JP3468834B2 - Electrolyzed water generator - Google Patents

Electrolyzed water generator

Info

Publication number
JP3468834B2
JP3468834B2 JP09527694A JP9527694A JP3468834B2 JP 3468834 B2 JP3468834 B2 JP 3468834B2 JP 09527694 A JP09527694 A JP 09527694A JP 9527694 A JP9527694 A JP 9527694A JP 3468834 B2 JP3468834 B2 JP 3468834B2
Authority
JP
Japan
Prior art keywords
water
salt water
chamber
salt
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09527694A
Other languages
Japanese (ja)
Other versions
JPH07299457A (en
Inventor
信夫 阿智波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP09527694A priority Critical patent/JP3468834B2/en
Publication of JPH07299457A publication Critical patent/JPH07299457A/en
Application granted granted Critical
Publication of JP3468834B2 publication Critical patent/JP3468834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生鮮食品の洗浄及び殺
菌、鮮魚介類の解凍などの食品処置、包丁やまな板等の
台所用品、お絞りや手等の洗浄・殺菌処理を行うのに使
用される酸性水、及び飲用水などとして利用されるアル
カリ性水を電気分解によって生成させる電解水生成装置
に関する。
BACKGROUND OF THE INVENTION The present invention, the cleaning and disinfection of fresh food, to carry out food Remedy, such as decompression of fresh fish and shellfish, kitchen utensils such as knives and cutting board, a cleaning and sterilization process such as towel and hand TECHNICAL FIELD The present invention relates to an electrolyzed water generator for generating electrolyzed acidic water used for, and alkaline water used as drinking water and the like.

【0002】[0002]

【従来の技術】この種の電解水生成装置としては、例え
ば図2にしたように、電解槽60の本体61内部を二枚
のイオン透過性隔膜62,63によって中央の塩水室A
とその両側の陽極室B及び陰極室Cに分離形成し、陽極
室B側の隔膜62近傍に陽電極64を、一方陰極室C側
の隔膜63近傍に陰電極65を設けて構成され、中央の
塩水室Aに食塩水タンク66から食塩水を循環供給して
両電極64,65間にてその食塩水を電気分解し、陽
室B及び陰極室Cにそれぞれ供給される原水から酸性水
とアルカリ性水を生成して取り出す電解水生成装置が知
られている。
2. Description of the Related Art As this type of apparatus for producing electrolyzed water, sea urchin I was, for example, in FIG 2, two internal body 61 of the electrolyzer 60
The ion-permeable diaphragms 62 and 63 of the central salt water chamber A
And both sides of the separating formed into an anode chamber B and the cathode chamber C, the positive electrode 64 to the diaphragm 62 near the anode chamber B side, whereas configured to provide a negative electrode 65 to the diaphragm 63 near the cathode chamber C side, the central of the salt water chamber a from brine tank 66 circulates supplying brine electrolyzing the brine in between the electrodes 64 and 65, acid water from the raw water to be supplied respectively to the positive electrode chamber B and the cathode chamber C and eject to generate alkaline water electrolysis water generation apparatus is known as.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の電解水
生成装置においては、両電極64,65間にて電気分解
される食塩水が食塩水タンク66との間で循環供給され
ており、循環中の食塩水中ではNaイオンとClイオン
との拡散速度が異なるため、電気分解が進むにつれて食
塩水タンク66内の食塩水のpHが徐々に変化してく
る。食塩水タンク66内の食塩水のpHが変化すると、
電気分解によって生成される酸性水及びアルカリ性水の
成分濃度が変化するため、それぞれの電解水に期待され
る機能が充分に得られなくなるという問題点があった。
[SUMMARY OF THE INVENTION In conventional electrolytic water generation apparatus described above, electrolysis at between the both electrodes 64 and 65
The saline solution to be supplied is circulated and supplied to the saline solution tank 66, and the diffusion rates of Na ions and Cl ions are different in the circulating saline solution. The pH of water gradually changes. When the pH of the saline solution in the saline tank 66 changes,
Since the component concentrations of acidic water and alkaline water produced by electrolysis change, there is a problem that the functions expected of the respective electrolyzed water cannot be obtained sufficiently.

【0004】[0004]

【発明の目的】発明は、上記の問題を解消するため、
中央の塩水室に供給されて電気分解される塩水のpHを
所定範囲内に維持して、期待どおりの成分濃度及び機能
を有する電解水を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems.
The pH of the brine is supplied to the center of the brine chamber is electrolyzed maintained within a predetermined range, an object of Rukoto obtain electrolytic water having a component concentration and functions as expected.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、平行に配置した二枚のイオン透過性隔膜
によってその内部に中央の塩水室と両側の陽極室と陰極
室を分離形成して陽電極と陰電極を前記陽極室と前記陰
極室にそれぞれ配設した電解槽本体と、前記陽電極と陰
電極に電解用電力を供給する直流電源と、電解される塩
水を貯える塩水タンクと、前記電解槽本体の塩水室に前
記塩水タンクに貯えた塩水を供給する塩水導入管及び前
記塩水室から塩水を前記塩水タンクに還流させる塩水導
出管と、前記塩水導入管又は塩水導出管に介在して前記
塩水タンクから供給される塩水を循環させる循環ポンプ
と、前記陽極室と陰極室に原水をそれぞれ供給する給水
管と、前記陽極室に接続した酸性水取り出し管及び前記
陰極室に接続したアルカリ性水取り出し管とを備えた電
解水生成装置において、前記塩水タンクに貯えられた
水のpHを検出するpH検出手段と、前記陽極室にて生
成された酸性水を同陽極室から前記塩水タンクに供給す
る酸性水供給導管に介在して開閉される第1開閉弁と、
前記陰極室にて生成されたアルカリ性水を同陰極室から
前記塩水タンクに供給するアルカリ性水供給導管に介在
して開閉される第2開閉弁と、前記pH検出手段によっ
て検出されたpHに基づき前記第1開閉弁と第2開閉弁
を開閉制御して前記塩水タンク内に貯えられる塩水のp
Hを所定範囲内に維持する電解水供給制御手段とを設け
ことを特徴とする電解水生成装置を提供するものであ
In order to achieve the above object, the present invention provides two ion-permeable membranes arranged in parallel.
By it inside the central saline chamber and the anode chamber and cathode on both sides
Separately form a positive electrode and a negative electrode to form the positive electrode chamber and the negative electrode.
An electrolytic cell main body which is disposed respectively in electrode chamber, said positive electrodes and a DC power source for supplying an electrolytic power behind <br/> electrode, and brine tank to store salt water to be electrolysis, brine chamber of the electrolysis cell main body Before
In front of the salt water inlet pipe that supplies the salt water stored in the salt water tank
The salt water outlet pipe for returning salt water from the salt water chamber to the salt water tank, and the salt water inlet pipe or the salt water outlet pipe interposed between the salt water outlet pipe and the salt water outlet pipe.
Circulation pump for circulating salt water supplied from a salt water tank, and water supply for supplying raw water to the anode chamber and cathode chamber, respectively.
A pipe, an acid water extraction pipe connected to the anode chamber, and
In the electrolytic water generator with an alkaline water outlet pipe connected to the cathode chamber, and a pH detector for detecting the pH of the savings the obtained salt <br/> water to the brine tank, raw in the anode chamber
The acid water produced is supplied from the anode chamber to the salt water tank.
A first on-off valve that is opened and closed by interposing an acidic water supply conduit,
Alkaline water generated in the cathode chamber from the cathode chamber
Intervene in the alkaline water supply conduit to supply to the salt water tank
Second opening / closing valve that is opened / closed, and the first opening / closing valve and the second opening / closing valve based on the pH detected by the pH detecting means
Of the salt water stored in the salt water tank by controlling the opening / closing
Provided an electrolytic water supply control means for maintaining the H within a predetermined range
The present invention provides an electrolyzed water generator characterized in that
It

【0006】[0006]

【発明の作用・効果】上記のように構成した本発明の電
解水生成装置においては、塩水タンクに貯えられている
塩水のpHをpH検出手段によって検出してその検出さ
れたpH表す信号に基づいて電解水供給制御手段が酸
性水供給管に設けた第1開閉弁又はアルカリ性水供給管
に設けた第2開閉弁のいずれかを開閉制御し、塩水タン
ク内に酸性水又はアルカリ性水を供給させる。これによ
って塩水タンク内の塩水、即ち電気分解に使用される塩
水のpHが所定範囲内に維持されるため、電気分解によ
って所定範囲内の濃度の酸性水及びアルカリ性水が生成
され、期待どおりの機能を有する電解水を得ることがで
きる。
In the electrolyzed water producing apparatus of the present invention constructed as described above, the pH of the salt water stored in the salt water tank is detected by the pH detecting means, and a signal indicating the detected pH is output. based on electrolytic water supply control means and controls the opening and closing of the one of the first on-off valve or the second on-off valve digits set in alkaline water supply pipe digits set acidified water supply pipe, supplying acidic water or alkaline water in the brine tank Let As a result, the pH of the salt water in the salt water tank, that is, the salt water used for electrolysis is maintained within the predetermined range, so that the electrolysis produces acidic water and alkaline water with a concentration within the predetermined range, and the expected function is achieved. It is possible to obtain electrolyzed water having

【0007】また、本発明によれば電気分解に使用され
る塩水のpHが所定範囲内に保たれるため、電気分解に
必要な消費電力を最小限に抑えることができるととも
に、電極の寿命も延ばすことができる。これは、塩水が
酸性またはアルカリ性にかたよっていると、所定範囲内
の濃度の電解水を得るために必要な電圧及び電流(消費
電力)は、中性水を電気分解する時に必要な電圧及び電
流(消費電力)よりも大きくなるし、この場合の電極に
かかる負担は、中性水を電気分解する時よりも大きくな
るためである。
Further, according to the present invention, since the pH of the salt water used for electrolysis is kept within a predetermined range, the power consumption required for electrolysis can be minimized and the life of the electrode can be extended. It can be postponed. This is because when salt water is acidic or alkaline, the voltage and current (power consumption) required to obtain electrolyzed water with a concentration within a predetermined range are the voltage and current required for electrolyzing neutral water. This is because the power consumption becomes larger than (power consumption), and the load on the electrode in this case becomes larger than that when the neutral water is electrolyzed.

【0008】[0008]

【実施例】以下、本発明の一実施例を図面を参照して
明する。図1に示した本発明電解水生成装置は、電気
分解を行う電解槽10と電気分解用の食塩水を収容する
塩水タンク20及電解槽10と塩水タンク20を連結す
る配管を主要構成部材とする。
An embodiment of the present invention will be described below with reference to the drawings. Electrolytic water generation apparatus of the present invention which is shown in Figure 1, the main components of the piping connecting the brine tank 20及electrolytic bath 10 and the brine tank 20 for accommodating the electrolytic cell 10 and the brine for electrolysis to perform electrolysis And

【0009】電解槽10本体の内部は、互いに平行に設
けた二枚のイオン透過性隔膜11,12によって仕切ら
れており、両隔膜11,12の間には中央の塩水室A
形成 され、一方の隔膜11と電解槽本体13との間には
陽極室B、他方の隔膜12と電解槽本体13との間には
陰極室Cが分離形成されている。陽電極14は隔膜11
の陽極室B側にほとんど隙間なく配設されており、同様
一方陰電極15は隔膜12の陰極室C側にほとんど隙
間なく配設されている。陽電極14陰電極15はラス
メタルからなり、電解槽本体13に固定支持されてい
て、電解用の直流電源(図示しない)に接続されて両電
極14,15間に直流電圧が印加されるように構成され
ている。
The insides of the main body of the electrolytic cell 10 are installed parallel to each other.
It is partitioned by two ion permeable diaphragm 11 digits, the central brine chamber A between the two diaphragm 11 and 12
Is formed, the cathode chamber C is separated formed between one diaphragm 11 and between the electrolytic cell body 13 anode chamber B, and the other diaphragm 12 and the electrolysis cell main body 13. Positive electrode 14 is diaphragm 11
To the anode chamber B side are almost no gap provided, similar
Meanwhile negative electrode 15 are almost no gaps disposed in the cathode chamber C side of the membrane 12. The positive electrode 14 and the negative electrode 15 are made of lath metal, are fixedly supported by the electrolytic cell body 13, and are connected to a direct current power source (not shown) for electrolysis so that a direct current voltage is applied between the two electrodes 14, 15. Is configured.

【0010】塩水タンク20には、その上部に開閉バル
ブ41を備えた連通管42を介して飽和食塩水を収容す
る濃塩水タンク40が連結されており、また、塩水タン
ク20内に水を適宜供給することのできる給水バルブ4
4を備えた給水管が配設されている。この塩水タンク2
においては、その内部に収容されて食塩水に浸漬され
ている濃度センサ22により検出された食塩水濃度が所
定範囲(例えば10〜20%)を外れた場合、或いはそ
の内部に貯えられた食塩水に浸漬されている液面センサ
23により検出された食塩水の水位が所定範囲を外れた
場合に、開閉バルブ41給水バルブ44を同時に或い
はいずれか一方開くことで塩水タンク20内の食塩水
の濃度水位を所定範囲に維持できるように構成されて
いる。なお塩水タンク20には、その内部の濃度を均
一化するための攪拌ポンプ21が設けられており、また
濃塩水タンク40の上方には濃塩水タンク40に食塩を
供給する食塩タンク43が設けられている。
To the salt water tank 20, a concentrated salt water tank 40 containing saturated saline solution is connected via a communication pipe 42 having an opening / closing valve 41 on the upper portion thereof, and water is appropriately stored in the salt water tank 20. Water supply valve 4 that can be supplied
A water supply pipe with 4 is provided. This salt water tank 2
In 0, if the saline concentration detected by the concentration sensor 22 is immersed housed therein in the food salt is out of the predetermined range (e.g. 10-20%), or its
When the water level of the saline solution detected by the liquid level sensor 23 immersed in the saline solution stored in the inside of the container goes out of a predetermined range, the opening / closing valve 41 and the water supply valve 44 are simultaneously opened or closed.
Is configured so that the concentration and the water level of the salt water in the salt water tank 20 can be maintained within a predetermined range by opening either one . Incidentally, the water tank 20, stirring pump 21 to equalize the concentration inside is provided, also the salt tank 43 for supplying the salt to the concentrated salt water tank 40 is above the dark water tank 40 provided that Has been.

【0011】電解槽10の塩水室Aの底部と塩水タンク
20の底部とは、循環ポンプ31を設けた塩水導入管3
0により連通されており、また塩水室Aの上部と塩水タ
ンク20の上部とは、塩水室A内の水圧を両電極室B,
Cよりも高めるための絞り33を設けた塩水導出管32
により連通されていて、この塩水導出32と塩水導入
30により食塩水の循環流路が形成されている。電
解槽10の陽極室B陰極室Cの底部には、給水管3
から分岐した給水分岐管34a,34bが連通されて
おり、開閉バルブ35の操作によって原水(清水)が各室
B,Cに導入されるようになっている。陽極室Bおよび
陰極室Cの上部には、酸性水取り出し管36とアルカ
リ性水取り出し管37が接続されている。これら両取り
出し管36,37はそれぞれ途中で分岐して、塩水タン
ク20に酸性水を供給する酸性水供給管36aアルカ
リ性水供給管37aを構成している。これらの供給管3
6a,37aには、それぞれ酸性水供給用の開閉バルブ
38(本発明の第1開閉弁に相当する。)とアルカリ性
水供給用の開閉バルブ39(本発明の第2開閉弁に相当
する。)が設けられていて、これらの開閉バルブ38と
39は塩水タンク20に設けたpHセンサ24(本発明
のpH検出手段に相当する。)からの検出信号に基づい
て制御回路50(本発明の電解水供給制御手段に相当す
る。)によって開閉制御されるように構成されている。
The bottom of the salt water chamber A of the electrolytic cell 10 and the bottom of the salt water tank 20 are provided with a salt water introducing pipe 3 provided with a circulation pump 31.
The upper part of the salt water chamber A and the upper part of the salt water tank 20 are connected to each other by the water pressure in the salt water chamber A.
Brine outlet pipe 32 provided with the aperture Ri 3 3 for increasing than C
Circulation flow path of saline are formed by optionally communicates, this water discharge pipe 32 and the water introduction <br/> tube 30 by. At the bottom of each of the anode chamber B and the cathode chamber C of the electrolytic cell 10, a water supply pipe 3
Water supply branch pipes 34a, 34b branched from No. 4 are communicated with each other, and raw water (fresh water) is introduced into each chamber B, C by operating an opening / closing valve 35. An acid water take-out pipe 36 and an alkaline water take-out pipe 37 are connected to the upper portions of the anode chamber B and the cathode chamber C, respectively . These two extraction pipes 36, 37 branched in the middle respectively, constitute the acidic water supply pipe 36a and alk <br/> Li of water supply pipe 37a for supplying the acidic water to salt water tank 20. These supply pipes 3
An opening / closing valve 38 for supplying acidic water (corresponding to the first opening / closing valve of the present invention) and an opening / closing valve 39 for supplying alkaline water (corresponding to the second opening / closing valve of the present invention) are provided at 6a and 37a, respectively . Is provided and these on-off valves 38 and
39 (corresponding to the electrolytic water supply control means of the present invention.) The control circuit 50 based on the detection signal from the pH sensor 24 digits set in salt water tank 20 (. Which corresponds to a pH detecting means of the present invention) by the opening and closing control It is configured to be.

【0012】次に、上記のように構成た電解水生成装
置の作動の説明をする。この電解水生成装置の使用開始
時には、まず開閉バルブ41給水管の給水バルブ44
を開いて塩水タンク20に飽和食塩水及び水道水を供給
すると同時に攪拌ポンプ21を作動させて塩水タンク2
0内の濃度を均一にし、濃度センサ22により検出した
食塩水濃度と液面センサ23により検出した水位に基づ
き開閉バルブ41と給水バルブ44を開閉制御して塩水
タンク20内に貯えられる食塩水を所定濃度範囲内及び
所定水位範囲内とする。ついで循環ポンプ31を作動
させ塩水タンク20内の食塩水を塩水導入管30を経
て塩水室Aに送り込み、塩水導出管32を経て塩水タン
ク20に戻す。続いて給水管34の開閉バルブ35を
開き、給水源からの原水を陽極室B及び陰極室C内に送
り込み、酸性水取り出し管36アルカリ性水取り出し
管37から排出させる。
Next , the operation of the electrolyzed water producing apparatus constructed as above will be described. When the use of this electrolyzed water generator is started, first the opening / closing valve 41 and the water supply valve 44 of the water supply pipe are used.
Is opened to supply saturated salt water and tap water to the salt water tank 20, and at the same time, the stirring pump 21 is operated to operate the salt water tank 2
The concentration in 0 is made uniform, and the open / close valve 41 and the water supply valve 44 are controlled to open / close based on the salt water concentration detected by the concentration sensor 22 and the water level detected by the liquid level sensor 23.
The saline solution stored in the tank 20 is within a predetermined concentration range and a predetermined water level range. Then, the circulation pump 31 is operated saline in salt water tank 20 through the brine inlet pipe 30 fed to the brine chamber A, back to the water tank 20 through the brine outlet pipe 32. Then , the opening / closing valve 35 of the water supply pipe 34 is opened, the raw water from the water supply source is sent into the anode chamber B and the cathode chamber C, and is discharged from the acidic water withdrawing pipe 36 and the alkaline water withdrawing pipe 37.

【0013】この状態で陽電極14及び陰電極15に直
流電源から電解用電力を供給すれば、塩水室A内の食塩
水中の塩素イオンは隔膜11を通って陽極室B内に入り
陽電極14に接触して電価を失って塩素となる。この塩
素の一部はそのまま陽電極14付近の水中に溶解し、一
部は水と反応して次亜塩素酸或いは次亜塩素酸イオンを
生成し、これらにより殺菌作用のある有効塩素濃度が与
えられる。残る塩素の一部は塩酸あるいは塩素ガスとな
って遊離される。これにより陽電極14付近の水は酸性
となり、次亜塩素酸或いは次亜塩素酸イオンを含む酸性
液体の通過が自由な陽電極14を通り抜けて陽極室
B内に広がる。また塩水室A内の食塩水中のナトリウ
ムイオンは隔膜12を通って陰極室C内に入り陰電極1
5に接触して電価を失い、陰電極15付近の水と反応し
て水酸化ナトリウム及び遊離水素を生じて陰電極15付
近の水をアルカリ性とする。アルカリ性となった水は液
体の通過が自由な陰電極15を通り抜けて陰極室C内に
広がる。このようにして陽極室B及び陰極室C内にそれ
ぞれ生成された酸性水アルカリ性水は、それぞれ酸性
水取り出し管36アルカリ性水取り出し管37から送
り出され、それぞれ所望の用途に使用される。
When electrolysis power is supplied to the positive electrode 14 and the negative electrode 15 from the DC power source in this state, chlorine ions in the saline solution in the salt water chamber A pass through the diaphragm 11 and enter the anode chamber B. It loses its electric value and becomes chlorine. Part of this chlorine dissolves in the water near the positive electrode 14 as it is, and part of it reacts with water to produce hypochlorous acid or hypochlorite ion, which gives an effective chlorine concentration having a bactericidal action. To be A part of the remaining chlorine is released as hydrochloric acid or chlorine gas. Thus the water in the vicinity of positive electrode 14 is acidic, acidic water containing hypochlorous acid or hypochlorite ions spreads passage of liquid pass through the free positive electrode 14 to the anode compartment B. Further , sodium ions in the salt water in the salt water chamber A enter the cathode chamber C through the diaphragm 12 and the negative electrode 1
It loses its electric value upon contact with 5, and reacts with water in the vicinity of the negative electrode 15 to generate sodium hydroxide and free hydrogen to make the water in the vicinity of the negative electrode 15 alkaline. The alkalinized water spreads in the cathode chamber C through the negative electrode 15 through which the liquid can pass freely. The acidic water and the alkaline water thus generated in the anode chamber B and the cathode chamber C, respectively, are sent out from the acidic water take-out pipe 36 and the alkaline water take-out pipe 37, respectively, and are used for desired purposes.

【0014】塩水室A内にて電気分解されなかった食塩
水は隔膜11,12に遮られて陽極室B又は陰極室Cに
入ることはほとんどなく、循環ポンプ31により塩水導
入管30より再び塩水室A内に送り込まれて繰り返し循
環して使用される。従って、未電解の食塩水が酸性水取
り出し管36アルカリ性水取り出し管37から排出さ
れることがほとんどないので食塩が無駄に消費されるこ
とがない。
[0014] brine chamber saline was electrolyzed in the A be blocked by the diaphragm 11, 12 into the anode compartment B or the cathode chamber C is little, again from brine introduction pipe 30 by the circulation pump 31 water It is sent into the chamber A and repeatedly circulated for use. Therefore, since the unelectrolyzed saline solution is hardly discharged from the acidic water withdrawal pipe 36 and the alkaline water withdrawal pipe 37, the salt is not wasted.

【0015】そして、このような電解水の生成工程が進
行するにつれて塩水タンク20及び塩水室A内の食塩水
が消費されるので、この生成工程の進行中、濃度センサ
22と液面センサ23により検出される食塩水濃度
位に基づき、開閉バルブ41と給水バルブ44が制御回
路50の制御下にて開閉制御されることによって、塩水
タンク20内の食塩水濃度と水位所定範囲内に保持さ
れる。なおこの際、塩水タンク20内の水位が上昇し
て所定の水位を越えた余剰の塩水はオーバーフローパイ
プ(図示しない。)より排出される。
Since the salt water in the salt water tank 20 and the salt water chamber A is consumed as the process of producing such electrolyzed water progresses, the concentration sensor 22 and the liquid level sensor 23 are used during the process of producing. The opening / closing valve 41 and the water supply valve 44 are controlled based on the detected salt water concentration and water level.
By being opened and closed controlled under the control of the road 50, brine concentration and the water level in the water tank 20 is kept within a predetermined range. At this time, the water level in the water tank 20 is raised
Excess water beyond the level of Jo Tokoro Te is discharged from the overflow pipe (not shown.).

【0016】また、上記の電解水生成装置においては、
循環中の食塩水中におけるNaイオンとClイオンとの
拡散速度が異なることに起因して、電気分解が進むにつ
れて塩水タンク20内の食塩水のpHが徐々に変化して
くる。そこでpHセンサ24が塩水タンク20内のp
Hを検出し、その検出されたpH表す信号に基づいて
制御回路50によって酸性水供給バルブ38とアルカリ
性水供給バルブ39の開閉が制御される。例えばpHセ
ンサ24よって検出されたpHが酸性であることを表し
ている場合には、制御回路50がアルカリ性水供給バル
ブ39を開いて塩水タンク20内にアルカリ性水を供給
し、また、pHセンサ24によって検出されたpHがア
ルカリ性であることを表している場合には制御回路50
が酸性水供給バルブ38を開いて塩水タンク20内に酸
性水を供給する。これにより塩水タンク20内のpHが
所定範囲内に保たれるので、電気分解によって所定範囲
内の濃度の酸性水及びアルカリ性水を生成することがで
き、期待どおりの機能を有する電解水を得ることができ
る。
In the above electrolyzed water generator,
Due to the different diffusion rates of Na ions and Cl ions in the circulating saline, the pH of the saline in the saline tank 20 gradually changes as the electrolysis proceeds. Therefore , the pH sensor 24 is set to p in the salt water tank 20.
Detecting a H, opening and closing of the acidic water supply valve 38 and an alkaline water supply valve 39 is controlled by the control circuit 50 on the basis of a signal representing the detected pH. For example, when the pH detected by the pH sensor 24 indicates that the pH is acidic, the control circuit 50 opens the alkaline water supply valve 39 to supply alkaline water into the salt water tank 20, and the pH sensor 24 the control circuit 50 when the detected p H represents the fact is alkaline by
Opens the acidic water supply valve 38 to supply the acidic water into the salt water tank 20. As a result, the pH in the salt water tank 20 is maintained within a predetermined range, so that it is possible to generate acidic water and alkaline water having a concentration within a predetermined range by electrolysis, and to obtain electrolyzed water having the expected function. You can

【0017】上述したように、本発明によれば電気分解
に使用される塩水のpHが所定範囲内に保たれるため、
電気分解に必要な消費電力を最小限に抑えることができ
るとともに、電極の寿命も延ばすことができる。これ
は、塩水が酸性またはアルカリ性にかたよっていると、
所定範囲内の濃度の電解水を得るために必要な電圧及び
電流(消費電力)は、中性水を電気分解する時に必要な
電圧及び電流(消費電力)よりも大きくなって、電極
かかる負担が中性水を電気分解する時よりも大きくなる
ためである。
As described above , according to the present invention, the pH of the salt water used for electrolysis is kept within a predetermined range.
The power consumption required for electrolysis can be minimized and the life of the electrode can be extended. This is because if salt water is acidic or alkaline,
The voltage and current (power consumption) required to obtain electrolyzed water with a concentration within the specified range is greater than the voltage and current (power consumption) required when electrolyzing neutral water , and the burden on the electrodes This is because larger than during electrolysis of but a medium of water.

【0018】なお、上記実施例においては酸性水供給管
及びアルカリ性水供給管を、酸性水取り出し管36及び
アルカリ性水取り出し管37から分岐して形成したが、
陽極室Bおよび陰極室Cをそれぞれ別個の導管で塩水タ
ンク20連通させるように構成してもよい。
In the above embodiment, the acidic water supply pipe and the alkaline water supply pipe are formed by branching from the acidic water take-out pipe 36 and the alkaline water take-out pipe 37.
Anode chamber B and the cathode chamber C may each be configured to communicate with the water tank 20 in a separate conduit.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例にかかる電解水生成装置を
示す概略図である。
FIG. 1 is a schematic view showing an electrolyzed water generator according to an embodiment of the present invention.

【図2】 従来の電解水生成装置を示す概略図である。FIG. 2 is a schematic view showing a conventional electrolyzed water generator.

【符号の説明】[Explanation of symbols]

10…電解槽、11,12…イオン透過性隔膜、13…
電解槽本体、14…陽電極、15…陰電極、A…塩水
室、B…陽極室、C…陰極室、20…塩水タンク、22
…濃度センサ、23…液面センサ、24…pHセンサ、
40…濃塩水タンク、30…塩水導入管、31…循環ポ
ンプ、32…塩水導出管、34…給水管、36…酸性水
取り出し管、37…アルカリ性水取り出し管、36a…
酸性水供給管、37a…アルカリ性水供給管、38…酸
性水供給用の開閉バルブ、39…アルカリ性水供給用の
開閉バルブ、50…制御回路。
10 ... Electrolyzer, 11, 12 ... Ion-permeable diaphragm, 13 ...
Electrolyte tank body, 14 ... Positive electrode, 15 ... Cathode electrode, A ... Salt water chamber, B ... Anode chamber, C ... Cathode chamber, 20 ... Salt water tank, 22
... concentration sensor, 23 ... liquid level sensor, 24 ... pH sensor,
40 ... Concentrated salt water tank, 30 ... Salt water inlet pipe, 31 ... Circulation pump, 32 ... Salt water outlet pipe, 34 ... Water supply pipe, 36 ... Acid water take-out pipe, 37 ... Alkaline water take-out pipe, 36a ...
Acid water supply pipe, 37a ... alkaline water supply pipe, 38 ... opening and closing valve for acidic water supply, 39 ... supply for alkaline water
Open / close valve, 50 ... Control circuit.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−65182(JP,A) 特開 昭63−65912(JP,A) 特開 平4−171027(JP,A) 特開 平4−171028(JP,A) 特開 平5−285345(JP,A) 特開 平5−293340(JP,A) 特開 平5−339769(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/46 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-52-65182 (JP, A) JP-A-63-65912 (JP, A) JP-A-4-171027 (JP, A) JP-A-4-17 171028 (JP, A) JP 5-285345 (JP, A) JP 5-293340 (JP, A) JP 5-339769 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/46

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平行に配置した二枚のイオン透過性隔膜
によってその内部に中央の塩水室と両側の陽極室と陰極
室を分離形成して陽電極と陰電極を前記陽極室と前記陰
極室にそれぞれ配設した電解槽本体と、前記陽電極と陰
電極に電解用電力を供給する直流電源と、電解される塩
水を貯える塩水タンクと、前記電解槽本体の塩水室に前
記塩水タンクに貯えた塩水を供給する塩水導入管及び前
記塩水室から塩水を前記塩水タンクに還流させる塩水導
出管と、前記塩水導入管又は塩水導出管に介在して前記
塩水タンクから供給される塩水を循環させる循環ポンプ
と、前記陽極室と陰極室に原水をそれぞれ供給する給水
管と、前記陽極室に接続した酸性水取り出し管及び前記
陰極室に接続したアルカリ性水取り出し管とを備えた電
解水生成装置において、 前記塩水タンクに貯えられた塩水のpHを検出するpH
検出手段と、前記陽極室にて生成された酸性水を同陽極室から前記塩
水タンクに供給する酸性水供給導管に介在して開閉され
る第1開閉弁と、 前記陰極室にて生成されたアルカリ性水を同陰極室から
前記塩水タンクに供給するアルカリ性水供給導管に介在
して開閉される第2開閉弁と、 前記pH検出手段によって検出されたpHに基づき前記
第1開閉弁と第2開閉弁を開閉制御して前記塩水タンク
内に貯えられる塩水のpHを所定範囲内に維持する電解
水供給制御手段とを設けたこと特徴とする電解水生成装
置。
1. Two ion-permeable membranes arranged in parallel.
By it inside the central saline chamber and the anode chamber and cathode on both sides
Separately form a positive electrode and a negative electrode to form the positive electrode chamber and the negative electrode.
An electrolytic cell main body which is disposed respectively in electrode chamber, said positive electrodes and a DC power source for supplying an electrolytic power behind <br/> electrode, and brine tank to store salt water to be electrolysis, brine chamber of the electrolysis cell main body Before
In front of the salt water inlet pipe that supplies the salt water stored in the salt water tank
The salt water outlet pipe for returning salt water from the salt water chamber to the salt water tank, and the salt water inlet pipe or the salt water outlet pipe interposed between the salt water outlet pipe and the salt water outlet pipe.
Circulation pump for circulating salt water supplied from a salt water tank, and water supply for supplying raw water to the anode chamber and cathode chamber, respectively.
A pipe, an acid water extraction pipe connected to the anode chamber, and
In the electrolytic water generator with a alkaline water outlet pipe connected to the cathode chamber, pH of detecting the pH of the savings the obtained salt to the brine tank
The detecting means and the acidic water generated in the anode chamber are used to remove the salt from the anode chamber.
It is opened and closed via an acidic water supply conduit that supplies the water tank.
The first on-off valve and the alkaline water generated in the cathode chamber from the cathode chamber.
Intervene in the alkaline water supply conduit to supply to the salt water tank
And a second on-off valve which is opened and closed, said brine tank the first on-off valve based on the detected pH by pH detecting means and the second on-off valve closing control to
An electrolyzed water production apparatus, which is provided with electrolyzed water supply control means for maintaining the pH of the salt water stored therein within a predetermined range.
【請求項2】平行に配置した二枚のイオン透過性隔膜に
よってその内部に中央の塩水室と両側の陽極室と陰極室
を分離形成して液体の通過可能な陽電極と陰電極を前記
陽極室側の前記隔膜と前記陰極室側の前記隔膜に沿って
それぞれ配設した電解槽本体と、前記陽電極と陰電極に
電解用電力を供給する直流電源と、電解される塩水を貯
える塩水タンクと、前記電解槽本体の塩水室に前記塩水
タンクに貯えた塩水を供給する塩水導入管及び前記塩水
室から塩水を前記塩水タンクに還流させる塩水導出管
と、前記塩水導入管又は塩水導出管に介在して前記塩水
タンクから供給される塩水を循環させる循環ポンプと、
前記陽極室と陰極室に原水をそ れぞれ供給する給水管
と、前記陽極室に接続した酸性水取り出し管及び前記陰
極室に接続したアルカリ性水取り出し管とを備えた電解
水生成装置において、 前記塩水タンクに貯えられた塩水のpHを検出するpH
検出手段と、 前記陽極室にて生成された酸性水を同陽極室から前記塩
水タンクに供給する酸性水供給導管に介在して開閉され
る第1開閉弁と、 前記陰極室にて生成されたアルカリ性水を同陰極室から
前記塩水タンクに供給するアルカリ性水供給導管に介在
して開閉される第2開閉弁と、 前記pH検出手段によって検出されたpHに基づき前記
第1開閉弁と第2開閉弁を開閉制御して前記塩水タンク
内に貯えられる塩水のpHを所定範囲内に維持する電解
水供給制御手段とを設けたこと特徴とする電解水生成装
置。
2. Two ion-permeable membranes arranged in parallel
Therefore, inside it, there is a salt water chamber in the center and the anode and cathode chambers on both sides.
Separately forming a positive electrode and a negative electrode through which liquid can pass
Along the diaphragm on the anode chamber side and the diaphragm on the cathode chamber side
Each of the electrolyzer body placed, the positive electrode and the negative electrode
DC power supply for electrolysis and storage of electrolyzed salt water
The salt water tank and the salt water chamber of the electrolyzer body.
Salt water inlet pipe for supplying salt water stored in a tank and the salt water
Salt water outlet pipe for returning salt water from the chamber to the salt water tank
And the salt water through the salt water inlet pipe or the salt water outlet pipe.
A circulation pump that circulates the salt water supplied from the tank,
Water supply pipe their respective supplying raw water to the anode chamber and a cathode chamber
And an acid water extraction pipe connected to the anode chamber and
Electrolysis with alkaline water extraction tube connected to the polar chamber
In the water generator, a pH for detecting the pH of the salt water stored in the salt water tank
The detecting means and the acidic water generated in the anode chamber are used to remove the salt from the anode chamber.
It is opened and closed via an acidic water supply conduit that supplies the water tank.
The first on-off valve and the alkaline water generated in the cathode chamber from the cathode chamber.
Intervene in the alkaline water supply conduit to supply to the salt water tank
The second opening / closing valve that is opened and closed by the above, and the above-mentioned based on the pH detected by the pH detecting means.
The salt water tank by controlling the opening / closing of the first opening / closing valve and the second opening / closing valve.
Electrolysis to maintain the pH of salt water stored in the water within a predetermined range
Electrolyzed water generator equipped with water supply control means
Place
JP09527694A 1994-05-09 1994-05-09 Electrolyzed water generator Expired - Fee Related JP3468834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09527694A JP3468834B2 (en) 1994-05-09 1994-05-09 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09527694A JP3468834B2 (en) 1994-05-09 1994-05-09 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JPH07299457A JPH07299457A (en) 1995-11-14
JP3468834B2 true JP3468834B2 (en) 2003-11-17

Family

ID=14133257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09527694A Expired - Fee Related JP3468834B2 (en) 1994-05-09 1994-05-09 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP3468834B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090205975A1 (en) 2005-06-08 2009-08-20 Tanah Process Ltd. Method for adjusting ph of liquid and ph adjustor
JP4713537B2 (en) * 2007-04-25 2011-06-29 優章 荒井 Method for producing electrolyzed water and electrolyzed water
JP2009050797A (en) * 2007-08-27 2009-03-12 Midori Anzen Co Ltd Apparatus and method for generating electrolytic water
US8529737B2 (en) 2008-03-25 2013-09-10 Tanah Process Ltd. Portable device for regulating hardness of drinking water
JP2012036471A (en) * 2010-08-10 2012-02-23 Japan Organo Co Ltd Salts dissolution tank
JP5437198B2 (en) * 2010-08-24 2014-03-12 オルガノ株式会社 Salt dissolution tank and electrolysis device
CN106977022B (en) * 2017-04-16 2020-11-27 重庆七口泉生物医药科技有限公司 Strong alkaline electrolyzed water production system
CN107055699A (en) * 2017-04-16 2017-08-18 重庆七口泉环保科技有限公司 A kind of strong basicity electrolytic water generating device of control electrolyte temperature
CN107055698A (en) * 2017-04-16 2017-08-18 重庆七口泉环保科技有限公司 A kind of strong basicity electrolytic water generating device of control concentration of electrolyte
CN113105035A (en) * 2021-04-30 2021-07-13 佛山市顺德区美的饮水机制造有限公司 Composite filter element structure, device and water outlet equipment

Also Published As

Publication number Publication date
JPH07299457A (en) 1995-11-14

Similar Documents

Publication Publication Date Title
JP3349710B2 (en) Electrolyzer and electrolyzed water generator
JP3468834B2 (en) Electrolyzed water generator
JP3500173B2 (en) Electrolyzed water production equipment
JP2021169084A (en) Electrolytic water generator and electrolytic water generating method
JPH0970582A (en) Electrolytic water generator
JP3667405B2 (en) Electrolyzed water generator
RU2088539C1 (en) Apparatus for producing detergent and disinfecting solutions
KR100439998B1 (en) Apparatus creating electrolysed-water by multi-step and diaphram
JP2001191079A (en) Electrolytic water forming device
JP3568290B2 (en) Electrolyzed water generator
JPH1190457A (en) Water treatment apparatus
JP3373285B2 (en) Electrolytic ionic water generator
JPH06312185A (en) Electrolytic water forming apparatus
JPH0780457A (en) Method and apparatus for making electrolytic water
KR200240002Y1 (en) Apparatus creating electrolysed-water by multi-step and diaphram
JP3205527B2 (en) Method for producing weakly acidic sterilized water and weakly alkaline water
KR20070075624A (en) Electrolytic water generation apparatus
JPH08117753A (en) Electrolytic water-making apparatus
JP2000212787A (en) Electrolytic method
JPH09108677A (en) Electrolytic water generator
JPH09308885A (en) Electrolytic water making apparatus
JP3468839B2 (en) Electrolyzed water production equipment
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method
JP3398173B2 (en) Electrolysis method of saline solution
JPH09262585A (en) Sterilizing and bacteriostatic method of continuous electrolytic water making apparatus and apparatus therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees