JP2004089975A - Strong electrolytic water generator - Google Patents

Strong electrolytic water generator Download PDF

Info

Publication number
JP2004089975A
JP2004089975A JP2002294234A JP2002294234A JP2004089975A JP 2004089975 A JP2004089975 A JP 2004089975A JP 2002294234 A JP2002294234 A JP 2002294234A JP 2002294234 A JP2002294234 A JP 2002294234A JP 2004089975 A JP2004089975 A JP 2004089975A
Authority
JP
Japan
Prior art keywords
electrode
electrolysis
water
electrodes
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002294234A
Other languages
Japanese (ja)
Inventor
Tadahiro Honma
本間 唯廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemicoat and Co Ltd
Original Assignee
Chemicoat and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemicoat and Co Ltd filed Critical Chemicoat and Co Ltd
Priority to JP2002294234A priority Critical patent/JP2004089975A/en
Publication of JP2004089975A publication Critical patent/JP2004089975A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a strong electrolytic water generator which has a cleaning mechanism for preventing the inhibition of electrolysis caused by the deposition of precipitate of hydroxides of calcium, magnesium, etc. in tap water onto electrodes following the electrolysis in a strong electrolytic water generator using ion exchange membranes. <P>SOLUTION: A plurality of the electrodes are installed in a cathode chamber when generating electrolytic water. The polarity of one electrode among the electrodes in the cathode chamber, which is disposed near an anode chamber, is reversed so that the electrode becomes an anode, thereby cleaning extraneous matters which have been deposited onto the electrodes during electrolytic water generation. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、水系の電気分解装置更に詳細には、電解質を含む水の電気分解を行うことによって、アルカリ水と酸性水またはこれらの混合水を生成する装置の構成に関する。
【0002】
【従来の技術】
水に食塩などの電解質を溶かして、隔膜で隔てた電極室を構成して、電気分解する装置は相当数のメーカーから発売されている。
この装置は強電解水生成装置と呼ばれ、主として生成する次亜塩素酸水の殺菌効果を利用するものである。
強電解水生成装置は連続流水式のものと、一定量の生成水を単回で生成させるバッチ式のものに大別されるが、その構成には電気分解するための直流電源とプラスとマイナスの電極が必須である。
また、電気分解には隔膜により電極を隔てた室を構成し、陰極の設置されている側の室内にアルカリ性水、陽極の設置されている側の室内に酸性水が生成する。
【0003】
【発明が解決しようとする課題】
ところで水を電気分解する際、原水に含まれるカルシウム、マグネシウムなどや、食塩に含まれるカルシウム、マグネシウムなどが陰極に析出してくるため、電気分解が繰り返し行われると、次第に電気分解時の電流が流れなくなり、電解効率が劣化する。
そのため、原水を軟水化したりイオン交換して脱イオン水として使用し、食塩の代わりに特級精製塩を使用して対応している。
また、付着したカルシウムやマグネシウムなどを、電気分解の電極の極性を逆転して自動的に除去しようとする装置もある。(PR電解法と言われる方法である)これらの対応のうち、原水を軟水化したり脱イオン化する方法は、別途設備費がかかりスペース上も大型化して、設置してしまった後は移動するのが困難になる。食塩の代わりに特級精製塩を使用するのは良い方法であるが、それだけでは原水中のカルシウムやマグネシウムの対応がとれず、解決はできない。
また、PR電解法は電極の極性が逆転するので、電気が流れれば効率的に洗浄される方法として良いと思われる。
実際に飲料水用のアルカリイオン整水器には、隔膜として中性膜が使用され、相互にイオンが行き来できるので採用されている方法である。
隔膜にイオン交換膜を使用すると、陽イオン交換膜は陽イオンのみ、陰イオン交換膜は陰イオンのみが透過できる。従って陽イオン交換膜の外側の電極は陰極、陰イオン交換膜の外側には陽極が設置されている条件でなければ、電流は流れず、電気分解も殆どおこらない。
イオン交換膜を使用するメリットは、比較的純粋なイオン水を得る目的で使用される。
そして一方通行で不可逆であるため、いちど生成したイオンは電気分解の電源を切っても、膜を逆に透過することはできない。
このような理由で、イオン交換膜は酸、アルカリの水溶液を生成するにはとても良い方法ではあるが、PR電解は出来ないため電極の洗浄には利用できない。
このように電気分解の電極が、カルシウムやマグネシウムの水酸化物で覆われ、電解効率の劣化する対策としてスペース的にも、設備費用の点からも問題があり、安価で効果的、かつスペースの殆ど必要のない方法の開発が望まれていた。
【0004】
【問題を解決するための手段】
そこで上記問題を解決するため、本発明では通常の電気分解をする際の陰極室内に複数枚の電極を設置した。
さらに陰極および陽極への直流電源の他に、陰極を洗浄するための直流電源を別に用意し、通常の電気分解を行うとき陰極として使用していた陰極室内の電極6を陽極とし、同室内の別の電極7を陰極として、前述した陰極洗浄用の直流電源から電流を供給する。
また、通常の電気分解用の直流電源と陰極洗浄用の直流電源を共用とし、電極6の極性を反転することによっても同様の効果が得られる。
このような電源の切り替えを行うことにより、通常の電解水生成時に陰極に付着したカルシウムや、マグネシウムなどは除去される。
カルシウムやマグネシウムなどの除去がPR電解法では効果がなかったが、本発明の方式では十分な除去性能を示す。そのため電解水の生成が安定する。
上記した本発明の構成では直流電源用のプリント基板および電極板を装置に組み込むだけで、電気回路を組めば装置の自動洗浄が簡単にできる。
これまでの様に、軟水装置や脱イオン水装置を付帯させる必要がなくなり、設置スペースの削減、設置場所の移動がしやすくなる、維持管理費用も大幅に削減が可能となるなどメリットは非常に大である。
【0005】
【発明の実施の形態】
次に本発明の具体的構成例を図により説明する。
図1は、本発明の電気分解装置の電解槽の構成と、水系の流れを説明するための模式図であり、この図の例では電解槽4はイオン交換隔膜であるアニオンA、カチオンCにより1,2,3の各室に仕切られている。
アニオン交換膜Aで仕切られた2室には、電解水生成用電極5が設けられ、プラス(陽)極として使用される。
カチオン交換膜Cで仕切られた1室には電解水生成用電極6が設けられており、電源供給装置の陰極に接続される。
真ん中の3室は中間室で、塩水タンク8内の塩水がポンプ9により3室内に送液され、配管10を通って再び塩水タンク8に戻る循環系が構成されている。
Wは水道などの原水供給源で、配管11を通って1室および2室に原水が圧送され、陽極5および陰極6に直流電気が通電している時は、配管12の出口から酸性水、配管13の出口からはアルカリ水が排出する。
14、15はそれぞれ陽極室への原水通過量を制御する流量計と、陰極室への原水通過量を制御する流量計である。
通常、電解水を生成させる時は上記構成で運転する。
電極6を陰極として電気分解を繰り返し行っていると、電極6には水道水中にとけているカルシウムやマグネシウムなどや、塩の中に含まれているカルシウムやマグネシウムなどが析出し、電極や配管内などに付着する。
これら析出物は、堆積してくると電気が流れ難くなり、電解効率が悪くなってくる。
特に、電極に付着すると電気分解が不十分になるので、時々電極6の析出物は除去する必要がある。
本発明では、電極を洗浄するときは、陰極として使用されていた電極6を陽極とし、同じ室内の別の電極7を陰極として洗浄用の電気分解を行なう。
これにより、電解水生成時に陰極として使用されていた電極6の表面析出物は、陽極として通電されるため、電極表面から溶け出して剥離される。
表面析出物は陰極室内で水酸化物になると、溶解度が低いので沈殿となって槽壁などにも析出する。
洗浄のための電気分解は、電解水の生成装置を停止させる毎に行うのが望ましく、本発明者の実験では、3日間連続採水し3分間洗浄、4日間連続採水し3分間洗浄するという1週間のサイクルを8週間おこなって、電解槽を分解調査したところ、全く電極に付着物が堆積しないことが確認された。
以下、本発明の実施例を説明する。
【0006】
【実施例】
電解条件:3日間連続運転後3分洗浄、4日間連続運転後3分間洗浄を1サイクルとして8サイクル
電解槽 :3室構成、アニオン交換膜とカチオン交換膜で仕切り
陽極板 :片面99cm(開孔率16%)チタン素材に酸化イリジウムをコーティング
陰極板 :片面99cm(開孔率16%)チタン材
極間距離:13mm
電解電圧:10V
中間室塩濃度:平均12%
【特級精製塩】
酸性水流量 :1500ml/分 ph 3.0
アルカリ水流量:150ml/分 ph12.0
電解液温度 :32℃
原水  :水道水

