JP3398173B2 - Electrolysis method of saline solution - Google Patents

Electrolysis method of saline solution

Info

Publication number
JP3398173B2
JP3398173B2 JP10532193A JP10532193A JP3398173B2 JP 3398173 B2 JP3398173 B2 JP 3398173B2 JP 10532193 A JP10532193 A JP 10532193A JP 10532193 A JP10532193 A JP 10532193A JP 3398173 B2 JP3398173 B2 JP 3398173B2
Authority
JP
Japan
Prior art keywords
voltage
saline solution
electrode
compartment
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10532193A
Other languages
Japanese (ja)
Other versions
JPH06315685A (en
Inventor
美紀夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP10532193A priority Critical patent/JP3398173B2/en
Publication of JPH06315685A publication Critical patent/JPH06315685A/en
Application granted granted Critical
Publication of JP3398173B2 publication Critical patent/JP3398173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は食塩水の電気分解方法に
関する。
FIELD OF THE INVENTION The present invention relates to a method for electrolyzing saline.

【0002】[0002]

【従来の技術】食塩水の電気分解方法の一例として特公
平4−42077号公報、特開平4−330987号公
報に示されているように、隔膜にて区画された各画室に
電極を配設してアノード室とカソード室とを形成して、
これら両室にて食塩水を電気分解することによりアノー
ド室にて酸性水を生成するとともに、カソード室にてア
ルカリ性水を生成する食塩水の電気分解方法がある。こ
れらの生成水のうち、酸性水は殺菌作用を有し、またア
ルカリ性水は魚介類に対する色合いの悪変防止作用およ
びドリツプの発生防止作用、野菜類の色合いの悪変防止
作用を有することから、これらの各生成水は例えば生鮮
食物用処理液として使用される。
2. Description of the Related Art As an example of a method for electrolyzing a saline solution, as disclosed in JP-B-4-42077 and JP-A-4-330987, an electrode is provided in each compartment partitioned by a diaphragm. To form an anode chamber and a cathode chamber,
There is a method of electrolyzing saline solution in which acidic water is produced in the anode chamber and alkaline water is produced in the cathode chamber by electrolyzing the saline solution in both chambers. Of these produced water, acidic water has a bactericidal action, and alkaline water has a color change-preventing action for fish and shellfish and a drip-preventing action, since it has a color change-preventing action for vegetables. Each of these produced waters is used, for example, as a fresh food treatment liquid.

【0003】しかして、上記した食塩水の電気分解方法
においては、電気分解を連続して行うと電極にカルシウ
ム等の塩または水酸化物等のスケールが析出し、電流値
を漸次低下させるとともに電極を劣化させるという問題
がある。また、かかるスケールは隔膜にも析出し、隔膜
をも劣化されるという問題がある。
However, in the above-described method of electrolyzing saline solution, when electrolysis is continuously performed, salts such as calcium or scales such as hydroxides are deposited on the electrode, and the current value is gradually decreased and the electrode is gradually reduced. There is a problem that it deteriorates. Further, there is a problem that such scale is also deposited on the diaphragm and the diaphragm is deteriorated.

【0004】これに対処する手段として、上記した後者
の公報に示された電気分解方法においては、各画室にそ
れぞれ配設した両電極に所定時間ごとに直流電圧を正逆
交互に印加して前記各画室にて食塩水を電気分解するこ
とにより、各電極、隔膜におけるスケールの析出を防止
する方法が採られている。
As a means for coping with this, in the electrolysis method shown in the latter publication mentioned above, a direct current voltage is alternately applied to the both electrodes respectively arranged in each compartment every predetermined time, and the direct voltage is alternately applied. A method of preventing scale deposition on each electrode and diaphragm by electrolyzing a saline solution in each compartment is adopted.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記した後
者の電気分解方法においては、各電極および隔膜におけ
るスケールの析出は防止し得るものの、印加電圧の正逆
切り替え時アノード室側に残存している酸性水中の水素
イオンがカソード側に切り替わった電極に吸収される。
このため、各電極は還元されて劣化しまたは損傷す
る。。従って、本発明の目的は、食塩水の電気分解方法
において、このような電極の劣化、損傷の発生を防止す
ることにある。
By the way, in the latter electrolysis method described above, the deposition of scale on each electrode and the diaphragm can be prevented, but the scale remains on the anode chamber side when the applied voltage is switched between the forward and reverse directions. Hydrogen ions in acidic water are absorbed by the electrode switched to the cathode side.
Therefore, each electrode is reduced and deteriorates or is damaged. . Therefore, an object of the present invention is to prevent such deterioration and damage of electrodes in the method of electrolyzing saline solution.

【0006】[0006]

【課題を解決するための手段】本発明は、隔膜にて区画
された画室にそれぞれ配設した両電極に所定時間ごとに
直流電圧を正逆交互に印加して前記各画室にて食塩水を
電気分解し、前記各画室のうちアノード室にて酸性水を
生成するとともにカソード室にてアルカリ性水を生成す
る食塩水の電気分解方法において、前記両電極に対する
直流電圧の正逆切り替えの際にアノード室側である電極
に電気分解時の電圧に比較して低い正電圧を短時間印加
することを特徴とするものである。
According to the present invention, a direct current voltage is alternately applied to both electrodes respectively arranged in a compartment partitioned by a diaphragm every predetermined time, and a saline solution is applied to each compartment. In the method of electrolyzing salt water, which is electrolyzed to generate acidic water in the anode chamber and alkaline water in the cathode chamber of each of the compartments, an anode is used when the direct voltage is switched between the two electrodes. It is characterized in that a positive voltage lower than the voltage at the time of electrolysis is applied to the electrode on the chamber side for a short time.

【0007】当該電気分解方法において、前記両電極の
うち少なくとも一方がチタン基材の表面に白金イリジウ
ム被膜を有する電極であり、かつ前記低い正電圧が2〜
5Vであることが好ましい。
In the electrolysis method, at least one of the electrodes is an electrode having a platinum iridium coating on the surface of a titanium base material, and the low positive voltage is 2 to
It is preferably 5V.

【0008】[0008]

【発明の作用・効果】当該電気分解方法においては、設
定された所定の電圧が印加されている電気分解時にはア
ノード室では水素イオンが発生して存在しており、直流
電圧の正逆切り替えの際にアノード側電極に低い正電圧
を印加すれば、水素イオンは同電極とは反発して同電極
に侵入することはない。この低電圧の印加されている間
には電気分解は停止されていて、アノード室にて残存し
ている水素イオンは供給される食塩水と共にアノード室
から流出される。その後、各電極に対する印加電圧を切
り替えると、アノード室およびカソード室が互いに変更
されるが、切り替え後のカソード室(切り替え以前のア
ノード室)には原水(電気分解以前の水)以上の高濃度
の水素イオンはもはや残存していないため、電極の劣
化、損傷の発生を防止することができる。例えば、水道
水においては通常pHが5.6〜8.0であり、水素イオン濃度
は10-5.610-8mol/lであって、本発明において印加電圧
の切り替え後カソード室中の水素イオン濃度は1万分の
1から10万分の1となる。
In the electrolysis method of the present invention, hydrogen ions are generated and exist in the anode chamber during the electrolysis in which the set predetermined voltage is applied. If a low positive voltage is applied to the anode side electrode, hydrogen ions will not repel the same electrode and enter the same electrode. While this low voltage is being applied, electrolysis is stopped, and hydrogen ions remaining in the anode chamber flow out from the anode chamber together with the supplied saline solution. After that, when the applied voltage to each electrode is switched, the anode chamber and the cathode chamber are changed to each other, but the cathode chamber after switching (the anode chamber before switching) has a higher concentration than raw water (water before electrolysis). Since hydrogen ions no longer remain, it is possible to prevent the deterioration and damage of the electrodes. For example, in tap water, the pH is usually 5.6 to 8.0, the hydrogen ion concentration is 10-5.610-8 mol / l, and the hydrogen ion concentration in the cathode chamber after switching the applied voltage in the present invention is 1/1000. To 1 / 100,000.

【0009】[0009]

【実施例】以下本発明の実施例を図面に基づいて説明す
るに、図1には本発明の電気分解方法を実施するための
電気分解装置の概略が示されている。当該電気分解装置
(以下電解装置ということがある)は生鮮食物用処理液
を製造する装置として利用されるもので、電解槽10
と、被電解液の供給管路20と、電解液の流出管路30
と、電気系路40とにより構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 schematically shows an electrolysis apparatus for carrying out the electrolysis method of the present invention. The electrolyzer (hereinafter sometimes referred to as an electrolyzer) is used as an apparatus for producing a processed liquid for fresh food, and the electrolyzer 10
And a supply line 20 for the electrolytic solution and an outflow line 30 for the electrolytic solution
And an electric system path 40.

【0010】電解槽10は公知のもので、槽本体11に
は隔膜12が配設されていて、槽本体11内を2つの画
室R1,R2に区画している。各画室R1,R2には各電極
13,14が配設されている。供給管路20は希薄食塩
水の供給源に接続された主管路21と、同管路21から
分岐する第1,第2副管路22,23からなり、第1副
管路22が第1画室R1に接続され、かつ第2副管路2
3が第2画室R2に接続されている。
The electrolytic cell 10 is a well-known one, and a diaphragm 12 is provided on the cell body 11 to divide the cell body 11 into two compartments R1 and R2. Electrodes 13 and 14 are arranged in the compartments R1 and R2, respectively. The supply pipeline 20 is composed of a main pipeline 21 connected to a supply source of dilute salt water, and first and second sub pipelines 22 and 23 branched from the pipeline 21, and the first sub pipeline 22 is a first pipeline. Second sub-line 2 connected to room R1
3 is connected to the second compartment R2.

【0011】流出管路30は第1,第2主管路31,3
2と、第1,第2電磁弁33,34と、第1,第2副管
路35a,35bと、第3,第4副管路36a,36b
とからなる。第1主管路31は電解槽10の第1画室R
1と第1電磁弁33の流入ポートに接続され、かつ第2
主管路32は電解槽10の第2画室R2と第2電磁弁3
4の流入ポートに接続されている。第1,第2副管路3
5a,35bは第1電磁弁33の各流出ポートに接続さ
れているとともに、第3,第4副管路36a,36bは
第2電磁弁34の各流出ポートに接続され、かつ第2,
第4副管路35b,36bは第1,第3副管路35a,
36aに接続されている。
The outflow conduit 30 is composed of first and second main conduits 31 and 3.
2, the first and second solenoid valves 33 and 34, the first and second auxiliary pipelines 35a and 35b, and the third and fourth auxiliary pipelines 36a and 36b.
Consists of. The first main conduit 31 is the first compartment R of the electrolytic cell 10.
1 and the inflow port of the first solenoid valve 33, and the second
The main conduit 32 is connected to the second compartment R2 of the electrolytic cell 10 and the second solenoid valve 3
4 inflow ports. First and second auxiliary pipeline 3
5a and 35b are connected to respective outflow ports of the first solenoid valve 33, and the third and fourth sub-pipes 36a and 36b are connected to respective outflow ports of the second solenoid valve 34, and
The fourth sub-pipes 35b and 36b are the first and third sub-pipes 35a,
It is connected to 36a.

【0012】電気系路40は各電極13,14に電圧を
印加するもので、一対の直流電源41と一対の切り替え
スイッチ42,43を備えている。両スイッチ42,4
3は互いに連動して切り替え作動するので、各電極1
3,14に対する印加電圧の正逆を切り替える。なお、
各電極13,14の切り替え作動は制御装置44にて両
電磁弁33,34の切り替え作動と連動してなされる。
とともに、各電極13,14に対する印加電圧の制御も
制御装置44にてなされる。
The electric system path 40 applies a voltage to each of the electrodes 13 and 14, and is provided with a pair of DC power sources 41 and a pair of changeover switches 42 and 43. Both switches 42, 4
3 operates in conjunction with each other, so that the electrodes 1
The forward and reverse of the applied voltage to 3 and 14 are switched. In addition,
The switching operation of the electrodes 13 and 14 is performed by the control device 44 in conjunction with the switching operation of the electromagnetic valves 33 and 34.
At the same time, the controller 44 also controls the applied voltage to the electrodes 13 and 14.

【0013】かかる構成の電気分解装置においては、先
づ第1電極13を陽極としかつ第2電極14を陰極とし
て40〜50Vの直流電圧を印加して、第1画室R1を
アノード室としかつ第2画室R2をカソード室とすると
ともに、これら両画室R1,R2に0.05〜0.15wt
%の希薄食塩水を供給する。これにより、各画室R1,
R2においては食塩水は下記の通り反応して、第1主管
路31に接続する第1副管路35aからは次亜塩素酸を
含む酸性水が流出し、かつ第2主管路32に接続する第
3副管路36aから水酸化ナトルウムを含むアルカリ性
水が流出する。
In the electrolyzer having such a construction, first, the first electrode 13 is used as an anode and the second electrode 14 is used as a cathode, and a DC voltage of 40 to 50 V is applied to the first compartment R1 as an anode compartment and a first compartment R1 as an anode compartment. The second chamber R2 is used as a cathode chamber, and both chambers R1 and R2 have 0.05 to 0.15 wt.
% Diluted saline solution is supplied. As a result, each room R1,
In R2, the saline solution reacts as described below, the acidic water containing hypochlorous acid flows out from the first auxiliary pipeline 35a connected to the first main pipeline 31, and is connected to the second main pipeline 32. Alkaline water containing sodium hydroxide flows out from the third auxiliary pipeline 36a.

【0014】[0014]

【化1】 [Chemical 1]

【0015】かかる電解を20〜30分継続した後両電
極13,14に対する電圧を2〜5Vに低下して30秒
〜3分間印加した後、電圧の正逆を切り換えて40〜5
0Vの直流電圧を印加して、第1画室R1をカソード室
にかつ第2画室R2をアノード室に変更して電解を続行
する。この切り替えに連動して両電磁弁33,34も切
り替え作動し、第4副管路36bを介して第2主管路3
2に接続する第1副管路35aから酸性水が流出し、第
2副管路35bを介して第1主管路31に接続する第2
副管路36aからアルカリ性水が流出する。
After the electrolysis is continued for 20 to 30 minutes, the voltage applied to both electrodes 13 and 14 is lowered to 2 to 5 V and applied for 30 seconds to 3 minutes, and then the forward and reverse of the voltage is switched to 40 to 5 volts.
A DC voltage of 0 V is applied to change the first compartment R1 to the cathode compartment and the second compartment R2 to the anode compartment to continue electrolysis. Interlocking with this switching, both solenoid valves 33 and 34 are also switched and actuated, and the second main pipeline 3 is connected via the fourth sub pipeline 36b.
Acid water flows out from the first sub-pipe 35a connected to the second sub-pipe 35b, and is connected to the first main pipe 31 through the second sub-pipe 35b.
Alkaline water flows out from the sub pipeline 36a.

【0016】本発明に係る電解方法においては、両電極
13,14に設定された所定の直流電圧を印加して所定
時間電解を行い、次いで印可電圧を短時間所定の低電圧
に低下して、その後直流電圧の正逆を切り換えて両電極
13,14に所定の設定電圧を印加して所定時間電解を
行うことを1単位をとし、これを1または複数回繰り返
し行うことを特徴とするものである。従って、第1電極
13における印加電圧のタイムチャートは図2の通りと
なり、第2電極14における印加電圧のタイムチャート
はこれとは逆の関係になる。また、図3に示すタイムチ
ャートは図2に示すタイムチャートの変形例であり、電
圧の正逆切り替えに際して正逆2段に低電圧を印加する
ようにすることもできる。
In the electrolysis method according to the present invention, a predetermined DC voltage set to both electrodes 13 and 14 is applied to electrolyze for a predetermined time, and then the applied voltage is reduced to a predetermined low voltage for a short time, After that, the DC voltage is switched between forward and reverse, and a predetermined set voltage is applied to both electrodes 13 and 14 to perform electrolysis for a predetermined time, which is defined as one unit, and this is repeated one or more times. is there. Therefore, the time chart of the applied voltage at the first electrode 13 is as shown in FIG. 2, and the time chart of the applied voltage at the second electrode 14 has the opposite relationship. Further, the time chart shown in FIG. 3 is a modification of the time chart shown in FIG. 2, and it is possible to apply a low voltage to two stages of forward and reverse when switching between forward and reverse voltages.

【0017】かかる電解方法においては、両電極13,
14に印加される直流電圧の正逆が所定時間毎に切り替
えられるため、両電極13,14および隔膜12にはス
ケールの析出は認められない。
In this electrolysis method, both electrodes 13,
Since the direct voltage of the DC voltage applied to 14 is switched at regular intervals, no scale deposition is observed on both electrodes 13 and 14 and diaphragm 12.

【0018】また、電圧の正逆切り替え時においてアノ
ード室にて残存してるH+がHに変換されると、Hは強
力な還元剤として機能するため電極の被膜を還元して同
被膜を還元溶解して消耗させ、また被膜を通して基材に
侵入し、基材を劣化させる。例えば、チタンを基材とし
て白金イリジウム被膜を有する電極においては、下記の
ごとく反応する。
Further, when H + remaining in the anode chamber is converted to H when the voltage is switched between forward and reverse, H functions as a strong reducing agent, so that the electrode film is reduced and the film is reduced. It dissolves and is consumed, and also penetrates the substrate through the coating, degrading the substrate. For example, in an electrode having a platinum iridium coating with titanium as a base material, the following reactions occur.

【0019】[0019]

【化2】 [Chemical 2]

【0020】かかる現象は印加電圧の正逆の切り替えを
いっきに行うことにより発生するが、本発明のごとく印
加電圧の切り替えに際してアノード側電極に正の低電圧
を印加することにより、H+は当該電極と反発してH+
電極内への侵入を阻止する。このため、アノード室に残
存するH+は供給される食塩水とともに電解槽10から
流出してアノード室内は中性の食塩水となり、その後の
印加電圧の切り替えにより上記した反応が発生する頻度
は1万分の1から10万分の1となり、電極の劣化およ
び損傷の発生が防止される。
Such a phenomenon is caused by switching forward and reverse of the applied voltage all at once, but by applying a positive low voltage to the anode side electrode when switching the applied voltage as in the present invention, H + becomes And H + are prevented from entering the electrode. For this reason, H + remaining in the anode chamber flows out of the electrolytic cell 10 together with the supplied saline solution to become neutral saline solution in the anode chamber, and the frequency of occurrence of the above reaction due to subsequent switching of the applied voltage is 1 It becomes 1 / 10,000 to 1 / 100,000, which prevents deterioration and damage of the electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電解方法を実施するのに適した電解装
置の一例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of an electrolysis apparatus suitable for carrying out an electrolysis method of the present invention.

【図2】アノード側電極における印加電圧のタイムチャ
ートの一例である。
FIG. 2 is an example of a time chart of a voltage applied to an anode electrode.

【図3】同タイムチャートの他の一例である。FIG. 3 is another example of the same time chart.

【符号の説明】[Explanation of symbols]

10…電解槽、11…槽本体、12…隔膜、13,14
…電極、20…供給管路、30…流出管路、33,34
…電磁弁、40…電気系路、41…直流電源、42,4
3…切り替えスイッチ。
10 ... Electrolyte tank, 11 ... Tank body, 12 ... Diaphragm, 13, 14
... Electrodes, 20 ... Supply pipelines, 30 ... Outflow pipelines, 33, 34
... Solenoid valve, 40 ... Electric system path, 41 ... DC power source, 42, 4
3 ... Changeover switch.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】隔膜にて区画された画室にそれぞれ配設し
た両電極に所定時間ごとに直流電圧を正逆交互に印加し
て前記各画室にて食塩水を電気分解し、前記各画室のう
ちアノード室にて酸性水を生成するとともにカソード室
にてアルカリ性水を生成する食塩水の電気分解方法にお
いて、前記両電極に対する直流電圧の正逆切り替えに際
してアノード室側である電極に電気分解時の電圧に比較
して低い正電圧を短時間印加することを特徴とする食塩
水の電気分解方法。
1. A direct current voltage is applied alternately to both electrodes arranged in each compartment partitioned by a diaphragm every predetermined time to electrolyze a saline solution in each compartment, and the saline solution is electrolyzed in each compartment. Among them, in the method of electrolyzing saline solution in which acidic water is generated in the anode chamber and alkaline water is generated in the cathode chamber, in the electrolysis of the electrode on the anode chamber side when switching the direct voltage to the both electrodes between forward and reverse. A method for electrolyzing a saline solution, which comprises applying a positive voltage lower than the voltage for a short time.
【請求項2】請求項1に記載の電気分解方法において、
前記両電極のうち少なくとも一方がチタン基材の表面に
白金イリジウム被膜を有する電極であり、かつ前記低い
正電圧が2〜5Vであることを特徴とする食塩水の電気
分解方法。
2. The electrolysis method according to claim 1, wherein
At least one of the two electrodes is an electrode having a platinum iridium coating on the surface of a titanium base material, and the low positive voltage is 2 to 5 V.
JP10532193A 1993-05-06 1993-05-06 Electrolysis method of saline solution Expired - Fee Related JP3398173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10532193A JP3398173B2 (en) 1993-05-06 1993-05-06 Electrolysis method of saline solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10532193A JP3398173B2 (en) 1993-05-06 1993-05-06 Electrolysis method of saline solution

Publications (2)

Publication Number Publication Date
JPH06315685A JPH06315685A (en) 1994-11-15
JP3398173B2 true JP3398173B2 (en) 2003-04-21

Family

ID=14404454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10532193A Expired - Fee Related JP3398173B2 (en) 1993-05-06 1993-05-06 Electrolysis method of saline solution

Country Status (1)

Country Link
JP (1) JP3398173B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614405B2 (en) * 2014-09-29 2019-12-04 Toto株式会社 Water discharge device
CN114291875B (en) * 2021-12-03 2023-12-01 同济大学 Method for recycling and purifying ammonia nitrogen by using flowing electrode capacitor based on monovalent cation exchange membrane

Also Published As

Publication number Publication date
JPH06315685A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
US4306952A (en) Electrolytic process and apparatus
US20080047844A1 (en) Method of generating electrolyzed water and electrolyzed water generation apparatus therefor
JP3398173B2 (en) Electrolysis method of saline solution
JP3468834B2 (en) Electrolyzed water generator
JP3802580B2 (en) Electrolyzed water generator
JP3667405B2 (en) Electrolyzed water generator
JP3287649B2 (en) Electrolysis method of saline solution
JP3509999B2 (en) Electrolyzed water generator
JP3390878B2 (en) Electrolyzed water generator
JPH09108673A (en) Method of electrolyzing salt water
JP3978103B2 (en) Electrolyzed water generator
JP2000212787A (en) Electrolytic method
JP3568290B2 (en) Electrolyzed water generator
JP3806626B2 (en) Hypochlorous acid generator
JP3518900B2 (en) Method for producing electrolyzed water
JP2004089975A (en) Strong electrolytic water generator
JPH09108677A (en) Electrolytic water generator
JP3653129B2 (en) Electrolyzed water generator
JP3518907B2 (en) Electrolyzed water generator
JP3205527B2 (en) Method for producing weakly acidic sterilized water and weakly alkaline water
KR20190054754A (en) 3-room type electrolyzed water producing apparatus
JPH08117753A (en) Electrolytic water-making apparatus
JPH0985249A (en) Electrolytic water preparation device
JPH06312186A (en) Electrolytic water forming apparatus
JP3677331B2 (en) Electrolyzed water generator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees