交換はスタックごとに行うことができ、装置の保守が容易になる。なお、陽極111を含むスタックより陽極側の空間は陽極室111Rとなり、陰極112を含むスタックより陰極側の空間は陰極室112Rとなって、各室にはそれぞれ電解質水溶液からなる電極液が電極液タンク304からポンプ310dを用いて供給、循環できるようになっている。
また、上記スタック200は、図2に示すように、例えば各室を形成するための切欠部を中央に有する室枠220を介してAE膜230及びCE膜240を上記ユニット数が2以上となるように交互に繰り返し配列した後に両端より締め付けて固定した、いわゆるフィルタープレス型の構造のモジュールであり、スタック内の各室内には、流路を確保するためのスペーサー250や液を均等配流するための配流板(図示せず)が設けられている。さらに上記室枠220には、脱塩室液供給路221、脱塩室液流出路222、塩濃縮室液供給路223、及び塩濃縮室液流出路224を形成するための切欠部が設けられている。なお、上記スペーサーや配流板の形状については特に限定されないが、析出物発生防止効果があり、仮に析出物が発生した場合においても容易にこれを除去出来る構造のもの、例えばトンネル型構造のものを使用するのが好適である。
【0018】
上記各スタック200内の各脱塩室211に通じる脱塩室液供給路221には、被脱塩液供給用配管120の液流出端が連結されてなり、該被脱塩液供給用配管120の液流出端側は、洗浄液供給用配管140の液流出端側と兼用されており、この被脱塩液供給・洗浄液供給兼用配管150は上流部で一旦集められて被脱塩液供給・洗浄液供給兼用主管160を形成した後、被脱塩液供給用配管120および洗浄液供給用配管140の各専用管に分岐している。さらに、同様に、各スタック200内の各塩濃縮室212に通じる塩濃縮室液供給路223には、塩吸収液供給用配管130の主管130aから分岐した枝管130bの液流出端が連結されてなり、各塩濃縮室212に通じる塩濃縮室液流出路224には、濃縮液抜出用配管131の枝管131bの液流出端が連結され、各枝管131bはその下流部で集められて主管131aを形成している。
また、上記被脱塩液供給・洗浄液供給兼用主管160より上流の前記被脱塩液供給用配管120の専用管部分に設置されたバルブ(弁)170aと前記被脱塩液供給・洗浄液供給兼用主管160の上流の前記洗浄液供給用配管140の専用管部分に設置されたバルブ(弁)170bとからなる供給液切替え手段が設置されている。また、スタック200内の各脱塩室の脱塩室液流出路222には、脱塩液抜出用配管121の液流入端が連結されてなり、該脱塩液抜出用配管121の液流入端側は洗浄液抜出用配管141の液流入端側と兼用されており、この脱塩液抜出・洗浄液抜出兼用配管151は下流部で一旦集められて脱塩液抜出・洗浄液抜出兼用主管161を形成した後、脱塩液抜出用配管121および洗浄液抜出用配管141の各専用管に分岐している。そして、前記脱塩液抜出・洗浄液抜出兼用主管161より下流の前記脱塩液抜出用配管121の専用管部分に設置されたバルブ(弁)171aと前記脱塩液抜出・洗浄液抜出兼用主管161より下流の前記洗浄液抜出用配管141の専用管部分に設置されたバルブ(弁)171bとからなる抜出流路切替え手段が設けられている。なお、図1には供給液切替え手段および抜出流路切替え手段として、それぞれ2つのバルブからなる態様を示したが、流路を切替えることができる手段であれば他の手段、例えば三方バルブや四方バルブ(この場合には戻しラインが必要になる)を用いることも勿論可能である。これら切替え手段は、電力若しくは空気圧により作動させることができるようになっており、後述する制御手段190から発信された信号に基づき作動するようになっている。
【0019】
本発明の脱塩装置100においては、上記被脱塩液供給・洗浄液供給兼用主管160の専用管部分に被脱塩液の流量を検知する流量計からなる被脱塩液流量検知器181及び被脱塩液の圧力を検知する圧力計からなる被脱塩液圧力検知器182が設置されており、また、脱塩液抜出・洗浄液抜出兼用主管161部には脱塩液の電気伝導度を検知するための脱塩液電気伝導度検知器183が設置されている。さらに前記各スタック両端のイオン交換膜間の電圧を検知する電圧検知器184が設置されている。この電圧検知器で検知するのはスタックの両端のイオン交換膜間の電圧であるが、該電圧はスタック間の各ユニットの両端のイオン交換膜の電圧の指標となるものでもある。勿論、各ユニットの電圧を測定してもよいが、検知器の数を少なくし、検知感度を実効的なレベル以上に保つことができることからスタックごとに電圧検知器を設置するのが好ましい。脱塩運転中にスケールの析出が起こり、その析出量が多くなると脱塩室内部或いは脱塩室液供給路近傍等での流路が狭まり被脱塩液の流量が低下したり被脱塩液の圧力が上昇したりしてくる。また、イオン交換膜にスケールが付着すると膜抵抗が増大し、脱塩効率が低下するのでイオン交換膜間の電圧が上昇したり、脱塩液の電気伝導度を下げる時間が増加したりする。各検知器で検知された検出値は、各検出器に付属する送信機から前記(6)の制御手段190に付属する受信機を通して該制御手段に伝達される。当該制御手段190は、脱塩装置100の運転及び制御を行っており、伝達された検出値が予め設定された検出と一致する若しくはそれを超えた場合に直ちに或いは予め設定された手順で供給液切替え手段及び前記抜出流路切替え手段を作動させる信号を発信し、該信号を各切替え手段が作動し、脱塩室に供給する供給液の切替え及び脱塩室から抜き出す液の流路の切替えが行われ、自動的にイオン交換膜の再生処理を行い脱塩運転を再開する。このとき、ポンプ等の各機器の作動および停止も同時に制御する。
【0020】
【発明の効果】
本発明の装置によれば、水ガラス水溶液やごみ焼却灰を水洗したときの廃液(ごみ焼却灰洗浄液)のような電気透析中に析出物(スケール)を発生させる物質(例えば珪酸イオンやカルシウムイオン等)を含む被脱塩液を脱塩した場合においても、スケール析出による悪影響が回復不可能な状況になる前に、自動的に洗浄操作を行ってスケールの除去を行うことができる。したがって、装置を緊急停止することなく、長期間安定して装置を使用することが可能になる。また、定期点検の期間を長くすることもでき、保守に要するコストを削減することもできる。
【0021】
【図面の簡単な説明】
【図1】 本図は、本発明の脱塩装置の概略図である。
【図2】 本図は、本発明の脱塩装置で用いるスタックの概略図である。
【符号の説明】
100:脱塩装置
110:電気透析槽
111:陽極
112:陰極
111R:陽極室
112R:陰極室
120:被脱塩液供給用配管
121:脱塩液抜出用配管
130:塩吸収液供給用配管
130a:塩吸収液供給用配管の主管
130b:塩吸収液供給用配管の枝管
131:濃縮液抜出用配管
131a:濃縮液抜出用配管の主管
131b:濃縮液抜出用配管の枝管
140:洗浄液供給用配管
141:及び洗浄液抜出用配管
150:被脱塩液供給・洗浄液供給兼用配管
151:被脱塩液供給・洗浄液抜出兼用配管
160:被脱塩液供給・洗浄液供給兼用主管
161:被脱塩液供給・洗浄液抜出兼用主管
170a,b:バルブ(供給液切替え手段)
171a,b:バルブ(抜出流路切替え手段)
181:被脱塩液流量検知器
182:被脱塩液圧力検知器
183:脱塩液電気伝導度検知器
184:電圧検知器
190:制御手段
200:スタック
210:ユニット
211:脱塩室
212:塩濃縮室
220:室枠
221:脱塩室液供給路
222:脱塩室液流出路
223:塩濃縮室液供給路
224:塩濃縮室液流出路
230:AE膜
240:CE膜
250:スペーサー
301:被脱塩液タンク
302:塩吸収液タンク
303:洗浄液タンク
304:電極液タンク
310a〜d:ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a desalting apparatus using electrodialysis. More specifically, a desalinator for producing industrial chemicals such as a dealkalized water glass aqueous solution useful as a material for ground injection, a desalinator for removing ions that cause environmental pollution from waste incineration ash cleaning liquid, etc. The present invention relates to a desalting apparatus used in various applications.
[0002]
[Prior art]
In civil engineering work, a chemical injection method is generally used to improve the ground by injecting a ground improvement material from the outside to the ground that may be collapsed by excavation or the like, or the ground that is difficult to excavate by spring water or the like. Various ground improvement materials are currently used, but recently, the strength of the solidified product by injection is high and its durability is excellent, and the injection time is one solution and the gel time can be easily adjusted for handling. Since it is convenient, a silica sol-based ground improvement injection material mainly composed of water glass is often used.
[0003]
By the way, this silica sol-based ground improvement injecting material contains a large amount of alkali metal salt, which causes a decrease in the strength of the resulting solidified body, or the alkali or salt from the solidified body over time. There is a problem that the solidified body shrinks due to free or deviating, and its durability is lowered. In order to improve such defects, a method of removing alkali content from water glass by ion exchange resin method is adopted. (JP-A-11-279552). However, the dealkalization treatment by the ion exchange resin method requires regeneration of the resin, so long-term dealkalization treatment is impossible. 2 Since water glass having a high concentration gels in the vicinity of the resin, the conditions for use are restricted.
[0004]
Therefore, recently, a method of dealkalizing water glass with an ion exchange membrane electrodialyzer has been adopted (Japanese Patent Laid-Open No. 11-61124). In this method, an electrodialysis tank, a pair of anodes and cathodes respectively arranged on opposite end faces inside the tank, and an anion exchange membrane on the most anode side between these positive and negative electrodes, Consists of cation and anion exchange membranes arranged alternately and so as to form a plurality of compartments where the cation exchange membranes are located, and among these compartments, the compartments where the anode and the cathode are located In addition, water glass and water are alternately filled in the other compartments, and an electric current is passed between the positive and negative electrodes, so that Na in the water glass is filled. + Ions are permeated and released through the membrane into the water filled in the adjacent compartment on one side through the cation exchange membrane, and OH Ions are released through the membrane through the anion-exchange membrane into the water on the other side, and the water glass is dealkalized to obtain dealkalized water glass.
