JP3707333B2 - Water treatment system for fuel cell power generator - Google Patents

Water treatment system for fuel cell power generator Download PDF

Info

Publication number
JP3707333B2
JP3707333B2 JP2000044604A JP2000044604A JP3707333B2 JP 3707333 B2 JP3707333 B2 JP 3707333B2 JP 2000044604 A JP2000044604 A JP 2000044604A JP 2000044604 A JP2000044604 A JP 2000044604A JP 3707333 B2 JP3707333 B2 JP 3707333B2
Authority
JP
Japan
Prior art keywords
water
chamber
fuel cell
electrode
cell power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000044604A
Other languages
Japanese (ja)
Other versions
JP2001236981A (en
Inventor
茂政 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2000044604A priority Critical patent/JP3707333B2/en
Publication of JP2001236981A publication Critical patent/JP2001236981A/en
Application granted granted Critical
Publication of JP3707333B2 publication Critical patent/JP3707333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池の生成水を冷却水へと処理する燃料電池発電装置用水処理システム、特に電気脱イオン装置を用いた水処理システムに関する。
【0002】
【従来の技術】
図3は、従来のこの種の燃料電池発電装置用水処理システムの基本構成を示す系統図である。図において、1は、生成水を含む排出ガスを導入し、含まれる水分を凝縮させて回収する水回収装置であり、燃料電池本体からの排ガスや改質器からの燃焼排ガスが排出ガスとして取込まれ、これらに含まれる反応生成水や燃焼生成水が回収される。2はストレーナ、3は回収水を電気脱イオン装置14へと送る回収水ポンプ、4は回収水を冷却する熱交換器、5は回収水に含まれるゴミやバクテリアを除去する前処理フィルターである。水回収装置1で回収された回収水はこれらを経て、電気脱イオン装置14へと送られる。
【0003】
電気脱イオン装置14には脱イオン室D、濃縮室C、および電極室Eが備えられている。脱イオン室Dに原水を供給し、直流電圧を加えると、原水に含まれる陰イオンは陽極側に、また陽イオンは陰極側に移動し、イオン交換膜の作用によって選択的に膜を通過して濃縮室Cへと移動する。これによって原水は脱イオン水と濃縮水に分離される。さらに、脱イオン室Dの後段では、水の電気分解によって生じたH+ イオン、およびOH- イオンがイオン交換樹脂の交換基に付着するので、樹脂が常に再生された状態に保持され、脱イオン室Dより排出される水は純水として取り出される。
【0004】
図3の燃料電池発電装置用水処理システムでは、水回収装置1で回収された回収水が、脱イオン水流量調節弁7によって流量調整されて電気脱イオン装置14の脱イオン室Dへと供給され、純化されて脱イオン室Dより排出される脱イオン水が、電池冷却水として電池冷却水補給水弁13を介して図示しない燃料電池発電装置の電池冷却水系へ供給される。濃縮室Cより排出された濃縮水の一部は、濃縮が過大となるのを防止するために、濃縮水排出流量調節弁17、濃縮水排出流量計18、濃縮水排出止弁19を経て系外へ排出される。濃縮水の残部は、濃縮水流量調節弁8を経て送られる回収水の一部と混合されたのち、濃縮水ポンプ6によって、濃縮水圧力調節弁9を経て再び濃縮室Cへ、また電極水流量調節弁15および電極水流量計16を経て電極室Eへと並列に供給されている。なお、濃縮水ポンプ6に至る濃縮水の系統には回収水の逆流防止のための逆止弁20が備えられている。濃縮水ポンプ6によって濃縮室Cへ送られた水は、陰イオンおよび陽イオンを取込んで濃縮水となる。また、電極室Eへ送られた水は、陽極および陰極付近において生じる電解生成物を電気脱イオン装置14の外へと取り出す電極水として利用される。電極室Eより排出される電極水は電極水排出弁12を経て全量系外へ排出されるよう構成されている。
