JP2008161761A - Pure water making method and pure water making apparatus - Google Patents

Pure water making method and pure water making apparatus Download PDF

Info

Publication number
JP2008161761A
JP2008161761A JP2006351565A JP2006351565A JP2008161761A JP 2008161761 A JP2008161761 A JP 2008161761A JP 2006351565 A JP2006351565 A JP 2006351565A JP 2006351565 A JP2006351565 A JP 2006351565A JP 2008161761 A JP2008161761 A JP 2008161761A
Authority
JP
Japan
Prior art keywords
chamber
water
pure water
exchange membrane
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006351565A
Other languages
Japanese (ja)
Inventor
Yoshiteru Misumi
好輝 三角
Kiminobu Osawa
公伸 大澤
Shigeaki Sato
重明 佐藤
Hiroshi Iizuka
洋 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006351565A priority Critical patent/JP2008161761A/en
Priority to PCT/JP2007/074294 priority patent/WO2008078602A1/en
Priority to CA002673928A priority patent/CA2673928A1/en
Priority to EP07850782A priority patent/EP2112125A4/en
Priority to KR1020097015468A priority patent/KR20090094161A/en
Publication of JP2008161761A publication Critical patent/JP2008161761A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To perform both the production of pure water due to electric deionization and the production of pure water due to ion exchange using an electric deionizing apparatus. <P>SOLUTION: In a pure water making apparatus having the electric deionizing device constituted by providing a concentration chamber and cathode chamber 35, a desalting chamber 37 and an anode-side concentration chamber 40 by arranging ion exchange films 33', 34 and 33 between an anode 32 and a cathode 31 and filling the respective chambers with ion exchange resins, water to be treated is passed through the desalting chamber 37 in the state that the supply of a current is stopped or controlled so that current density becomes 1,000 mA/dm<SP>2</SP>or below and subjected to ion exchange by the ion exchange resins 38 and 39 in the desalting chamber 37 to allow pure water to flow out of the desalting chamber 37. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、純水製造装置に関する。好適には、本発明は、発電反応により生成した水蒸気および改質器における燃焼排ガス中の水蒸気の凝縮水を回収し、この回収水を水蒸気改質用の水蒸気源として使用するために、電気脱イオン装置を設けた燃料電池発電装置の純水製造装置に関する。また、本発明は、この純水製造装置を用いた純水製造方法に関する。   The present invention relates to a pure water production apparatus. Preferably, the present invention recovers the steam generated by the power generation reaction and the condensed water of the steam in the combustion exhaust gas in the reformer, and uses the recovered water as a steam source for steam reforming. The present invention relates to a pure water production apparatus for a fuel cell power generator provided with an ion device. Moreover, this invention relates to the pure water manufacturing method using this pure water manufacturing apparatus.

燃料電池発電装置は、例えば都市ガス、LPガス、メタノール等の原燃料ガスを、水蒸気改質して水素に富むガスに改質する改質器と、この改質器で得られた改質ガスを燃料として発電を行う燃料電池本体とを備えている。   A fuel cell power generator includes a reformer that reforms raw fuel gas such as city gas, LP gas, and methanol into a gas rich in hydrogen by steam reforming, and the reformed gas obtained by the reformer And a fuel cell main body that generates electric power using as a fuel.

改質器で生成した改質ガスは、燃料電池の負荷及び水素利用率に応じて、燃料電池内部で消費され、余剰の水素を含むガスはオフガス(燃料排ガス)として改質器へ導かれた上でバーナーで燃焼され、改質エネルギーとして消費されるように構成されることが多い。   The reformed gas generated in the reformer is consumed inside the fuel cell according to the load and hydrogen utilization rate of the fuel cell, and the gas containing surplus hydrogen is led to the reformer as off-gas (fuel exhaust gas). Often configured to be burned with a burner and consumed as reforming energy.

第4図は、特開2001−176535号の従来技術の欄に記載された、リン酸型燃料電池発電装置における水処理装置の基本的な系統図である。   FIG. 4 is a basic system diagram of a water treatment device in a phosphoric acid fuel cell power generator described in the prior art section of Japanese Patent Laid-Open No. 2001-176535.

燃料電池本体1は、リン酸電解質層を挟持する燃料極1b及び空気極1aからなる単位セルと、該単位セルを複数個重ねる毎に配設される冷却管を有する冷却板1cとを備えている。   The fuel cell main body 1 includes a unit cell composed of a fuel electrode 1b and an air electrode 1a sandwiching a phosphate electrolyte layer, and a cooling plate 1c having a cooling pipe disposed each time a plurality of the unit cells are stacked. Yes.

改質器2は、原燃料供給系を経て供給される天然ガス等の原燃料を、水蒸気分離器5で分離されて水蒸気供給系を経て供給される水蒸気とともに、触媒層2aの触媒の下で、バーナでのオフガス燃焼による燃焼熱により加熱して、水素に富むガスに改質して改質ガスを生成する。   Under the catalyst of the catalyst layer 2a, the reformer 2 separates the raw fuel such as natural gas supplied through the raw fuel supply system together with the water vapor separated through the water vapor separator 5 and supplied through the water vapor supply system. Then, it is heated by combustion heat generated by off-gas combustion in a burner and reformed into a gas rich in hydrogen to produce a reformed gas.

改質器2で生成された上記改質ガスは、CO変成器4を有する改質ガス供給系を経由して燃料電池本体1の燃料極1bに供給される。燃料極1bから流出する、電池反応に寄与しなかった水素を含むオフガスは、オフガス供給系を経て改質器2のバーナに燃料として供給される。   The reformed gas generated by the reformer 2 is supplied to the fuel electrode 1 b of the fuel cell main body 1 via a reformed gas supply system having a CO converter 4. The off gas containing hydrogen that has not contributed to the cell reaction and flows out of the fuel electrode 1b is supplied as fuel to the burner of the reformer 2 through the off gas supply system.

また、改質器2のバーナへは、図示しない燃焼空気供給用のブロワが接続されている。改質器2から出た燃焼排ガスは、水回収用の凝縮器6へと送られ、水回収後、排出される。回収水は、回収水タンク7へ送られる。   A combustion air supply blower (not shown) is connected to the burner of the reformer 2. The combustion exhaust gas from the reformer 2 is sent to a condenser 6 for water recovery, and is discharged after water recovery. The recovered water is sent to the recovered water tank 7.

また、燃料電池本体1には、空気極1aに空気を供給するブロワ23を備えた空気供給系と、電池反応後の水蒸気を含む空気を前記水回収用の凝縮器6へ供給する空気排出系とが接続されている。   The fuel cell body 1 includes an air supply system including a blower 23 that supplies air to the air electrode 1a, and an air discharge system that supplies air containing water vapor after the battery reaction to the condenser 6 for water recovery. And are connected.