[0005]
[Problems to be solved by the invention]
However, when the above-mentioned method was carried out continuously for a long period of time, as the dialysis time passed, deposits mainly composed of silicate adhered to the membrane and flow path of the desalination chamber, and the membrane resistance increased or the feed of the raw material was increased. It has been found that the dealkalization ability decreases with the passage of dialysis time due to difficulty, and if the operation is continued as it is, the membrane deteriorates and becomes inoperable. It has been found that the flow path can be recovered by flushing or washing, and a deteriorated film can be regenerated by a process such as alkali washing (Japanese Patent Application No. 2001-025323). The regeneration process is difficult to perform on site, and the desalinator manufacturer's service personnel remove the deteriorated membrane (usually in the form of a module called stack) and replace it with a new membrane (stack). ) Must be taken back to the desalinator manufacturer. The occurrence of such emergency maintenance work affects the product production plan. Further, frequent periodic inspections to avoid an emergency stop of the apparatus are problematic in terms of cost.
[0006]
Such problems are not limited to the case of desalinized water glass production, but when desalting a desalted solution containing ions that are sources of precipitates (scale) such as silicate ions, calcium ions, and magnesium ions. It is also a common problem. For example, the present inventor has been studying the removal of chlorine ions from the washing water of garbage incineration ash using a desalting apparatus similar to the above, but since the washing liquid contains calcium ions, We have experienced similar problems due to the generation of precipitates (scales) derived from ions.
[0007]
Accordingly, the present invention provides a desalination apparatus that can monitor the deterioration state of the membrane and the environment of the desalting room and automatically perform a regeneration process in order to prevent the occurrence of the above problems. Objective.
[0008]
In addition, in the above Japanese Patent Application No. 2001-025323, when producing a dealkalized water glass by desalting (dealkalizing) water glass by an ion exchange membrane electrodialysis method, the inside of the ion exchange membrane and its surface during electrodialysis are disclosed. The scale can be removed by supplying a high-concentration alkaline solution to the desalting chamber and the concentrating chamber when the scale containing silicate as a main component adheres to the desalination efficiency and the desalting efficiency is lowered. It is described together with an example (Example 1) that desalting efficiency is recovered by performing the above. That is, in Example 1, an electrodialysis apparatus (TS2-10 type) manufactured by Tokuyama Corporation was used, and a JIS standard No. 3 water glass aqueous solution was diluted with water to 4.6 wt% (Na 2 A water glass aqueous solution adjusted to an O concentration of 1.45 wt% was supplied to the desalting chamber, and a sodium hydroxide aqueous solution (0.5 mol / l) was supplied to the concentration chamber to demineralize the raw water glass of 2 (l). However, Na 2 The time required for the treatment until the O concentration became 0.49 wt% was 52 minutes, and the average current density at that time was 1.4 (A / dm). 2 However, when the same raw material was repeatedly energized for 250 hours, the same raw material was desalted with water glass aqueous solution 2 (l). 2 The time required for the treatment until the O concentration became 0.49 wt% was 104 minutes, and the average current density at that time was 0.7 (A / dm). 2 ) And the desalting efficiency was reduced, but when the sodium salt aqueous solution of 0.5 (mol / l) was circulated and washed in the desalting chamber, the concentrating chamber and the pipes leading to these for 4 hours, the desalting efficiency was It has been shown to recover.
[0009]
[Means for Solving the Problems]
The present inventors have intensively studied to solve the above problems. As a result, the degradation status of the film is At the ends of the unit consisting of a pair of desalting chambers and salt concentration chambers adjacent to each other Voltage between diaphragms Or the voltage used as an indicator It can be grasped by monitoring the flow rate or pressure of the desalted liquid supplied to the desalting chamber, the electrical conductivity of the desalted liquid, and the degradation status thus grasped in a specific range. In this case, the indoor environment including the membrane can be restored to the initial state by flowing a cleaning solution such as an alkaline aqueous solution into the desalting chamber, and the frequency of membrane (or stack) replacement is greatly reduced. The present inventors have found that this can be done and have completed the present invention.
[0010]
The present invention includes substances (for example, silicate ions, calcium ions, etc.) that generate precipitates (scale) during electrodialysis, such as waste water (waste incineration ash cleaning liquid) when water glass aqueous solution or incineration ash is washed with water. A desalting apparatus that can be suitably used for desalting a desalinated liquid, and having the following structure.
(A) Desalination chamber in which anion exchange membranes and cation exchange membranes are alternately arranged between an anode and a cathode, and the anode side is partitioned by an anion exchange membrane and the cathode side is partitioned by a cation exchange membrane. And an electrodialysis tank in which a salt concentration chamber in which the anode side is partitioned by a cation exchange membrane and the cathode side is partitioned by an anion exchange membrane, and (B) for supplying a desalted solution to the desalting chamber A pipe for supplying a desalted liquid, (C) a pipe for extracting a desalted liquid for extracting the desalted liquid desalted from the desalting chamber, and (D) a salt absorbing liquid in the salt concentrating chamber. A salt removal apparatus comprising: a salt absorption liquid supply pipe for supply; and (E) a concentrate extraction pipe for extracting a concentrate that is a salt absorption liquid in which salt is concentrated from the salt concentration chamber. ,
(1) A cleaning liquid supply pipe for supplying a cleaning liquid to the desalting chamber,
(2) Supply liquid switching means for switching the liquid supplied to the desalting chamber to either the desalted liquid or the cleaning liquid,
(3) a cleaning liquid extraction pipe for extracting the cleaning liquid from the desalting chamber;
(4) Extraction flow path switching means for switching the flow path of the liquid extracted from the desalting liquid to a desalting liquid extraction pipe or a cleaning liquid extraction pipe,
(5) A desalted liquid flow rate detector for detecting the flow rate of the desalted liquid supplied to the desalting chamber, and a desalted liquid pressure for detecting the pressure of the desalted liquid supplied to the desalting chamber. A detector, a desalting solution electrical conductivity detector for detecting the electrical conductivity of the desalting solution flowing through the desalting solution extraction pipe, and a pair of adjacent desalting chambers disposed in the electrolytic cell; And a voltage detector for detecting a voltage between the diaphragms at both ends of the unit comprising the salt concentration chamber or a voltage as an index thereof, and
(6) Based on the detection value of the detector When the deterioration condition of the anion exchange membrane, cation exchange membrane, and demineralization room environment is monitored and a predetermined deterioration condition is reached within the range of the recovery condition that can be recovered by circulating cleaning liquid Operate the supply liquid switching means and the extraction flow path switching means. In order to circulate the cleaning liquid in the desalination chamber Control means for controlling the switching of the supply liquid supplied to the desalting chamber and the flow path of the liquid withdrawn from the desalting chamber
It is a desalination apparatus characterized by having.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The desalting apparatus of the present invention is similar to the conventional desalting apparatus in that (A) an anion exchange membrane (hereinafter also referred to as AE membrane) and a cation exchange membrane (hereinafter CE) are provided between the anode and the cathode. A salt concentration chamber in which the anode side is partitioned by an AE membrane and the cathode side is partitioned by a CE membrane, and the anode side is partitioned by a CE membrane and the cathode side is partitioned by an AE membrane. An electrodialysis tank in which is formed, (B) a desalting solution supply pipe for supplying a desalting solution to the desalting chamber, and (C) desalting desalted from the desalting chamber A pipe for extracting a desalted liquid for extracting the liquid; (D) a pipe for supplying a salt absorbing liquid to supply the salt absorbing liquid to the salt concentrating chamber; and (E) a salt being concentrated from the salt concentrating chamber. And a concentrate extraction pipe for extracting the concentrate that is the salt absorbing solution.
[0012]
Here, the desalination chamber refers to an anion derived from the salt permeating through the AE membrane on the anode side when electrodialysis is performed by supplying a desalted solution containing salt in the form of ions to the chamber. And a cation derived from a salt permeates through the CE membrane on the cathode side and diffuses, resulting in a chamber in which the salt concentration in the chamber decreases. The salt concentrating chamber is supplied from the AE membrane and the CE membrane to the adjacent desalting chamber when a salt absorbing solution made of water or an aqueous electrolyte solution is supplied to the chamber and electrodialysis is performed in the same manner. It means a chamber in which salt-derived anions and cations permeate through each membrane and as a result the salt concentration in the chamber increases. For example, by supplying a water glass aqueous solution as a desalted solution to the desalting chamber and supplying a salt absorbing solution made of an aqueous electrolyte solution such as an alkali hydroxide aqueous solution to the salt concentrating chamber and performing electrodialysis, Na present in the supplied water glass + Alkali metal ions such as ions permeate the CE membrane, diffuse through the CE membrane to the adjacent salt concentration chamber, and are also present in the water glass. Ions permeate the AE membrane and diffuse to the adjacent salt concentration chamber through the AE membrane, and as a result, a water glass having a reduced alkali concentration in the water glass can be obtained as a desalting solution. At this time, in the concentrating chamber, Na diffused from the adjacent desalting chambers. + Alkali metal ions such as ions and OH Ions are confined, and an aqueous alkali hydroxide solution having an increased concentration is obtained as a concentrate.
[0013]
In addition, what is used with the conventional electrodialysis apparatus is also used without a restriction | limiting also about the electrode and each ion exchange membrane which are members required for comprising the above apparatuses. That is, as the anode and cathode used in the electrodialysis tank, electrodes employed in the electrochemical industry such as water electrolysis and salt electrolysis are used without limitation. For example, nickel, iron, lead, titanium, platinum, graphite and the like are suitably used as the anode material, and nickel, iron, stainless steel, platinum, titanium and the like are suitably used as the cathode material.
[0014]
The anion exchange membrane (AE membrane) is not particularly limited as long as it is a membrane having anion selective permeability made of a resin having anion exchange groups bonded thereto, and a known anion exchange membrane can be used. As the anion exchange group, a functional group that can be positively charged in an aqueous solution can be used without any particular limitation. Specific examples include a primary to tertiary amino group, a pyridyl group, a quaternary ammonium base, a quaternary pyridinium base, and a mixture of these ion exchange groups. As AE membrane, it can be used without distinction of polymerization type, condensation type, homogeneous type, heterogeneous type, etc. Furthermore, the presence or absence of a reinforcing material used for reinforcement, the material of the resin to which the ion exchange group is bonded (Normally, a hydrocarbon-based resin or a fluorine-based resin is used) is not particularly limited.
[0015]
The cation exchange membrane (CE membrane) is not particularly limited as long as it is a membrane having a selective cation permeability made of a resin bonded with a cation exchange group, and a known cation exchange membrane can be used. As the cation exchange group, a functional group that can be negatively charged in an aqueous solution can be used without particular limitation. Specific examples include sulfonic acid groups, carboxylic acid groups, phosphonic acid groups, sulfate ester groups, phosphate ester groups, and those in which these ion exchange groups are mixed. As CE membrane, it can be used without distinction of polymerization type, condensation type, homogeneous type, non-homogeneous type, etc. Furthermore, the presence or absence of a reinforcing material used for reinforcement, the material of the resin to which the ion exchange group is bonded (Normally, a hydrocarbon-based resin or a fluorine-based resin is used) is not particularly limited.
[0016]
In addition, the desalination apparatus of the present invention monitors (1) the state of deterioration of the membrane and the environment of the desalting chamber during desalting, and (1) supplies cleaning liquid to the desalting chamber in order to automatically perform the regeneration treatment. (2) Supply liquid switching means for switching the liquid supplied to the desalting chamber to either the desalted liquid or the cleaning liquid, and (3) extracting the cleaning liquid for extracting the cleaning liquid from the desalting chamber. (4) Extraction flow path switching means for switching the flow path of the liquid extracted from the desalting liquid to a desalting liquid extraction pipe or a cleaning liquid extraction pipe, (5) Supply to the desalting chamber A flow rate detector for detecting the flow rate of the desalted liquid, a pressure sensor for detecting the pressure of the desalted solution supplied to the desalting chamber, and a desalted solution extraction A desalinating liquid conductivity detector for detecting the electrical conductivity of the desalting liquid flowing through the pipe for use, and each other disposed in the electrolytic cell Voltage detector for detecting a voltage or voltage to be the index of between a pair of diaphragm at both ends of the unit comprising the desalting and salt concentration compartments in contact, and (6) based on a detection value of the detector When the deterioration condition of the anion exchange membrane, cation exchange membrane, and demineralization room environment is monitored and a predetermined deterioration condition is reached within the range of the recovery condition that can be recovered by circulating cleaning liquid Operate the supply liquid switching means and the extraction flow path switching means. In order to circulate the cleaning liquid in the desalination chamber Control means for controlling the switching of the supply liquid supplied to the desalting chamber and the flow path of the liquid withdrawn from the desalting chamber is provided.
[0017]
In the desalination apparatus of the present invention, the deterioration state of the membrane and the environment of the desalting chamber is monitored by the above detector, and the cleaning liquid is supplied into the desalting chamber, preferably within the range of the recoverable degradation state by circulating it. It is possible to restore the environment in the membrane and the desalting chamber by automatically operating the control means when a predetermined deterioration state is reached and switching the flow path to distribute the cleaning liquid in the desalting chamber. It has become. The set value for operating the control means is the relationship between the detection knowledge detected by each detector according to the type of desalted liquid and the desalting conditions and the deterioration status, and further the deterioration status that can be recovered by the cleaning operation. It is determined appropriately by checking the above. Further, the cleaning liquid conditions (the flow rate of the cleaning liquid, the circulation time, and the cleaning liquid temperature) can also be determined by conducting a preliminary experiment according to the deterioration state and the type of the cleaning liquid used. After completion of the cleaning process, the flow path can be switched again to resume desalting. At this time, the flow path can be switched automatically or manually. In addition, what kind of washing | cleaning liquid should just select and use suitably the liquid which can melt | dissolve a scale by the kind of scale (in other words, the kind of to-be-desalted liquid). For example, when desalting a water glass aqueous solution, an alkaline aqueous solution such as a sodium hydroxide aqueous solution can be used, and a hydrochloric acid aqueous solution when desalting the waste incineration ash cleaning liquid (waste liquid when the waste incineration ash is washed with water). An acid aqueous solution such as can be used.
Hereinafter, the desalination apparatus of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 is a schematic diagram of a representative desalination apparatus 100 of the present invention. The desalting apparatus 100 basically includes an electrodialysis tank 110, a desalted liquid supply pipe 120 connected to the electrodialysis tank 110, a desalted liquid extraction pipe 121, a salt absorbing liquid supply pipe 130, and a concentration. The liquid extraction pipe 131, the cleaning liquid supply pipe 140, and the cleaning liquid extraction pipe 141 are configured. The desalted liquid supply pipe 120 can be supplied with the desalted liquid from the desalted liquid tank 301 using the pump 310 a, and is extracted through the desalted liquid extracting pipe 121. The desalted liquid is circulated to the desalted liquid tank 301. Similarly, salt absorption liquid can be supplied from the salt absorption liquid tank 302 to the salt absorption liquid supply pipe 130 using the pump 310b. The concentrated liquid extracted through the concentrated liquid extraction pipe 131 is The salt absorbent tank 302 is circulated. Further, the cleaning liquid supply pipe 140 can supply the cleaning liquid to the cleaning liquid tank 303 using the pump 310 c, and the cleaning liquid extracted through the cleaning liquid extraction pipe 141 is circulated to the cleaning liquid tank 303. It has become.
As shown in FIG. 2, the electrodialyzer 110 is a modular stack in which two or more units 210 each including an adjacent desalting chamber 211 and a salt concentration chamber 212 are connected between an anode 111 and a cathode 112. A plurality of 200 are provided. (In FIG. 1, the structure in the stack is omitted, and only the flow of the liquid is shown.) By using such a stack, not only the piping can be simplified, but also, for example, the exchange of the ion exchange membrane can be performed in the stack. The maintenance of the apparatus becomes easy. The space on the anode side from the stack including the anode 111 is the anode chamber 111R, the space on the cathode side from the stack including the cathode 112 is the cathode chamber 112R, and an electrode solution made of an electrolyte aqueous solution is contained in each chamber. The tank 304 can be supplied and circulated using a pump 310d.
In addition, as shown in FIG. 2, the stack 200 has two or more units of the AE film 230 and the CE film 240 through a chamber frame 220 having a notch for forming each chamber in the center. In this way, the module is a so-called filter press type structure that is alternately and repeatedly arranged and then fixed from both ends, and in each chamber in the stack, the spacer 250 for securing the flow path and the liquid are evenly distributed. A flow distribution plate (not shown) is provided. Further, the chamber frame 220 is provided with notches for forming a desalting chamber liquid supply path 221, a desalting chamber liquid outflow path 222, a salt concentration chamber liquid supply path 223, and a salt concentration chamber liquid outflow path 224. ing. In addition, the shape of the spacer or flow distribution plate is not particularly limited, but it has an effect of preventing the generation of precipitates, and has a structure that can be easily removed even if precipitates are generated, for example, a tunnel type structure. It is preferred to use.
[0018]
A desalting chamber liquid supply path 221 leading to each desalting chamber 211 in each stack 200 is connected to a liquid outflow end of a desalted liquid supply pipe 120, and the desalted liquid supply pipe 120. The liquid outflow end side is also used as the liquid outflow end side of the cleaning liquid supply pipe 140, and this desalted liquid supply / cleaning liquid supply pipe 150 is once collected in the upstream portion to be supplied with the demineralized liquid supply / cleaning liquid. After the supply / main pipe 160 is formed, it is branched into dedicated pipes for the desalinated liquid supply pipe 120 and the cleaning liquid supply pipe 140. Further, similarly, a liquid outflow end of the branch pipe 130b branched from the main pipe 130a of the salt absorbing liquid supply pipe 130 is connected to the salt concentration chamber liquid supply path 223 leading to each salt concentration room 212 in each stack 200. The salt concentration chamber liquid outflow passages 224 leading to the salt concentration chambers 212 are connected to the liquid outflow ends of the branch pipes 131b of the concentrate extraction pipe 131, and the branch pipes 131b are collected at the downstream portions thereof. Main tube 131a is formed.
In addition, a valve 170a installed in a dedicated pipe portion of the desalted liquid supply pipe 120 upstream of the desalted liquid supply / cleaning liquid supply main pipe 160 and the desalted liquid supply / cleaning liquid supply Supply liquid switching means comprising a valve (valve) 170b installed in a dedicated pipe portion of the cleaning liquid supply pipe 140 upstream of the main pipe 160 is installed. Further, the desalting chamber liquid outflow passage 222 of each desalting chamber in the stack 200 is connected to the liquid inflow end of the desalinating solution extraction piping 121, and the desalting solution extraction piping 121 liquid is connected thereto. The inflow end side is also used as the liquid inflow end side of the cleaning liquid extraction pipe 141, and this desalting liquid extraction / cleaning liquid extraction pipe 151 is once collected in the downstream portion to remove the desalting liquid extraction / cleaning liquid After forming the main outlet pipe 161, it branches off to the dedicated pipes of the desalinating liquid extraction pipe 121 and the cleaning liquid extraction pipe 141. Then, a valve (valve) 171a installed in a dedicated pipe portion of the desalting liquid extraction pipe 121 downstream of the desalting liquid extraction / cleaning liquid extraction main pipe 161 and the desalting liquid extraction / cleaning liquid extraction Extraction flow path switching means comprising a valve (valve) 171 b installed in a dedicated pipe portion of the cleaning liquid extraction pipe 141 downstream from the output / main pipe 161 is provided. In addition, although the aspect which consists of two valves each as supply liquid switching means and extraction flow path switching means was shown in FIG. 1, if it is a means which can switch a flow path, other means, for example, a three-way valve, It is of course possible to use a four-way valve (in this case a return line is required). These switching means can be operated by electric power or air pressure, and are operated based on a signal transmitted from the control means 190 described later.
[0019]
In the desalting apparatus 100 of the present invention, the desalted liquid flow rate detector 181 comprising a flow meter for detecting the flow rate of the desalted liquid is provided in the dedicated pipe portion of the desalted liquid supply / cleaning liquid supply main pipe 160 and A desalted liquid pressure detector 182 comprising a pressure gauge for detecting the pressure of the desalted liquid is installed, and the electric conductivity of the desalted liquid is provided in the main portion 161 of the desalted liquid withdrawing / washing liquid outlet. A demineralized liquid electrical conductivity detector 183 is installed for detecting water. Further, a voltage detector 184 for detecting the voltage between the ion exchange membranes at both ends of each stack is installed. The voltage detector detects the voltage between the ion exchange membranes at both ends of the stack, and this voltage is also an indicator of the voltage at the ion exchange membranes at both ends of each unit between the stacks. Of course, the voltage of each unit may be measured, but it is preferable to install a voltage detector for each stack because the number of detectors can be reduced and the detection sensitivity can be maintained at an effective level or higher. When precipitation of scale occurs during the desalting operation and the amount of precipitation increases, the flow path in the desalting chamber or in the vicinity of the desalting chamber liquid supply path narrows, and the flow rate of the desalting liquid decreases or the desalting liquid Or the pressure will rise. Moreover, when scale adheres to the ion exchange membrane, the membrane resistance increases and the desalting efficiency decreases, so the voltage between the ion exchange membranes increases, and the time for reducing the electrical conductivity of the desalting solution increases. The detection value detected by each detector is transmitted from the transmitter attached to each detector to the control means through the receiver attached to the control means 190 of (6). The control means 190 performs the operation and control of the desalinating apparatus 100, and when the transmitted detection value matches or exceeds the preset detection, the supply liquid is supplied immediately or in a preset procedure. A signal for operating the switching means and the extraction flow path switching means is transmitted, and each switching means operates to switch the supply liquid supplied to the desalting chamber and the flow path of the liquid extracted from the desalting chamber. The ion exchange membrane is automatically regenerated and the desalting operation is resumed. At this time, the operation and stop of each device such as a pump are also controlled.
[0020]
【The invention's effect】
According to the apparatus of the present invention, a substance (for example, silicate ion or calcium ion) that generates precipitates (scale) during electrodialysis, such as a waste liquid (waste incineration ash washing liquid) when water glass aqueous solution or incineration ash is washed with water. In the case of desalting the desalted solution containing the above, etc., the scale can be removed by automatically performing the washing operation before the adverse effect due to the scale deposition becomes unrecoverable. Therefore, the apparatus can be used stably for a long period of time without urgently stopping the apparatus. In addition, the period of the regular inspection can be extended, and the cost required for maintenance can be reduced.
[0021]
[Brief description of the drawings]
FIG. 1 is a schematic view of a desalting apparatus according to the present invention.
FIG. 2 is a schematic view of a stack used in the desalination apparatus of the present invention.
[Explanation of symbols]
100: Demineralizer
110: Electrodialysis tank
111: Anode
112: Cathode
111R: Anode chamber
112R: Cathode chamber
120: Pipe for supplying desalted liquid
121: Pipe for extracting desalted liquid
130: Pipe for supplying salt absorption liquid
130a: Main pipe of salt absorption liquid supply pipe
130b: Branch pipe of salt absorption liquid supply pipe
131: Pipe for extracting concentrated liquid
131a: Main pipe for extracting concentrated liquid
131b: Branch pipe for extracting concentrated liquid
140: piping for supplying cleaning liquid
141: and piping for extracting cleaning liquid
150: piping for supplying desalinated liquid and supplying cleaning liquid
151: Deionized solution supply / cleaning solution extraction piping
160: Desalted liquid supply / cleaning liquid supply main pipe
161: Desalinated liquid supply / cleaning liquid extraction combined use main pipe
170a, b: Valve (supply liquid switching means)
171a, b: Valve (extraction flow path switching means)
181: Demineralized liquid flow rate detector
182: Desalinated liquid pressure detector
183: Desalinated liquid electrical conductivity detector
184: Voltage detector
190: Control means
200: Stack
210: Unit
211: Desalination room
212: Salt concentration chamber
220: Room frame
221: Desalination chamber liquid supply path
222: Desalination chamber liquid outflow passage
223: Salt concentration chamber liquid supply path
224: Salt concentration chamber liquid outflow passage
230: AE film
240: CE film
250: Spacer
301: Desalinated liquid tank
302: Salt absorption liquid tank
303: Cleaning liquid tank
304: Electrode solution tank
310a to d: Pump

Claims (6)

(A)陽極と陰極との間に陰イオン交換膜及び陽イオン交換膜を交互に配置して、陽極側が陰イオン交換膜で仕切られ陰極側が陽イオン交換膜で仕切られた脱塩室、及び陽極側が陽イオン交換膜で仕切られ陰極側が陰イオン交換膜で仕切られた塩濃縮室が形成された電気透析槽と、(B)前記脱塩室に被脱塩液を供給するための被脱塩液供給用配管と、(C)前記脱塩室から脱塩された被脱塩液を抜き出すための脱塩液抜出用配管と、(D)前記塩濃縮室に塩吸収液を供給するための塩吸収液供給用配管と、(E)前記塩濃縮室から塩が濃縮された塩吸収液である濃縮液を抜き出すための濃縮液抜出用配管とを具備する脱塩装置において、
(1)前記脱塩室に洗浄液を供給するための洗浄液供給用配管、(2)前記脱塩室に供給する液を被脱塩液又は洗浄液の何れかに切替える供給液切替え手段、(3)前記脱塩室から洗浄液を抜き出すための洗浄液抜出用配管、(4)前記脱塩液から抜き出される液の流路を脱塩液抜出用配管又は洗浄液抜出用配管に切替える抜出流路切替え手段、(5)前記脱塩室に供給される被脱塩液の流量を検知する被脱塩液流量検知器、前記脱塩室に供給される被脱塩液の圧力を検知する被脱塩液圧力検知器、前記脱塩液抜出用配管を流れる脱塩液の電気伝導度を検知する脱塩液電気伝導度検知器、及び前記電解槽内に配置された互いに隣接する一組の脱塩室及び塩濃縮室からなるユニットの両端の隔膜間の電圧又はその指標となる電圧を検知する電圧検知器、並びに(6)前記検知器の検出値に基づき陰イオン交換膜、陽イオン交換膜及び脱塩室内環境の劣化状況をモニターし、洗浄液を流通させることにより回復可能な劣化状況の範囲内で予め定めた劣化状況に達したときに前記供給液切替え手段及び前記抜出流路切替え手段を作動させて、脱塩室内に洗浄液を流通させるように脱塩室に供給する供給液の切替えの制御及び脱塩室から抜き出す液の流路の制御を行う制御手段を有することを特徴とする脱塩装置。
(A) An anion exchange membrane and a cation exchange membrane are alternately arranged between an anode and a cathode, and a desalting chamber in which the anode side is partitioned by an anion exchange membrane and the cathode side is partitioned by a cation exchange membrane, and An electrodialysis tank in which a salt concentration chamber having an anode side partitioned by a cation exchange membrane and a cathode side partitioned by an anion exchange membrane is formed; and (B) a detoxification for supplying a desalted solution to the desalting chamber. A salt solution supply pipe, (C) a desalted solution extraction pipe for extracting the desalted solution desalted from the desalting chamber, and (D) a salt absorbing solution is supplied to the salt concentration chamber. A salt-absorbing solution supply pipe and (E) a salt-extracting pipe for extracting a concentrate that is a salt-absorbing solution in which salt is concentrated from the salt concentration chamber,
(1) A cleaning liquid supply pipe for supplying a cleaning liquid to the desalting chamber, (2) a supply liquid switching means for switching the liquid supplied to the desalting chamber to a desalted liquid or a cleaning liquid, (3) (4) Extraction flow for switching the flow path of the liquid extracted from the desalting liquid to the desalting liquid extraction pipe or the cleaning liquid extraction pipe. A path switching means, (5) a flow rate detector for detecting the flow rate of the desalted liquid supplied to the desalting chamber, and a flow rate detector for detecting the pressure of the desalted liquid supplied to the desalting chamber. A desalting solution pressure detector, a desalting solution electrical conductivity detector for detecting the electrical conductivity of the desalting solution flowing in the desalting solution extraction pipe, and a set adjacent to each other disposed in the electrolytic cell For detecting the voltage between the diaphragms at both ends of the unit consisting of the desalting chamber and the salt concentration chamber of the water or the voltage serving as an index thereof Intellectual instrument, and (6) the detector based on the detected value anion-exchange membrane, to monitor the deterioration condition of the cation exchange membrane and desalination indoor environment, the range of recoverable deterioration state by circulating the washing liquid The supply liquid switching means and the extraction flow path switching means are operated when a predetermined deterioration state is reached in order to switch the supply liquid supplied to the desalting chamber so that the cleaning liquid flows in the desalting chamber. A desalinator comprising control means for controlling and controlling a flow path of a liquid extracted from the desalting chamber.
電気透析槽が、陽極と陰極との間に、隣接する脱塩室及び塩濃縮室からなるユニットが複数形成されたものであり、該電気透析槽内の脱塩室液供給路には、被脱塩液供給用配管の液流出端が連結されてなり、該被脱塩液供給用配管の液流出端側は、洗浄液供給用配管の液流出端側と兼用されており、この被脱塩液供給・洗浄液供給兼用配管は上流部で被脱塩液供給用配管および洗浄液供給用配管の各専用管に分岐されてなり、他方、該電気透析槽内の脱塩室液排出路には、脱塩液抜出用配管の液流入端が連結されてなり、該脱塩液抜出用配管の液流入端側は洗浄液抜出用配管の液流入端側と兼用されており、この脱塩液抜出・洗浄液抜出兼用配管は下流部で脱塩室抜出用配管および洗浄液抜出用配管の各専用管に分岐されてなることを特徴とする請求項1に記載の脱塩装置。The electrodialysis tank has a plurality of units composed of an adjacent desalination chamber and a salt concentration chamber between the anode and the cathode, and the desalination chamber liquid supply path in the electrodialysis tank has a cover. The liquid outflow end of the desalted liquid supply pipe is connected, and the liquid outflow end side of the desalted liquid supply pipe is also used as the liquid outflow end side of the cleaning liquid supply pipe. The liquid supply / cleaning liquid supply pipe is branched into dedicated pipes for the desalted liquid supply and the cleaning liquid supply pipe in the upstream portion, while the desalting chamber liquid discharge path in the electrodialysis tank has The liquid inflow end of the desalting liquid extraction pipe is connected, and the liquid inflow end side of the desalting liquid extraction pipe is also used as the liquid inflow end side of the cleaning liquid extraction pipe. The pipe for both the liquid extraction and cleaning liquid extraction is branched into a dedicated pipe for the desalination chamber extraction pipe and the cleaning liquid extraction pipe in the downstream part. Desalination apparatus according to claim 1 that. 電気透析槽内に前記ユニットが2以上連結してモジュール化されたスタックが複数個設けられてなり、各スタック内の脱塩室液供給路に連結される被脱塩液供給・洗浄液供給兼用配管は一旦集められて被脱塩液供給・洗浄液供給兼用主管を形成した後、被脱塩液供給用配管および洗浄液供給用配管の各専用管に分岐されてなり、他方、各スタック内の脱塩室液排出路に連結される脱塩液抜出・洗浄液抜出兼用配管は一旦集められて脱塩液抜出・洗浄液抜出兼用主管を形成した後、脱塩室抜出用配管および洗浄液抜出用配管の各専用管に分岐されてなることを特徴とする請求項2に記載の脱塩装置。A plurality of modularized stacks in which two or more of the above units are connected in an electrodialysis tank, and a desalted liquid supply / cleaning liquid supply pipe connected to a desalination chamber liquid supply path in each stack Are collected once to form the main pipe for supplying the desalted liquid and cleaning liquid, and then branched to the dedicated pipes for supplying the desalted liquid and the cleaning liquid supplying pipe, while the desalting in each stack The desalting liquid extraction / cleaning liquid extraction piping connected to the chamber liquid discharge passage is once collected to form a desalting liquid extraction / cleaning liquid extraction main pipe, and then the desalting chamber extraction piping and cleaning liquid extraction The demineralizer according to claim 2, wherein the demineralizer is branched to each dedicated pipe of the outgoing pipe. 前記供給液切替え手段が前記被脱塩液供給・洗浄液供給兼用主管より上流の前記被脱塩液供給用配管の専用管部分に設置された弁と前記被脱塩液供給・洗浄液供給兼用主管の上流の前記洗浄液供給用配管の専用管部分に設置された弁とからなり、前記抜出流路切替え手段が前記脱塩液抜出・洗浄液抜出兼用主管より下流の前記塩液抜出用配管の専用管部分に設置された弁と前記脱塩液抜出・洗浄液抜出兼用主管より下流の前記洗浄液抜出用配管の専用管部分に設置された弁とからなることを特徴とする請求項3に記載の脱塩装置。The supply liquid switching means includes a valve installed in a dedicated pipe portion of the demineralized liquid supply pipe upstream of the demineralized liquid supply / cleaning liquid supply main pipe and a demineralized liquid supply / cleaning liquid supply main pipe. And a valve installed in a dedicated pipe part of the upstream of the cleaning liquid supply pipe, and the extraction flow path switching means is downstream of the desalinating liquid extraction / cleaning liquid extraction main pipe. And a valve installed in a dedicated pipe portion of the cleaning liquid extraction pipe downstream of the desalinating liquid extraction / cleaning liquid extraction main pipe. 3. The desalinating apparatus according to 3. 前記電圧検知器が電気透析槽内に配置された少なくとも1つのスタックの両端のイオン交換膜間の電圧を検知するものであることを特徴とする請求項3又は4に記載の脱塩装置。The desalinating apparatus according to claim 3 or 4, wherein the voltage detector detects a voltage between ion exchange membranes at both ends of at least one stack disposed in the electrodialysis tank. 請求項1乃至5の何れかに記載の脱塩装置を用いて被脱塩液の脱塩を行うことを特徴とする脱塩液の製造方法。A method for producing a desalted solution, wherein the desalted solution is desalted using the desalting apparatus according to any one of claims 1 to 5.
JP2002119002A 2002-04-22 2002-04-22 Desalination equipment Expired - Lifetime JP4377104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002119002A JP4377104B2 (en) 2002-04-22 2002-04-22 Desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002119002A JP4377104B2 (en) 2002-04-22 2002-04-22 Desalination equipment

Publications (2)

Publication Number Publication Date
JP2003311130A JP2003311130A (en) 2003-11-05
JP4377104B2 true JP4377104B2 (en) 2009-12-02

Family

ID=29535684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002119002A Expired - Lifetime JP4377104B2 (en) 2002-04-22 2002-04-22 Desalination equipment

Country Status (1)

Country Link
JP (1) JP4377104B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782720B2 (en) 2012-03-09 2017-10-10 Mitsubishi Heavy Industries, Ltd. Degradant concentration measurement device and acidic gas removal device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046776B1 (en) * 2008-07-10 2011-07-05 경북대학교 산학협력단 Wastewater Treatment Method Using Electrodialysis Equipment
US9067247B2 (en) 2012-07-06 2015-06-30 The Chemours Company Fc, Llc Treatment of tailings with deionized silicate solutions
CA2835677C (en) 2012-12-19 2017-01-17 E. I. Du Pont De Nemours And Company Improved bitumen extraction process
AU2014235929B2 (en) 2013-03-22 2017-07-13 The Chemours Company Fc, Llc Treatment of tailing streams
WO2014165493A1 (en) 2013-04-05 2014-10-09 E. I. Du Pont De Nemours And Company Treatment of tailings streams by underwater solidification
WO2015095023A1 (en) 2013-12-20 2015-06-25 E. I. Du Pont De Nemours And Company Treatment of tailings with deionized silicate solutions
CN108996624A (en) * 2018-08-21 2018-12-14 辽宁莱特莱德环境工程有限公司 ED-R desalter and method applied to oil field reinjection water reuse
CN111470590A (en) * 2020-05-28 2020-07-31 佛山市顺德区美的饮水机制造有限公司 Water purifier, water purification control method and water purifier
CN114074977A (en) * 2020-08-12 2022-02-22 云米互联科技(广东)有限公司 Household water purifying device and table-board water purifying machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782720B2 (en) 2012-03-09 2017-10-10 Mitsubishi Heavy Industries, Ltd. Degradant concentration measurement device and acidic gas removal device

Also Published As

Publication number Publication date
JP2003311130A (en) 2003-11-05

Similar Documents

Publication Publication Date Title
US20090152117A1 (en) Electrodialysis apparatus, waste water treatment method and fluorine treatment system
EP0803474A2 (en) Electrodeionization apparatus and process for purifying a liquid
JP3801821B2 (en) Electric desalination equipment
JP4384444B2 (en) Electric demineralizer and electrodialyzer
JP4377104B2 (en) Desalination equipment
KR101882806B1 (en) An apparatus for doing capacitive deionization and wash
BRPI0808853A2 (en) ACID AND BASE GENERATION DEVICES AND METHODS
JP2007007655A (en) Electrodialyzer
JP5868421B2 (en) Electrodeionization equipment
WO2022209641A1 (en) Electrodialysis method using bipolar membrane
KR101954141B1 (en) An apparatus for controlling wash of capacitive deionization module
KR100519196B1 (en) Electrochemical treatment of ion exchange material
US5482632A (en) Extracting a target ion from an aqueous solution by ion exchange and electropotential ion transport
JP5188454B2 (en) Method for producing organic acid
JP4065386B2 (en) Electrodialysis machine
JP4146649B2 (en) Process for producing dealkalized water glass and apparatus for producing the same
JP2007313421A (en) Pure water circulating feed system, pure water recycling method, and method for treating substrate
CN214571340U (en) Deionized water treatment system
JP6676266B2 (en) Electric regeneration type deionizer
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP3967585B2 (en) Method for producing aqueous alkali metal silicate solution
KR101882807B1 (en) An apparatus for controlling wash of capacitive deionization module
JPH0824868A (en) Water treatment apparatus
JP2004089975A (en) Strong electrolytic water generator
JP6407734B2 (en) Operation method of electric deionized water production apparatus and pure water production system provided with electric deionized water production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090910

R150 Certificate of patent or registration of utility model

Ref document number: 4377104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

EXPY Cancellation because of completion of term