JP2004347908A - プロジェクタ及び自動焦点調節方法 - Google Patents

プロジェクタ及び自動焦点調節方法 Download PDF

Info

Publication number
JP2004347908A
JP2004347908A JP2003145723A JP2003145723A JP2004347908A JP 2004347908 A JP2004347908 A JP 2004347908A JP 2003145723 A JP2003145723 A JP 2003145723A JP 2003145723 A JP2003145723 A JP 2003145723A JP 2004347908 A JP2004347908 A JP 2004347908A
Authority
JP
Japan
Prior art keywords
image
screen
optical system
projection lens
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003145723A
Other languages
English (en)
Inventor
Shiroshi Kanemitsu
史呂志 金光
Kazuyuki Akiyama
和之 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Precision Inc
Original Assignee
Seiko Precision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Precision Inc filed Critical Seiko Precision Inc
Priority to JP2003145723A priority Critical patent/JP2004347908A/ja
Publication of JP2004347908A publication Critical patent/JP2004347908A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】プロジェクタにおいて、光源やファンモータ等のノイズの影響を受けずに自動的にスクリーン上に投影された画像の焦点合せを正確に行なう。
【解決手段】本発明のプロジェクタ(2)は、スクリーン(1)上に画像を投影する投影レンズ光学系(8)と、スクリーン上に投影された画像の合焦位置を検出して調節するため投影レンズ光学系がその焦点位置を最遠焦点位置と最近焦点位置の間を移動しながら投影した画像を受光して得られる画像の高周波成分が最大となる所を測定して前記投影レンズ光学系の焦点位置を調節する自動焦点検出装置(20)とを含む。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、投影レンズ光学系を動かしながらスクリーン上の画像を受光して画像信号を測定して合焦位置を求めて投影レンズ光学系の焦点を調節する自動焦点装置を備えたプロジェクタ及びスクリーン上に投影された画像の自動焦点調節方法に関する。
【0002】
【従来の技術】
従来より、投影レンズ光学系を使用してスクリーン上に画像を投影する液晶プロジェクタなどのプロジェクタにおいて、自動的にスクリーン上に投影された画像の焦点合せをすることが、プロジェクタの利便性を高めるために望まれている。
【0003】
特許文献1には、フォーカスレンズをステッピングモーターにより光軸方向前後に動かして、撮像回路からの輝度信号の高周波成分を測定して焦点位置を検出して焦点調節をするビデオカメラ等の自動焦点撮像装置が開示されている。特許文献1に記載された従来の自動焦点検出装置では、撮像素子上に結像される像を合焦させるためにフォーカスレンズを光軸方向にステッピングモーターにより、無限遠焦点位置から最近焦点位置へ連続的に移動しながら、撮像回路からの出力輝度信号の焦点評価値(高周波成分)を測定し、焦点評価値(高周波成分)が最大となる位置の検出は、焦点評価値(高周波成分)のピーク位置を越えて焦点評価値(高周波成分)が数パルス(5パルス)を連続して低下した時点で、先の焦点評価値(高周波成分)のピークを最大値と判断している。これは、スクリーン上に投影された画像の焦点が合った時には画像の解像度が最高になり、細かい画素の明暗も表示されるため画像の高周波成分が最高となる点に着目している。
【0004】
【特許文献1】
特開平8−186752号公報
【0005】
【発明が解決しようとする課題】
しかし、特許文献1の自動焦点装置をプロジェクタに応用すると、プロジェクタの投影レンズ光学系が無限遠焦点位置から最近焦点位置へ連続的に移動しながらスクリーンに投影した画像を受光した得られる画像の高周波成分は、図4に示すように途中に多くのピーク値を有する。この受光画像の高周波成分の振れは、プロジェクタの光源の光出力の振動、プロジェクタの空冷ファンからのノイズ、その他の雑音等に起因する。この結果、図4の合焦位置P0から離れたピークQ位置を最大の焦点評価値(高周波成分)の所と誤認して焦点位置を間違えてしまう問題点がある。
【0006】
本発明の目的は上記した従来の自動焦点装置の問題点を解決してスクリーン上に投影された画像を正確に自動的に合焦調節できるプロジェクタ及び自動焦点調節方法を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に記載された本発明によれば、スクリーン上に画像を投影する投影レンズ光学系を含むプロジェクタであって、前記投影レンズ光学系がその焦点位置を最遠焦点位置と最近焦点位置の間を移動しながら投影した画像を受光して得られる画像信号が最大となる所を測定して前記投影レンズ光学系の焦点位置を調節する自動焦点検出装置を備えたプロジェクタが提供される。
【0008】
請求項1のかかる構成によれば、プロジェクタが投影レンズ光学系をその最遠焦点位置(無限遠焦点位置)と最近焦点位置の間の全範囲を移動しながらスクリーン上に投影した画像を受光して得られる画像信号を測定して、画像信号が最大となる所を投影レンズ光学系の全範囲内で見つけて、そこを合焦位置として投影レンズ光学系の焦点を調節する。このため、プロジェクタの光源やファンモータ等に起因するノイズ等の影響により画像信号のピーク値が多数存在していても、合焦位置の最大値を正確に検出でき、スクリーン上に投影された画像を正確に自動合焦(オートフォーカス)できる。
【0009】
請求項2に記載された本発明によれば、前記自動焦点検出装置は、前記画像信号が最大となる所に前記投影レンズ光学系の焦点位置を調節した後、その位置から所定間隔だけ前記投影光学レンズ系を前記最遠焦点位置方向及び前記最近焦点位置方向へ移動しながら前記スクリーン上に投影された画像を受光して得られる画像信号が最大となる所を再度測定して焦点位置を再度調節する請求項1に記載のプロジェクタが提供される。
【0010】
請求項2のかかる構成によれば、投影レンズ光学系が最遠焦点位置と最近焦点位置の間の全範囲を移動して画像信号が最大となる所に投影レンズ光学系を調節した後、投影レンズ光学系を所定間隔だけ最遠焦点位置方向と最近焦点位置方向に移動して画像信号が最大となる所を再度測定して、投影レンズ光学系の焦点位置を再度調節する。この結果、投影レンズ光学系を駆動する光学系駆動部が移動誤差等により正確に画像信号が最大となる所に投影レンズ光学系を調節することができなくとも、画像信号が最大となる付近で所定間隔だけ両方向に投影レンズ光学系を移動して画像信号が最大となる所を再度測定することで、正確に合焦位置に調節することができる。
【0011】
請求項3に記載された本発明によれば、前記スクリーン上に投影された画像の台形歪みを補正するための一対のラインセンサを含む角度検出装置をさらに備え、前記自動焦点検出装置が前記画像の合焦位置を検出して前記投影レンズ光学系の焦点調節をした後、前記角度検出装置が前記ラインセンサを使用して前記スクリーンの相対的な傾斜角度を検出して前記スクリーン上に投影された画像の台形歪みを補正をする請求項1乃至2に記載のプロジェクタが提供される。
【0012】
請求項3のかかる構成によれば、最初に自動焦点検出装置によりスクリーン上に投影される画像の合焦位置を求める。投影レンズ光学系を動かしながら受光した画像信号が最大となる所を測定し、その所に投影レンズ光学系の焦点を調節して合焦する。この自動焦点検出装置による合焦位置検出の際、プロジェクタからスクリーン上に投影される画像は焦点合せに適当ならば繰返しパターンを持つものでも良い。次に、一対のラインセンサを含む角度検出装置を使用してスクリーン上に投影された画像の台形歪みを補正する。この際、繰返しパターンを含まない画像を投影する。これは角度検出装置が一対のラインセンサが受光した画像の位相差を使用してプロジェクタからスクリーン上に投影された画像の複数箇所までの距離を測定するため、繰返しパターンを含む画像は位相差測定に不向きだからである。最初に自動焦点検出装置により投影レンズ光学系がスクリーン上に投影する画像の合焦調節をしているため、台形歪みを補正する際に使用する画像もスクリーン上に焦点が合って投影できる。このため、角度検出装置の一対のラインセンサが受光した画像はコントラストが高くて、高い位相差を得ることができる。この結果、比較的に高精度にプロジェクタからスクリーン上に投影された画像の複数箇所までの距離を測定することができ、従って、スクリーンの相対的な傾斜角度を比較的高精度に求めることができ、よって高精度で台形歪みを補正することができる。この台形歪みを補正した後、再度投影レンズ光学系の焦点を調節するようにしてもよい。台形歪みを補正する際には合焦がずれることもあるからである。このため、角度検出装置によりプロジェクタからスクリーン上に投影された画像の複数箇所までの距離を測定し、この測距結果に基づいて、台形歪み補正後の焦点の変動を補正するようにしてもよい。また、比較的大型スクリーンの場合にはスクリーンの特定箇所、例えば、中央位置、に画像の焦点が特に合うように投影レンズ光学系の焦点を再調節するようにしてもよい。この焦点再調節は投影レンズ光学系の最初の合焦位置からの微調節で済むから、電力消費を抑えることができる。
【0013】
請求項4に記載された本発明によれば、前記自動焦点検出装置は、前記角度検出装置の前記ラインセンサを使用して前記スクリーン上に前記投影された画像を受光する請求項3に記載のプロジェクタが提供される。
【0014】
請求項4にかかる構成によれば、自動焦点検出装置が角度検出装置のラインセンサを受光素子として使用して、スクリーン上に投影された画像信号、好ましくはその高周波成分又はコントラストデータを測定することにより、自動焦点検出装置の受光素子を別途に設ける必要がない。
【0015】
請求項5に記載された本発明によれば、投影レンズ光学系によりスクリーン上に投影された画像の合焦位置を自動的に検出して調節する方法であって、前記投影レンズ光学系の焦点位置を最遠焦点位置と最近焦点位置の間を移動しながら前記スクリーン上に画像を投影するステップと、前記画像を受光して得られる画像信号が最大となる所を測定するステップと、前記最大となる所に前記投影レンズ光学系の焦点位置を調節するステップと、前記調節するステップ後に所定間隔だけ前記投影光学レンズ系を前記最遠焦点位置方向及び前記最近焦点位置方向へ移動しながら前記スクリーン上に投影された画像を受光して得られる画像信号が最大となる所を再度測定するステップと、前記再度測定された最大となる所に前記投影レンズ光学系の焦点位置を再度調節するステップとを備えた自動焦点調節方法が提供される。
【0016】
請求項5にかかる構成によれば、投影レンズ光学系をその最遠焦点位置と最近焦点位置の間の全範囲を移動しながらスクリーン上に投影した画像を受光して得られる画像信号を測定して、この画像信号が最大となる所を投影レンズ光学系の全範囲内で見つけ、そこを合焦位置として投影レンズ光学系の焦点位置を調節する。このため、プロジェクタの光源やファンモータ等に起因するノイズの影響により画像信号のピーク値が多数存在していても、合焦位置の最大値を正確に検出でき、スクリーン上に投影された画像を正確に自動合焦(オートフォーカス)できる。また、正確に画像信号が最大となる所に投影レンズ光学系を最初の調節で調節することができなくとも、画像信号が最大となる付近で所定間隔だけ両方向に投影レンズ光学系を移動して画像信号が最大となる所を再度測定することで、正確に合焦位置に調節することができる。
【0017】
【発明の実施の形態】
以下、添付図面を参照しながら、本発明の実施の形態について詳細に説明する。図1は、本実施の形態による自動焦点検出装置と角度検出装置を備え、自動的に検出した焦点位置に基づいてスクリーン1上にプロジェクタ2の投影レンズ光学系8により投影される画像の焦点合せをし、そして検出したスクリーン1の相対的な傾斜角度に基づいてスクリーン1に投影される画像の台形歪を電気的に補正するプロジェクタ2の概略ブロック図を示す。
【0018】
本実施の形態による自動焦点検出装置20は、受光センサ21を有し、スクリーン1上に投影レンズ光学系8により投影された画像を受光する。受光センサ21の出力は自動焦点検出装置20内の演算部22に送られる。演算部22は、受光センサ21から出力される画像信号の高周波成分又は後述のラインセンサのコントラストデータを測定する。
【0019】
本実施の形態による角度検出装置は、水平面内及び垂直面内において、スクリーン1に対するプロジェクタ2の相対的な傾斜角度を検出するため、プロジェクタ2からスクリーン1平面上の水平方向に並んだ複数の位置までの距離を測定する第1ライン型パッシブ測距装置3及び及び垂直方向に並んだ複数の位置までの距離を測定する第2ライン型パッシブ測距装置4を備える。ライン型測距装置は、後述するように複数の光検出器セルが直線状に配列された一対のラインセンサを有する。自動焦点検出装置20の受光センサ21として、このラインセンサを使用できる。この場合は、自動焦点検出装置20の演算部22にラインセンサの出力が入力する。本実施の形態の自動焦点検出装置20及びパッシブ測距装置3と4は、自らが発光したり送信したりせず、後述する方法でプロジェクタ2の投影レンズ光学系8によりスクリーン1に投影された画像を受光して合焦位置及び距離を測定する。
【0020】
図2は、図1に示すプロジェクタ2の正面の構成を示す平面図である。図2に示すようにプロジェクタ2の正面には、投影レンズ光学系8(コンデンサレンズ等を含んでもよい。)が設けられていて、スクリーン1へ画像を投影する。また、プロジェクタ2の正面には自動焦点検出装置20の受光センサ21が設けられている。第1ライン型パッシブ測距装置3は、プロジェクタ2の正面を構成する平面上に、水平方向に延びた第1の基線長k(図11)だけ離間して配置された一対のレンズ31a及び31bを備えた撮像部31を有する。同じく第2ライン型パッシブ測距装置4は、プロジェクタ2の正面を構成する同じ平面上に、撮像部31の水平方向と直交する垂直方向へ延びて第2の基線長k’(図示せず)だけ離間して配置された一対のレンズ41a及び41bを備えた撮像部41を有する。なお、自動焦点検出装置20の受光センサ21としてパッシブ測距装置3又は4のラインセンサを兼用して使用する場合には、受光センサ21を設ける必要はない。
【0021】
次に、図1と図3を併せて参照して、本実施の形態による自動焦点検出装置20を説明する。自動焦点検出装置20の演算部22は、受光センサ21から入力された画像信号から高周波成分(又はラインセンサからのコントラストデータ)のみを通過させる高域通過フィルタ(HPF)22a、検波器22b、A/D変換器22c、及び積分器22dを有する。プロジェクタ2の電源スイッチが投入された時などに、プロジェクタ2は予め記憶されている自動焦点に適当なAF用パターン(繰返しパターンを含んでも良い)を投影画像生成部6から取り出して透過型液晶表示駆動部7に送り、投影レンズ光学系8を介してスクリーン1上に投影する。光学系駆動部23はステップモーター等を含み、投影レンズ光学系8を光軸方向に沿って前後に移動して、スクリーン1上に投影される画像の合焦位置を調節する。すなわち、自動焦点検出装置20がスクリーン1上に投影された画像を受光センサ21で受光し、演算部22の積分器22dから図4に示されるような高周波成分を出力して、制御回路5に送る。制御回路5は自動焦点検出装置10の演算部22からの出力に基づいて以下に説明するように光学系駆動部23と投影レンズ光学系8を制御して自動焦点検出を行ない、合焦調節を行なう。
【0022】
次に、図4を参照して、本実施の形態による自動焦点検出装置20による合焦位置検出方法を説明する。まず、プロジェクタ2の電源投入時等に投影レンズ光学系8から投影される画像がスクリーン1が無限遠にある場合に焦点が合う初期位置に投影レンズ光学系8を設定する。そして、光学系駆動部23は、投影レンズ光学系8の焦点位置を無限遠の焦点位置から最近焦点位置(プロジェクタにより決まる位置、例えば、1m)へと全範囲を移動する。その際、演算部22からの出力は図4に示すように、スクリーン1上の画像が合焦位置P0に近づくにつれて画像の解像度が増すため高周波成分が増加する。前述したように、画像信号の高周波成分にはプロジェクタ光源の光出力の変動や冷却ファンのノイズ等に起因して多数のピークが存在して単調な増加・減少を示さない。スクリーン1上の画像が合焦位置P0に達すると高周波成分は最高となり、その後は焦点が外れて解像度が落ちるために高周波成分は低下する。なお、演算部22が受光センサ21からの画像の高周波成分の代わりにラインセンサからのコントラストデータを測定する場合も図4と同様である。このように、投影レンズ光学系8を無限遠焦点位置から最近焦点位置まで移動して高周波成分を測定した後、高周波成分が最高に達した時の投影レンズ光学系8の位置に光学系駆動部23により最近焦点位置から戻すことでスクリーン1上の画像が合焦調節される。最高点の合焦位置P0は、無限遠の初期位置からの光学系駆動部23の駆動時間(又はステップパルス数)をカウントすることで記録される。
【0023】
次に、図5を参照して、本発明のプロジェクタの画像調節方法を説明する。前述したようにプロジェクタ2の電源投入時(ステップ55)、スクリーン1上に投影された画像の焦点が自動的に調節される(ステップ56)。なお、焦点調節は電源投入時に限らず、適宜変更可能である。例えば、所定時間ごとに自動的に焦点調節を行なっても良いし、また、図示しないAFスイッチを設けて、AFスイッチを操作した時に焦点調節を行なっても良い。前述したように本発明の自動焦点調節方法は図4のグラフに示すように、投影レンズ光学系8を動かしながらスクリーン1上に投影された画像を受光センサ21で受光して画像信号から最高の高周波成分(又は最高のコントラストデータ)が得られる位置P0を検出するものであるから、山登り式オートフォーカス(AF)とも呼ばれる。
【0024】
図6には本発明の前述した自動焦点調節方法のステップが詳細に示されている。電源投入後に自動焦点調節操作が開始される。まず、光学系駆動部23により投影レンズ光学系8が初期位置(例えば、無限遠焦点位置)に駆動される。ここでは、画像信号の高周波成分として角度検出装置のラインセンサで検出されるコントラストデータを測定する。しかし、受光センサ21により受光された画像の高周波成分の測定も同様であるので、本明細書では高周波成分とコントラストデータとは交換可能として説明する。コントラストデータ値(cont)、最大コントラストデータ値(Max_cont)、コントラストデータが最大値となった時間(Tp)、繰り込み時間(Tr)(投影レンズ光学系8を最近焦点位置から初期位置方向へ戻す時間Tr=Ti−Tp)が、それぞれゼロにリセットされる(ステップ60)。ステップモーター等の光学系駆動部23により、投影レンズ光学系8が初期位置(無限遠焦点位置)から最近焦点位置までの全範囲を一定速度で移動される繰り出し時間Tiは予め設定されている。
【0025】
次に、プロジェクタ2内に予め記憶されている自動焦点調節操作に適したAF用パターンが投影レンズ光学系8を介してスクリーン1上に投影される。このAF用パターンは角度検出操作とは異なり位相差測定をしないから、繰り返しパターンでもよい(ステップ61)。光学系駆動部23が投影レンズ光学系8を初期位置(無限遠焦点位置)から最近焦点位置まで一定速度で移動し(繰り出し)、同時にラインセンサ(31cと31d、図10)(又は受光センサ21)がスクリーン1上に投影されたAF用パターンを受光し、タイマを作動する(ステップ62)。ラインセンサ(31cと31d、図10)(または受光センサ21)からのセンサデータを読み出す(ステップ63)。そして、センサデータをA/D変換する(ステップ64)。センサデータからコントラストデータ(cont)値を演算する(ステップ65)。そして、コントラストデータ(cont)値が最大のコントラストデータ値(Max_cont)と比較して大きいかどうかを判定する(ステップ66)。もし、大きければ、コントラストデータ(cont)値を最大のコントラストデータ値(Max_cont)に入れて、その時点のタイマの時間Tpを記憶する(ステップ67)。そして、現在のタイマの時間が光学系駆動部23により投影レンズ光学系8を初期位置(無限遠焦点位置)から最近焦点位置まで移動するために要する繰り出し時間Tiに達したかどうかを判定する(ステップ68)。達していなければ、ステップ63に戻る。もし、コントラストデータ(cont)値が最大のコントラストデータ値(Max_cont)と比較して大きくなければ(ステップ66)、直接、ステップ68へ行く。もし、現在のタイマの時間が繰り出し時間Tiに達したならば、投影レンズ光学系8を最大コントラストデータ値の位置に戻すための繰り込み時間Trを計算する(Tr=Ti−Tp)(ステップ69)。そして、光学系駆動部23が投影レンズ光学系8を最近焦点位置から初期位置(無限遠焦点位置)方向へ繰り込み時間Trだけ戻す(ステップ70)。そして、コントラストデータが最大値であるかどうかを図7の方法で再度検出する(ステップ71)。なお、投影レンズ光学系8の初期位置及び駆動方向は上記に限定されるものではない。例えば、初期位置を最近焦点位置とし、投影レンズ光学系8を初期位置から時間Ti分繰り込んで無限遠焦点位置まで駆動し、そこから時間Tr分繰り出して最大コントラストデータ値の位置に戻すようにしても良い。
【0026】
このようにして、プロジェクタ2の電源投入時にスクリーン1上に投影される画像の合焦調節が行なわれる。その際、投影レンズ光学系8は繰り出し時間Tiで定義される初期位置(無限遠焦点位置又は最遠焦点位置)から最近焦点位置までの全範囲を移動されて、スクリーン1上に画像を投影する。そして、受光した投影画像の高周波成分又はコントラストデータが全範囲で測定されるため、最大の高周波成分又はコントラストデータを持つ合焦位置を正確に検出でき、単なるピーク位置を合焦位置と誤認することを防止できる。
【0027】
次に図7を参照して説明する。図7の方法は、図6のコントラストデータの最大値の再度の検出ステップ(ステップ71)を詳細に説明する。すなわち、図6のステップ70で戻された位置から、投影レンズ光学系8が所定ステップ数(Ni_max)だけ、最近焦点位置方向へ繰り出される。そして、投影レンズ光学系8が繰り出される際、再度、コントラストデータが測定される(ステップ72及び図8)。次に、図6のステップ70で戻された位置から、投影レンズ光学系8が所定ステップ数(Nr_max)だけ、無限遠焦点位置方向へ繰り込まれる。そして、投影レンズ光学系8が繰り込まれる際、再度、コントラストデータが測定される(ステップ73及び図9)。所定ステップ数(Nr_max)及び(Ni_max)はそれぞれ投影レンズ光学系8の図4のP0からP1及びP2への所定間隔の移動に対応していて、適当に選択できる。例えば、それぞれ5ステップとすることができる。そして、それぞれのステップ72と73で測定された最大のコントラストデータ(Max_contIとMax_contR)が比較されて(ステップ74)、より大きいコントラストデータを測定した位置へ投影レンズ光学系8が移動される(Nipステップ繰り出し又はNrpステップ繰り込み)(ステップ75又は76)。
【0028】
図8は図7のステップ72の操作を詳細に示すフローチャートである。まず、初期設定がされて、Max_contI値、cont値、Nip値、及びn値がゼロにセットされる(ステップ81)。そして、投影レンズ光学系8が1ステップだけ最近焦点位置方向へ繰り出されて、n値に1が加えられる(ステップ82)。次に、ラインセンサ(31cと31d、図10)からデータが読みだされて演算部(22、図3)に送られてA/D変換等の処理がされてコントラストデータが得られて、cont値に代入する(ステップ83)。このcont値がMax_contI値と比較される(ステップ84)。もし、cont値の方が大きければ、Max_contI値にcont値が代入され、Nip値にn値が代入される(ステップ85)。そして、n値がNi_max値に達したかどうかが判定される(ステップ86)。Ni_max値は最近焦点位置方向へ投影レンズ光学系を繰出す最大繰り出しステップ数で、例えば、5ステップである。もし、ステップ84で、cont値がMax_contI値よりも小さければ直接ステップ86へ行く。ステップ86でn値が最大繰り出しステップ数Ni_max値に達したならば、投影レンズ光学系8を最大繰り出しステップ数Ni_max値だけ繰り込み、すなわち、無限遠焦点位置方向に戻して、最初の位置に戻す。次に、図9に示す操作が行なわれる。
【0029】
図9は図7のステップ73の操作を詳細に示すフローチャートである。まず、初期設定がされて、Max_contR値、cont値、Nrp値、及びn値がゼロにセットされる(ステップ91)。そして、投影レンズ光学系8が1ステップだけ無限遠焦点位置方向へ繰り込まれて、n値に1が加えられる(ステップ92)。次に、ラインセンサ(31cと31d、図10)からデータが読みだされて演算部(22、図3)に送られてA/D変換等の処理がされてコントラストデータが得られて、cont値に代入する(ステップ93)。このcont値がMax_contR値と比較される(ステップ94)。もし、cont値の方が大きければ、Max_contR値にcont値が代入され、Nrp値にn値が代入される(ステップ95)。そして、n値がNr_max値に達したかどうかが判定される(ステップ96)。Nr_max値は無限遠焦点位置方向へ投影レンズ光学系8を繰り込む最大繰り込みステップ数で、例えば、5ステップである。もし、ステップ94で、cont値がMax_contR値よりも小さければ直接ステップ96へ行く。ステップ96でn値が最大繰り込みステップ数Nr_max値に達したならば、投影レンズ光学系8を最大繰り込みステップ数Nr_max値だけ繰り出し、すなわち、最近焦点位置方向に戻して、最初の位置に戻す。次に、前述した図7に示すステップ74以下の操作が行なわれる。
【0030】
図7乃至図9に示す操作により、たとえ図6の1回の戻し操作(ステップ70)により、投影レンズ光学系8を駆動する光学系駆動部23が移動誤差等により投影レンズ光学系8を最大のコントラストデータの位置P0(図4)に正確に戻すことができなくても、その周辺の領域P1〜P2(図4)を投影レンズ光学系8を移動して最大のコントラストデータを有する合焦位置P0(図4)を再度検出して合焦調節することができる。
【0031】
次に、再び、図5を参照すると、以上説明した山登り式オートフォーカスにより合焦操作(ステップ56)が行なわれた後、角度検出装置によりプロジェクタ2とスクリーン1との間の相対的な傾斜角度が検出されて台形歪みが補正される(ステップ57)。角度検出装置は後述のように一対のラインセンサを使用してスクリーン1上に投影された画像の受信信号の間の位相差を測定してスクリーン上の画像までの距離を測定するため、繰返しパターンの画像では位相差検出が困難なため、角度検出用にはAF用パターンとは別のパターンを用いるようにしてもよい。なお、AF用パターンと角度検出用パターンとを共に繰り返しパターンを含まない構成にすれば、両パターンを統一できるので、構成の簡略化が図れる。スクリーン1上の画像は図5の前のステップ56で既に合焦調節されているため比較的高いコントラストを有している。この結果、角度検出装置の一対のラインセンサにより精度の高い位相差が測定できる。従って、精度の高い距離測定と角度検出ができ、台形歪みをより高精度に補正できる。
【0032】
台形歪み補正の際(ステップ57)、最初の合焦位置からスクリーン1上の画像がずれる。また、スクリーン1が比較的に大画面の場合、スクリーン1の部分(例えば、中央部分)の画像を特に高精度に焦点合せをしたい場合がある。このため、一対のラインセンサの位相差検出方法で得られた測距データに基づいて、投影レンズ光学系8の焦点を調節する(ステップ58)。この焦点調節(ステップ58)は、図5のステップ56の山登り式AFとは異なり、光学系駆動部23は、一対のラインセンサの位相差検出方法により得られた測距データに基づいて投影レンズ光学系8の焦点位置を最初の合焦位置から調整する。このため、移動量は微調節の範囲に留まる。従って、投影レンズ光学系8の移動に伴なう電力消費を抑制することができる。しかも、この焦点調節(ステップ58)はプロジェクタが大画面のスクリーンに投影する場合は、画面中央等をより正確に焦点合せできるため、特に有効である。
【0033】
次に、図1を再び参照して、本実施の形態の角度検出装置によるスクリーン1の相対的な傾斜角度を検出する方法を説明する。仮に投射レンズ光学系8からスクリーン1へ照射される光軸がスクリーン1平面に対して垂直の位置関係にあれば、スクリーン1の上下(又は左右)は、投射レンズ8からの距離が等しく、スクリーン1上の画像には台形歪は発生しない。しかし、実際は、プロジェクタ2は、スクリーン1の前方から照射する際に見る者の邪魔にならないように、スクリーンの中心から下又は上方に偏移されて置かれるため、プロジェクタ2の投射レンズ8からスクリーン1へ照射される投射光軸はスクリーン1平面に対して垂直の位置関係から傾斜している。
【0034】
このため、スクリーン1の上下は、投射レンズ8からの距離が異なり、スクリーン1上に投影された画像に台形歪を生ずる。上述の通り、この台形歪を補正するためには、投射レンズ8の光軸の傾斜を光学的に補正するか、又は、台形歪で小さく(大きく)投射される部分を大きく拡大(小さく縮小)する画像処理を電気回路で行なう電気的補正を行なう。この電気的補正は特許文献2に記載されている。
【0035】
【特許文献2】
特開2000−122617号公報
【0036】
これらの補正を自動的に行なうため、まず、投射レンズ8の光軸に対してスクリーン1面の垂直方向が傾斜した傾斜角度を自動的に正確に測定することが必要である。
【0037】
本実施の形態の角度検出装置は、以下に詳細に説明するように、第1及び第2ライン型パッシブ測距装置3及び4を備えて、プロジェクタ2の正面からスクリーン1上の水平(第1ライン型パッシブ測距装置3の基線長方向に対応)及び垂直(第2ライン型パッシブ測距装置4の基線長方向に対応)方向に沿った複数の位置までの距離を測定することにより、プロジェクタ2に対するスクリーン1の相対的な傾斜角度を、水平面内及び垂直面内において正確に測定することができる。
【0038】
第1及び第2ライン型パッシブ測距装置3及び4は、それぞれ演算部32及び42を有し、それぞれ撮像部31及び41からの受信信号が入力される。演算部32及び42からの出力信号は制御回路5に入力される。制御回路5は、第1及び第2ライン型パッシブ測距装置3及び4を制御すると共に、図示しないパーソナル・コンピュータ等の機器から入力画像を入力して画像情報を出力する投影画像生成部6及び投射レンズ光学系8へ画像出力する透過型液晶表示駆動部7を制御する。さらに、制御回路5は自動焦点検出装置20の演算部22からの出力を受けて合焦位置を検出して投射レンズ光学系8の焦点位置を光学系駆動部23を介して調節する。さらに、制御回路5は演算部32及び42からの出力に基づいてプロジェクタ2に対するスクリーン1のそれぞれ水平方向及び垂直方向の相対的な傾斜角度を算出する。次ぎに、制御回路5は、算出された傾斜角度に基づいて、台形歪を補正するように投影画像生成部6及び/又は透過型液晶表示駆動部7を制御して、スクリーン1の上下及び/又は左右に投影される画像の拡大又は縮小をする。上述した通り、台形歪の光学的補正又は電気的補正自体は公知であるので(例えば、特許文献2を参照)、これ以上説明しない。制御回路5と演算部22と演算部32及び42とメモリ部10は、1つのマイクロプロセッサ(CPU)9で構成することができる。
【0039】
メモリ部10は、本発明の構成に必要なデータや命令を記憶していて、制御回路5と演算部22と演算部32及び42等に随時にデータや命令を供給し又は受け取る。メモリ部10は、不揮発性のフラッシュメモリ等及び揮発性のRAM等の2つのタイプのメモリ装置を含み、本発明に必要な命令や長期的に使用されるデータは不揮発性のメモリ装置に記憶され、一時的にのみ使用されるデータは揮発性のメモリ装置に記憶される。
【0040】
次ぎに図10の機能ブロック図を参照して、本実施の形態による角度検出装置の構成を説明する。なお、説明を簡潔にするために、第1ライン型パッシブ測距装置3の構成についてのみ説明するが、第2ライン型パッシブ測距装置4も同様に構成されている。プロジェクタ2の正面を構成する平面上に、水平方向に基線長k(図11)だけ離間された一対のレンズ31a及び32bの下には、これらのレンズ31a及び32bから焦点距離f(図11)だけ離間されて、ラインセンサ31c及び31dがそれぞれ基線長k(水平)方向に沿って配置されている。ラインセンサ31c及び31dは直線状に配列された所定数、例えば、104個、の光検出素子(画素)を有する一対のラインCCD又はその他のライン型撮像素子である。撮像部31から、出力部31eを介して、レンズ31a及び31bによりラインセンサ31c及び31dの各画素上に結像された画像の光量に対応した電気信号が直列的に出力される。
【0041】
A/D変換部32aは、撮像部31の出力部31eから出力されたアナログ電気信号をデジタル信号に変換する。ラインセンサ31c及び31dからのデジタル化された出力信号はそれぞれ画像データ信号列IL及びIRとして、メモリ領域32b内にその後の処理のために記憶される。従って、メモリ領域32b内にはそれぞれ104個のデータ列から成る一対の画像データ信号列IL及びIRが記憶される。メモリ領域32bはメモリ部10内に設けても良い。
【0042】
フィルタ処理部32cは、ラインセンサ出力信号から直流成分を取除いて(ファイリング)、画像に対応した空間周波数成分だけを含んだ有用な信号に画像データ信号列IL及びIRを変える。相関演算部32dは、後で図11及び図12を参照して説明するように、画像データ信号列IL及びIR内から空間的に近接した例えば26個の画素グループからなる部分画像データ群iLm(基準部)及びiRn(参照部)をそれぞれ選択的に取り出して、データの一致度を計算するために両部分画像データ群iLm及びiRnを互いに比較する。例えば、一方の部分画像データ群iLmを基準部として固定して、他方の部分画像データ群iRnを参照部としてIR内で画素を1つずつすらしながら、互いに比較を繰り返す。最大相関度検出部32eは、一対の画像データ信号列IL及びIR内で最もデータの一致度の高い2つの部分画像データ群iLm及びiRnを検出する。
【0043】
補間演算部32fは、最大相関度検出部32eで得られた最大の一致度の部分画像データ群iLm及びiRnの位置間隔を、既知の補間方法により画素ピッチ単位の位置間隔よりもより正確な位置間隔に補間する。この補間演算部32fにより補間された位置間隔に基づいて、位相差検出部32gは、一対のラインセンサ31c及び31d上に結像された同一の測距対象物体の一対の像の相対的な位相差(ずれ量)を算定する。
【0044】
コントラスト重心演算部32hは、後で図19を参照して説明するように、ラインセンサ31c及び31d上に結像された画像のコントラスト重心を求める。信頼性判定部32iは、算定された両ラインセンサ31c及び31d上に結像された位置の相対的な位相差(ずれ量)の信頼性を判定する。この信頼性の判定は、例えば、もし、距離測定対象の物体が両ラインセンサ31c及び31d上に正しく結像されているならば、最大相関度検出部32eにおいて得られる一致度が所定値以上となるはずである。従って、もし、最大相関度検出部32eにおいて得られる一致度がたとえ相対的に最高であったとしても、所定値未満の一致度であれば信頼性が低いとして、信頼性判定部32iでその測定結果を排除する。もし、最大相関度検出部32eにおいて得られる一致度が所定値以上であると、データの信頼性有りとして、CONF_FLG1=OKと設定する。以上の撮像部31及び演算部32の構成は周知であり、例えば、特許文献3及び特許文献4に記載されているため、これ以上の説明は省略する。
【0045】
【特許文献3】
特許第3230759号公報
【特許文献4】
特公平4−77289号公報
【0046】
さらに本実施の形態による角度検出装置は、空間的に隣接したいくつかの測定位置の小グループの測距結果の信頼性を判定するための相互信頼性判定部51と、空間的に隣接したいくつかの測定位置の小グループに関する測距結果及びコントラスト重心の平均値を求める平均値演算部52と、測距結果から傾斜角度を求めるための演算を行なう角度演算部53を含む。角度演算部53で算出されたスクリーン1の傾斜角度に基づいて、台形歪みを補正するための補正量が、投影画像生成部6及び/又は表示駆動部7に与えられる。これによりスクリーン1上の台形歪みが補正される。
【0047】
なお、自動焦点調節装置20の受光センサ21の代わりにラインセンサ31cと31dを使用する場合は、図10の出力部31eからのラインセンサ31cと31dの出力を自動焦点調節装置20の演算部22にも送るようにすればよい。
【0048】
次ぎに図11を参照して、ライン型パッシブ測距装置3の動作原理(外光三角測距方式)を説明する。第1ライン型パッシブ測距装置3は、プロジェクタ2の正面を構成する平面上に水平方向へ延びて基線長kだけ離間された一対のレンズ31a及び31bと、この基線長kからレンズ31a及び31bの焦点距離fだけ離間して基線長k方向と同じ水平方向に沿って延びた一対のラインセンサ31c及び31dを含んでいる。第1ライン型パッシブ測距装置3は、基線長kとラインセンサ31c及び31dを含んだ平面内に位置するスクリーン1の平面上の複数の位置の距離を測定して、基線長kとラインセンサ31c及び31dを含んだ平面内において、プロジェクタ2に対するスクリーン1平面の相対的な傾斜角度を算出する。
【0049】
説明を簡潔にするため、ここでは第1ライン型パッシブ測距装置3についてのみ説明をして、第2ライン型パッシブ測距装置4については説明を省略するが、動作原理が同じであるため同じ説明が第2ライン型パッシブ測距装置4についても、水平方向を垂直方向に置き換えるだけで適用される。
【0050】
図11(a)において、一対のレンズ31a及び31bが、プロジェクタ2の正面を構成する平面上に水平方向に延びた所定の基線長kだけ離間して配置されている。プロジェクタ2の正面を構成する平面の下には、これら一対のレンズ31a及び31bからそれらの焦点距離fだけそれぞれ離間され、基線長k方向(水平方向)に延びた一対のラインセンサ31c及び31dが配置されている。ラインセンサ31c及び31dは、その中央部分がそれぞれレンズ31a及び31bの光軸31ax及び31bx上にほぼ位置するように配置されていて、これらラインセンサ31c及び31d上に、それぞれ対応するレンズ31a及び31bにより距離測定対象のスクリーン1上のある位置の画像1Aが結像される。図11(a)においては、スクリーン1上の測定位置1Aが、異なる方向の光路A及びBを通って、それぞれのレンズ31a及び31bを介して、ラインセンサ31c及び31d上に結像されている。
【0051】
もし、測定位置1Aが無限遠の位置に存在すると仮定した場合、一対のレンズ31a及び31bから焦点距離fにあるラインセンサ31c及び31d上には、測定位置1Aがレンズ31a及び31bのそれぞれの光軸31ax及び31bxと交差する基準位置31cx及び31dxに結像される。
【0052】
次ぎに、測定位置1Aが無限遠位置からレンズ31aの光軸31ax上の方向Aに沿って近づき、図11(a)の位置、すなわち、距離LCに達すると、測定位置1Aはラインセンサ31c上においては、基準位置31cx上に結像されたままであるが、ラインセンサ31d上においては、レンズ31bにより基準位置31dxから位相差(ずれ量)αだけずれた位置に結像される。
【0053】
三角測距の原理から、測定位置1Aまでの距離LCは、LC=kf/αで求められる。ここで、基線長kと焦点距離fは予め知られている既知の値であり、ラインセン31d上の基準位置31dxからの位相差(ずれ量)αを検出すれば、距離LCが測定できる。これが外光三角測距のパッシブ型ラインセンサ測距装置の動作原理である。位相差(ずれ量)αの検出及びLC=kf/αの演算は、図1中の演算部32で実行される。
【0054】
ラインセンサ31dの基準位置31dxからの位相差(ずれ量)αの検出は、一対のラインセンサ31c及び31dから出力される一対の画像データ信号列IL及びIRからそれぞれ抽出した部分画像データ群iLm及びiRnについて、演算部32が相関演算を行なうことにより検出する。この相関演算は周知である(例えば、特許文献3参照)。
【0055】
このため、相関演算については詳細な説明を省略して以下の概要的な説明に留める。図11(b)に示すように、相関演算は、部分画像データ群iLm及びiRnを互いに重ねた時に最も一致度が高くなる領域を、重ね合わせる部分画像データ群iLm及びiRnをラインセンサ31c及び31d上で相対的にずらしながら検出していく演算である。図11(b)においては、一方のラインセンサ31cからの部分画像データ群iLmを基準位置31cxに位置を固定して、基準部として使用する。他方のラインセンサ31dからの部分画像データ群iRnは参照部として位置を一画素ずつずらして行き、基準部と最も一致度の高い部分画像データ群iRnを探す。最も一致度の高い部分画像データ群iRnを発生するラインセンサ31d上の位置とそのラインセンサ31dの基準位置31dxと間の間隔が位相差(ずれ量)αである。
【0056】
ラインセンサ31c及び31dの各々は、図13を参照して後述するように所定数の光検出器セル(画素)を所定長の直線上に配列した一対のラインCCDで構成されているから、位相差(ずれ量)αは、部分画像データ群iRnの画像データ信号列IR内の画素位置と画素ピッチから容易に求めることができる。このようにして、レンズ31aの光軸31axと同じ方向Aにある測定位置1Aまでの距離LCを、位相差(ずれ量)αを検出することにより測定できる。
【0057】
次ぎに、図12を参照して、図11とは異なる方向にある測定位置1Bまでの距離LR’及びLRを測定する原理を説明する。図12(a)に示すように、測定位置1Bが、異なる方向の光路C及び光路Dを通って、それぞれのレンズ31a及び31bを介してラインセンサ31c及び31d上に結像されている。
【0058】
もし、測定したい方向Cの無限遠位置に測定位置1Bが存在すると仮定した場合、一対のレンズ31a及び31bにより一対のラインセンサ31c及び31d上に結像される測定位置1Bの像の中心を、互いに基線長kだけ離間した基準位置31cy及び31dyとする。次ぎに、この無限遠位置にある測定位置1Bが測距方向Cに沿って近づいて図12(a)の位置に来ると、レンズ31aにより結像される測定位置1Bの像のラインセンサ31c上の基準位置31cyには変化ないが、レンズ31bにより結像される測定位置1Bの像のラインセンサ3dc上の位置は基準位置31dyから位相差(ずれ量)α’だけずれる。
【0059】
三角測距の原理から、測定位置1Bまでの距離LRは、LR=kf/(α’cosβ)となる。なお、角度βは、基線長kの垂直線、すなわち、レンズ31aの光軸31ax、に対する測距方向Cの傾き角であり、測定方向Cを決定することにより確定される角度である。基線長k、焦点距離f及びcosβは既知の値なので、位相差(ずれ量)α’を検出すれば、距離LRを測定できる。
【0060】
レンズ31a及び31bが配置されたプロジェクタ2の正面を構成する同一平面(基線長k方向)から測定位置1Bまでの距離LR’は、LR’=LRcosβ=kf/α’で求められる。すなわち、距離LR’は、位相差(ずれ量)α’を検出すれば、既知の値である基線長k及び焦点距離fから求めることができる。すなわち、距離LR’を測定するためには、角度βは不要である。
【0061】
位相差(ずれ量)α’を検出するためには、上述した相関演算を行なう。図12(b)に示すように、一方のラインセンサ31cからの基準位置31cyに対応する部分画像データ群iLmを基準部として位置を固定し、他方のラインセンサ31dからの部分画像データ群iRnを参照部として位置を1画素づつずらして互いに重ね合せて行くことにより、最も基準部iLmのデータと最も一致度の高いデータを持つ参照部iRmを見つける。
【0062】
ラインセンサ31c及び31dの各々は、図13を参照して後述するように所定数の光検出器セル(画素)を直線上に所定長に配列した一対のラインCCDで構成されているから、位相差(ずれ量)α’は、部分画像データ群iRnの画像データ信号列IR内の位置(画素番号)及び部分画像データ群iLmの画像データ信号列IL内の位置(画素番号)と画素ピッチから容易に求めることができる。
【0063】
なお、上述した相関演算の方法において、一方のラインセンサ31cからの部分画像データ群iLmを基準部として固定し、他方のラインセンサ31dからの部分画像データ群iRnを参照部としてその位置を1画素ずつずらして互いの一致度の高さを検査するとした。しかし、測距方向を両レンズ31a及び31bの中間位置からの方向とする場合は、ラインセンサ31c及び31d上で部分画像データ群iLm及びiRnの位置を共に反対方向に移動させながら、部分画像データ群iLm及びiRm間で互いの一致度の高さを検査するようにしてもよい。
【0064】
次ぎに図13を参照して、一対のラインセンサ31c及び31dの内、1方のラインセンサ31cを詳細に説明する。他方のラインセンサ31dはラインセンサ31cと同様に構成されている。ラインセンサ31cは多数、例えば、104個の光検出器セル(画素)が直線的に配列されたリニアCCD(電荷結合素子)又はその他の線形の撮像素子で構成されている。104個の光検出器セル(画素)は、図中左端から右端へ順に画素番号が付けられている。これらの光検出器セル(画素)は、隣接する26個単位のグループにより7つの測距演算領域を31c1(1〜26)、31c2(13〜38)、31c3(27〜52)、31c4(39〜64)、31c5(53〜78)、31c6(65〜90)及び31c7(79〜104)を構成している。但し、括弧内の数は光検出器セル(画素)番号である。各測距演算領域31c1乃至31c7は、その26個の光検出器セル内、前半が前隣りの測距演算領域に含まれ且つ後半が後隣りの測距演算領域に含まれていて、各測距演算領域31c1乃至31c7は両隣の測距演算領域と互いに半分ずつ重複している。
【0065】
各測距演算領域31c1乃至31c7内の光検出器セル(画素)からの信号は、図8及び図9中のラインセンサ31cの画像データ信号列ILの各部分画像データ群iLmに対応する。各測距演算領域31c1乃至31c7の中心位置a(13)、b(26)、c(38)、d(52)、e(64)、f(78)及びg(90)の各々は(但し、括弧内は画素番号である)、測距方向を定める基準位置となる。この結果、本実施の形態のラインセンサ31c及び31dを使用した測距装置3は、基準線kと同じ平面(水平平面)内にあるスクリーン1上の7つの離間した位置までの距離を測定することができる。ただし、実際の測距方向は、図10のコントラスト重心演算部32hにより後述する通り、測距演算領域内でのコントラスト重心位置により補正され得る。図13には、他方のラインセンサ31dに対応する基準位置a’、b’、c’、d’、e’、f’及びg’が示されていて、参照部としてラインセンサ31c中の測距演算領域と相関演算する際のずれ量を求める際に使用される。
【0066】
本発明により距離測定するスクリーン1上の複数の異なる位置は、7つに限る必要はなく、適宜、適当な数、例えば11とすることも、ラインセンサ31c及び31dの画素数又は測距演算領域の数を適当に選択することで可能である。
【0067】
例えば、162個の光検出器セル(画素)数のラインCCDを用いて27個の光検出器セル(画素)グループ単位で11の測距演算領域を設けていも良い。各領域は27個の画素数の内、13乃至14個の画素が隣接する測距演算領域と重複して使用される。この例では、スクリーン1上の基準線方向(水平方向)に沿った11の複数の位置の内の1つを選択することができる。
【0068】
次ぎに図14を参照して説明する。図14は、ライン型測距装置3及び4の初期調節をするため、プロジェクタ2のスクリーン1の相互の位置関係を所定の位置関係にした様子を示す。すなわち、プロジェクタ2の投影光学レンズ系8からの投射光軸がスクリーン1に垂直になるように、スクリーン1を予め基線長k及びk’(図示しない)に対して平行にして、プロジェクタ2からライン型測距装置3及び4の初期調節に適した画像を投射する。初期調節とは、例えば、レンズ31a及び31bは収差を持つ。このため、スクリーン1上の基線長k方向に沿った異なる測定位置がラインセンサ31c及び31dに結像する際、直線上に結像されるのでなく、実際は、歪む。初期調節はこのレンズ収差による歪みを補正するための補正係数を計算して、メモリ部10に記憶して、以後の演算部32及び42により使用する。ライン型測距装置3は、ラインセンサ31c上の7つの測距演算領域31c1乃至31c7を使用して、7つの測距方向のスクリーン1上の距離を測定する。簡潔にするため、図14中においては7つの方向の内、ラインセンサ31c上の3つの測距演算領域31c3、31c5、31c7に対応した3つの測距方向のスクリーン1上の1C、1E、1Gの位置のみを図示している。
【0069】
次ぎに図15乃至図18を参照して、パッシブ型ライン測距装置3を用いて、スクリーン1の相対的な傾斜角度を測定する方法を説明する。説明の簡略のために、ラインセンサ31cの2つの測距演算領域31c3及び31c7の2つの測距方向C及びGを用いて、これら2つの測距方向C及びGにあるスクリーン1平面上の2つの測定位置1C及び1Gまでの2つの距離LR’及びLL’を、図12で説明した方法で測定する。本実施の形態では2つの距離LR’及びLL’しか測定しないが、実際は、7つの測距方向にあるスクリーン1上の7個の測定位置までの距離が測定される。
【0070】
スクリーン1上の測定位置1Cや1Gは、パッシブ距離測定に適した画像であるならば、プロジェクタ2の投射レンズ8を介してスクリーン1に投影されるプロジェクタ製造メーカーのロゴマーク等を含んだ画像でもよく、また、プロジェクタ2の動作中に定期的に角度検出操作する際には、スクリーン1上の測定位置1C及び1Gは、スクリーン1上に投射されている任意の画像であってもよい。
【0071】
ラインセンサ31cの2つの測距演算領域31c3及び31c7のそれぞれの測距方向C及びGの基準位置c(38)及びg(90)間の距離Lは、その括弧内の画素番号及び画素ピッチより予め知られている値である。
【0072】
基線長kに平行な直線k2上にある測定位置1Cから測定位置1Gを通る基線長kに平行な直線k1上に垂直に下ろした点をC’とした場合、測定位置1C〜点C’間の距離は、LR’−LL’に等しい。このLR’−LL’の大きさは、スクリーン1の傾斜角度θ1があまり大きくない場合、直線k1上で測定位置1Gから距離(LL’*L/f)にある点をC”として、点C”からの直線k1と直交する線とスクリーン1との交点1C’とした場合の、距離1C’−C”と近似できる。通常は、予め人手等によりスクリーン1とプロジェクタ2の相対的な位置関係は調整されていることが多いから、傾斜角度θ1はあまり大きくはならず多くの場合にこの近似は妥当である。測定位置1Gと点C”とレンズ31aの中心とで構成される三角形と基準位置cとgおよびレンズ31aの中心とで構成される三角形とは相似の関係にあり、ラインセンサ31c上の2つの測距演算領域31c3及び31c7の2つの基準位置c(38)及びg(90)間の距離Lは、測定位置1G〜点C”間の距離に対応しているから、この傾斜角度θ1の値は、相似形の関係と三角関数を使用して、
θ1=arctan{(LR’−LL’)/(LL’*L/f)}
と求めることができる。
【0073】
従って、プロジェクタ2の制御回路5により、上式の演算をすることにより、水平面内におけるスクリーン1とプロジェクタ2の基線長k方向の傾斜角度θ1を算出できる。この傾斜角度θ1の大きさに基づいて、図1の制御回路1が投影画像生成部6及び/又は表示駆動部7に、画像の台形歪みを補正する指示を与えることができる。しかし、上式から求められる傾斜角度θ1は、測定位置1G及び1Cまでの距離測定結果LR’及びLL’の精度に依存する。
【0074】
図15において、測定距離を、各測定位置1C及び1Gから基線長k方向に下ろした垂直線LR’及びLL’の長さに代えて、レンズ31aから各測距方向C及びGに沿った各測定位置1C及び1Gまでの長さとしてもよい。この場合については図20において説明する。
【0075】
もし、角度検出に高い精度が求められる場合には、角度検出に用いる2つの測距演算領域31c3及び31c7の基準値c(38)及びg(90)間の距離Lに代えて、各々の測距演算領域31c3及び31c7中のコントラスト重心位置の距離を使用しても良い。
【0076】
図19を参照して、図10のコントラスト重心演算部32hによるコントラスト重心位置を用いた距離測定を説明する。周知のように、パッシブ式測距は、2つのラインセンサ上に結像される一対の画像を重ね合せた時に最も一致度が高くなる場所を検出する動作を含むが、この一致度は一対の画像のコントラスト状態が一致しているか否かを検出するものである。
【0077】
従って、パッシブ式測距は、図19に示すようにある1つの測距演算領域31cnの設計上の測距方向が矢印J方向である場合、もし、測距演算領域31cn上に結像される測距対象の像が矢印K方向のみにコントラスト位置1Kが存在する像である場合、実際の測距方向は矢印J方向から矢印K方向にずれる。もし、測距演算領域31cn上に結像される測距対象の像が矢印M方向のみにコントラスト位置1Mが存在する像である場合、実際の測距方向は矢印J方向から矢印M方向にずれる。さらに、測距演算領域31cn上に結像される測距対象の像が矢印K方向及び矢印M方向にコントラスト位置1K及び1Mが存在する像である場合、実際の測距方向は矢印J方向から測定演算領域31cn上に結像された画像のコントラスト重心位置にずれる。
【0078】
従って、角度検出に使用する2つの測距演算領域間の距離に対応した値として、各測距演算領域中のコントラスト重心位置の距離を用いれば、精度の高い距離Lを使用することができ、角度検出精度が向上する。なお、コントラスト重心位置の求め方は、特許文献5に記載されており、公知である。
【0079】
【特許文献5】
特開平8−75985号公報
【0080】
参考までに、本実施の形態においてコントラスト重心位置を求める数式1を以下に示す。
【0081】
【数1】
Figure 2004347908
ここで、L():基準部31c側センサーデータ
Sa :基準部31c側受光素子最小No.
Wn :部分群の受光素子数
t ;整数(一般的に1〜4)
ノイズの影響を解除するためには、差分の絶対値が所定値(ノイズキャンセルレベル)以下の場合は、総和に加えない。
なお、ラインセンサ31cの一列に配列された受光素子(画素)にはそれぞれ一連の通し番号(画素番号)がふってある。
【0082】
次ぎに図20を参照して、別の方法によるパッシブ型ライン測距装置3を用いて傾斜角度θ1の計算方法を説明する。図20に示すように、ライン型パッシブ測距装置3の基線長k方向(プロジェクタ2の水平方向)に対するスクリーン1の傾斜角度をθ1とし、図12で説明した方法により、ラインセンサ31cの測距演算領域31c7の測距方向に沿って測距演算して算出されたスクリーン1までの距離がL1、測距演算領域31c3の測距方向に沿って測距演算して算出されたスクリーン1までの距離がL2とする。予め知られている測距演算領域31c3の測距方向と基線長方向に垂直な方向とがなす角度をβとし、同じく予め知られている測距演算領域31c7の測距方向と基線長方向に垂直な方向とがなす角度をγとする。傾斜角度θ1は、次式で計算される。
【0083】
θ1=arctan(L2cosβ−L1cosγ)/(L1sinγ+L2sinβ)
【0084】
このようにして、図10に示す制御回路5はスクリーン1の傾斜角度を計算して、得られた傾斜角度に基づいてスクリーン1上の画像の台形歪みを補正する。上記において図5のステップ58に関連して説明したように、台形歪みを補正した後、測距装置3によりプロジェクタ2からスクリーン1までの距離を測定して、投影レンズ光学系8の焦点調節を再度行なう。具体的には、例えば、制御回路5が測距装置で測定したスクリーン1までの距離に対応する投影レンズ光学系8の焦点位置に基づいた信号を光学系駆動部23に出力し、光学系駆動部23が上記焦点位置まで投影レンズ光学系8を駆動することによって焦点調節を行なう。これは、台形歪み補正後の焦点の変動を補正し、また、比較的大型スクリーンの場合にはスクリーンの特定箇所、例えば、中央位置、の画像の焦点が特に合うように投影レンズ光学系の焦点を再調節するためである。この再調節は投影レンズ光学系8の図5のステップ56の山登り式AFによる合焦位置からの移動が少ない微調整ですみ、電力消費を抑えることができる。
【0085】
なお、図5のステップ56の山登り式AFの代わりに、測距装置3の一対のラインセンサを使用した位相差測定による測距操作を電源投入時にして、その測距データに基づいて合焦調節をすれば、焦点検出装置20が不要となることも考えられる。しかし、ステップ55の電源投入時等の初期時にはスクリーン上の画像のピントが合っていないことが考えられ、スクリーン上の画像のコントラストが低い。従って、測距装置3の一対のラインセンサが検出する位相差の精度が低くく、測距結果の精度も低くくなり、測距装置3の一対のラインセンサでは合焦調節が正確にできない場合が発生することも考えられる。そして、スクリーン上の画像のコントラストが低くいとその後の角度検出の精度も低くなり、ステップ57の台形歪み補正も正確にできなくなる可能性が高い。よって、図5のステップ56の合焦調節は投影レンズ光学系8を動かしてスクリーン上に投影される画像の高周波成分又はコントラストデータを検出する図4及び図6に示すような山登り方式AFを行なうのが好ましい。
【0086】
【発明の効果】
以上説明したように、請求項1に記載された本発明のプロジェクタによれば、ノイズ等の影響により画像信号のピーク値が多数存在していても、最大値を正確に検出でき、スクリーン上に投影された画像を正確に自動合焦(オートフォーカス)できる。
【0087】
請求項2に記載された本発明のプロジェクタによれば、投影レンズ光学系を駆動する光学系駆動部が移動誤差等により1回の操作で正確に画像信号が最大となる所に投影レンズ光学系を戻すことができなくとも、画像信号が最大となる付近で所定間隔だけ両方向に投影レンズ光学系を移動して画像信号が最大となる所を再度測定することで、正確に合焦位置に調節することができる。
【0088】
請求項3に記載された本発明のプロジェクタによれば、最初に投影レンズ光学系のスクリーン上に投影する画像の合焦位置を調節しているため、台形歪みを補正する際に使用する画像もスクリーン上に焦点が合って投影される。このため、一対のラインセンサが受光した画像はコントラストが高く、従って、高い位相差を得ることができる。この結果、比較的に高精度にプロジェクタからスクリーン上に投影された画像の複数箇所までの距離を測定することができ、スクリーンの相対的な傾斜角度を比較的高精度に求めることができ、よって高精度で台形歪みを補正することができる。
【0089】
請求項4に記載された本発明のプロジェクタによれば、自動焦点検出装置の受光センサの代わりに角度検出装置のラインセンサを使用することで部品点数を少なくすることができるという効果がある。
【0090】
請求項5に記載された本発明の方法によれば、ノイズ等の影響により画像の高周波成分のピーク値が多数存在していても、最大値を正確に検出でき、スクリーン上に投影された画像を正確に自動合焦(オートフォーカス)できる。また、投影レンズ光学系を駆動する光学系駆動部が移動誤差等により1回の操作で正確に画像信号が最大となる所に投影レンズ光学系を戻すことができなくとも、高周波成分が最大となる付近で所定間隔だけ両方向に投影レンズ光学系を移動して画像信号が最大となる所を再度測定することで、正確に合焦位置に調節することができる。
【図面の簡単な説明】
【図1】本発明の1つの実施の形態によるプロジェクタの構成を示す概略ブロック図。
【図2】図1に示したプロジェクタの概略正面図。
【図3】本発明の1つの実施の形態による自動焦点検出装置の演算部の機能ブロック図。
【図4】本発明の1つの実施の形態による自動焦点調節方法を従来技術と対比して説明するためプロジェクタの投影レンズ光学系の焦点位置を横軸に示し、その投影レンズ光学系によりスクリーン上に投影された画像の受光信号に含まれる高周波成分(又はコントラストデータ)を縦軸に示したグラフ。
【図5】本発明の1つの実施の形態によるプロジェクタの画像調節方法を示すフローチャート。
【図6】本発明の1つの実施の形態による自動焦点調節方法を示すフローチャート。
【図7】本発明の別の実施の形態による自動焦点調節方法を示すフローチャート。
【図8】図7の実施の形態による自動焦点調節方法の詳細を示すフローチャート。
【図9】図7の実施の形態による自動焦点調節方法の詳細を示すフローチャート。
【図10】本発明の1つの実施の形態による角度検出器の機能ブロック図。
【図11】本発明の1つの実施の形態による角度検出器に含まれる測距装置の測距操作を説明する図。
【図12】本発明の1つの実施の形態による角度検出器に含まれる測距装置の測距操作を説明する別の図。
【図13】本発明の1つの実施の形態による角度検出器に含まれる測距装置の一対のラインセンサの概略を示すブロック図。
【図14】本発明の1つの実施の形態による角度検出器に含まれる測距装置による複数位置の距離測定を説明する図。
【図15】本発明の1つの実施の形態による角度検出器に含まれる測距装置による角度検出方法を説明する図。
【図16】本発明の1つの実施の形態による角度検出器に含まれる測距装置による角度検出方法を説明する図。
【図17】本発明の1つの実施の形態による角度検出器に含まれる測距装置による角度検出方法を説明する図。
【図18】本発明の1つの実施の形態による角度検出器に含まれる測距装置による角度検出方法を説明する図。
【図19】本発明の1つの実施の形態による角度検出器に含まれる測距装置の測距演算領域のコントラスト重心位置を求める方法を説明する図。
【図20】本発明の1つの実施の形態による角度検出器に含まれる測距装置による角度検出方法を説明する図。
【符号の説明】
1 スクリーン
2 プロジェクタ
3 測距装置
4 測距装置
5 制御回路
8 投影レンズ光学系
20 自動焦点検出装置
21 受光センサ
22 演算部
23 光学系駆動部
31 撮像部
31a レンズ
31b レンズ
31c ラインセンサ
31d ラインセンサ
32 演算部
k 基線長
θ1 水平面内でスクリーン1が基線長k方向となす傾斜角度

Claims (5)

  1. スクリーン上に画像を投影する投影レンズ光学系を含むプロジェクタであって、前記投影レンズ光学系がその焦点位置を最遠焦点位置と最近焦点位置の間を移動しながら投影した画像を受光して得られる画像信号が最大となる所を測定して前記投影レンズ光学系の焦点位置を調節する自動焦点検出装置を備えたプロジェクタ。
  2. 前記自動焦点検出装置は、前記画像信号が最大となる所に前記投影レンズ光学系の焦点位置を調節した後、その位置から所定間隔だけ前記投影光学レンズ系を前記最遠焦点位置方向及び前記最近焦点位置方向へ移動しながら前記スクリーン上に投影された画像を受光して得られる画像信号が最大となる所を再度測定して焦点位置を再度調節する請求項1に記載のプロジェクタ。
  3. 前記スクリーン上に投影された画像の台形歪みを補正するための一対のラインセンサを含む角度検出装置をさらに備え、前記自動焦点検出装置が前記画像の合焦位置を検出して前記投影レンズ光学系の焦点調節をした後、前記角度検出装置が前記ラインセンサを使用して前記スクリーンの相対的な傾斜角度を検出して前記スクリーン上に投影された画像の台形歪みを補正をする請求項1又は2に記載のプロジェクタ。
  4. 前記自動焦点検出装置は、前記角度検出装置の前記ラインセンサを使用して前記スクリーン上に前記投影された画像を受光する請求項3に記載のプロジェクタ。
  5. 投影レンズ光学系によりスクリーン上に投影された画像の合焦位置を自動的に検出して調節する方法であって、前記投影レンズ光学系の焦点位置を最遠焦点位置と最近焦点位置の間を移動しながら前記スクリーン上に画像を投影するステップと、前記画像を受光して得られる画像信号が最大となる所を測定するステップと、前記最大となる所に前記投影レンズ光学系の焦点位置を調節するステップと、前記調節するステップ後に所定間隔だけ前記投影光学レンズ系を前記最遠焦点位置方向及び前記最近焦点位置方向へ移動しながら前記スクリーン上に投影された画像を受光して得られる画像信号が最大となる所を再度測定するステップと、前記再度測定された最大となる所に前記投影レンズ光学系の焦点位置を再度調節するステップとを備えた自動焦点調節方法。
JP2003145723A 2003-05-23 2003-05-23 プロジェクタ及び自動焦点調節方法 Pending JP2004347908A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003145723A JP2004347908A (ja) 2003-05-23 2003-05-23 プロジェクタ及び自動焦点調節方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003145723A JP2004347908A (ja) 2003-05-23 2003-05-23 プロジェクタ及び自動焦点調節方法

Publications (1)

Publication Number Publication Date
JP2004347908A true JP2004347908A (ja) 2004-12-09

Family

ID=33532783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003145723A Pending JP2004347908A (ja) 2003-05-23 2003-05-23 プロジェクタ及び自動焦点調節方法

Country Status (1)

Country Link
JP (1) JP2004347908A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267447A (ja) * 2006-03-27 2007-10-11 Fujinon Corp 駆動制御装置
CN100390603C (zh) * 2005-01-06 2008-05-28 精工爱普生株式会社 投影机
CN112887691A (zh) * 2021-02-20 2021-06-01 歌尔光学科技有限公司 投影仪对焦方法、系统及计算机可读存储介质
CN113848672A (zh) * 2021-09-07 2021-12-28 中科创达软件科技(深圳)有限公司 一种镜头系统、镜头系统的对焦方法、装置和设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100390603C (zh) * 2005-01-06 2008-05-28 精工爱普生株式会社 投影机
JP2007267447A (ja) * 2006-03-27 2007-10-11 Fujinon Corp 駆動制御装置
CN112887691A (zh) * 2021-02-20 2021-06-01 歌尔光学科技有限公司 投影仪对焦方法、系统及计算机可读存储介质
CN112887691B (zh) * 2021-02-20 2023-01-24 歌尔光学科技有限公司 投影仪对焦方法、系统及计算机可读存储介质
CN113848672A (zh) * 2021-09-07 2021-12-28 中科创达软件科技(深圳)有限公司 一种镜头系统、镜头系统的对焦方法、装置和设备

Similar Documents

Publication Publication Date Title
JP2006313116A (ja) 距離傾斜角度検出装置および該検出装置を備えたプロジェクタ
JP2008046314A (ja) プロジェクタ、プロジェクタの距離計測方法、プロジェクタの投影面傾き取得方法及びプログラム
JP2005331585A (ja) 距離傾斜角度測定装置を有するプロジェクタ
JP2005070687A (ja) オートフォーカス機能をもつプロジェクタ
EP1426732A1 (en) Angle detection apparatus, projector including the same, and angle detection method
JP2004347908A (ja) プロジェクタ及び自動焦点調節方法
JP2005031205A (ja) 角度検出装置及びそれを備えたプロジェクタ
JP2004347907A (ja) プロジェクタ及びプロジェクタの画像調節方法
JP2004347911A (ja) プロジェクタ及び自動焦点調節方法
JP2005049604A (ja) プロジェクタ及びプロジェクタの焦点調節方法
JP2005249432A (ja) プロジェクタ装置および距離測定方法
JP2004347909A (ja) プロジェクタ及び自動焦点調節方法
JP6329037B2 (ja) 補助光投光装置、撮像装置及び焦点調節方法
JP2004347910A (ja) 自動焦点調節装置を備えたプロジェクタ及び自動焦点調節方法
JP2005181726A (ja) プロジェクタ装置および投影画像調整方法
JP4098194B2 (ja) 角度検出装置およびそれを備えたプロジェクタ
JP2005043085A (ja) 角度検出装置及びそれを備えたプロジェクタ
JP2004191221A (ja) 角度検出装置及びそれを備えたプロジェクタ
JP2004233115A (ja) パッシブ型測距装置、それを備えた角度検出装置及びプロジェクタ
JP2005354232A (ja) 画像投射装置
JP2005234071A (ja) プロジェクタ装置及び投影画像調整方法
JP2005143054A (ja) プロジェクタ装置及びその異常状態検出方法
JP3709406B2 (ja) 自動台形歪補正手段を有するプロジェクタ
JP5150986B2 (ja) プロジェクタ
JP4150300B2 (ja) 角度検出装置及びそれを備えたプロジェクタ