燃料電池本体1の冷却板1cの冷却管には、燃料電池本体1の発電時に冷却水を循環するため、水蒸気分離器5、冷却水循環ポンプ22を備えた冷却水循環系が接続されている。   A cooling water circulation system including a water vapor separator 5 and a cooling water circulation pump 22 is connected to the cooling pipe of the cooling plate 1 c of the fuel cell main body 1 in order to circulate cooling water when the fuel cell main body 1 generates power.

前記水蒸気分離器5では、燃料電池本体1の冷却管から排出された水と蒸気との二相流を、水蒸気と冷却水とに分離する。ここで分離された水蒸気は、前記改質器2に向かう原燃料と混入するように送出される。その際、元圧の低い原燃料との混合を行うために、エゼクタポンプ3を使用している。このエゼクタポンプ3は、蒸気を駆動流体とするとともに、原燃料を被駆動流体とする。原燃料供給系は、一般に、図示しない脱硫器を備える。   In the steam separator 5, the two-phase flow of water and steam discharged from the cooling pipe of the fuel cell main body 1 is separated into steam and cooling water. The water vapor separated here is sent out so as to be mixed with the raw fuel going to the reformer 2. At that time, the ejector pump 3 is used to mix with the raw fuel having a low original pressure. The ejector pump 3 uses steam as a driving fluid and raw fuel as a driven fluid. The raw fuel supply system generally includes a desulfurizer (not shown).

上記のように、水蒸気改質には、純水が必要となる。また、りん酸型の燃料電池では、燃料電池の冷却水として、純水の加圧水を使用するのが一般的であり、その際、冷却水は、電気伝導度が低く、またシリカ等の鉱物系異物が少ない純水が使用される。   As described above, pure water is required for steam reforming. In addition, in a phosphoric acid type fuel cell, it is common to use pressurized water of pure water as the cooling water for the fuel cell. In this case, the cooling water has a low electrical conductivity and is a mineral system such as silica. Pure water with few foreign substances is used.

燃料電池の冷却には水以外の冷媒を用いる場合もあるが、少なくとも、改質器での改質用水蒸気として純水が消費される為、常時、純水を供給する必要がある。そのため、燃料電池の空気オフガスと改質器の燃焼排ガス中の水蒸気を、凝縮器により、凝縮水として回収した後、水純化装置に通水して純水化するのが一般的である。   Although a coolant other than water may be used for cooling the fuel cell, at least pure water is consumed as reforming steam in the reformer, so it is necessary to always supply pure water. For this reason, it is common that the air off-gas of the fuel cell and the water vapor in the combustion exhaust gas of the reformer are collected as condensed water by a condenser and then passed through a water purification device to be purified.

この水純化装置としてイオン交換式水純化装置を用いる場合、一般的に電気伝導率が0.5〜1μS/cm以上になった時、2000h〜3000h程度の発電時間の間隔で水純化装置を交換する必要があり、煩雑な水純化装置の樹脂交換が必要となるとともに、樹脂再生コストが発生する問題があった。   When an ion exchange type water purifier is used as this water purifier, the water purifier is generally replaced at intervals of power generation time of about 2000 h to 3000 h when the electric conductivity is 0.5 to 1 μS / cm or more. This necessitates complicated resin replacement of the water purifier, and there is a problem that resin regeneration costs are generated.

そこで、第4図では、イオン交換式水純化装置に代えて、樹脂交換が不要な電気脱イオン装置10を採用している。   Therefore, in FIG. 4, an electrodeionization apparatus 10 that does not require resin replacement is adopted instead of the ion exchange type water purifier.

この電気脱イオン装置10の主要部は、イオン交換膜10cにより、処理室10aと濃縮室10bに分離されており、回収水タンク7からポンプ20を介して導入された回収水の陰イオンおよび陽イオンは、それぞれアニオン交換膜およびカチオン交換膜を通過して濃縮室10bに集まり、その後、濃縮排水として系外に排出されるように構成されている。その結果、処理室10aの出口側では連続的に純水が生成され、給水ポンプ21により水蒸気分離器5へ送られる。   The main part of the electrodeionization apparatus 10 is separated into a treatment chamber 10a and a concentration chamber 10b by an ion exchange membrane 10c, and the anion and cation of the recovered water introduced from the recovered water tank 7 through the pump 20 are separated. The ions pass through the anion exchange membrane and the cation exchange membrane, collect in the concentration chamber 10b, and are then discharged out of the system as concentrated waste water. As a result, pure water is continuously generated at the outlet side of the processing chamber 10 a and is sent to the water vapor separator 5 by the water supply pump 21.

なお、処理室通水量を維持しつつ、純水供給量の変動に対応する目的で、ポンプ20の吸込側へ処理水(純水)をリサイクルさせている。   The treated water (pure water) is recycled to the suction side of the pump 20 for the purpose of dealing with fluctuations in the pure water supply amount while maintaining the flow rate of the treatment chamber.

この循環系に設けた逆止弁24は、回収水タンク7中の回収水が、電気脱イオン装置10を経由せずに、給水ポンプ21を介して、直接、水蒸気分離器5に供給されるのを防止するためのものである。   The check valve 24 provided in this circulation system supplies the recovered water in the recovered water tank 7 directly to the water vapor separator 5 via the feed water pump 21 without passing through the electrodeionization device 10. This is intended to prevent this.

濃縮排水は、処理室側通水量と比べて1/3程度と大幅に少ない為、濃縮室側系統にも、処理室側と同様に濃縮水循環ポンプ10dを設けて、濃縮水をリサイクルさせることにより、濃縮室通水量を確保しながら、濃縮排水量を適正に確保するようにしている。   Concentrated wastewater is significantly less than about 1/3 of the water flow rate on the processing chamber side, so the concentrated chamber side system is also provided with a concentrated water circulation pump 10d in the same manner as the processing chamber side to recycle the concentrated water. In addition, while ensuring the amount of water passing through the concentrating chamber, the amount of concentrated drainage is appropriately secured.

第4図においては、ミネラル除去装置9が電気脱イオン装置10の入口側に設けられている。電気脱イオン装置10はイオン交換膜を使用している為、電気脱イオン装置へ導入される処理水中のスケーリング物質は低濃度である必要があり、例えば、シリカは数ppm以下が条件となっており、スケーリング物質除去のためにミネラル除去装置9が設けられる。   In FIG. 4, a mineral removing device 9 is provided on the inlet side of the electrodeionization device 10. Since the electrodeionization apparatus 10 uses an ion exchange membrane, the scaling material in the treated water introduced into the electrodeionization apparatus needs to have a low concentration. For example, the condition of silica is several ppm or less. A mineral removing device 9 is provided for removing scaling substances.

なお、この特開2001−176535号の図2には、この電気脱イオン装置と並列にイオン交換式水純化装置を設け、電気脱イオン装置からの脱イオン水の水質が低下してきた場合にイオン交換式水純化装置に通水して水質悪化を回避する構成が記載されている。   In FIG. 2 of Japanese Patent Laid-Open No. 2001-176535, an ion exchange type water purifier is provided in parallel with the electrodeionization device, and the ionization water is ionized when the quality of the deionized water from the electrodeionization device is lowered. A configuration is described in which water is passed through an exchangeable water purifier to avoid deterioration of water quality.

ところで、本出願人は、電極間の印加電圧を低くしても、必要量の電流を流し、十分に膜イオン処理することができる電気脱イオン装置を特開2004−82092号にて提案している。
特開2001−176535号 特開2004−82092号
By the way, the present applicant proposed in JP-A-2004-82092 an electrodeionization apparatus capable of flowing a necessary amount of current and sufficiently performing membrane ion treatment even when the applied voltage between the electrodes is lowered. Yes.
JP 2001-176535 A JP 2004-82092 A

上記第4図のように電気脱イオン装置において燃料電池発電装置回収水の水処理を行って純水を製造して燃料電池に供給する場合、燃料電池発電装置の運転立ち上げに際しては燃料電池発電装置からの排出水が無く純水を供給できない。上述のように電気脱イオン装置と並列にイオン交換式水純化装置を設けた場合には、このイオン交換式水純化装置によって純水を燃料電池発電装置に供給することが可能である。しかしながら、この場合には、電気脱イオン装置とイオン交換式水純化装置とを併設しなくてはならないため、設備が大掛りになると共に、コストも嵩む。   As shown in FIG. 4 above, when the fuel cell power generator recovered water is treated with water in the electrodeionization apparatus to produce pure water and supply it to the fuel cell, the fuel cell power generator is operated when the fuel cell power generator is started up. There is no water discharged from the equipment, and pure water cannot be supplied. As described above, when an ion exchange type water purification device is provided in parallel with the electrodeionization device, pure water can be supplied to the fuel cell power generation device by this ion exchange type water purification device. However, in this case, since an electrodeionization device and an ion exchange type water purification device must be provided, the facility becomes large and the cost increases.

本発明は、電気脱イオン装置を用い、電気脱イオンによる純水製造と、イオン交換による純水製造とを実行できるようにすることを目的とする。   It is an object of the present invention to perform pure water production by electrodeionization and pure water production by ion exchange using an electrodeionization apparatus.

請求項1の純水製造装置は、陽極と陰極との間にイオン交換膜を配置することにより、少なくとも陰極側濃縮室、脱塩室及び陽極側濃縮室を設け、各室にイオン交換体を充填してなる電気脱イオン装置を有する純水製造装置において、通電を停止するかもしくは電流密度が1000mA/dm以下になるように通電制御した状態で該脱塩室に被処理水を通水し、該脱塩室内のイオン交換体によってイオン交換して該脱塩室から純水を流出させるイオン交換式純水製造運転モードの実行手段を備えたことを特徴とするものである。 The pure water production apparatus according to claim 1 is provided with at least a cathode side concentration chamber, a desalting chamber, and an anode side concentration chamber by disposing an ion exchange membrane between an anode and a cathode, and an ion exchanger is provided in each chamber. In a pure water production apparatus having an electrodeionization apparatus that is filled, the water to be treated is passed through the demineralization chamber in a state where the energization is stopped or the energization is controlled so that the current density is 1000 mA / dm 2 or less. And an ion exchange type pure water production operation mode executing means for exchanging ions with an ion exchanger in the desalting chamber and allowing pure water to flow out of the desalting chamber.

請求項2の純水製造装置は、請求項1において、前記電気脱イオン装置は、陰極と陽極との間に、第1のカチオン交換膜と、アニオン交換膜と、第2のカチオン交換膜とがこの順に配置され、該陰極と第1のカチオン交換膜との間に濃縮室兼陰極室が設けられ、第1のカチオン交換膜と該アニオン交換膜との間に脱塩室が設けられ、該アニオン交換膜と第2のカチオン交換膜との間に濃縮室が設けられ、該第2のカチオン交換膜と該陽極との間に陽極室が設けられてなる電気脱イオン装置であることを特徴とするものである。   The pure water production apparatus according to claim 2 is the pure water production apparatus according to claim 1, wherein the electrodeionization apparatus includes a first cation exchange membrane, an anion exchange membrane, and a second cation exchange membrane between a cathode and an anode. Are arranged in this order, a concentration chamber / cathode chamber is provided between the cathode and the first cation exchange membrane, and a desalting chamber is provided between the first cation exchange membrane and the anion exchange membrane, An electrodeionization apparatus in which a concentration chamber is provided between the anion exchange membrane and the second cation exchange membrane, and an anode chamber is provided between the second cation exchange membrane and the anode. It is a feature.

請求項3の純水製造装置は、請求項1又は2において、前記脱塩室に、上流側からカチオン交換体とアニオン交換体とがこの順に交互に充填されていることを特徴とするものである。   The pure water production apparatus according to claim 3 is characterized in that, in claim 1 or 2, the demineralization chamber is alternately filled with a cation exchanger and an anion exchanger in this order from the upstream side. is there.

請求項4の純水製造方法は、陽極と陰極との間にイオン交換膜を配置することにより、少なくとも陰極側濃縮室、脱塩室及び陽極側濃縮室を設け、各室にイオン交換体を充填してなる電気脱イオン装置を用いて純水を製造する方法において、通電を停止するかもしくは電流密度が1000mA/dm以下となるように通電制御した状態で該脱塩室に被処理水を通水し、該脱塩室内のイオン交換体によってイオン交換して該脱塩室から純水を流出させるイオン交換式純水製造運転を行うことを特徴とするものである。 According to a fourth aspect of the present invention, there is provided a method for producing pure water comprising disposing an ion exchange membrane between an anode and a cathode, thereby providing at least a cathode-side concentrating chamber, a desalting chamber, and an anode-side concentrating chamber. In a method for producing pure water using a charged electrodeionization apparatus, water to be treated is put into the demineralization chamber in a state in which energization is stopped or the energization is controlled so that the current density is 1000 mA / dm 2 or less. An ion-exchange-type pure water production operation is performed in which pure water is flowed out and ion-exchanged by an ion exchanger in the desalting chamber to flow out pure water from the desalting chamber.

請求項5の純水製造方法は、請求項4において、前記被処理水は、市水、井水、又は工業用水を除濁処理及び脱塩素処理した水であることを特徴とするものである。   The pure water production method according to claim 5 is characterized in that, in claim 4, the water to be treated is city water, well water, or water obtained by removing turbidity and dechlorination from industrial water. .

請求項6の純水製造方法は、請求項4又は5において、前記電気脱イオン装置は燃料電池発電装置の回収水の純化用であり、該燃料電池発電装置の起動時に該電気脱イオン装置によってイオン交換式純水製造を行い、製造した純水を燃料電池発電装置に供給することを特徴とするものである。   According to a sixth aspect of the present invention, there is provided a pure water production method according to the fourth or fifth aspect, wherein the electrodeionization device is for purifying the recovered water of the fuel cell power generation device, and is activated by the electrodeionization device when starting the fuel cell power generation device. Ion exchange type pure water production is performed, and the produced pure water is supplied to the fuel cell power generator.

請求項1の純水製造装置及び請求項4の純水製造方法によると、電気脱イオン装置に充填されたイオン交換体を利用して、イオン交換による純水製造を行うことができる。従って、電気脱イオン装置とイオン交換装置とを併設することなくイオン交換処理による純水を供給することができる。また通電量を規定量以下に抑えることによって被処理水中に含まれるスケール生成の原因となるイオンが陰極やイオン交換樹脂の表面付近に濃縮しづらいため、陰極やイオン交換樹脂へのスケールの付着を防止することができる。   According to the pure water production apparatus of claim 1 and the pure water production method of claim 4, pure water production by ion exchange can be performed using the ion exchanger filled in the electrodeionization apparatus. Therefore, it is possible to supply pure water by ion exchange treatment without providing an electrodeionization device and an ion exchange device. In addition, by keeping the energization amount below the specified amount, the ions that cause scale formation in the water to be treated are difficult to concentrate near the surface of the cathode and ion exchange resin, so scale adheres to the cathode and ion exchange resin. Can be prevented.

なお、イオン交換処理運転を行うことにより、電気脱イオン装置のイオン交換体にはナトリウムイオン、塩素イオン等のカチオンやアニオンが蓄積してくるが、これらのイオンは、その後、電気脱イオン装置を電気脱イオン処理運転したときに除去され、イオン交換体が再生される。   In addition, by performing the ion exchange treatment operation, cations and anions such as sodium ions and chlorine ions accumulate in the ion exchanger of the electrodeionization apparatus. It is removed when the electrodeionization operation is performed, and the ion exchanger is regenerated.

請求項2の純水製造装置に用いられている電気脱イオン装置は、上記特開2004−82092号に記載の電気脱イオン装置であり、電極間の印加電圧を低くしても十分に電気脱イオン処理された純水を製造することができる。   The electrodeionization apparatus used in the pure water production apparatus according to the second aspect is the electrodeionization apparatus described in JP-A-2004-82092, and is sufficiently ionized even when the applied voltage between the electrodes is lowered. It is possible to produce ion-treated pure water.

この電気脱イオン装置は、脱塩室が1室であり、且つこの脱塩室の両側にはそれぞれ陽極側濃縮室と陰極室兼濃縮室とが配置され、この陽極側濃縮室の隣りに陽極室が配置されているため、電極間距離が小さく、電極間の印加電圧が低い。   This electrodeionization apparatus has one desalination chamber, and an anode side concentrating chamber and a cathode / concentration chamber are arranged on both sides of the desalting chamber, respectively. Since the chamber is arranged, the distance between the electrodes is small and the applied voltage between the electrodes is low.

この電気脱イオン装置では、陽極側濃縮室とは別個に陽極室が設けられ、両者が第2のカチオン交換膜で隔てられているので、陽極側濃縮室から陽極室へのClイオンの移動が阻止される。そのため、陽極室内で発生するClは、陽極室内に導入された電極水中のClにのみ由来するものとなるので、陽極室でのCl発生量が著しく少ない。このため、陽極室内に充填されたカチオン交換樹脂等の導電体や、陽極室に臨む第2のカチオン交換膜がClによって劣化することが防止される。 In this electrodeionization apparatus, an anode chamber is provided separately from the anode-side enrichment chamber, and both are separated by a second cation exchange membrane, so that Cl ions move from the anode-side enrichment chamber to the anode chamber. Is blocked. Therefore, Cl 2 generated in the anode chamber is derived only from Cl in the electrode water introduced into the anode chamber, so that the amount of Cl 2 generated in the anode chamber is extremely small. For this reason, the conductor such as the cation exchange resin filled in the anode chamber and the second cation exchange membrane facing the anode chamber are prevented from being deteriorated by Cl 2 .

イオン交換処理による純水製造のために被処理水が通水される脱塩室は、上流側からカチオン交換体とアニオン交換体とを交互に充填するのが好ましい。交互積層方式の長所については、後に図面を参照して詳述する。   It is preferable that the desalting chamber through which the water to be treated is passed for producing pure water by ion exchange treatment is alternately filled with the cation exchanger and the anion exchanger from the upstream side. The advantages of the alternate lamination method will be described in detail later with reference to the drawings.

以下、図面を参照して実施の形態について説明する。第1図は実施の形態に係る電気式脱イオン装置の概略的な縦断面図である。   Hereinafter, embodiments will be described with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view of an electric deionization apparatus according to an embodiment.

陰極31と陽極32との間に、第1のカチオン交換膜33と、アニオン交換膜34と、第2のカチオン交換膜33’とを1枚ずつ配置し、陰極31と第1のカチオン交換膜33との間に濃縮室兼陰極室35を形成し、第1のカチオン交換膜33とアニオン交換膜34との間に脱塩室37を形成し、アニオン交換膜34と第2のカチオン交換膜33’との間に濃縮室40を形成し、第2のカチオン交換膜33’と陽極32との間に陽極室36を形成している。   Between the cathode 31 and the anode 32, the first cation exchange membrane 33, the anion exchange membrane 34, and the second cation exchange membrane 33 ′ are arranged one by one, and the cathode 31 and the first cation exchange membrane are arranged. 33, a concentration chamber / cathode chamber 35 is formed between the first cation exchange membrane 33 and the anion exchange membrane 34, and a desalting chamber 37 is formed between the anion exchange membrane 34 and the second cation exchange membrane. A concentration chamber 40 is formed between the second cation exchange membrane 33 ′ and the anode 32, and an anode chamber 36 is formed between the second cation exchange membrane 33 ′ and the anode 32.

濃縮室兼陰極室35、及び陽極室36にはそれぞれカチオン交換樹脂38が充填されている。濃縮室40にはアニオン交換樹脂39が充填されている。脱塩室37にはカチオン交換樹脂38とアニオン交換樹脂39とが流れ方向において交互に積層するように充填されており、最上流側にはカチオン交換樹脂が配置されている。   The concentration chamber / cathode chamber 35 and the anode chamber 36 are each filled with a cation exchange resin 38. The concentration chamber 40 is filled with an anion exchange resin 39. The desalting chamber 37 is filled with cation exchange resin 38 and anion exchange resin 39 so as to be alternately stacked in the flow direction, and the cation exchange resin is arranged on the most upstream side.

脱塩室37の一端側には原水の流入口が設けられ、他端側には脱イオン水の流出口が設けられている。   An inlet of raw water is provided at one end of the desalting chamber 37, and an outlet of deionized water is provided at the other end.

陽極室36の一端側には原水又は脱イオン水の流入口が設けられている。陽極室36の流出水は濃縮室40へその一端側から流入し、他端側から流出する。濃縮室40の流出水は、濃縮室兼陰極室35へその一端側から流入し、他端側から濃縮水兼陰極電極水として排出される。   One end of the anode chamber 36 is provided with an inlet for raw water or deionized water. Outflow water from the anode chamber 36 flows into the concentration chamber 40 from one end side and flows out from the other end side. The outflow water of the concentration chamber 40 flows into the concentration chamber / cathode chamber 35 from one end side and is discharged from the other end side as concentrated water / cathode electrode water.

純水供給効率を上げるためには、被処理水(前処理した市水等)の補給工程はできるだけ短時間で済ませて通常運転工程に戻すことが望ましい。従って、補給工程における被処理水の脱塩室への通水速度は高い方が好ましく、例えばSV20[h−1]以上であることが好ましい。ただしSV100[h−1]を超過すると、被処理水の脱塩が十分に行われなくなってしまうので、SVは20〜100[h−1]であることが好ましい。 In order to increase the efficiency of supplying pure water, it is desirable that the replenishment process of the water to be treated (pretreated city water or the like) is completed in as short a time as possible and returned to the normal operation process. Therefore, it is preferable that the water flow rate of the water to be treated to the desalting chamber in the replenishment process is high, for example, SV20 [h −1 ] or more. However, when SV100 [h −1 ] is exceeded, desalting of the water to be treated is not sufficiently performed. Therefore, SV is preferably 20 to 100 [h −1 ].

このような通水速度で被処理水を脱塩室に供給するにあたり、脱塩室内のイオン交換樹脂は混床型や積層型であるので、被処理水の脱塩室への通水方向は下向流であることが好ましい。上向流で通水してしまうと、混床型や積層型に充填していた樹脂の配置が崩れてしまう恐れがあるので好ましくない。   In supplying the treated water to the desalting chamber at such a water flow rate, since the ion exchange resin in the desalting chamber is a mixed bed type or a laminated type, the direction of water flow to the desalting chamber of the treated water is A downward flow is preferred. If the water flows in the upward flow, the arrangement of the resin filled in the mixed bed type or the laminated type may be broken, which is not preferable.

各室35,37,40,36の流入口及び流出口には、弁を有した配管が接続され、この弁の開閉や流路切替により各室への通水が制御される。この弁の制御手段と、通電制御手段とによって、純水製造装置の運転実行手段が構成されている。この運転実行手段は、手動操作されてもよく、コンピュータ等によって操作されてもよい。   A pipe having a valve is connected to the inlet and outlet of each of the chambers 35, 37, 40, and 36, and water flow to each chamber is controlled by opening and closing of the valve and switching of the flow path. The valve control means and the energization control means constitute the operation execution means of the pure water production apparatus. This operation execution means may be operated manually or by a computer or the like.

この電気脱イオン装置では、イオン交換樹脂の充填構造を積層型にすることにより、通電時の電気抵抗が小さくなるので、処理効率が向上し、装置の小型化を図ることができる。そのため混床型より積層型の方がより好ましい。また、この場合、積層型のアニオン樹脂、カチオン樹脂混合の各層は純粋なアニオン樹脂層やカチオン樹脂層であることが好ましいが、電圧が上がり過ぎない程度であればアニオンリッチの樹脂層やカチオンリッチの樹脂層であっても構わない。   In this electrodeionization apparatus, by making the filling structure of the ion exchange resin into a laminated type, the electrical resistance during energization is reduced, so that the processing efficiency is improved and the apparatus can be miniaturized. Therefore, the laminated type is more preferable than the mixed bed type. In this case, each layer of the laminated anion resin and cation resin mixture is preferably a pure anion resin layer or a cation resin layer. However, an anion-rich resin layer or a cation-rich layer may be used as long as the voltage does not increase excessively. It may be a resin layer.

また、積層型の場合、上流側からカチオン交換樹脂→アニオン交換樹脂→カチオン交換樹脂→アニオン交換樹脂→・・・の順番にする方が好ましい。アニオン交換樹脂が最上流であると、イオン交換処理運転モードにおいて生成したOHイオンが被処理水中に含まれるMgイオンと反応して、アニオン交換樹脂中にMg(OH)スケールが生成する恐れがあるからである。 Moreover, in the case of a laminated type, it is preferable that the cation exchange resin → anion exchange resin → cation exchange resin → anion exchange resin →. If the anion exchange resin is the most upstream, OH ions generated in the ion exchange treatment operation mode may react with Mg ions contained in the water to be treated, and Mg (OH) 2 scale may be produced in the anion exchange resin. Because there is.

次に、この装置の運転モードについて説明する。   Next, the operation mode of this apparatus will be described.

<電気脱イオン処理運転モード>
この電気脱イオン処理運転モードの一態様にあっては、第1図の通り、通電した状態にて原水(凝縮水)を脱塩室37に導入し、純水として取り出す。上記の通り、純水を陽極室36に導入し、順次に濃縮室40及び濃縮室兼陰極室35に流通させる。原水中のカチオンは第1のカチオン交換膜33を透過し、陰極電極水に混入して排出される。
<Electrodeionization operation mode>
In one mode of this electric deionization operation mode, as shown in FIG. 1, raw water (condensed water) is introduced into the demineralization chamber 37 in an energized state and taken out as pure water. As described above, pure water is introduced into the anode chamber 36, and sequentially flows through the concentration chamber 40 and the concentration chamber / cathode chamber 35. The cations in the raw water pass through the first cation exchange membrane 33 and are mixed with the cathode electrode water and discharged.

なお、電気脱イオン運転を行う通水態様としては、第2図の通りとしてもよい。   In addition, it is good also as FIG. 2 as a water flow aspect which performs an electrodeionization driving | operation.

この第2図では、原水(凝縮水)を脱塩室37に通水し、脱塩室37の流出水の主要部を純水として得、一部を分取し、それぞれ濃縮室兼陰極室35、濃縮室40及び陽極室36に通水する。   In FIG. 2, the raw water (condensed water) is passed through the desalting chamber 37, the main part of the effluent of the desalting chamber 37 is obtained as pure water, and a part of it is separated, and the concentrating chamber / cathode chamber respectively. 35, water is passed through the concentration chamber 40 and the anode chamber 36.

<イオン交換処理運転モード>
この電気脱イオン装置を用い、イオン交換処理によって純水を製造するには、第3図の通り、通電を停止するかもしくは電流密度が1000mA/dm以下となるように通電制御した状態で、被処理水を脱塩室37に通水し、その流出水を純水として得る。電流密度が1000mA/dmを超過すると陰極やイオン交換膜の表面にスケール発生の原因となるイオンが凝縮すると推定され、これにより陰極やイオン交換膜の表面にスケールが付着する恐れがあるので好ましくない。同様の理由で電流密度は600mA/dm以下であることがより好ましい。ただし通電を停止するのが確実にスケール発生を防止できる上に、通電量の制御が簡易となるため最も好ましい。
<Ion exchange treatment operation mode>
In order to produce pure water by ion exchange treatment using this electrodeionization apparatus, as shown in FIG. 3, in a state where the energization is stopped or the energization is controlled so that the current density is 1000 mA / dm 2 or less, The treated water is passed through the desalting chamber 37, and the effluent water is obtained as pure water. If the current density exceeds 1000 mA / dm 2 , it is presumed that ions that cause scale generation are condensed on the surface of the cathode or ion exchange membrane, which may cause the scale to adhere to the surface of the cathode or ion exchange membrane. Absent. For the same reason, the current density is more preferably 600 mA / dm 2 or less. However, it is most preferable to stop energization because scale generation can be reliably prevented and the energization amount can be easily controlled.

<交互運転>
上記のイオン交換による純水製造運転を行った後、電気脱イオンによる純水製造運転に戻る。これにより、イオン交換樹脂を電気的に再生することができる。
<Alternate operation>
After performing the pure water production operation by ion exchange, the process returns to the pure water production operation by electrodeionization. Thereby, the ion exchange resin can be electrically regenerated.

この電気脱イオン運転モードの途中で、燃料電池発電装置の純水保有量が低下してきた場合には、イオン交換運転を行って純水を補給し、次いで電気脱イオン運転モードに戻る。   In the middle of this electrodeionization operation mode, when the amount of pure water retained in the fuel cell power generation device has decreased, ion exchange operation is performed to replenish pure water, and then the electrodeionization operation mode returns.

<燃料電池発電装置の純水供給システムとしての利用>
この場合、電気脱イオン装置の現場据え付けに先立って、電気脱イオン装置を試運転し、各室のイオン交換樹脂を再生して電気脱イオン装置を立ち上げておくことが好ましい。
<Use of fuel cell power generator as pure water supply system>
In this case, prior to on-site installation of the electrodeionization apparatus, it is preferable to test-run the electrodeionization apparatus and regenerate the ion exchange resin in each chamber to start up the electrodeionization apparatus.

現場据え付け後、上記第3図のように通水して純水を製造し、この純水を用いて燃料電池発電装置を起動させる。起動後は、電気脱イオン装置を電気脱イオン運転する。   After installation at the site, pure water is produced by passing water as shown in FIG. 3, and the fuel cell power generator is started using the pure water. After startup, the electrodeionization apparatus is operated for electrodeionization.

この起動時に電気脱イオン装置に供給する被処理水としては、市水、井水、工業用水等を前処理したものが好適であり、前処理としては少なくとも脱塩素処理と除濁処理を行うのが好ましく、具体的には例えば活性炭処理と、精密濾過又は限外濾過等の膜濾過とを行う。   The treated water supplied to the electrodeionization apparatus at the time of startup is preferably pretreated with city water, well water, industrial water, etc., and at least dechlorination treatment and turbidity treatment are performed as pretreatment. Specifically, for example, activated carbon treatment and membrane filtration such as microfiltration or ultrafiltration are performed.

<その他の形態>
上記電気脱イオン装置は、室35,37,40,36の4室構造となっているが、濃縮室兼陰極室、脱塩室、濃縮室兼陽極室の3室構造の電気脱イオン装置を用いてもよい。
<Other forms>
The above-mentioned electrodeionization apparatus has a four-chamber structure of chambers 35, 37, 40, and 36. However, an electrodeionization apparatus having a three-chamber structure of a concentration chamber / cathode chamber, a desalting chamber, and a concentration chamber / anode chamber is used. It may be used.

現在ボイラーの供給水処理には、補給水処理として主に軟水器が、復水処理として純水装置が用いられている。本発明はこの両方の装置の機能を1台で具備することが可能である。すなわちボイラー用水補給時には市水を当発明で浄化処理した純水を補給し、ボイラー運転時での復水浄化でも本発明で純水を補給することが可能である。本発明を適用すれば、装置が小型化でき、また軟水器のための塩水補給、純水装置からの酸アルカリ再生廃水処理が不要になりこの結果環境負荷低減に貢献できる。   Currently, in the boiler water supply treatment, soft water is mainly used as make-up water treatment, and pure water equipment is used as condensate treatment. The present invention can be equipped with the functions of both of these devices in a single unit. That is, it is possible to replenish city water with pure water purified by the present invention when replenishing boiler water, and to replenish pure water with the present invention even when condensate is purified during boiler operation. By applying the present invention, the apparatus can be miniaturized, and salt water replenishment for the water softener and acid / alkali regeneration wastewater treatment from the deionized water apparatus can be dispensed with, thereby contributing to a reduction in environmental load.

以下、実施例及び比較例について説明する。なお、この実施例及び比較例では4室構造の電気脱イオン装置を用い、第2図に示す通水方式で電気脱イオンによる純水製造を行った。また、実施例における市水浄化は第3図に示す通水方式で行った。   Hereinafter, examples and comparative examples will be described. In this example and comparative example, pure water was produced by electrodeionization using a four-chamber structure electrodeionization apparatus by the water flow method shown in FIG. Moreover, the city water purification in the examples was carried out by the water flow method shown in FIG.

[実施例]
1)電気脱イオン装置の立ち上げ
抵抗率1MΩ・cmの純水を2.3L/hで脱塩室に供給、脱塩室出口水のうち2L/hを生産水として得た。また残りの0.3L/hを3等分し、残りの各室に供給し、各出口水は排水した。電極に0.1Aの直流電流を印加して通水を開始し、生産水が16MΩ・cmに達した時点で立ち上げ完了とした。
[Example]
1) Startup of electrodeionization apparatus Pure water having a resistivity of 1 MΩ · cm was supplied to the desalting chamber at 2.3 L / h, and 2 L / h of the desalting chamber outlet water was obtained as production water. The remaining 0.3 L / h was divided into three equal parts and supplied to the remaining chambers, and each outlet water was drained. A 0.1 A direct current was applied to the electrode to start water flow, and when the production water reached 16 MΩ · cm, the start-up was completed.

2)市水浄化(イオン交換処理)
必要な市水浄化を、脱塩室に充填したイオン交換樹脂で行った。
2) City water purification (ion exchange treatment)
The necessary city water purification was performed with an ion exchange resin filled in the desalting chamber.

まず、市水を活性炭で脱塩素後、精密フィルターで除濁し、脱塩室に0.3L/h供給した。この脱塩室の出口水の抵抗率を測定したところ概ね6MΩ・cmと良好な水質であり、約1.0Lの純水が得られた。なお市水を浄化している間は、通電を停止した。   First, city water was dechlorinated with activated carbon, then turbidized with a precision filter, and supplied to a desalting chamber at 0.3 L / h. When the resistivity of the outlet water of the desalting chamber was measured, the water quality was approximately 6 MΩ · cm, which was good, and about 1.0 L of pure water was obtained. In addition, electricity was stopped while purifying the city water.

3)模擬凝縮水浄化(電気脱イオン処理)
原水として燃料電池から得られる凝縮水の模擬水を作成し、2)で市水を浄化した電気脱イオン装置にて電気脱イオン処理した。模擬液は塩化ナトリウムと炭酸ガスを純水に溶解し、電気伝導率が1mS/m程度になるように調製した。
3) Simulated condensate purification (electric deionization)
Simulated water of condensate obtained from a fuel cell was prepared as raw water, and was subjected to electrodeionization treatment with an electrodeionization apparatus that purified the city water in 2). The simulated solution was prepared by dissolving sodium chloride and carbon dioxide in pure water so that the electric conductivity was about 1 mS / m.

模擬水は脱塩室に供給し、直流電圧印加も含めて、上記1)の立ち上げ時と同様の条件で通水し、処理した。この結果市水浄化時と同等の6MΩ・cmの水質を得ることができた。   Simulated water was supplied to the desalting chamber and treated by passing water under the same conditions as in 1) above, including application of DC voltage. As a result, water quality of 6 MΩ · cm equivalent to that at the time of city water purification could be obtained.

模擬凝縮水の通水を約1週間継続させた。この間、良好な水質の純水を得た。   The simulated condensed water was passed for about one week. During this time, pure water with good water quality was obtained.

4)市水浄化、模擬凝縮水浄化の繰り返し
工程3)模擬凝縮水浄化の後、工程2)市水浄化と工程3)模擬凝縮水浄化を交互に実施、延べ5回繰り返した。5回繰り返すことで、市水浄化で得られる純水の量は徐々に低下したが、5回目で得られた純水量は1回目の概ね70%程度であり実用的であった。
4) Repeating of city water purification and simulated condensate purification Step 3) After purifying simulated condensate, Step 2) City water purification and Step 3) Simulated condensate purification were alternately performed and repeated a total of 5 times. By repeating 5 times, the amount of pure water obtained by purification of city water gradually decreased, but the amount of pure water obtained at the 5th time was about 70% of the first time and was practical.

なお、模擬凝縮水を浄化して得られた純水水質はほぼ一定の6MΩ・cm程度と良好であり、また電気脱イオン機能は良好で、連続して純水を得ることができた。   The quality of pure water obtained by purifying simulated condensate was as good as about 6 MΩ · cm, and the electrodeionization function was good, and pure water could be obtained continuously.

[比較例]
電気脱イオン装置の脱塩室に充填しているのと同じ量の混床イオン交換樹脂約20mLを再生処理後カラムに充填し、本発明と同容量の市水、模擬凝縮水を供給して浄化性能を調べた。この結果、1回目の市水浄化後、模擬凝縮水浄化処理途中で破過し、使えなくなった。
[Comparative example]
About 20 mL of mixed bed ion exchange resin in the same amount as that in the demineralization chamber of the electric deionizer is packed in the column after regeneration, and the same volume of city water and simulated condensate as in the present invention are supplied. The purification performance was investigated. As a result, after the first city water purification, it broke through in the middle of the simulated condensed water purification process and became unusable.

4室構造の電気脱イオン装置の電気脱イオンによる純水製造運転例を示す系統図である。It is a systematic diagram which shows the example of a pure water manufacture driving | operation by the electrodeionization of the electrodeionization apparatus of 4 chamber structure. 図1の電気脱イオン装置の電気脱イオンによる別の純水製造運転例を示す系統図である。It is a systematic diagram which shows another example of a pure water manufacture driving | operation by the electrodeionization of the electrodeionization apparatus of FIG. 図1の電気脱イオン装置を用いたイオン交換方式による純水製造運転例を示す系統図である。It is a systematic diagram which shows the example of a pure water manufacture driving | operation by the ion exchange system using the electrodeionization apparatus of FIG. 従来例に係る燃料電池発電装置の系統図である。It is a systematic diagram of the fuel cell power generator concerning a conventional example.

符号の説明Explanation of symbols

31 陰極
32 陽極
33 第1のカチオン交換膜
33’ 第2のカチオン交換膜
34 アニオン交換膜
35 濃縮室兼陰極室
36 陽極室
37 脱塩室
38 カチオン交換樹脂
39 アニオン交換樹脂
40 濃縮室
31 Cathode 32 Anode 33 First Cation Exchange Membrane 33 ′ Second Cation Exchange Membrane 34 Anion Exchange Membrane 35 Concentration Chamber / Cathode Chamber 36 Anode Chamber 37 Desalination Chamber 38 Cation Exchange Resin 39 Anion Exchange Resin 40 Concentration Chamber

Claims (6)

陽極と陰極との間にイオン交換膜を配置することにより、少なくとも陰極側濃縮室、脱塩室及び陽極側濃縮室を設け、各室にイオン交換体を充填してなる電気脱イオン装置を有する純水製造装置において、
通電を停止するか、または電流密度が1000mA/dm以下になるように通電制御した状態で該脱塩室に被処理水を通水し、該脱塩室内のイオン交換体によってイオン交換して該脱塩室から純水を流出させるイオン交換式純水製造運転モードの実行手段を備えたことを特徴とする純水製造装置。
By providing an ion exchange membrane between the anode and cathode, at least a cathode side concentration chamber, a desalting chamber, and an anode side concentration chamber are provided, and an electrodeionization apparatus is provided in which each chamber is filled with an ion exchanger. In pure water production equipment,
The water to be treated is passed through the desalting chamber in a state where the energization is stopped or the current density is controlled to 1000 mA / dm 2 or less, and ion exchange is performed by the ion exchanger in the desalting chamber. An apparatus for producing pure water, comprising means for executing an ion-exchange-type pure water production operation mode for allowing pure water to flow out from the desalting chamber.
請求項1において、前記電気脱イオン装置は、
陰極と陽極との間に、第1のカチオン交換膜と、アニオン交換膜と、第2のカチオン交換膜とがこの順に配置され、
該陰極と第1のカチオン交換膜との間に濃縮室兼陰極室が設けられ、
第1のカチオン交換膜と該アニオン交換膜との間に脱塩室が設けられ、
該アニオン交換膜と第2のカチオン交換膜との間に濃縮室が設けられ、
該第2のカチオン交換膜と該陽極との間に陽極室が設けられてなる電気脱イオン装置であることを特徴とする純水製造装置。
The electrodeionization device according to claim 1,
Between the cathode and the anode, a first cation exchange membrane, an anion exchange membrane, and a second cation exchange membrane are arranged in this order,
A concentration chamber / cathode chamber is provided between the cathode and the first cation exchange membrane;
A desalting chamber is provided between the first cation exchange membrane and the anion exchange membrane;
A concentration chamber is provided between the anion exchange membrane and the second cation exchange membrane;
An apparatus for producing pure water, which is an electrodeionization apparatus in which an anode chamber is provided between the second cation exchange membrane and the anode.
請求項1又は2において、前記脱塩室に、上流側からカチオン交換体とアニオン交換体とがこの順に交互に充填されていることを特徴とする純水製造装置。   3. The pure water production apparatus according to claim 1, wherein the desalting chamber is alternately filled with a cation exchanger and an anion exchanger in this order from the upstream side. 陽極と陰極との間にイオン交換膜を配置することにより、少なくとも陰極側濃縮室、脱塩室及び陽極側濃縮室を設け、各室にイオン交換体を充填してなる電気脱イオン装置を用いて純水を製造する方法において、
通電を停止するか、または電流密度が1000mA/dm以下になるように通電制御した状態で該脱塩室に被処理水を通水し、該脱塩室内のイオン交換体によってイオン交換して該脱塩室から純水を流出させるイオン交換式純水製造運転を行うことを特徴とする純水製造方法。
By using an electrodeionization apparatus in which at least a cathode side concentrating chamber, a desalting chamber, and an anode concentrating chamber are provided by disposing an ion exchange membrane between the anode and the cathode, and each chamber is filled with an ion exchanger. In the method for producing pure water,
The water to be treated is passed through the demineralization chamber in a state where the energization is stopped so that the current density is 1000 mA / dm 2 or less, and ion exchange is performed by the ion exchanger in the demineralization chamber. An ion exchange type pure water production operation for flowing pure water out of the desalting chamber is carried out.
請求項6において、前記被処理水は、市水、井水、又は工業用水を除濁処理及び脱塩素処理した水であることを特徴とする純水製造方法。   7. The pure water production method according to claim 6, wherein the water to be treated is city water, well water, or water obtained by removing turbidity and dechlorination from industrial water. 請求項4又は5において、前記電気脱イオン装置は燃料電池発電装置の回収水の純化用であり、
該燃料電池発電装置の起動時に該電気脱イオン装置によってイオン交換式純水製造を行い、製造した純水を燃料電池発電装置に供給することを特徴とする純水製造方法。
In Claim 4 or 5, the electrodeionization device is for purifying the recovered water of the fuel cell power generator,
A method for producing pure water, comprising producing ion-exchanged pure water by the electrodeionization device when the fuel cell power generator is started up, and supplying the produced pure water to the fuel cell power generator.
JP2006351565A 2006-12-27 2006-12-27 Pure water making method and pure water making apparatus Pending JP2008161761A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006351565A JP2008161761A (en) 2006-12-27 2006-12-27 Pure water making method and pure water making apparatus
PCT/JP2007/074294 WO2008078602A1 (en) 2006-12-27 2007-12-18 Method and apparatus for producing pure water
CA002673928A CA2673928A1 (en) 2006-12-27 2007-12-18 Method and apparatus for producing deionized water
EP07850782A EP2112125A4 (en) 2006-12-27 2007-12-18 Method and apparatus for producing pure water
KR1020097015468A KR20090094161A (en) 2006-12-27 2007-12-18 Method and apparatus for producing pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006351565A JP2008161761A (en) 2006-12-27 2006-12-27 Pure water making method and pure water making apparatus

Publications (1)

Publication Number Publication Date
JP2008161761A true JP2008161761A (en) 2008-07-17

Family

ID=39691941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006351565A Pending JP2008161761A (en) 2006-12-27 2006-12-27 Pure water making method and pure water making apparatus

Country Status (1)

Country Link
JP (1) JP2008161761A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212871A (en) * 2007-03-06 2008-09-18 Kurita Water Ind Ltd Pure water production method and apparatus
JP2014504549A (en) * 2011-01-25 2014-02-24 ゼネラル・エレクトリック・カンパニイ Ion species removal system
CN114074978A (en) * 2020-08-12 2022-02-22 云米互联科技(广东)有限公司 Regeneration control method, water purifier and computer readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504273A (en) * 1996-11-12 2000-04-11 ユナイテッド・ステイツ・フィルター・コーポレーション Electrodeionization apparatus and method
JP2001523566A (en) * 1997-11-25 2001-11-27 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for partial desalination of water
JP2003230886A (en) * 2002-02-08 2003-08-19 Japan Organo Co Ltd Electric deionized water making apparatus
JP2004082092A (en) * 2002-07-01 2004-03-18 Kurita Water Ind Ltd Electric deionizing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504273A (en) * 1996-11-12 2000-04-11 ユナイテッド・ステイツ・フィルター・コーポレーション Electrodeionization apparatus and method
JP2001523566A (en) * 1997-11-25 2001-11-27 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for partial desalination of water
JP2003230886A (en) * 2002-02-08 2003-08-19 Japan Organo Co Ltd Electric deionized water making apparatus
JP2004082092A (en) * 2002-07-01 2004-03-18 Kurita Water Ind Ltd Electric deionizing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212871A (en) * 2007-03-06 2008-09-18 Kurita Water Ind Ltd Pure water production method and apparatus
JP2014504549A (en) * 2011-01-25 2014-02-24 ゼネラル・エレクトリック・カンパニイ Ion species removal system
TWI576143B (en) * 2011-01-25 2017-04-01 奇異電器公司 Ionic species removal system
CN114074978A (en) * 2020-08-12 2022-02-22 云米互联科技(广东)有限公司 Regeneration control method, water purifier and computer readable storage medium
CN114074978B (en) * 2020-08-12 2023-11-03 云米互联科技(广东)有限公司 Regeneration control method, water purifier and computer readable storage medium

Similar Documents

Publication Publication Date Title
JP4867720B2 (en) Pure water production method and apparatus
KR20090094161A (en) Method and apparatus for producing pure water
JP2004034004A (en) Electrically deionizing apparatus
JP5295927B2 (en) Electric deionized water production equipment
JP2008161760A (en) Pure water making method and pure water making apparatus
JP5145305B2 (en) Electric deionized water production equipment
JP4461553B2 (en) Water treatment device for fuel cell
KR20130077164A (en) Water treatment apparatus for fuel cell
JP2008161761A (en) Pure water making method and pure water making apparatus
CN113015702B (en) Pure water production apparatus and method for operating same
JP3773178B2 (en) Electric deionized water production apparatus and production method
JP3707333B2 (en) Water treatment system for fuel cell power generator
JP5353034B2 (en) Fuel cell power generator
JP2004033977A (en) Operation method of electrically deionizing apparatus
JP4662277B2 (en) Electrodeionization equipment
JP2011121027A (en) Electric type deionized water producing apparatus
KR101892692B1 (en) Hybrid power generation system using reverse electrodialysis device and fuel cell
JP2007245120A (en) Electrically operated apparatus for producing deionized water
JP5286851B2 (en) Fuel cell power generator
JP2008030004A (en) Electric deionizer
JP5380868B2 (en) Condensed water decay prevention method and fuel cell power generator
JP5691486B2 (en) Pure water production equipment
JP6720428B1 (en) Pure water production apparatus and operating method thereof
JP2013049907A (en) Water electrolysis system
JP5021608B2 (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402