【0005】
【発明が解決しようとする課題】
電気脱イオン装置を組み込んだ従来の燃料電池発電装置用水処理システムは、図3のごとくシステムを構成することによって、回収水の純化を行い、電池冷却水を得ている。しかしながら、このように電気脱イオン装置を組み込んだ水処理システムにおいても、なお以下のごとき問題点がある。
【0006】
すなわち、上記のごとき電気脱イオン装置を組み込んだシステムは、電気脱イオン装置14の脱イオン室D、濃縮室C、および電極室Eに供給される流量をそれぞれ適正量に制御するために、図3に見られるように、多数の部品を組み込んだ複雑な配管系統により構成されている。このため、回収水を純化する他の装置として知られているイオン交換樹脂槽に比較して電気脱イオン装置は小型、コンパクトであるにもかかわらず、電気脱イオン装置を組み込んだ水処理システム全体としては、イオン交換樹脂槽を組み込んだ水処理システムに比べて必ずしもコンパクトな構成ではなく、コストの低減も十分でない。
【0007】
本発明の目的は、上記のごとき電気脱イオン装置を組み込んだ従来の燃料電池発電装置用水処理システムの問題点を解消し、組み込まれる部品数が少なく、配管系統が単純で、コンパクトで、低コストの水処理システムを提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明においては、
燃料電池で生じた生成水を水回収装置で回収し、得られた回収水をポンプにより電気脱イオン装置の脱イオン室と濃縮室に送って脱イオン水と濃縮水に分離し、脱イオン水を燃料電池発電装置の冷却水とする燃料電池発電装置用水処理システムにおいて、
(1)電気脱イオン装置の濃縮室から排出される濃縮水の全量をこの電気脱イオン装置の電極室へと導入し、電極室より出る電極水を系外へ排出するよう構成することとし、
(2)さらに(1)のシステムにおいて、流量調節弁と濃縮水ポンプと圧力調整弁を介して回収水を濃縮室へ供給することとする。
【0009】
(3)あるいは、(1)のシステムにおいて、流量調節弁と濃縮水ポンプと圧力調整弁を介して回収水を濃縮室へ供給することとする。
上記(1)のごとく、濃縮室から排出される濃縮水の全量を電極室へ導入し、電極室より出る電極水を系外へ排出するよう構成すれば、濃縮水は濃縮室を流れた後、電極水として直列に電極室を流れ、系外に排出されるので、電極室の供給流量は濃縮室の流量により定まる。したがって、濃縮水の流量と電極水の流量を個別に制御していた従来の水処理システムにおいてはそれぞれの系統に流量調節弁、流量計、止弁を組み込む必要があったが、上記(1)のごとくとすれば、1系統のみ流量調節弁、流量計、止弁を組み込めばよく、組み込み部品の数が少なくなる。これによって、コンパクトな構成が可能となり、コストも低減する。
【0010】
なお、電気脱イオン装置においては、電極室に供給される流量を濃縮室に供給される流量の 1/10程度に設定して運転されるのが一般的であるが、上記のごとく増量しても電気脱イオン装置の性能上特に問題はない。
さらに上記(2)のごとくとすれば、適量の濃縮水が、流量調節弁で流量調整され、圧力調整弁で圧力調整され、濃縮水ポンプによって濃縮室に供給され、引き続いて電極室を通流することとなる。
【0011】
また上記(3)のごとくとすれば、適量の濃縮水が、流量調節弁で流量調整され、回収水ポンプによって濃縮室に供給され、引き続いて電極室を通流することとなる。本構成では上記の濃縮水ポンプや圧力調整弁が不要となるので、上記の(2)の構成に比べて組み込み部品の数が少なくなり、よりコンパクトな構成が可能となる。
【0012】
【発明の実施の形態】
<実施例1>
図1は、本発明の燃料電池発電装置用水処理システムの第1の実施例の基本構成を示す系統図である。本実施例の構成においても、図3に示した従来例と同様に、水回収装置1で回収された回収水が、回収水ポンプ3と脱イオン水流量調節弁7により流量調整されて電気脱イオン装置14の脱イオン室Dへと供給され、脱イオン室Dで純化された脱イオン水が、電池冷却水補給水弁13を介して図示しない燃料電池発電装置の電池冷却水系へ供給される。
【0013】
本実施例の構成の図3に示した従来例との相違点は、電気脱イオン装置14の濃縮室Cおよび電極室Eへ供給する濃縮水および電極水の系統、ならびにこれらから排出される水の系統の構成にある。すなわち、従来例では、濃縮室Cより排出された水の一部が回収水の一部に混合され、この混合水が濃縮室Cと電極室Eに並列に供給されていたのに対して、本実施例の構成では、濃縮室Cより排出された水の全量が電極室Eへと導入され、電極室Eより排出される電極水を系外へ排出するよう構成されており、濃縮室Cの濃縮水と電極室Eの電極水を直列に流す構成である。濃縮室Cへ供給する濃縮水には、回収水の一部が、手動の濃縮水流量調節弁8で流量調節され、濃縮水ポンプ6で駆動され、手動の濃縮水圧力調節弁9で圧力調節されて供給される。また、電極室Eの外部への排出ラインには、電極水調節弁10、電極水流量計11、および電極水排出弁12が組み込まれている。
【0014】
本構成は、上記のように、濃縮室Cの濃縮水と電極室Eの電極水を直列に流れる構成としたので、濃縮水の系統の流量を制御すれば電極水の流量も制御されることとなり、系に組み込むに必要な流量制御部品の個数が削減された。
<実施例2>
図2は、本発明の燃料電池発電装置用水処理システムの第2の実施例の基本構成を示す系統図である。本実施例の構成も、水回収装置1の回収水が電気脱イオン装置14の脱イオン室Dへと供給されて純化され、電池冷却水補給水弁13を介して燃料電池発電装置の電池冷却水系へ供給される構成であり、さらに、実施例1と同様に、濃縮室Cより排出される濃縮水を電極室Eの電極水として直列に流す構成である。本実施例の特徴は、実施例1の構成において用いられていた濃縮水ポンプ6と濃縮水圧力調節弁9を削除し、濃縮水の供給を濃縮水ポンプ6による供給から回収水ポンプ3の駆動力を用いて供給するように変更した点にある。これによって電気脱イオン装置14の濃縮水と電極水の系統がさらに簡略化され、コンパクトに構成されることとなった。
【0015】
【発明の効果】
上述のように、本発明によれば、
水回収装置で回収した回収水を電気脱イオン装置の脱イオン室と濃縮室に送って脱イオン水と濃縮水に分離し、脱イオン水を燃料電池発電装置の冷却水とする燃料電池発電装置用水処理システムを、請求項1に記載のごとく、電気脱イオン装置の濃縮室から排出される濃縮水の全量をこの電気脱イオン装置の電極室へと導入し、電極室より出る電極水を系外へ排出するよう構成することとし、特に請求項2あるいは請求項3に記載のごとく構成することとしたので、組み込まれる部品数が少なく、かつ配管系統が単純となり、コンパクトで、低コストの水処理システムが得られることとなった。
【図面の簡単な説明】
【図1】本発明の燃料電池発電装置用水処理システムの第1の実施例の基本構成を示す系統図
【図2】本発明の燃料電池発電装置用水処理システムの第2の実施例の基本構成を示す系統図
【図3】従来のこの種の燃料電池発電装置用水処理システムの基本構成を示す系統図
【符号の説明】
1 水回収装置
2 ストレーナ
3 回収水ポンプ
4 熱交換器
5 前処理フィルター
6 濃縮水ポンプ
7 脱イオン水流量調節弁
8 濃縮水流量調節弁
9 濃縮水圧力調節弁
10 電極水調節弁
11 電極水流量計
12 電極水排出弁
13 電池冷却水補給水弁
14 電気脱イオン装置
D 脱イオン室(電気脱イオン装置)
C 濃縮室(電気脱イオン装置)
E 電極室(電気脱イオン装置)
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a water treatment system for a fuel cell power generator that treats generated water of a fuel cell into cooling water, and more particularly to a water treatment system using an electrodeionization device.
[0002]
[Prior art]
FIG. 3 is a system diagram showing a basic configuration of this type of conventional water treatment system for a fuel cell power generator. In the figure, reference numeral 1 denotes a water recovery device that introduces exhaust gas containing produced water and condenses and recovers the contained water, and collects exhaust gas from the fuel cell body and combustion exhaust gas from the reformer as exhaust gas. The reaction product water and combustion product water contained therein are recovered. 2 is a strainer, 3 is a recovered water pump that sends recovered water to the electrodeionization device 14, 4 is a heat exchanger that cools the recovered water, and 5 is a pretreatment filter that removes dust and bacteria contained in the recovered water. . The recovered water recovered by the water recovery device 1 is sent to the electrodeionization device 14 through these.
[0003]
The electrodeionization device 14 includes a deionization chamber D, a concentration chamber C, and an electrode chamber E. When raw water is supplied to the deionization chamber D and a DC voltage is applied, the anion contained in the raw water moves to the anode side and the cation moves to the cathode side, and selectively passes through the membrane by the action of the ion exchange membrane. To the concentrating chamber C. As a result, the raw water is separated into deionized water and concentrated water. Further, in the subsequent stage of the deionization chamber D, H + ions and OH ions generated by electrolysis of water adhere to the exchange groups of the ion exchange resin, so that the resin is always kept in a regenerated state and deionized. The water discharged from the chamber D is taken out as pure water.
[0004]
In the water treatment system for a fuel cell power generator of FIG. 3, the recovered water recovered by the water recovery device 1 is adjusted in flow rate by the deionized water flow rate adjustment valve 7 and supplied to the deionization chamber D of the electrodeionization device 14. The deionized water purified and discharged from the deionization chamber D is supplied as battery cooling water to the battery cooling water system of the fuel cell power generator (not shown) via the battery cooling water replenishment water valve 13. A part of the concentrated water discharged from the concentrating chamber C passes through the concentrated water discharge flow rate adjustment valve 17, the concentrated water discharge flow meter 18, and the concentrated water discharge stop valve 19 in order to prevent excessive concentration. It is discharged outside. The remaining portion of the concentrated water is mixed with a part of the recovered water sent through the concentrated water flow rate control valve 8, and then is again fed to the concentration chamber C through the concentrated water pressure control valve 9 by the concentrated water pump 6 and to the electrode water. It is supplied in parallel to the electrode chamber E via the flow rate control valve 15 and the electrode water flow meter 16. The concentrated water system leading to the concentrated water pump 6 is provided with a check valve 20 for preventing the backflow of recovered water. The water sent to the concentration chamber C by the concentrated water pump 6 takes in anions and cations and becomes concentrated water. Further, the water sent to the electrode chamber E is used as electrode water for taking out electrolytic products generated in the vicinity of the anode and the cathode out of the electrodeionization apparatus 14. The electrode water discharged from the electrode chamber E is configured to be discharged out of the system through the electrode water discharge valve 12.
[0005]
[Problems to be solved by the invention]
A conventional water treatment system for a fuel cell power generator incorporating an electrodeionization apparatus is configured as shown in FIG. 3 to purify recovered water and obtain battery cooling water. However, the water treatment system incorporating the electrodeionization apparatus as described above still has the following problems.
[0006]
That is, a system incorporating an electrodeionization apparatus as described above is required to control the flow rates supplied to the deionization chamber D, the concentration chamber C, and the electrode chamber E of the electrodeionization apparatus 14 to appropriate amounts. As shown in FIG. 3, it is composed of a complicated piping system incorporating a large number of parts. For this reason, although the electrodeionization device is small and compact compared to ion exchange resin tanks known as other devices for purifying recovered water, the entire water treatment system incorporating the electrodeionization device As compared with a water treatment system incorporating an ion exchange resin tank, the structure is not necessarily compact, and cost reduction is not sufficient.
[0007]
The object of the present invention is to solve the problems of the conventional water treatment system for fuel cell power generators incorporating the above-mentioned electrodeionization device, and to incorporate a small number of parts, a simple piping system, compact and low cost. Is to provide a water treatment system.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention,
The generated water generated in the fuel cell is recovered by a water recovery device, and the recovered water obtained is sent to a deionization chamber and a concentration chamber of an electrodeionization device by a pump to be separated into deionized water and concentrated water. In the water treatment system for a fuel cell power generation device using the cooling water of the fuel cell power generation device as
(1) The entire amount of concentrated water discharged from the concentration chamber of the electrodeionization apparatus is introduced into the electrode chamber of the electrodeionization apparatus, and the electrode water discharged from the electrode chamber is discharged out of the system.
(2) Further, in the system of (1), the recovered water is supplied to the concentrating chamber via the flow rate adjusting valve, the concentrated water pump, and the pressure adjusting valve.
[0009]
In the system of (3) or (1), the recovered water is supplied to the concentrating chamber via the flow rate adjusting valve, the concentrated water pump, and the pressure adjusting valve.
As described in (1) above, if the entire amount of concentrated water discharged from the concentration chamber is introduced into the electrode chamber and the electrode water discharged from the electrode chamber is discharged out of the system, the concentrated water flows after flowing through the concentration chamber. Since the electrode water flows in series as electrode water and is discharged out of the system, the supply flow rate of the electrode chamber is determined by the flow rate of the concentration chamber. Therefore, in the conventional water treatment system in which the flow rate of the concentrated water and the flow rate of the electrode water are individually controlled, it is necessary to incorporate a flow control valve, a flow meter, and a stop valve in each system. In this case, only one system needs to incorporate a flow control valve, a flow meter, and a stop valve, and the number of built-in parts is reduced. This enables a compact configuration and reduces costs.
[0010]
An electrodeionization apparatus is generally operated with the flow rate supplied to the electrode chamber set to about 1/10 of the flow rate supplied to the concentrating chamber. However, there is no particular problem with the performance of the electrodeionization apparatus.
Further, as described in (2) above, an appropriate amount of concentrated water is adjusted in flow rate by the flow rate adjustment valve, pressure is adjusted by the pressure adjustment valve, supplied to the concentration chamber by the concentrated water pump, and then passed through the electrode chamber. Will be.
[0011]
Further, as described in (3) above, an appropriate amount of concentrated water is adjusted in flow rate by the flow rate control valve, supplied to the concentration chamber by the recovered water pump, and then flows through the electrode chamber. In this configuration, the concentrated water pump and the pressure control valve are not required, and therefore, the number of built-in parts is reduced as compared with the configuration (2), and a more compact configuration is possible.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
<Example 1>
FIG. 1 is a system diagram showing a basic configuration of a first embodiment of a water treatment system for a fuel cell power generator according to the present invention. Also in the configuration of this embodiment, the recovered water recovered by the water recovery apparatus 1 is adjusted in flow rate by the recovered water pump 3 and the deionized water flow rate control valve 7 as in the conventional example shown in FIG. The deionized water supplied to the deionization chamber D of the ion device 14 and purified in the deionization chamber D is supplied to the battery cooling water system of the fuel cell power generator (not shown) via the battery cooling water replenishment water valve 13. .
[0013]
3 differs from the conventional example shown in FIG. 3 in the configuration of the concentrated water and electrode water supplied to the concentration chamber C and the electrode chamber E of the electrodeionization apparatus 14 and the water discharged from these. It is in the structure of the system. That is, in the conventional example, a part of the water discharged from the concentration chamber C is mixed with a part of the recovered water, and this mixed water is supplied in parallel to the concentration chamber C and the electrode chamber E. In the configuration of the present embodiment, the entire amount of water discharged from the concentration chamber C is introduced into the electrode chamber E, and the electrode water discharged from the electrode chamber E is discharged out of the system. The concentrated water and the electrode water in the electrode chamber E flow in series. In the concentrated water supplied to the concentrating chamber C, a part of the recovered water is adjusted by the manual concentrated water flow control valve 8 and driven by the concentrated water pump 6, and the pressure is adjusted by the manual concentrated water pressure control valve 9. Supplied. In addition, an electrode water adjustment valve 10, an electrode water flow meter 11, and an electrode water discharge valve 12 are incorporated in a discharge line to the outside of the electrode chamber E.
[0014]
As described above, since the concentrated water in the concentrating chamber C and the electrode water in the electrode chamber E flow in series as described above, the flow rate of the electrode water can be controlled by controlling the flow rate of the concentrated water system. As a result, the number of flow control parts required for incorporation into the system has been reduced.
<Example 2>
FIG. 2 is a system diagram showing a basic configuration of a second embodiment of the water treatment system for a fuel cell power generator according to the present invention. Also in the configuration of the present embodiment, the recovered water of the water recovery device 1 is supplied to the deionization chamber D of the electrodeionization device 14 for purification, and the battery cooling of the fuel cell power generation device is performed via the battery cooling water replenishment water valve 13. Further, the concentrated water discharged from the concentration chamber C is flowed in series as the electrode water in the electrode chamber E as in the first embodiment. The feature of the present embodiment is that the concentrated water pump 6 and the concentrated water pressure control valve 9 used in the configuration of the first embodiment are deleted, and the supply of the concentrated water is driven from the supply by the concentrated water pump 6 to drive the recovered water pump 3. It is in the point which changed so that it might supply using force. As a result, the system of concentrated water and electrode water of the electrodeionization device 14 is further simplified and configured compactly.
[0015]
【The invention's effect】
As mentioned above, according to the present invention,
The fuel cell power generation device that collects the recovered water collected by the water recovery device to the deionization chamber and concentration chamber of the electrodeionization device and separates it into deionized water and concentrated water, and uses the deionized water as cooling water for the fuel cell power generation device In the water treatment system according to claim 1, the entire amount of concentrated water discharged from the concentration chamber of the electrodeionization apparatus is introduced into the electrode chamber of the electrodeionization apparatus, and the electrode water discharged from the electrode chamber is used as the system. Since it is configured to discharge to the outside, in particular, it is configured as described in claim 2 or claim 3, so that the number of parts to be incorporated is small, the piping system is simple, compact, and low cost water. A processing system was obtained.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a basic configuration of a first embodiment of a water treatment system for a fuel cell power generator according to the present invention. FIG. 2 is a basic configuration of a second embodiment of a water treatment system for a fuel cell power generator according to the present invention. Fig. 3 is a system diagram showing the basic configuration of a conventional water treatment system for a fuel cell power generator of this type.
1 Water recovery device 2 Strainer 3 Recovery water pump 4 Heat exchanger 5 Pretreatment filter 6 Concentrated water pump 7 Deionized water flow rate control valve 8 Concentrated water flow rate control valve 9 Concentrated water pressure control valve 10 Electrode water control valve 11 Electrode water flow rate Total 12 Electrode water discharge valve 13 Battery cooling water replenishment water valve 14 Electrodeionization device D Deionization chamber (Electrodeionization device)
C Concentration chamber (Electrodeionization equipment)
E Electrode chamber (Electrodeionization equipment)

Claims (3)

燃料電池で生じた生成水を水回収装置で回収し、得られた回収水をポンプにより電気脱イオン装置の脱イオン室と濃縮室に送って脱イオン水と濃縮水に分離し、脱イオン水を燃料電池発電装置の冷却水とする燃料電池発電装置用水処理システムにおいて、
電気脱イオン装置の濃縮室から排出される濃縮水の全量が該電気脱イオン装置の電極室へ導入され、該電極室より出る電極水が系外へ排出されるよう構成されていることを特徴とする燃料電池発電装置用水処理システム。
The generated water generated in the fuel cell is recovered by a water recovery device, and the recovered water obtained is sent to a deionization chamber and a concentration chamber of an electrodeionization device by a pump to be separated into deionized water and concentrated water. In the water treatment system for a fuel cell power generation device using the cooling water of the fuel cell power generation device as
The total amount of concentrated water discharged from the concentration chamber of the electrodeionization apparatus is introduced into the electrode chamber of the electrodeionization apparatus, and the electrode water exiting from the electrode chamber is discharged outside the system. Water treatment system for fuel cell power generator.
ポンプにより送られた回収水が流量調節弁を介して濃縮室へ供給されていることを特徴とする請求項1に記載の燃料電池発電装置用水処理システム。The water treatment system for a fuel cell power generator according to claim 1, wherein the recovered water sent by the pump is supplied to the concentrating chamber via a flow rate control valve. ポンプにより送られた回収水が流量調節弁と濃縮水ポンプと圧力調整弁を介して濃縮室へ供給されていることを特徴とする請求項1に記載の燃料電池発電装置用水処理システム。2. The water treatment system for a fuel cell power generator according to claim 1, wherein the recovered water sent by the pump is supplied to the concentration chamber via a flow rate control valve, a concentrated water pump, and a pressure control valve.
JP2000044604A 2000-02-22 2000-02-22 Water treatment system for fuel cell power generator Expired - Fee Related JP3707333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000044604A JP3707333B2 (en) 2000-02-22 2000-02-22 Water treatment system for fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000044604A JP3707333B2 (en) 2000-02-22 2000-02-22 Water treatment system for fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2001236981A JP2001236981A (en) 2001-08-31
JP3707333B2 true JP3707333B2 (en) 2005-10-19

Family

ID=18567339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000044604A Expired - Fee Related JP3707333B2 (en) 2000-02-22 2000-02-22 Water treatment system for fuel cell power generator

Country Status (1)

Country Link
JP (1) JP3707333B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10104771A1 (en) 2001-02-02 2002-08-08 Basf Ag Method and device for deionizing cooling media for fuel cells
JP2003109642A (en) * 2001-09-27 2003-04-11 Kurita Water Ind Ltd Water-treatment device
US8377279B2 (en) * 2003-11-13 2013-02-19 Siemens Industry, Inc. Water treatment system and method
JP4713079B2 (en) * 2003-12-18 2011-06-29 東芝燃料電池システム株式会社 Fuel cell power generation system and operation method thereof
JP5196110B2 (en) * 2007-06-04 2013-05-15 栗田工業株式会社 Electrodeionization apparatus and operation method of electrodeionization apparatus
JP5353034B2 (en) * 2008-03-14 2013-11-27 富士電機株式会社 Fuel cell power generator
JP4978590B2 (en) * 2008-09-01 2012-07-18 三浦工業株式会社 Pure water production equipment
JP5184401B2 (en) * 2009-02-25 2013-04-17 野村マイクロ・サイエンス株式会社 Pure water production method and pure water production apparatus
KR20120064544A (en) * 2010-12-09 2012-06-19 현대자동차주식회사 Apparatus for removing ions in cooling water of fuel cell vehicle

Also Published As

Publication number Publication date
JP2001236981A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP3826690B2 (en) Electrodeionization device and pure water production device
JP4867720B2 (en) Pure water production method and apparatus
JP3518112B2 (en) Fuel cell water treatment equipment
JP3707333B2 (en) Water treatment system for fuel cell power generator
TWI748318B (en) Water purifying apparatus and method of operating same
JP4045658B2 (en) Pure water production method
WO2010006310A1 (en) Water purification process
JP5295927B2 (en) Electric deionized water production equipment
CN109248565A (en) A kind of salt water reclamation system based on Bipolar Membrane
JP4461553B2 (en) Water treatment device for fuel cell
JP5145305B2 (en) Electric deionized water production equipment
JP2008161760A (en) Pure water making method and pure water making apparatus
JP3773178B2 (en) Electric deionized water production apparatus and production method
JP3729349B2 (en) Electric regenerative desalination equipment
JP2004033977A (en) Operation method of electrically deionizing apparatus
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP2011121027A (en) Electric type deionized water producing apparatus
JPH0963612A (en) Water-cooled fuel cell power generating apparatus
JP3480661B2 (en) Water treatment method for electric deionized water production equipment
JP4662277B2 (en) Electrodeionization equipment
JP2007258026A (en) Water treatment system of fuel cell device
JP2008161761A (en) Pure water making method and pure water making apparatus
JP2007063617A (en) Apparatus for regenerating plating solution containing sulfate ion and method for removing sulfate ion
JPH06296966A (en) Decarbonating device and pure water producer assembled with the device
JP6720428B1 (en) Pure water production apparatus and operating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees