JP4867720B2 - Pure water production method and apparatus - Google Patents

Pure water production method and apparatus Download PDF

Info

Publication number
JP4867720B2
JP4867720B2 JP2007055904A JP2007055904A JP4867720B2 JP 4867720 B2 JP4867720 B2 JP 4867720B2 JP 2007055904 A JP2007055904 A JP 2007055904A JP 2007055904 A JP2007055904 A JP 2007055904A JP 4867720 B2 JP4867720 B2 JP 4867720B2
Authority
JP
Japan
Prior art keywords
chamber
pure water
water
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007055904A
Other languages
Japanese (ja)
Other versions
JP2008212871A (en
Inventor
洋 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007055904A priority Critical patent/JP4867720B2/en
Publication of JP2008212871A publication Critical patent/JP2008212871A/en
Application granted granted Critical
Publication of JP4867720B2 publication Critical patent/JP4867720B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、不純物を含む市水、排水等を回収して純水を製造する純水製造装置に係り、特に、燃料電池システムの冷却水やプロセス用水として純水を供給する純水製造装置に関する。また、本発明は、この純水製造装置を用いた純水製造方法に関する。   TECHNICAL FIELD The present invention relates to a pure water production apparatus that produces pure water by collecting city water, waste water, etc., including impurities, and more particularly, to a pure water production apparatus that supplies pure water as cooling water or process water for a fuel cell system. . Moreover, this invention relates to the pure water manufacturing method using this pure water manufacturing apparatus.

燃料電池発電装置は、例えば都市ガス、LPガス、メタノール等の原燃料ガスを、水蒸気改質して水素に富むガスに改質する改質器と、この改質器で得られた改質ガスを燃料として発電を行う燃料電池本体とを備えている。   A fuel cell power generator includes a reformer that reforms raw fuel gas such as city gas, LP gas, and methanol into a gas rich in hydrogen by steam reforming, and the reformed gas obtained by the reformer And a fuel cell main body that generates electric power using as a fuel.

改質器で生成した改質ガスは、燃料電池の負荷及び水素利用率に応じて、燃料電池内部で消費され、余剰の水素を含むガスはオフガス(燃料排ガス)として改質器へ導かれた上でバーナーで燃焼され、改質エネルギーとして消費されるように構成されることが多い。   The reformed gas generated in the reformer is consumed inside the fuel cell according to the load and hydrogen utilization rate of the fuel cell, and the gas containing surplus hydrogen is led to the reformer as off-gas (fuel exhaust gas). Often configured to be burned with a burner and consumed as reforming energy.

第5図は、特開2001−176535号の従来技術の欄に記載された、リン酸型燃料電池発電装置における水処理装置の基本的な系統図である。   FIG. 5 is a basic system diagram of a water treatment device in a phosphoric acid fuel cell power generator described in the prior art section of Japanese Patent Application Laid-Open No. 2001-176535.

燃料電池本体1は、リン酸電解質層を挟持する燃料極1b及び空気極1aからなる単位セルと、該単位セルを複数個重ねる毎に配設される冷却管を有する冷却板1cとを備えている。   The fuel cell main body 1 includes a unit cell composed of a fuel electrode 1b and an air electrode 1a sandwiching a phosphate electrolyte layer, and a cooling plate 1c having a cooling pipe disposed each time a plurality of the unit cells are stacked. Yes.

改質器2は、原燃料供給系を経て供給される天然ガス等の原燃料を、水蒸気分離器5で分離されて水蒸気供給系を経て供給される水蒸気とともに、触媒層2aの触媒の下で、バーナでのオフガス燃焼による燃焼熱により加熱して、水素に富むガスに改質して改質ガスを生成する。   Under the catalyst of the catalyst layer 2a, the reformer 2 separates the raw fuel such as natural gas supplied through the raw fuel supply system together with the water vapor separated through the water vapor separator 5 and supplied through the water vapor supply system. Then, it is heated by combustion heat generated by off-gas combustion in a burner and reformed into a gas rich in hydrogen to produce a reformed gas.

改質器2で生成された上記改質ガスは、CO変成器4を有する改質ガス供給系を経由して燃料電池本体1の燃料極1bに供給される。燃料極1bから流出する、電池反応に寄与しなかった水素を含むオフガスは、オフガス供給系を経て改質器2のバーナに燃料として供給される。   The reformed gas generated by the reformer 2 is supplied to the fuel electrode 1 b of the fuel cell main body 1 via a reformed gas supply system having a CO converter 4. The off gas containing hydrogen that has not contributed to the cell reaction and flows out of the fuel electrode 1b is supplied as fuel to the burner of the reformer 2 through the off gas supply system.

また、改質器2のバーナへは、図示しない燃焼空気供給用のブロワが接続されている。改質器2から出た燃焼排ガスは、水回収用の凝縮器6へと送られ、水回収後、排出される。回収水は、回収水タンク7へ送られる。   A combustion air supply blower (not shown) is connected to the burner of the reformer 2. The combustion exhaust gas from the reformer 2 is sent to a condenser 6 for water recovery, and is discharged after water recovery. The recovered water is sent to the recovered water tank 7.

また、燃料電池本体1には、空気極1aに空気を供給するブロワ23を備えた空気供給系と、電池反応後の水蒸気を含む空気を前記水回収用の凝縮器6へ供給する空気排出系とが接続されている。   The fuel cell body 1 includes an air supply system including a blower 23 that supplies air to the air electrode 1a, and an air discharge system that supplies air containing water vapor after the battery reaction to the condenser 6 for water recovery. And are connected.

燃料電池本体1の冷却板1cの冷却管には、燃料電池本体1の発電時に冷却水を循環するため、水蒸気分離器5、冷却水循環ポンプ22を備えた冷却水循環系が接続されている。   A cooling water circulation system including a water vapor separator 5 and a cooling water circulation pump 22 is connected to the cooling pipe of the cooling plate 1 c of the fuel cell main body 1 in order to circulate cooling water when the fuel cell main body 1 generates power.

前記水蒸気分離器5では、燃料電池本体1の冷却管から排出された水と蒸気との二相流を、水蒸気と冷却水とに分離する。ここで分離された水蒸気は、前記改質器2に向かう原燃料と混入するように送出される。その際、元圧の低い原燃料との混合を行うために、エゼクタポンプ3を使用している。このエゼクタポンプ3は、蒸気を駆動流体とするとともに、原燃料を被駆動流体とする。原燃料供給系は、一般に、図示しない脱硫器を備える。   In the steam separator 5, the two-phase flow of water and steam discharged from the cooling pipe of the fuel cell main body 1 is separated into steam and cooling water. The water vapor separated here is sent out so as to be mixed with the raw fuel going to the reformer 2. At that time, the ejector pump 3 is used to mix with the raw fuel having a low original pressure. The ejector pump 3 uses steam as a driving fluid and raw fuel as a driven fluid. The raw fuel supply system generally includes a desulfurizer (not shown).

上記のように、水蒸気改質には、純水が必要となる。また、りん酸型の燃料電池では、燃料電池の冷却水として、純水の加圧水を使用するのが一般的であり、その際、冷却水は、電気伝導度が低く、またシリカ等の鉱物系異物が少ない純水が使用される。   As described above, pure water is required for steam reforming. In addition, in a phosphoric acid type fuel cell, it is common to use pressurized water of pure water as the cooling water for the fuel cell. In this case, the cooling water has a low electrical conductivity and is a mineral system such as silica. Pure water with few foreign substances is used.

燃料電池の冷却には水以外の冷媒を用いる場合もあるが、少なくとも、改質器での改質用水蒸気として純水が消費される為、常時、純水を供給する必要がある。そのため、燃料電池の空気オフガスと改質器の燃焼排ガス中の水蒸気を、凝縮器により、凝縮水として回収した後、水純化装置に通水して純水化するのが一般的である。   Although a coolant other than water may be used for cooling the fuel cell, at least pure water is consumed as reforming steam in the reformer, so it is necessary to always supply pure water. For this reason, it is common that the air off-gas of the fuel cell and the water vapor in the combustion exhaust gas of the reformer are collected as condensed water by a condenser and then passed through a water purification device to be purified.

この水純化装置としてイオン交換式水純化装置を用いる場合、一般的に電気伝導率が0.5〜1μS/cm以上になった時、2000h〜3000h程度の発電時間の間隔で水純化装置を交換する必要があり、煩雑な水純化装置の樹脂交換が必要となるとともに、樹脂再生コストが発生する問題があった。   When an ion exchange type water purifier is used as this water purifier, the water purifier is generally replaced at intervals of power generation time of about 2000 h to 3000 h when the electric conductivity is 0.5 to 1 μS / cm or more. This necessitates complicated resin replacement of the water purifier, and there is a problem that resin regeneration costs are generated.