Figure 2004089975
8サイクルのテスト終了後電解槽を分解し、付着物のチェックを行ったところ、電極には全く析出付着物はなかった。
また、電気分解のレベルを示す指標として電流値を測定したが、スタートから終了時を通じて15〜18アンペアで安定していた。
比較として洗浄操作を組み込まずに、実施例と同じ8サイクル(洗浄相当時間は休止した)を運転したものは、陰極の電極表面に白色のクリーム状析出付着物が薄皮状に堆積された。
電流値もスタート時15アンペアだったものが、8アンペアに低下した。
酸性水pHが4.0に上昇し、アルカリ水pHが11.5に低下し、電気分解効果が大幅に劣化した。
つぎに、本発明の実験で使用した電気回路を図2に示す。
【0007】
【実施例の作用】
原水をイオン交換膜で仕切られた陰極室1と陽極室2に通水しつつ、中間室3の塩水を循環しながら、陰極と陽極間に直流電気を通すと、陰極室内には中間室からカチオン交換膜を透過してナトリウムが流入してくるため、アルカリ性となる。
原水の水道水にはカルシウム、マグネシウムの陽イオンが合わせて20ppm程度含まれており、陰極にひきよせられる。
同時にナトリウムも陰極室に引き寄せられてアルカリ性になるため、これらアルカリ土類金属は水酸化物の沈殿となり、陰極に付着する。
陽極室内には、水の電気分解で生じる酸素と、塩から透析してきた塩素が他のきょう雑陰イオンと共に生成し塩酸と次亜塩素酸の水溶液となる。
電解水生成から電極洗浄に電気回路を切り替えると、今まで陰極としてカルシウム、マグネシウムなどが析出していた電極は陽極となり、同一室内に別途設けらている電極が陰極として通電されるので、付着していたカルシウム、マグネシウムなどが素材金属のチタンの表面で発生する酸素ガスにより、剥離する。
カルシウム、マグネシウムなどは室内がアルカリ性であるため、新たに陰極に引き寄せられることは殆どなく、通水により洗い流され、電極は清浄化される。
再び電解水を生成するときは、電解をさまたげる付着物のない陰極として再生せれている。
【0008】
【発明の効果】
水に電解質を加えて、イオン交換隔膜により電極を隔離して、電気分解する方法において、水道水を原水として電気分解すると、陰極に不溶性の導電性を阻害する沈殿物が生成し、電気分解時の電流が流れなくなり、電解効率がどんどん劣化するが、本発明による電極洗浄を行うことにより、電解効率の劣化は全く問題にならないほどに改善される。
従来、電解前に水道水を軟水化装置に通したり、脱イオン装置に通したりしていた設備が不要になる。
前処理設備が不要になると、設置コストが低減するのはもちろん、その設備を稼働するのに要していた、イオン交換樹脂の再生塩などの維持管理費用も殆どかからなくなる。
また、本体の電解水生成装置の移動や設置も簡単に出来るようになり、設置スペースも大幅に削減できる。
さらに再生装置などの不具合で電極が汚染されるなどの心配もなくなり、極めて安定した電解水の生成ができる。
【図面の簡単な説明】
【図1】電解槽の構成および水系の流れ模式図
【図2】電気制御回路例
【図3】オフディレータイマー
【図4】オンディレータイマー
【符号の説明】
1〜3・・・隔膜で仕切った各室
4・・・・・電解槽
5〜7・・・電極
8・・・・・塩水タンク
9・・・・・ポンプ
10〜13・配管
14〜15・流量計
A・・・・・アニオン交換膜
C・・・・・カチオン交換膜
W・・・・・原水供給源
SV・・・・電磁弁[0001]
[Industrial applications]
The present invention relates to a water-based electrolysis apparatus, and more particularly, to a configuration of an apparatus for generating alkaline water and acidic water or a mixed water thereof by performing electrolysis of water containing an electrolyte.
[0002]
[Prior art]
A number of manufacturers have released devices for dissolving an electrolyte such as salt in water, forming an electrode chamber separated by a diaphragm, and performing electrolysis.
This apparatus is called a strong electrolyzed water generator, and mainly utilizes the sterilizing effect of the generated hypochlorous acid water.
Strongly electrolyzed water generators are broadly classified into continuous flow water type and batch type which generate a certain amount of generated water in a single operation.They are composed of a DC power supply for electrolysis and plus and minus. Electrodes are indispensable.
Further, in the electrolysis, a chamber in which the electrodes are separated by a diaphragm is formed, and alkaline water is generated in the chamber where the cathode is installed, and acidic water is generated in the chamber where the anode is installed.
[0003]
[Problems to be solved by the invention]
By the way, when electrolyzing water, calcium and magnesium contained in raw water and calcium and magnesium contained in salt are deposited on the cathode, so if the electrolysis is repeated, the current during the electrolysis gradually increases. The flow stops, and the electrolysis efficiency deteriorates.
Therefore, raw water is softened or ion-exchanged and used as deionized water, and a special grade purified salt is used instead of salt.
In addition, there is a device that automatically removes attached calcium and magnesium by reversing the polarity of the electrode for electrolysis. Of these measures, the method of softening or deionizing raw water requires additional equipment costs, increases the size of the space, and moves after installation. Becomes difficult. Although it is a good method to use a special grade of purified salt instead of salt, it cannot solve the problem of calcium and magnesium in raw water, and it cannot be solved.
In addition, since the polarity of the electrode is reversed in the PR electrolysis method, it is considered to be a good method for efficiently cleaning the cell when electricity flows.
In practice, a neutral membrane is used as a diaphragm in an alkali ion water purifier for drinking water, and this method is adopted because ions can flow back and forth.
When an ion exchange membrane is used for the diaphragm, the cation exchange membrane can transmit only cations, and the anion exchange membrane can transmit only anions. Therefore, unless an electrode outside the cation exchange membrane is provided with a cathode and an anode outside the anion exchange membrane, current does not flow and electrolysis hardly occurs.
The advantage of using an ion exchange membrane is used for the purpose of obtaining relatively pure ionic water.
And since it is irreversible in one way, the generated ions cannot permeate the membrane in reverse even if the power of the electrolysis is turned off.
For this reason, ion exchange membranes are a very good method for producing aqueous solutions of acids and alkalis, but cannot be used for cleaning electrodes because PR electrolysis cannot be performed.
As described above, the electrode for electrolysis is covered with hydroxides of calcium and magnesium, and there is a problem in terms of space and equipment cost as a measure against deterioration of electrolysis efficiency. The development of a method that hardly needed was desired.
[0004]
[Means to solve the problem]
Therefore, in order to solve the above-mentioned problem, in the present invention, a plurality of electrodes are provided in a cathode chamber at the time of ordinary electrolysis.
Further, in addition to the DC power supply to the cathode and the anode, a DC power supply for washing the cathode is separately prepared, and the electrode 6 in the cathode chamber, which has been used as the cathode when performing normal electrolysis, is used as the anode. Using another electrode 7 as a cathode, a current is supplied from the above-described DC power source for cleaning the cathode.
The same effect can be obtained by sharing the DC power supply for normal electrolysis and the DC power supply for cleaning the cathode and inverting the polarity of the electrode 6.
By performing such power supply switching, calcium, magnesium, and the like attached to the cathode during normal electrolytic water generation are removed.
Although removal of calcium and magnesium was not effective in the PR electrolysis method, the method of the present invention shows sufficient removal performance. Therefore, generation of electrolyzed water is stabilized.
In the configuration of the present invention described above, the automatic cleaning of the device can be easily performed by assembling an electric circuit only by incorporating the printed circuit board for DC power supply and the electrode plate into the device.
As before, there is no need to attach a water softening device or deionized water device, so the installation space is reduced, the installation location can be easily moved, and the maintenance cost can be greatly reduced. Is big.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a specific configuration example of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram for explaining the configuration of an electrolytic cell of an electrolysis apparatus of the present invention and the flow of an aqueous system. In this example, the electrolytic cell 4 is formed by an anion A and a cation C, which are ion exchange membranes. Each room is divided into 1, 2 and 3.
Electrodes for generating electrolyzed water 5 are provided in two chambers separated by the anion exchange membrane A, and are used as positive (positive) electrodes.
An electrode 6 for generating electrolyzed water is provided in one chamber partitioned by the cation exchange membrane C, and is connected to a cathode of a power supply device.
The middle three chambers are intermediate chambers, and constitute a circulation system in which the salt water in the salt water tank 8 is sent into the three chambers by the pump 9 and returns to the salt water tank 8 again through the pipe 10.
W is a raw water supply source such as tap water. When raw water is pumped into the first and second chambers through the pipe 11 and direct current is supplied to the anode 5 and the cathode 6, acid water, Alkaline water is discharged from the outlet of the pipe 13.
Reference numerals 14 and 15 denote a flow meter for controlling the flow rate of raw water to the anode chamber and a flow meter for controlling the flow rate of raw water to the cathode chamber.
Normally, when generating electrolyzed water, the operation is performed with the above configuration.
When the electrolysis is repeatedly performed using the electrode 6 as a cathode, calcium and magnesium dissolved in tap water and calcium and magnesium contained in salt precipitate on the electrode 6, and the electrode and the pipe are removed. Adhere to etc.
When these precipitates accumulate, it becomes difficult for electricity to flow, and the electrolysis efficiency deteriorates.
In particular, if it adheres to the electrodes, the electrolysis becomes insufficient, so it is necessary to remove the deposits on the electrodes 6 from time to time.
In the present invention, when cleaning an electrode, the electrode 6 used as a cathode is used as an anode, and another electrode 7 in the same room is used as a cathode to perform electrolysis for cleaning.
As a result, the surface deposits of the electrode 6 used as the cathode during the generation of the electrolyzed water are melted and peeled off from the electrode surface because the electrode 6 is energized as the anode.
When the surface precipitates become hydroxides in the cathode chamber, they have low solubility and precipitate as hydroxides on the tank walls.
The electrolysis for washing is desirably performed every time the apparatus for generating electrolyzed water is stopped. In the experiment of the present inventor, water is continuously collected for 3 days, washed for 3 minutes, continuously collected for 4 days, and washed for 3 minutes. The one-week cycle was performed for eight weeks, and the electrolytic cell was disassembled and investigated. As a result, it was confirmed that no deposits were deposited on the electrodes.
Hereinafter, examples of the present invention will be described.
[0006]
【Example】
Electrolysis conditions: 3 cycles of washing after 3 days of continuous operation, 8 cycles of washing with 3 minutes of washing after 4 days of continuous operation as 8 cycles Electrolyzer: 3 chambers, partitioned by anion exchange membrane and cation exchange membrane Anode plate: 99 cm 2 on one side (open Porosity: 16%) Iridium oxide coated on titanium material Cathode plate: 99 cm 2 on one side (16% porosity) Distance between titanium materials: 13 mm
Electrolysis voltage: 10V
Intermediate room salt concentration: average 12%
[Special grade purified salt]
Acid water flow rate: 1500 ml / min ph 3.0
Alkaline water flow rate: 150 ml / min ph12.0
Electrolyte temperature: 32 ° C
Raw water: tap water
Figure 2004089975
After the completion of the test for 8 cycles, the electrolytic cell was disassembled and checked for deposits. As a result, no deposit was found on the electrodes.
The current value was measured as an index indicating the level of electrolysis, but it was stable at 15 to 18 amperes from the start to the end.
As a comparison, in the case where the same operation as in the example was carried out without the washing operation and the same eight cycles (the washing equivalent time was stopped) were operated, white cream-like deposits were deposited on the cathode electrode surface in a thin skin.
The current value also dropped from 15 amps at the start to 8 amps.
The pH of the acidic water increased to 4.0, the pH of the alkaline water decreased to 11.5, and the electrolysis effect was significantly deteriorated.
Next, FIG. 2 shows an electric circuit used in the experiment of the present invention.
[0007]
Operation of the embodiment
When DC water is passed between the cathode and the anode while circulating the salt water in the intermediate chamber 3 while passing the raw water through the cathode chamber 1 and the anode chamber 2 separated by the ion exchange membrane, the cathode chamber enters from the intermediate chamber. Since sodium flows through the cation exchange membrane, it becomes alkaline.
The tap water of raw water contains about 20 ppm of calcium and magnesium cations in total and is attracted to the cathode.
At the same time, sodium is attracted to the cathode chamber and becomes alkaline, so that these alkaline earth metals become hydroxide precipitates and adhere to the cathode.
In the anode chamber, oxygen generated by electrolysis of water and chlorine dialyzed from salt are generated together with other impurities, resulting in an aqueous solution of hydrochloric acid and hypochlorous acid.
When switching the electric circuit from electrolytic water generation to electrode cleaning, the electrode on which calcium, magnesium, etc. had been deposited as the cathode until now becomes the anode, and the electrode provided separately in the same room is energized as the cathode, so that it adheres. Calcium, magnesium, etc. that have been peeled off by oxygen gas generated on the surface of the titanium material.
Since calcium and magnesium are alkaline in the room, they are hardly newly attracted to the cathode, are washed away by passing water, and the electrode is cleaned.
When the electrolyzed water is generated again, it is regenerated as a cathode having no deposits that hinder electrolysis.
[0008]
【The invention's effect】
In a method in which an electrolyte is added to water, the electrodes are separated by an ion-exchange membrane, and electrolysis is performed, when tap water is used as raw water, a precipitate that is insoluble in the cathode and inhibits conductivity is generated. Current stops flowing and the electrolysis efficiency deteriorates steadily. However, by performing the electrode cleaning according to the present invention, the deterioration of the electrolysis efficiency is improved so as not to cause any problem.
Conventionally, equipment for passing tap water through a water softener or a deionizer before electrolysis becomes unnecessary.
When the pretreatment equipment is not required, not only the installation cost is reduced, but also the maintenance cost for operating the equipment, such as regenerated salt of the ion exchange resin, is hardly required.
Further, the electrolyzed water generator of the main body can be easily moved and installed, and the installation space can be greatly reduced.
Furthermore, there is no need to worry that the electrodes are contaminated due to troubles in the regenerating device, and extremely stable generation of electrolyzed water can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of the configuration of an electrolytic cell and the flow of an aqueous system. FIG. 2 is an example of an electric control circuit. FIG. 3 is an off-delay timer. FIG. 4 is an on-delay timer.
1-3: Each chamber 4 partitioned by a diaphragm 4 ... Electrolysis tank 5-7 ... Electrode 8 ... Brine tank 9 ... Pumps 10-13 and Piping 14-15 Flow meter A Anion exchange membrane C Cation exchange membrane W Raw water supply SV Solenoid valve

Claims (1)

電解質を含む水溶液をイオン交換膜を隔膜として複数の室に分割構成した電解槽を用いて電気分解を行なう電解装置において、電解槽内の電極室1内に2枚以上の電極、電極室2内に1枚以上の電極を設置し、強電解水生成時には電極室1内の電極のうち電極室2内の陽極に近い電極6または電極6を含む電極室1内の任意数の電極を陰極とし、電極室2内の電極5を陽極として直流電気を通電して電気分解を行ない、電極洗浄時には電極室1内の電極のうち電極室2内の陽極に遠い電極7を陰極とし、電極室1内の電極6または電極6を含む任意数の電極を陽極として直流電気を通電し、電極室1内で電気分解を行なうことを特徴とする強電解水生成装置In an electrolysis apparatus for performing electrolysis using an electrolytic cell in which an aqueous solution containing an electrolyte is divided into a plurality of chambers using an ion exchange membrane as a diaphragm, two or more electrodes are provided in an electrode chamber 1 in the electrolytic cell and an electrode chamber 2 is provided. One or more electrodes are installed in the electrode chamber 1, and during generation of strongly electrolyzed water, an electrode 6 close to the anode in the electrode chamber 2 or an arbitrary number of electrodes in the electrode chamber 1 including the electrode 6 among the electrodes in the electrode chamber 1 are used as cathodes. The electrode 5 in the electrode chamber 2 is used as an anode to conduct DC electrolysis to perform electrolysis. During electrode cleaning, the electrode 7 in the electrode chamber 1 that is farther from the anode in the electrode chamber 2 is used as a cathode, and the electrode chamber 1 is used as a cathode. A strong electrolyzed water generating apparatus characterized in that direct current electricity is supplied to the inside of the electrode chamber 1 by using an electrode 6 or any number of electrodes including the electrode 6 as an anode to perform electrolysis in the electrode chamber 1.
JP2002294234A 2002-08-30 2002-08-30 Strong electrolytic water generator Pending JP2004089975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002294234A JP2004089975A (en) 2002-08-30 2002-08-30 Strong electrolytic water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002294234A JP2004089975A (en) 2002-08-30 2002-08-30 Strong electrolytic water generator

Publications (1)

Publication Number Publication Date
JP2004089975A true JP2004089975A (en) 2004-03-25

Family

ID=32064051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002294234A Pending JP2004089975A (en) 2002-08-30 2002-08-30 Strong electrolytic water generator

Country Status (1)

Country Link
JP (1) JP2004089975A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209546A (en) * 2006-02-09 2007-08-23 Tech Corporation:Kk Electrolytic water washing system
JP2007268346A (en) * 2006-03-30 2007-10-18 Shimazaki Denki Kk Water supply and drainage device for electrolyte tank in electrolyzer
JP2009072778A (en) * 2007-04-13 2009-04-09 Masaaki Arai Electrolytic water producing device and method, and electrolytic water
JP2009072755A (en) * 2007-04-13 2009-04-09 Masaaki Arai Electrolytic water producing device and method, and electrolytic water
JP2009178710A (en) * 2007-12-31 2009-08-13 Masaaki Arai Apparatus for cleaning precision instrument, air purifier, ice making apparatus, apparatus for cleaning endoscope, shampoo apparatus, hydroponic culture apparatus and car washing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209546A (en) * 2006-02-09 2007-08-23 Tech Corporation:Kk Electrolytic water washing system
JP2007268346A (en) * 2006-03-30 2007-10-18 Shimazaki Denki Kk Water supply and drainage device for electrolyte tank in electrolyzer
JP4722749B2 (en) * 2006-03-30 2011-07-13 島崎電機株式会社 Electrolyte tank water supply / drainage system in electrolyzer
JP2009072778A (en) * 2007-04-13 2009-04-09 Masaaki Arai Electrolytic water producing device and method, and electrolytic water
JP2009072755A (en) * 2007-04-13 2009-04-09 Masaaki Arai Electrolytic water producing device and method, and electrolytic water
JP2009178710A (en) * 2007-12-31 2009-08-13 Masaaki Arai Apparatus for cleaning precision instrument, air purifier, ice making apparatus, apparatus for cleaning endoscope, shampoo apparatus, hydroponic culture apparatus and car washing apparatus
JP4713625B2 (en) * 2007-12-31 2011-06-29 優章 荒井 Precision parts cleaning equipment

Similar Documents

Publication Publication Date Title
EP0839762B1 (en) Method and apparatus for scale prevention in producing deionized water
EP2245693B1 (en) Device and method for performing a reverse electrodialysis process
AU2014212394B2 (en) Rechargeable electrochemical cells
GB2441427A (en) Method and apparatus for generating electrolysed water
JP2012081448A (en) Sterilized water making apparatus, and method for making sterilized water
JP5731262B2 (en) Desalination treatment method and desalination treatment system
JP2004089975A (en) Strong electrolytic water generator
JP2704629B2 (en) Electrodialysis machine
JP2004298832A (en) Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
JP2005177671A (en) Electrolysis type ozonizer
JP6000673B2 (en) Ozone water generator refresh cleaning method
JP2001137850A (en) Electrolysis method of water and produced water
JP3802580B2 (en) Electrolyzed water generator
JPH0910769A (en) Production of electrolytic ion water
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
GB2113718A (en) Electrolytic cell
JPH08309357A (en) Electrolytic water maker
JP2000212787A (en) Electrolytic method
JPH09262587A (en) Method for simultaneously preparing hypochloric acid sterilizing water and strong alkali water in electrolytic cell and addition chemical solution used therein
JP2003126858A (en) Method for producing electrolyzed water
JP2003117554A (en) Cleaning water producing apparatus
JPS602393B2 (en) Amino acid production method
JP2004249221A (en) Desalinizing method of seawater or the like using alkali ionized water generator and apparatus therefor
JPH09108677A (en) Electrolytic water generator
JP3398173B2 (en) Electrolysis method of saline solution