そこで、第5図では、イオン交換式水純化装置に代えて、樹脂交換が不要な電気脱イオン装置10を採用している。   Therefore, in FIG. 5, an electrodeionization apparatus 10 that does not require resin replacement is adopted instead of the ion exchange type water purifier.

この電気脱イオン装置10の主要部は、イオン交換膜10cにより、処理室10aと濃縮室10bに分離されており、回収水タンク7からポンプ20を介して導入された回収水の陰イオンおよび陽イオンは、それぞれアニオン交換膜およびカチオン交換膜を通過して濃縮室10bに集まり、その後、濃縮排水として系外に排出されるように構成されている。その結果、処理室10aの出口側では連続的に純水が生成され、給水ポンプ21により水蒸気分離器5へ送られる。   The main part of the electrodeionization apparatus 10 is separated into a treatment chamber 10a and a concentration chamber 10b by an ion exchange membrane 10c, and the anion and cation of the recovered water introduced from the recovered water tank 7 through the pump 20 are separated. The ions pass through the anion exchange membrane and the cation exchange membrane, collect in the concentration chamber 10b, and are then discharged out of the system as concentrated waste water. As a result, pure water is continuously generated at the outlet side of the processing chamber 10 a and is sent to the water vapor separator 5 by the water supply pump 21.

なお、処理室通水量を維持しつつ、純水供給量の変動に対応する目的で、ポンプ20の吸込側へ処理水(純水)をリサイクルさせている。   The treated water (pure water) is recycled to the suction side of the pump 20 for the purpose of dealing with fluctuations in the pure water supply amount while maintaining the flow rate of the treatment chamber.

この循環系に設けた逆止弁24は、回収水タンク7中の回収水が、電気脱イオン装置10を経由せずに、給水ポンプ21を介して、直接、水蒸気分離器5に供給されるのを防止するためのものである。   The check valve 24 provided in this circulation system supplies the recovered water in the recovered water tank 7 directly to the water vapor separator 5 via the feed water pump 21 without passing through the electrodeionization device 10. This is intended to prevent this.

濃縮排水は、処理室側通水量と比べて1/3程度と大幅に少ない為、濃縮室側系統にも、処理室側と同様に濃縮水循環ポンプ10dを設けて、濃縮水をリサイクルさせることにより、濃縮室通水量を確保しながら、濃縮排水量を適正に確保するようにしている。   Concentrated wastewater is significantly less than about 1/3 of the water flow rate on the processing chamber side, so the concentrated chamber side system is also provided with a concentrated water circulation pump 10d in the same manner as the processing chamber side to recycle the concentrated water. In addition, while ensuring the amount of water passing through the concentrating chamber, the amount of concentrated drainage is appropriately secured.

第5図においては、ミネラル除去装置9が電気脱イオン装置10の入口側に設けられている。電気脱イオン装置10はイオン交換膜を使用している為、電気脱イオン装置へ導入される処理水中のスケーリング物質は低濃度である必要があり、例えば、シリカは数ppm以下が条件となっており、スケーリング物質除去のためにミネラル除去装置9が設けられる。   In FIG. 5, a mineral removing device 9 is provided on the inlet side of the electrodeionization device 10. Since the electrodeionization apparatus 10 uses an ion exchange membrane, the scaling material in the treated water introduced into the electrodeionization apparatus needs to have a low concentration. For example, the condition of silica is several ppm or less. A mineral removing device 9 is provided for removing scaling substances.

なお、この特開2001−176535号の図2には、この電気脱イオン装置と並列にイオン交換式水純化装置を設け、電気脱イオン装置からの脱イオン水の水質が低下してきた場合にイオン交換式水純化装置に通水して水質悪化を回避する構成が記載されている。
特開2001−176535号
In FIG. 2 of Japanese Patent Laid-Open No. 2001-176535, an ion exchange type water purifier is provided in parallel with the electrodeionization device, and the ionization water is ionized when the quality of the deionized water from the electrodeionization device is lowered. A configuration is described in which water is passed through an exchangeable water purifier to avoid deterioration of water quality.
JP 2001-176535 A

上記第5図のように電気脱イオン装置において燃料電池発電装置回収水の水処理を行って純水を製造して燃料電池に供給する場合、燃料電池発電装置の運転立ち上げに際しては燃料電池発電装置からの排出水が無く純水を供給できない。上述のように電気脱イオン装置と並列にイオン交換式水純化装置を設けた場合には、このイオン交換式水純化装置によって純水を燃料電池発電装置に供給することが可能である。しかしながら、この場合には、電気脱イオン装置とイオン交換式水純化装置とを併設しなくてはならないため、設備が大掛りになると共に、コストも嵩む。   When the pure water is produced and supplied to the fuel cell by treating the recovered water of the fuel cell power generation device in the electrodeionization device as shown in FIG. 5 above, the fuel cell power generation is performed at the start-up of the fuel cell power generation device. There is no water discharged from the equipment, and pure water cannot be supplied. As described above, when an ion exchange type water purification device is provided in parallel with the electrodeionization device, pure water can be supplied to the fuel cell power generation device by this ion exchange type water purification device. However, in this case, since an electrodeionization device and an ion exchange type water purification device must be provided, the facility becomes large and the cost increases.

本発明は、電気脱イオン装置を用い、電気脱イオンによる純水製造と、イオン交換による純水製造とを実行できるようにすることを目的とする It is an object of the present invention to perform pure water production by electrodeionization and pure water production by ion exchange using an electrodeionization apparatus .

求項の純水製造装置は、陽極と陰極との間にイオン交換膜を配置することにより、少なくとも陰極室、陰極側濃縮室、脱塩室及び陽極側濃縮室を設け、該陰極室に導電体を充填し、該陰極側濃縮室、該脱塩室及び該陽極側濃縮室にイオン交換体を充填してなる電気脱イオン装置を有する純水製造装置において、該陰極室と該陰極室側濃縮室とを区画するイオン交換膜がバイポーラ膜又は一価カチオン選択透過性カチオン交換膜であり、少なくとも一方の濃縮室に被処理水を通水し、該濃縮室内のイオン交換体によってイオン交換して該濃縮室から純水を流出させるイオン交換式純水製造運転モードの実行手段を備えたことを特徴とする。 Water purifying apparatus Motomeko 1, by arranging the ion exchange membrane between the anode and the cathode, provided at least the cathode compartment, the cathode-side concentrate chamber, the depletion chamber and the anode-side concentrate chamber, the cathode chamber In a pure water production apparatus having an electrodeionization apparatus in which a conductor is filled, and the cathode side concentration chamber, the desalting chamber, and the anode side concentration chamber are filled with an ion exchanger, the cathode chamber and the cathode The ion exchange membrane that divides the chamber-side concentration chamber is a bipolar membrane or a monovalent cation selective permeable cation exchange membrane. Water to be treated is passed through at least one of the concentration chambers, and ions are exchanged by the ion exchanger in the concentration chamber. An ion exchanging pure water production operation mode executing means for exchanging the pure water from the concentrating chamber is provided.

請求項の純水製造装置は、請求項において、前記イオン交換式純水製造運転モードの実行手段が通電停止するか、または電流密度を1000mA/dm以下に調整する通電制御手段を備えていることを特徴とする。 According to a second aspect of the present invention, there is provided a deionized water production apparatus according to the first aspect , wherein the ion exchange type deionized water production operation mode execution unit stops energization or includes an energization control unit that adjusts the current density to 1000 mA / dm 2 or less. It is characterized by.

請求項の純水製造装置は、請求項又はにおいて、前記イオン交換式純水製造運転モードにあっては、被処理水が前記陰極側濃縮室に通水され、次いで前記陽極側濃縮室に通水されることを特徴とする。 In the pure water production apparatus according to claim 3 , in the ion exchange type pure water production operation mode according to claim 1 or 2 , water to be treated is passed through the cathode side concentrating chamber and then the anode side concentrating. Water is passed through the room.

請求項の純水製造装置は、請求項ないしのいずれか1項において、前記陰極室側濃縮室及び前記陽極室側濃縮室の少なくとも一方に、イオン交換体としてアニオン交換体とカチオン交換体との混床が充填されており、又は、前記陰極室側濃縮室及び前記陽極室側濃縮室の少なくとも一方に、上流側からカチオン交換体とアニオン交換体とがこの順に交互に充填されていることを特徴とする。 The pure water production apparatus according to claim 4 is the cation exchange according to any one of claims 1 to 3 , wherein an anion exchanger and a cation exchange are provided as an ion exchanger in at least one of the cathode chamber side enrichment chamber and the anode chamber side enrichment chamber. A mixed bed with a body is filled, or at least one of the cathode chamber side enrichment chamber and the anode chamber side enrichment chamber is alternately filled with a cation exchanger and an anion exchanger in this order from the upstream side. It is characterized by being.

請求項の純粋製造装置は、請求項1ないしのいずれか1項において、前記導電体は、カチオン交換体又は耐食性導電性金属体であることを特徴とする According to a fifth aspect of the present invention, there is provided a pure production apparatus according to any one of the first to fourth aspects, wherein the conductor is a cation exchanger or a corrosion-resistant conductive metal body .

求項の純水製造方法は、陽極と陰極との間にイオン交換膜を配置することにより、少なくとも陰極室、陰極側濃縮室、脱塩室及び陽極側濃縮室を設け、該陰極室に導電体を充填し、該陰極側濃縮室、該脱塩室及び該陽極側濃縮室にイオン交換体を充填してなる電気脱イオン装置を用いて純水を製造する方法において、該陰極室と該陰極室側濃縮室とを区画するイオン交換膜がバイポーラ膜又は一価カチオン選択透過性カチオン交換膜であり、少なくとも一方の濃縮室に被処理水を通水し、該濃縮室内のイオン交換体によってイオン交換して該濃縮室から純水を流出させるイオン交換式純水製造運転を行うことを特徴とする。 Pure water production method of Motomeko 6, by arranging the ion exchange membrane between the anode and the cathode, provided at least the cathode compartment, the cathode-side concentrate chamber, the depletion chamber and the anode-side concentrate chamber, the cathode chamber In the method for producing pure water by using an electrodeionization apparatus in which a conductor is filled and an ion exchanger is filled in the cathode side concentration chamber, the desalting chamber, and the anode side concentration chamber. The ion exchange membrane that partitions the cathode chamber side concentration chamber is a bipolar membrane or a monovalent cation selective permeable cation exchange membrane, and water to be treated is passed through at least one concentration chamber, and the ion exchange in the concentration chamber is performed. An ion exchange type pure water production operation is performed in which ion exchange is performed by a body and pure water is discharged from the concentration chamber.

請求項の純水製造方法は、請求項において、前記イオン交換式純水製造運転が通電停止されているか、または電流密度が1000mA/dm以下になるように通電制御された状態で実行されることを特徴とする。 A pure water production method according to a seventh aspect is the method according to the sixth aspect , wherein the ion-exchange-type pure water production operation is stopped or the current supply is controlled so that the current density is 1000 mA / dm 2 or less. It is characterized by being.

請求項の純水製造方法は、請求項6又は7において、前記被処理水は、市水、井水、又は工業用水を除濁処理及び脱塩素処理した水であることを特徴とする。 A pure water production method according to an eighth aspect is characterized in that, in the sixth or seventh aspect , the water to be treated is city water, well water, or water obtained by removing turbidity and dechlorination from industrial water.

請求項の純水製造方法は、請求項ないしのいずれか1項において、前記電気脱イオン装置は燃料電池発電装置の回収水の純化用であり、該燃料電池発電装置の起動時に該電気脱イオン装置によってイオン交換式純水製造を行い、製造した純水を燃料電池発電装置に供給することを特徴とする。 The method for producing pure water according to claim 9 is the method for producing pure water according to any one of claims 6 to 8 , wherein the electrodeionization device is for purifying the recovered water of the fuel cell power generation device, and is activated when the fuel cell power generation device is started up. It is characterized in that ion-exchange-type pure water is produced by an electrodeionization apparatus, and the produced pure water is supplied to a fuel cell power generator.

請求項1の純水製造装置及び請求項の純水製造方法によると、電気脱イオン装置に充填されたイオン交換体を利用して、イオン交換による純水製造を行うことができる。従って、電気脱イオン装置とイオン交換装置とを併設することなくイオン交換処理による純水を供給することができる。なお、通電量を規定量以下に抑えることによって被処理水中に含まれるスケール生成の原因となるイオンが陰極やイオン交換樹脂の表面付近に濃縮しづらいため、陰極やイオン交換樹脂へのスケールの付着を防止することができる。 According to the pure water production apparatus of claim 1 and the pure water production method of claim 6 , pure water production by ion exchange can be performed using the ion exchanger filled in the electrodeionization apparatus. Therefore, it is possible to supply pure water by ion exchange treatment without providing an electrodeionization device and an ion exchange device. In addition, since the ions that cause scale generation contained in the water to be treated are difficult to concentrate near the surface of the cathode and ion exchange resin by keeping the energization amount below the specified amount, the scale adheres to the cathode and ion exchange resin. Can be prevented.

この電気脱イオン装置では、陰極側濃縮室とは別個に陰極室が設けられ、両者がバイポーラ膜又は一価カチオン選択透過性カチオン交換膜で隔てられているので、陰極側濃縮室から陰極室へのCaイオンやMgイオンの移動が阻止されると共に、陰極室から陰極側濃縮室への水酸化物イオンや炭酸水素イオン等のアニオンの移動が阻止される。そのため、陰極室や陰極側濃縮室においてCaイオンやMgイオンとアニオンとが会合してスケールが生成することが防止される。   In this electrodeionization apparatus, a cathode chamber is provided separately from the cathode-side concentrating chamber, and both are separated by a bipolar membrane or a monovalent cation selective permeable cation exchange membrane. The movement of Ca ions and Mg ions is prevented, and the movement of anions such as hydroxide ions and bicarbonate ions from the cathode chamber to the cathode-side concentration chamber is blocked. Therefore, it is prevented that Ca ions, Mg ions, and anions are associated with each other in the cathode chamber or the cathode-side concentration chamber to generate scale.

このバイポーラ膜は、アニオン交換膜とカチオン交換膜とが貼り合わさった構造とされた複合膜の一種である。バイポーラ膜は、水の電気分解に用いる隔膜として、或いは、酸とアルカリの中和生成物である塩の水溶液から酸とアルカリを再生する際の分離膜等として従来より広く使用されている公知のイオン交換膜であり、種々の製造方法が提案されている。   This bipolar membrane is a kind of composite membrane having a structure in which an anion exchange membrane and a cation exchange membrane are bonded together. Bipolar membranes have been widely used as a separation membrane for electrolysis of water or as a separation membrane for regenerating acid and alkali from an aqueous solution of a salt that is a neutralized product of acid and alkali. It is an ion exchange membrane, and various manufacturing methods have been proposed.

また、この一価カチオン選択透過性カチオン交換膜も従来より公知であり、電解質水溶液の濃縮もしくは分離、脱塩水の製造等に広く用いられている。   Moreover, this monovalent cation selective permeable cation exchange membrane is also conventionally known, and is widely used for concentration or separation of an aqueous electrolyte solution, production of demineralized water, and the like.

この一価カチオン選択透過性カチオン交換膜は、
(1)カチオン交換膜の表面部を緻密な構造(例えば、表層部を架橋度の高い層又は固定イオン濃度の高い層)にする;
(2)カチオン交換膜の表面にイオン交換基を含まない電気的に中性の薄層を形成する;
(3)カチオン交換膜の表面に陰イオン交換性の薄層(以下、反対電荷層と称することがある)を形成する:
などの方法を単独で用いることにより、またはこれらの方法を併用することにより、二価以上のカチオンを膜面からほとんど透過させずに一価のカチオンを選択的に透過させるものである。本発明では、このうち(3)の方法により一価のカチオンを選択的に透過させるものを用いることが好ましい。
This monovalent cation selective permeable cation exchange membrane is
(1) The surface portion of the cation exchange membrane has a dense structure (for example, the surface layer portion is a layer having a high degree of crosslinking or a layer having a high fixed ion concentration);
(2) forming an electrically neutral thin layer containing no ion exchange groups on the surface of the cation exchange membrane;
(3) An anion exchange thin layer (hereinafter sometimes referred to as an opposite charge layer) is formed on the surface of the cation exchange membrane:
By using these methods alone, or by using these methods together, monovalent cations are selectively permeated with almost no permeation of divalent or higher cations from the membrane surface. In the present invention, among these, it is preferable to use one that selectively permeates monovalent cations by the method (3).

このような一価カチオン選択透過性カチオン交換膜としては、例えば、カチオン交換膜の少なくとも一側面に、第4級アンモニウム塩基と、3個以上のビニルベンジル基を有するビニル化合物との重合体による薄層を形成したものが挙げられる。この基材となるカチオン交換膜は、特に制限されるものではなく、カチオン交換選択性の高いものが好ましい。一価カチオン選択透過性カチオン交換膜としては、例えば、アストム社製のCMS(商品名)等を用いることができる。   As such a monovalent cation selective permeable cation exchange membrane, for example, a thin film made of a polymer of a quaternary ammonium base and a vinyl compound having three or more vinylbenzyl groups on at least one side of the cation exchange membrane. The thing which formed the layer is mentioned. The cation exchange membrane used as the substrate is not particularly limited, and preferably has a high cation exchange selectivity. As the monovalent cation selective permeable cation exchange membrane, for example, CMS (trade name) manufactured by Astom Co., Ltd. can be used.

なお、イオン交換処理運転を行うことにより、電気脱イオン装置のイオン交換体にはナトリウムイオン、塩素イオン等のカチオンやアニオンが蓄積してくるが、これらのイオンは、その後、電気脱イオン装置を電気脱イオン処理運転したときに除去され、イオン交換体が再生される。   In addition, by performing the ion exchange treatment operation, cations and anions such as sodium ions and chlorine ions accumulate in the ion exchanger of the electrodeionization apparatus. It is removed when the electrodeionization operation is performed, and the ion exchanger is regenerated.

イオン交換処理による純水製造のために被処理水が通水される濃縮室は、上流側からカチオン交換体とアニオン交換体とを交互に充填するのが好ましい。交互積層方式の長所については、後に詳述する。 Concentrated Chijimishitsu water to be treated that is passed through to the pure water production by ion exchange treatment is preferably filled from the upstream side to the alternating cation exchanger and an anion exchanger. The advantages of the alternating lamination method will be described later in detail.

参考例
以下、図面を参照して参考例及び実施の形態について説明する。第1図は参考例に係る電気式脱イオン装置の概略的な縦断面図である。
< Reference example >
Hereinafter, reference examples and embodiments will be described with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view of an electric deionization apparatus according to a reference example .

陰極31と陽極32との間に、バイポーラ膜33と、第1のカチオン交換膜34と、アニオン交換膜35と、第2のカチオン交換膜34’とを1枚ずつ配置し、陰極31とバイポーラ膜33との間に陰極室41を形成し、バイポーラ膜33と第1のカチオン交換膜34との間に陰極側濃縮室42を形成し、第1のカチオン交換膜34とアニオン交換膜35との間に脱塩室43を形成し、アニオン交換膜35と第2のカチオン交換膜34’との間に陽極側濃縮室44を形成し、第2のカチオン交換膜34’と陽極32との間に陽極室45を形成している。   Between the cathode 31 and the anode 32, a bipolar membrane 33, a first cation exchange membrane 34, an anion exchange membrane 35, and a second cation exchange membrane 34 'are arranged one by one. A cathode chamber 41 is formed between the membrane 33, a cathode-side concentration chamber 42 is formed between the bipolar membrane 33 and the first cation exchange membrane 34, and the first cation exchange membrane 34, anion exchange membrane 35, Between the anion exchange membrane 35 and the second cation exchange membrane 34 ′, an anode side concentration chamber 44 is formed between the second cation exchange membrane 34 ′ and the anode 32. An anode chamber 45 is formed between them.

このバイポーラ膜33は、陰極31側のアニオン交換膜33Aと陽極32側のカチオン交換膜33Bとが貼り合わさった構造となっている。   The bipolar membrane 33 has a structure in which an anion exchange membrane 33A on the cathode 31 side and a cation exchange membrane 33B on the anode 32 side are bonded together.

なお、本発明で用いるバイポーラ膜としては、アニオン交換膜とカチオン交換膜とを有し、水電解効率が高いものであればよく、特に制限はない。   The bipolar membrane used in the present invention is not particularly limited as long as it has an anion exchange membrane and a cation exchange membrane and has high water electrolysis efficiency.

陰極側濃縮室42及び陽極室45にはカチオン交換樹脂38が充填されている。陽極側濃縮室44にはアニオン交換樹脂39が充填されている。   The cathode side concentration chamber 42 and the anode chamber 45 are filled with a cation exchange resin 38. The anode side concentration chamber 44 is filled with an anion exchange resin 39.

陰極室41には導電体36が充填されている。なお、陰極室41内ではイオン交換する必要がなく、また、水電解により発生する電解ガスを上部に逃がすだけのスペースが陰極室41内に存在すればよいため、陰極室41に充填する導電体としては、耐食性導電性金属等の導電体、例えばステンレスであってもよい。また、導電体の形状としては、通電抵抗が大きくならないものであれば特に限定されず、粒状、多孔体、繊維状等であってもよく、中でもステンレス製繊維が好適に用いられる。   The cathode chamber 41 is filled with a conductor 36. It is not necessary to exchange ions in the cathode chamber 41, and the cathode chamber 41 only needs to have a space in the cathode chamber 41 for allowing the electrolytic gas generated by water electrolysis to escape upward. As such, a conductor such as a corrosion-resistant conductive metal, for example, stainless steel may be used. Further, the shape of the conductor is not particularly limited as long as the energization resistance does not increase, and may be granular, porous, fibrous, etc. Among them, stainless steel fibers are preferably used.

脱塩室43にはカチオン交換樹脂とアニオン交換樹脂とを混合したイオン交換樹脂37が混床型にて充填されている。但し、カチオン交換樹脂38とアニオン交換樹脂39を交互に配置した積層型でも構わない。   The desalting chamber 43 is filled with an ion exchange resin 37 obtained by mixing a cation exchange resin and an anion exchange resin in a mixed bed type. However, a laminated type in which the cation exchange resin 38 and the anion exchange resin 39 are alternately arranged may be used.

脱塩室43の一端側には原水(凝縮水)の流入口が設けられ、他端側には脱イオンされて生成した純水の流出口が設けられている。   An inlet for raw water (condensed water) is provided at one end of the desalting chamber 43, and an outlet for pure water generated by deionization is provided at the other end.

この参考例では、脱塩室43から流出した純水の主要部を純水として得、一部を分取し、それぞれ陰極室41、陰極側濃縮室42、陽極側濃縮室44及び陽極室45に通水する。 In this reference example , the main part of pure water flowing out from the desalting chamber 43 is obtained as pure water, and a part of the pure water is collected, and the cathode chamber 41, the cathode side concentration chamber 42, the anode side concentration chamber 44, and the anode chamber 45, respectively. Water.

純水供給効率を上げるためには、被処理水(前処理した市水等)の補給工程はできるだけ短時間で済ませて通常運転工程に戻すことが望ましい。従って、補給工程における被処理水の脱塩室への通水速度は高い方が好ましく、例えばSV20[h−1]以上であることが好ましい。ただしSV100[h−1]を超過すると、被処理水の脱塩が十分に行われなくなってしまうので、SVは20〜100[h−1]であることが好ましい。 In order to increase the efficiency of supplying pure water, it is desirable that the replenishment process of the water to be treated (pretreated city water or the like) is completed in as short a time as possible and returned to the normal operation process. Therefore, it is preferable that the water flow rate of the water to be treated to the desalting chamber in the replenishment process is high, for example, SV20 [h −1 ] or more. However, when SV100 [h −1 ] is exceeded, desalting of the water to be treated is not sufficiently performed. Therefore, SV is preferably 20 to 100 [h −1 ].

このような通水速度で被処理水を脱塩室に供給するにあたり、脱塩室内のイオン交換樹脂は混床型や積層型であるので、被処理水の脱塩室への通水方向は下向流であることが好ましい。上向流で通水してしまうと、混床型や積層型に充填していた樹脂の配置が崩れてしまう恐れがあるので好ましくない。   In supplying the treated water to the desalting chamber at such a water flow rate, since the ion exchange resin in the desalting chamber is a mixed bed type or a laminated type, the direction of water flow to the desalting chamber of the treated water is A downward flow is preferred. If the water flows in the upward flow, the arrangement of the resin filled in the mixed bed type or the laminated type may be broken, which is not preferable.

各室41〜45の流入口及び流出口には、弁を有した配管が接続され、この弁の開閉や流路切替により各室への通水が制御される。この弁の制御手段と、通電制御手段とによって、純水製造装置の運転実行手段が構成されている。この運転実行手段は、手動操作されてもよく、コンピュータ等によって操作されてもよい。   Pipes having valves are connected to the inlets and outlets of the respective chambers 41 to 45, and the flow of water to the respective chambers is controlled by opening and closing the valves and switching the flow paths. The valve control means and the energization control means constitute the operation execution means of the pure water production apparatus. This operation execution means may be operated manually or by a computer or the like.

この電気脱イオン装置では、イオン交換樹脂の充填構造を積層型にすることにより、通電時の電気抵抗が小さくなるので、処理効率が向上し、装置の小型化を図ることができる。そのため混床型より積層型の方がより好ましい。また、この場合、積層型のアニオン樹脂、カチオン樹脂混合の各層は純粋なアニオン樹脂層やカチオン樹脂層であることが好ましいが、電圧が上がり過ぎない程度であればアニオンリッチの樹脂層やカチオンリッチの樹脂層であっても構わない。   In this electrodeionization apparatus, by making the filling structure of the ion exchange resin into a laminated type, the electrical resistance during energization is reduced, so that the processing efficiency is improved and the apparatus can be miniaturized. Therefore, the laminated type is more preferable than the mixed bed type. In this case, each layer of the laminated anion resin and cation resin mixture is preferably a pure anion resin layer or a cation resin layer. However, an anion-rich resin layer or a cation-rich layer may be used as long as the voltage does not increase excessively. It may be a resin layer.

また、積層型の場合、上流側からカチオン交換樹脂→アニオン交換樹脂→カチオン交換樹脂→アニオン交換樹脂→・・・の順番にする方が好ましい。アニオン交換樹脂が最上流であると、イオン交換処理運転モードにおいて生成したOHイオンが被処理水中に含まれるMgイオンと反応して、アニオン交換樹脂中にMg(OH)スケールが生成する恐れがあるからである。 Moreover, in the case of a laminated type, it is preferable that the cation exchange resin → anion exchange resin → cation exchange resin → anion exchange resin →. If the anion exchange resin is the most upstream, OH ions generated in the ion exchange treatment operation mode may react with Mg ions contained in the water to be treated, and Mg (OH) 2 scale may be produced in the anion exchange resin. Because there is.

次に、この装置の運転モードについて説明する。
<電気脱イオン処理運転モード>
この電気脱イオン処理運転モードの一態様にあっては、通電した状態にて原水(凝縮水)を脱塩室43に導入し、純水として取り出す。上記の通り、この純水の主要部を純水として得、一部を分取し、それぞれ陰極室41、陰極側濃縮室42、陽極側濃縮室44及び陽極室45に通水する。原水中のカチオンは第1のカチオン交換膜34を透過して陰極側濃縮室42に移動し、濃縮室流出水に混入して排出される。原水中のアニオンはアニオン交換膜35を透過して陽極側濃縮室44に移動し、濃縮室流出水に混入して排出される。
<イオン交換処理運転モード>
この電気脱イオン装置を用い、イオン交換処理によって純水を製造するには、第2図の通り、通電を停止するかもしくは電流密度が1000mA/dm以下となるように通電制御した状態で、被処理水を脱塩室43に通水し、その流出水を純水として得る。電流密度が1000mA/dmを超過するとイオン交換膜の表面にスケール発生の原因となるイオンが凝縮すると推定され、これによりイオン交換膜の表面にスケールが付着する恐れがあるので好ましくない。同様の理由で電流密度は600mA/dm以下であることがより好ましい。ただし通電を停止するのが確実にスケール発生を防止できる上に、通電量の制御が簡易となるため最も好ましい。
Next, the operation mode of this apparatus will be described.
<Electrodeionization operation mode>
In one aspect of this electric deionization operation mode, raw water (condensed water) is introduced into the demineralization chamber 43 while being energized and taken out as pure water. As described above, the main part of the pure water is obtained as pure water, and a part thereof is collected and passed through the cathode chamber 41, the cathode side concentration chamber 42, the anode side concentration chamber 44, and the anode chamber 45, respectively. The cations in the raw water permeate the first cation exchange membrane 34 and move to the cathode side concentrating chamber 42 where they are mixed into the concentrating chamber effluent and discharged. Anions in the raw water permeate the anion exchange membrane 35 and move to the anode side concentrating chamber 44 where they are mixed and discharged into the concentrating chamber effluent.
<Ion exchange treatment operation mode>
In order to produce pure water by ion exchange treatment using this electrodeionization apparatus, as shown in FIG. 2, in a state where the energization is stopped or the energization is controlled so that the current density is 1000 mA / dm 2 or less, The treated water is passed through the desalting chamber 43, and the effluent is obtained as pure water. If the current density exceeds 1000 mA / dm 2 , it is presumed that ions that cause scale generation are condensed on the surface of the ion exchange membrane, which may cause the scale to adhere to the surface of the ion exchange membrane. For the same reason, the current density is more preferably 600 mA / dm 2 or less. However, it is most preferable to stop energization because scale generation can be reliably prevented and the energization amount can be easily controlled.

<交互運転>
上記のイオン交換による純水製造運転を行った後、電気脱イオンによる純水製造運転に戻る。これにより、イオン交換樹脂を電気的に再生することができる。
<Alternate operation>
After performing the pure water production operation by ion exchange, the process returns to the pure water production operation by electrodeionization. Thereby, the ion exchange resin can be electrically regenerated.

この電気脱イオン運転モードの途中で、燃料電池発電装置の純水保有量が低下してきた場合には、イオン交換運転を行って純水を補給し、次いで電気脱イオン運転モードに戻る。   In the middle of this electrodeionization operation mode, when the amount of pure water retained in the fuel cell power generation device has decreased, ion exchange operation is performed to replenish pure water, and then the electrodeionization operation mode returns.

<燃料電池発電装置の純水供給システムとしての利用>
この場合、電気脱イオン装置の現場据え付けに先立って、電気脱イオン装置を試運転し、各室のイオン交換樹脂を再生して電気脱イオン装置を立ち上げておくことが好ましい。
<Use of fuel cell power generator as pure water supply system>
In this case, prior to on-site installation of the electrodeionization apparatus, it is preferable to test-run the electrodeionization apparatus and regenerate the ion exchange resin in each chamber to start up the electrodeionization apparatus.

現場据え付け後、上記第2図のように通水して純水を製造し、この純水を用いて燃料電池発電装置を起動させる。起動後は、電気脱イオン装置を電気脱イオン運転する。   After installation at the site, water is passed as shown in FIG. 2 to produce pure water, and the fuel cell power generator is activated using this pure water. After startup, the electrodeionization apparatus is operated for electrodeionization.

この起動時に電気脱イオン装置に供給する被処理水としては、市水、井水、工業用水等を前処理したものが好適であり、前処理としては少なくとも脱塩素処理と除濁処理を行うのが好ましく、具体的には例えば活性炭処理と、精密濾過又は限外濾過等の膜濾過とを行う。   The treated water supplied to the electrodeionization apparatus at the time of startup is preferably pretreated with city water, well water, industrial water, etc., and at least dechlorination treatment and turbidity treatment are performed as pretreatment. Specifically, for example, activated carbon treatment and membrane filtration such as microfiltration or ultrafiltration are performed.

この電気脱イオン装置では、陰極側濃縮室42とは別個に陰極室41が設けられ、両者がバイポーラ膜33で隔てられているので、陰極側濃縮室42から陰極室41へのCaイオンやMgイオンなどのカチオンの移動が阻止されると共に、陰極室41から陰極側濃縮室42への水酸化物イオンや炭酸水素イオンなどのアニオンの移動が阻止される。そのため、陰極室41や陰極側濃縮室42においてCaイオンやMgイオン等と水酸化物イオン等とが会合してスケールが生成することが防止される。   In this electrodeionization apparatus, a cathode chamber 41 is provided separately from the cathode-side enrichment chamber 42, and both are separated by a bipolar membrane 33. Therefore, Ca ions and Mg from the cathode-side enrichment chamber 42 to the cathode chamber 41 are removed. The movement of cations such as ions is blocked, and the movement of anions such as hydroxide ions and hydrogen carbonate ions from the cathode chamber 41 to the cathode side concentration chamber 42 is blocked. For this reason, in the cathode chamber 41 or the cathode side concentrating chamber 42, it is possible to prevent the Ca ions, Mg ions, and the like from being associated with hydroxide ions and the like to generate scale.

施の形態>
第3図は、第1図の電気脱イオン装置を用いた、実施の形態に係るイオン交換処理運転モードの運転例を示す系統図である。
<Implementation of the form>
FIG. 3 is a system diagram showing an operation example of the ion exchange processing operation mode according to the embodiment using the electrodeionization apparatus of FIG.

第3図では、被処理水を陰極側濃縮室42に通水し、陰極側濃縮室42の流出水を純水として得ている。被処理水を脱塩室37に通水しないのは、脱塩室37のイオン交換樹脂を汚さないためである。   In FIG. 3, the water to be treated is passed through the cathode side concentrating chamber 42, and the outflow water of the cathode side concentrating chamber 42 is obtained as pure water. The reason why the water to be treated is not passed through the desalting chamber 37 is that the ion exchange resin in the desalting chamber 37 is not soiled.

第3図のイオン交換処理運転モードの運転例によると、被処理水中のCaイオンやMgイオンなどのカチオンが陰極側濃縮室42内のカチオン交換樹脂38に捕獲される。   According to the operation example in the ion exchange treatment operation mode of FIG. 3, cations such as Ca ions and Mg ions in the water to be treated are captured by the cation exchange resin 38 in the cathode side concentration chamber 42.

なお、第4図に示す通り、陰極側濃縮室42から流出した純水を、さらに陽極側濃縮室44に通水してもよい。これにより、純水中のアニオンが陽極側濃縮室44内のアニオン交換樹脂39によって捕獲される。但し、このように2室に通水すると、圧力損失が大きく、ポンプにかかる負荷が大きくなるので、2室に通水するのは必要な場合だけとするのが好ましい。   As shown in FIG. 4, the pure water that has flowed out of the cathode side concentrating chamber 42 may be further passed through the anode side concentrating chamber 44. Thereby, the anion in the pure water is captured by the anion exchange resin 39 in the anode side concentration chamber 44. However, if water is passed through the two chambers in this way, the pressure loss is large and the load applied to the pump increases. Therefore, it is preferable that water is passed through the two chambers only when necessary.

また、第3図では、陰極側濃縮室42内にカチオン交換樹脂38が充填されているが、アニオン交換樹脂とカチオン交換樹脂を交互に配置した積層型で充填されてもよく、混床型にて充填されてもよい。この場合、被処理水を陰極側濃縮室42の1室に通水することにより、アニオン及びカチオンが除去される。   Further, in FIG. 3, the cathode side concentrating chamber 42 is filled with the cation exchange resin 38. However, the cathode side concentration chamber 42 may be filled with a laminated type in which anion exchange resin and cation exchange resin are alternately arranged. May be filled. In this case, the anion and the cation are removed by passing the water to be treated through one chamber of the cathode side concentration chamber 42.

上記実施の形態ではバイポーラ膜33を用いたが、バイポーラ膜33に代えて一価カチオン選択透過性カチオン交換膜を用いてもよい。この場合にあっても、イオン交換処理運転モードにおいて脱塩室43、陰極室側濃縮室42及び陽極室側濃縮室44の少なくとも一室に被処理水を通水するときに、陰極側濃縮室42から陰極室41へのCaイオンやMgイオンなどのカチオンの移動が阻止されると共に、陰極室41から陰極側濃縮室42への水酸化物イオンや炭酸水素イオンなどのアニオンの移動が阻止される。そのため、陰極室41や陰極側濃縮室42においてCaイオンやMgイオン等と水酸化物イオン等とが会合してスケールが生成することが防止される。なお、ナトリウムイオン等の一価のカチオンは、この一価カチオン選択透過性カチオン交換膜を透過することができる。   Although the bipolar membrane 33 is used in the above embodiment, a monovalent cation selective permeable cation exchange membrane may be used instead of the bipolar membrane 33. Even in this case, when the water to be treated is passed through at least one of the desalting chamber 43, the cathode chamber side concentration chamber 42, and the anode chamber side concentration chamber 44 in the ion exchange processing operation mode, the cathode side concentration chamber The movement of cations such as Ca ions and Mg ions from 42 to the cathode chamber 41 is blocked, and the movement of anions such as hydroxide ions and hydrogen carbonate ions from the cathode chamber 41 to the cathode side concentration chamber 42 is blocked. The For this reason, in the cathode chamber 41 or the cathode side concentrating chamber 42, it is possible to prevent the Ca ions, Mg ions, and the like from being associated with hydroxide ions and the like to generate scale. Monovalent cations such as sodium ions can permeate the monovalent cation selective permeable cation exchange membrane.

現在ボイラーの供給水処理には、補給水処理として主に軟水器が、復水処理として純水装置が用いられている。本発明はこの両方の装置の機能を1台で具備することが可能である。すなわちボイラー用水補給時には市水を当発明で浄化処理した純水を補給し、ボイラー運転時での復水浄化でも本発明で純水を補給することが可能である。本発明を適用すれば、装置が小型化でき、また軟水器のための塩水補給、純水装置からの酸アルカリ再生廃水処理が不要になりこの結果環境負荷低減に貢献できる。   Currently, in the boiler water supply treatment, soft water is mainly used as make-up water treatment, and pure water equipment is used as condensate treatment. The present invention can be equipped with the functions of both of these devices in a single unit. That is, it is possible to replenish city water with pure water purified by the present invention when replenishing boiler water, and to replenish pure water with the present invention even when condensate is purified during boiler operation. By applying the present invention, the apparatus can be miniaturized, and salt water replenishment for the water softener and acid / alkali regeneration wastewater treatment from the deionized water apparatus can be dispensed with, thereby contributing to a reduction in environmental load.

以下、実施例及び比較例について説明する。この実施例では、5室構造の電気脱イオン装置を用い、第1図に示す通水方式で電気脱イオンによる純水製造を行い、第4図に示す通水方式で市水浄化(イオン交換処理)を行った。   Hereinafter, examples and comparative examples will be described. In this embodiment, a five-chamber electrodeionization apparatus is used to produce pure water by electrodeionization using the water flow system shown in FIG. 1, and city water purification (ion exchange) is performed using the water flow system shown in FIG. Treatment).

なお、電気脱イオン装置において、脱塩室43の厚さを5mmとし、その他の4室41,42,44,45の厚さを2.5mmとした。また、各交換膜33,34,34’、35の高さを200mmとした。   In the electrodeionization apparatus, the thickness of the demineralization chamber 43 was 5 mm, and the thickness of the other four chambers 41, 42, 44, 45 was 2.5 mm. Further, the height of each of the exchange membranes 33, 34, 34 ', and 35 was set to 200 mm.

[実施例]
1)電気脱イオン装置の立ち上げ
抵抗率1MΩ・cmの純水を2.3L/hで脱塩室43に供給し、脱塩室出口水のうち2L/hを生産水として得た。また残りの0.3L/hを4等分し、残りの各室に供給し、各出口水は排水した。電極に0.1Aの直流電流を印加して通水を開始し、生産水が16MΩ・cmに達した時点で立ち上げ完了とした。
[Example]
1) Startup of electrodeionization apparatus Pure water having a resistivity of 1 MΩ · cm was supplied to the desalting chamber 43 at 2.3 L / h, and 2 L / h of the desalting chamber outlet water was obtained as production water. The remaining 0.3 L / h was divided into four equal parts and supplied to the remaining chambers, and each outlet water was drained. A 0.1 A direct current was applied to the electrode to start water flow, and when the production water reached 16 MΩ · cm, the start-up was completed.

2)市水浄化(イオン交換処理)
必要な市水浄化を、陰極側濃縮室42に充填したカチオン交換樹脂38及び陽極側濃縮室44に充填したイオン交換樹脂39で行った。
2) City water purification (ion exchange treatment)
The necessary city water purification was performed with the cation exchange resin 38 filled in the cathode side concentration chamber 42 and the ion exchange resin 39 filled in the anode side concentration chamber 44.

まず、市水を活性炭で脱塩素後、精密フィルターで除濁し、0.3L/hで陰極側濃縮室42に供給した。次いで、この陰極側濃縮室42の出口水を陽極側濃縮室44に供給した。この陽極側濃縮室44の出口水の抵抗率を測定したところ概ね5MΩ・cmと良好な水質であり、約1.0Lの純水が得られた。なお市水を浄化している間は、通電を停止した。   First, city water was dechlorinated with activated carbon, turbidized with a precision filter, and supplied to the cathode side concentration chamber 42 at 0.3 L / h. Subsequently, the outlet water of the cathode side concentration chamber 42 was supplied to the anode side concentration chamber 44. When the resistivity of the outlet water of the anode side concentrating chamber 44 was measured, the water quality was approximately 5 MΩ · cm, and about 1.0 L of pure water was obtained. In addition, electricity was stopped while purifying the city water.

3)模擬凝縮水浄化(電気脱イオン処理)
原水として、燃料電池から得られる凝縮水の模擬水を作成し、2)で市水を浄化した電気脱イオン装置にて電気脱イオン処理した。模擬液は塩化ナトリウムと炭酸ガスを純水に溶解し、電気伝導率が1mS/m程度になるように調製した。
3) Simulated condensate purification (electric deionization)
Simulated water of condensate obtained from the fuel cell was prepared as raw water, and subjected to electrodeionization treatment with an electrodeionization apparatus that purified the city water in 2). The simulated solution was prepared by dissolving sodium chloride and carbon dioxide in pure water so that the electric conductivity was about 1 mS / m.

模擬水は脱塩室43に供給し、直流電圧印加も含めて、上記1)の立ち上げ時と同様の条件で通水し、処理した。この結果15MΩ・cmの水質を得ることができた。   Simulated water was supplied to the desalting chamber 43 and treated by passing water under the same conditions as in the above 1), including application of DC voltage. As a result, a water quality of 15 MΩ · cm could be obtained.

模擬凝縮水の通水を約1週間継続させた。この間、良好な水質の純水を得た。   The simulated condensed water was passed for about one week. During this time, pure water with good water quality was obtained.

4)市水浄化、模擬凝縮水浄化の繰り返し
工程3)模擬凝縮水浄化の後、工程2)市水浄化と工程3)模擬凝縮水浄化を交互に実施し、延べ5回繰り返した。5回繰り返すことで、市水浄化で得られる純水の量は徐々に低下したが、5回目で得られた純水量は1回目の概ね75%程度であり実用的であった。
4) Repeated municipal water purification and simulated condensate purification Step 3) After simulated condensed water purification, step 2) municipal water purification and step 3) simulated condensed water purification were alternately performed and repeated a total of 5 times. By repeating 5 times, the amount of pure water obtained by purification of city water gradually decreased, but the amount of pure water obtained at the 5th time was about 75% of the first time and was practical.

なお、模擬凝縮水を浄化して得られた純水水質はほぼ一定の15MΩ・cm程度と良好であり、また電気脱イオン機能は良好で、連続して純水を得ることができた。   The quality of pure water obtained by purifying simulated condensate was as good as about 15 MΩ · cm, and the electrodeionization function was good, and pure water could be obtained continuously.

さらに、試験を継続したが、陰極室41、陰極31表面、陰極側濃縮室42内のイオン交換膜表面等へのスケールの析出は確認されなかった。   Furthermore, although the test was continued, deposition of scale on the surface of the ion exchange membrane in the cathode chamber 41, the cathode 31 surface, the cathode side concentration chamber 42, etc. was not confirmed.

[比較例]
バイポーラ膜33をカチオン交換膜に代えたこと以外は実施例と同じ構成の電気脱イオン装置を用い、同容量の市水、模擬凝縮水を供給して性能を調べた。
[Comparative example]
Except that the bipolar membrane 33 was replaced with a cation exchange membrane, the performance was examined by supplying the same volume of city water and simulated condensed water using an electrodeionization apparatus having the same configuration as in the example.

この結果、模擬凝縮水を浄化して得られた純水水質はほぼ一定の15MΩ・cm程度と良好であり、また電気脱イオン機能は良好で、連続して純水を得ることができた。   As a result, the quality of the pure water obtained by purifying the simulated condensed water was as good as about 15 MΩ · cm, the electrodeionization function was good, and pure water could be obtained continuously.

しかしながら、試験を継続したところ、陰極室内の陰極表面にスケールの析出が確認された。   However, when the test was continued, deposition of scale was confirmed on the cathode surface in the cathode chamber.

参考例に係る電気式脱イオン装置の概略的な縦断面図である。 It is a schematic longitudinal cross-sectional view of the electric deionization apparatus which concerns on a reference example . 図1の電気脱イオン装置を用いたイオン交換方式による純水製造運転例を示す系統図である。It is a systematic diagram which shows the example of a pure water manufacture driving | operation by the ion exchange system using the electrodeionization apparatus of FIG. 図1の電気脱イオン装置を用いたイオン交換方式による別の純水製造運転例を示す系統図である。It is a systematic diagram which shows another example of a pure water manufacturing operation by the ion exchange system using the electrodeionization apparatus of FIG. 図1の電気脱イオン装置を用いたイオン交換方式によるさらに別の純水製造運転例を示す系統図である。It is a systematic diagram which shows another example of a pure water manufacturing operation by the ion exchange system using the electrodeionization apparatus of FIG. 従来例に係る燃料電池発電装置の系統図である。It is a systematic diagram of the fuel cell power generator concerning a conventional example.

31 陰極
32 陽極
33 バイポーラ膜
34 第1のカチオン交換膜
34’ 第2のカチオン交換膜
35 アニオン交換膜
36 導電体
37 イオン交換樹脂
38 カチオン交換樹脂
39 アニオン交換樹脂
41 陰極室
42 陰極室側濃縮室
43 脱塩室
44 陽極室側濃縮室
45 陽極室
31 Cathode 32 Anode 33 Bipolar Membrane 34 First Cation Exchange Membrane 34 ′ Second Cation Exchange Membrane 35 Anion Exchange Membrane 36 Conductor 37 Ion Exchange Resin 38 Cation Exchange Resin 39 Anion Exchange Resin 41 Cathode Chamber 42 Concentration Chamber on the Cathode Chamber Side 43 Desalination chamber 44 Anode chamber side enrichment chamber 45 Anode chamber

Claims (9)

陽極と陰極との間にイオン交換膜を配置することにより、少なくとも陰極室、陰極側濃縮室、脱塩室及び陽極側濃縮室を設け、該陰極室に導電体を充填し、該陰極側濃縮室、該脱塩室及び該陽極側濃縮室にイオン交換体を充填してなる電気脱イオン装置を有する純水製造装置において、
該陰極室と該陰極室側濃縮室とを区画するイオン交換膜がバイポーラ膜又は一価カチオン選択透過性カチオン交換膜であり、
少なくとも一方の濃縮室に被処理水を通水し、該濃縮室内のイオン交換体によってイオン交換して該濃縮室から純水を流出させるイオン交換式純水製造運転モードの実行手段を備えたことを特徴とする純水製造装置。
By disposing an ion exchange membrane between the anode and the cathode, at least a cathode chamber, a cathode-side concentration chamber, a desalting chamber, and an anode-side concentration chamber are provided, the cathode chamber is filled with a conductor, and the cathode-side concentration is performed. In a pure water production apparatus having an electrodeionization apparatus comprising an ion exchanger filled in a chamber, the demineralization chamber and the anode-side concentration chamber,
The ion exchange membrane that partitions the cathode chamber and the cathode chamber-side concentration chamber is a bipolar membrane or a monovalent cation selective permeable cation exchange membrane,
Provided with means for executing an ion-exchange-type pure water production operation mode in which treated water is passed through at least one concentration chamber, ion exchange is performed by an ion exchanger in the concentration chamber, and pure water is discharged from the concentration chamber. An apparatus for producing pure water.
請求項において、前記イオン交換式純水製造運転モードの実行手段が通電停止するか、または電流密度を1000mA/dm以下に調整する通電制御手段を備えていることを特徴とする純水製造装置。 2. The pure water production according to claim 1 , wherein the means for executing the ion-exchange-type pure water production operation mode includes an energization control means for stopping energization or adjusting a current density to 1000 mA / dm 2 or less. apparatus. 請求項又はにおいて、前記イオン交換式純水製造運転モードにあっては、被処理水が前記陰極側濃縮室に通水され、次いで前記陽極側濃縮室に通水されることを特徴とする純水製造装置。 3. In the ion exchange type pure water production operation mode according to claim 1 , wherein water to be treated is passed through the cathode side concentrating chamber and then through the anode side concentrating chamber. Pure water production equipment. 請求項ないしのいずれか1項において、前記陰極室側濃縮室及び前記陽極室側濃縮室の少なくとも一方に、イオン交換体としてアニオン交換体とカチオン交換体との混床が充填されており、又は、前記陰極室側濃縮室及び前記陽極室側濃縮室の少なくとも一方に、上流側からカチオン交換体とアニオン交換体とがこの順に交互に充填されていることを特徴とする純水製造装置。 The mixed bed of an anion exchanger and a cation exchanger as an ion exchanger is filled in at least one of the cathode chamber side concentrating chamber and the anode chamber side concentrating chamber according to any one of claims 1 to 3. Alternatively, at least one of the cathode chamber side concentrating chamber and the anode chamber side concentrating chamber is filled with a cation exchanger and an anion exchanger alternately in this order from the upstream side. . 請求項1ないしのいずれか1項において、前記導電体は、カチオン交換体又は耐食性導電性金属体であることを特徴とする純水製造装置。 In any one of claims 1 to 4, wherein the conductor includes a pure water production apparatus which is a cation exchanger or corrosion resistant conductive metal body. 陽極と陰極との間にイオン交換膜を配置することにより、少なくとも陰極室、陰極側濃縮室、脱塩室及び陽極側濃縮室を設け、該陰極室に導電体を充填し、該陰極側濃縮室、該脱塩室及び該陽極側濃縮室にイオン交換体を充填してなる電気脱イオン装置を用いて純水を製造する方法において、
該陰極室と該陰極室側濃縮室とを区画するイオン交換膜がバイポーラ膜又は一価カチオン選択透過性カチオン交換膜であり、
少なくとも一方の濃縮室に被処理水を通水し、該濃縮室内のイオン交換体によってイオン交換して該濃縮室から純水を流出させるイオン交換式純水製造運転を行うことを特徴とする純水製造方法。
By disposing an ion exchange membrane between the anode and the cathode, at least a cathode chamber, a cathode-side concentration chamber, a desalting chamber, and an anode-side concentration chamber are provided, the cathode chamber is filled with a conductor, and the cathode-side concentration is performed. A method for producing pure water using an electrodeionization apparatus comprising a chamber, the demineralization chamber and the anode-side concentration chamber filled with an ion exchanger,
The ion exchange membrane that partitions the cathode chamber and the cathode chamber-side concentration chamber is a bipolar membrane or a monovalent cation selective permeable cation exchange membrane,
Purified water is supplied through at least one concentration chamber, ion exchange is performed by an ion exchanger in the concentration chamber, and pure water is discharged from the concentration chamber. Water production method.
請求項において、前記イオン交換式純水製造運転が通電停止されているか、または電流密度が1000mA/dm以下になるように通電制御された状態で実行されることを特徴とする純水製造方法。 7. The pure water production according to claim 6 , wherein the ion exchange type pure water production operation is performed in a state where energization is stopped or the energization is controlled so that the current density is 1000 mA / dm 2 or less. Method. 請求項6又は7において、前記被処理水は、市水、井水、又は工業用水を除濁処理及び脱塩素処理した水であることを特徴とする純水製造方法。 8. The pure water manufacturing method according to claim 6 or 7 , wherein the water to be treated is city water, well water, or industrial water that has been subjected to turbidity treatment and dechlorination treatment. 請求項ないしのいずれか1項において、前記電気脱イオン装置は燃料電池発電装置の回収水の純化用であり、
該燃料電池発電装置の起動時に該電気脱イオン装置によってイオン交換式純水製造を行い、製造した純水を燃料電池発電装置に供給することを特徴とする純水製造方法。
In any one of Claims 6 thru | or 8 , the said electrodeionization apparatus is for the purification of the recovered water of a fuel cell power generation apparatus,
A method for producing pure water, comprising producing ion-exchanged pure water by the electrodeionization device when the fuel cell power generator is started up, and supplying the produced pure water to the fuel cell power generator.
JP2007055904A 2007-03-06 2007-03-06 Pure water production method and apparatus Expired - Fee Related JP4867720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055904A JP4867720B2 (en) 2007-03-06 2007-03-06 Pure water production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055904A JP4867720B2 (en) 2007-03-06 2007-03-06 Pure water production method and apparatus

Publications (2)

Publication Number Publication Date
JP2008212871A JP2008212871A (en) 2008-09-18
JP4867720B2 true JP4867720B2 (en) 2012-02-01

Family

ID=39833550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055904A Expired - Fee Related JP4867720B2 (en) 2007-03-06 2007-03-06 Pure water production method and apparatus

Country Status (1)

Country Link
JP (1) JP4867720B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954926B2 (en) * 2008-03-18 2012-06-20 富士電機株式会社 Water treatment device and fuel cell power generation device
JP5116710B2 (en) * 2009-03-10 2013-01-09 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5282013B2 (en) * 2009-11-17 2013-09-04 オルガノ株式会社 Electric deionized water production system for fuel cells
JP5691486B2 (en) * 2010-12-17 2015-04-01 栗田工業株式会社 Pure water production equipment
JP2012210593A (en) * 2011-03-31 2012-11-01 Kurita Water Ind Ltd Ultrapure water producing system and ultrapure water producing method
CN102381758B (en) * 2011-06-02 2013-05-29 中国科学院城市环境研究所 Water treatment process and device for synchronously producing electricity and removing nitrate from underground water
CN102372398B (en) * 2011-08-31 2013-07-03 中国科学院城市环境研究所 Nitrogen-containing sewage treatment process and device for synchronously producing electricity and recovering nitrogen element
CN103058425B (en) * 2011-10-21 2015-07-29 通用电气公司 desalination system and method
JP6011238B2 (en) * 2012-10-18 2016-10-19 栗田工業株式会社 Method and apparatus for regenerating amine liquid
GB201602484D0 (en) 2016-02-11 2016-03-30 Fujifilm Mfg Europe Bv Desalination
JP7064304B2 (en) * 2017-09-25 2022-05-10 オルガノ株式会社 Measurement method and measurement system for conductivity of decationized water
CN113401983A (en) * 2020-03-16 2021-09-17 佛山市云米电器科技有限公司 Water purification method and separation device
CN111233090A (en) * 2020-03-16 2020-06-05 佛山市云米电器科技有限公司 One-way anion mixed exchange type water purification system and method and water purifier
JP7425778B6 (en) 2021-11-15 2024-03-11 浩義 井上 air filter

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171353A (en) * 1993-12-17 1995-07-11 Tokuyama Corp Electric dialysis
JP3518112B2 (en) * 1995-12-06 2004-04-12 東京瓦斯株式会社 Fuel cell water treatment equipment
JP2000504273A (en) * 1996-11-12 2000-04-11 ユナイテッド・ステイツ・フィルター・コーポレーション Electrodeionization apparatus and method
DE19752111C1 (en) * 1997-11-25 1999-02-11 Forschungszentrum Juelich Gmbh Water softener process and assembly
JP3707599B2 (en) * 1999-12-20 2005-10-19 富士電機ホールディングス株式会社 Water treatment device for fuel cell power generator and operation method thereof
JP2002143854A (en) * 2000-11-08 2002-05-21 Matsushita Electric Ind Co Ltd Electrochemical water treating device
JP3864891B2 (en) * 2002-07-01 2007-01-10 栗田工業株式会社 Electric deionizer
JP3966103B2 (en) * 2002-07-05 2007-08-29 栗田工業株式会社 Operation method of electrodeionization equipment
JP3794354B2 (en) * 2002-07-08 2006-07-05 栗田工業株式会社 Electrodeionization equipment
JP3956836B2 (en) * 2002-11-15 2007-08-08 栗田工業株式会社 Electrodeionization equipment
JP2008161761A (en) * 2006-12-27 2008-07-17 Kurita Water Ind Ltd Pure water making method and pure water making apparatus
JP2008161760A (en) * 2006-12-27 2008-07-17 Kurita Water Ind Ltd Pure water making method and pure water making apparatus

Also Published As

Publication number Publication date
JP2008212871A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4867720B2 (en) Pure water production method and apparatus
KR20090094161A (en) Method and apparatus for producing pure water
CN1537078A (en) Electric demineralizer
KR100697049B1 (en) Apparatus for forming ion-exchanged water and method for regenerating ion exchange resin therein
JP2004351317A (en) Electrochemical liquid treatment apparatus
JP2004216302A (en) Electrodeionizing apparatus and water treatment apparatus
JP5295927B2 (en) Electric deionized water production equipment
JP2008161760A (en) Pure water making method and pure water making apparatus
JP5145305B2 (en) Electric deionized water production equipment
JP5695926B2 (en) Electric deionized water production equipment
US9550687B2 (en) Electrodeionization module and apparatus
CN113015702B (en) Pure water production apparatus and method for operating same
JP2008161761A (en) Pure water making method and pure water making apparatus
JP3707333B2 (en) Water treatment system for fuel cell power generator
JP4853610B2 (en) Apparatus for regenerating plating solution containing sulfate ion and method for removing sulfate ion
JP2004033977A (en) Operation method of electrically deionizing apparatus
KR101892692B1 (en) Hybrid power generation system using reverse electrodialysis device and fuel cell
JP2006051423A (en) Electric deionization system, electric deionization method, and pure water production device
JP2011121027A (en) Electric type deionized water producing apparatus
JP4662277B2 (en) Electrodeionization equipment
JP3729348B2 (en) Electric regenerative desalination equipment
JP5286851B2 (en) Fuel cell power generator
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP5691486B2 (en) Pure water production equipment
WO1998051620A1 (en) Purification of a liquid stream

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees