JP2004344916A - Surface processing machine and surface processing method - Google Patents

Surface processing machine and surface processing method Download PDF

Info

Publication number
JP2004344916A
JP2004344916A JP2003143560A JP2003143560A JP2004344916A JP 2004344916 A JP2004344916 A JP 2004344916A JP 2003143560 A JP2003143560 A JP 2003143560A JP 2003143560 A JP2003143560 A JP 2003143560A JP 2004344916 A JP2004344916 A JP 2004344916A
Authority
JP
Japan
Prior art keywords
workpiece
piezoelectric effect
effect element
processing tool
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003143560A
Other languages
Japanese (ja)
Inventor
Tomoe Chikira
知恵 千喜良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2003143560A priority Critical patent/JP2004344916A/en
Publication of JP2004344916A publication Critical patent/JP2004344916A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface processing machine in which the surface position of a material to be processed can be accurately detected with a simple constitution, and a surface processing method. <P>SOLUTION: A detecting piezoelectric effect element 22 is provided on the lower side of a driving piezoelectric effect element 21. A voltage value of the detecting piezoelectric effect element 22 is changed by the piezoelectric effect when slightly compressed. Therefore, if the changes of the voltage value of the detecting piezoelectric effect element 22 are monitored, the position of the surface 9a of the material 9 to be processed can be detected when a processing tool 23 is brought into contact with the surface 9a of the material 9 to be processed by elongating the driving piezoelectric effect element 21. Such a detecting piezoelectric effect element 22, for example, can be expanded/contracted about 9 μm to the full stroke. The detecting piezoelectric effect element 22, for example, is a laminated piezoelectric effect element which is formed by laminating a large number of thin piezoelectric effect films. The voltage changes can be observed with the compression of about 0.2-0.3 μm as the whole element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、加工具の先端を被加工材の表面に押し付けて、被加工材に凹凸を形成する表面加工機に関するものである。
【0002】
【従来の技術】
例えば、表面に数百μm〜数十μmの微細な凹みまたは凸形状を多数形成した金属薄膜は、入射した光を効率的に反射させることができるので、液晶表示装置の反射膜として利用されている。このような反射膜は、微細な凹みを象ったローラ状の母型を樹脂層上で回転させて押し付け、微細な凹みが形成された樹脂層上に金属薄膜を積層して作られる。こうした微細な凹みを象ったローラ状の母型を作成する際には、ローラ状の被加工材を回転させつつ、先端が尖った加工具を断続的にこの被加工材に押し付けて、被加工材の表面に微細な凹みを形成する。
【0003】
被加工材の表面に凹みを形成する表面加工機は、様々な厚みの被加工材の表面位置を検出した後、この表面位置に基づいて所定の位置まで正確に凹みが形成される。このような被加工材の表面位置の検出は、従来、レーザビームの反射を利用したり、オートフォーカス装置による合焦位置の検出などを利用して行われていた(例えば、特許文献1)。
【0004】
【特許文献1】
特開平10−47916号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述したようなレーザビームの反射やオートフォーカス装置を利用した被加工材の表面位置の検出では、液晶表示装置の反射膜など数百μm〜数十μmの微細な凹みを形成するには誤差が大き過ぎ、精密に被加工材の表面位置を検出することが困難であった。
【0006】
また、上述したレーザビームの反射やオートフォーカス装置を利用した被加工材の表面位置の検出では、レーザ光の発生装置、あるいは合焦位置を検出する光学レンズなどが必要になり、表面加工機の小型、ローコスト化の障害なっていた。
【0007】
本発明は、上記の事情に鑑みてなされたものであって、簡易な構成で、被加工材の表面位置を精密に検出が可能な表面加工機および表面加工方法を提供することを目的する。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明によれば、加工具の先端を被加工材の表面に押し付けて、被加工材に凹凸を形成する表面加工機であって、前記加工具の先端の移動方向と同軸上に、前記加工具の先端が被加工材の表面に接触したことを検出するピエゾ圧電効果素子を備えたことを特徴とする表面加工機が提供される。
【0009】
このような表面加工機によれば、加工具の先端の移動軸上に検出用のピエゾ圧電効果素子を形成したので、加工具の先端が被加工材の表面に接した瞬間を高精度で確実に検出することが可能になる。こうしたピエゾ圧電効果素子は、安価で、かつ僅かな圧縮で鋭敏に電圧変化を示すので、従来のように、高価なレーザ装置やオートフォーカス装置を使用しなくても、加工具にピエゾ圧電効果素子を設けるだけで、安価で精度の良い加工原点位置の検出が可能な表面加工機を実現することができる。
【0010】
前記ピエゾ圧電効果素子に隣接して、前記加工具を被加工材の表面に押し付けて被加工材に凹凸を形成する加工具押圧手段を備えていてもよい。また、前記ピエゾ圧電効果素子は、前記加工具を被加工材の表面に押し付けて被加工材に凹凸を形成する加工具押圧手段であってもよい。ピエゾ圧電効果素子に隣接して加工具押圧手段を設けることによって、簡易な構成でコンパクトでローコストに表面加工機を提供することができる。また、こうしたピエゾ圧電効果素子を加工具押圧手段としても用いることによって、表面加工機の構造を更に簡単に構成することが可能になる。前記被加工材は、例えば略円筒形や円筒形であれば好ましい。
【0011】
加工具の先端を被加工材の表面に押し付けて、被加工材に凹凸を形成する表面加工方法であって、前記加工具の先端が被加工材の表面に接触したことをピエゾ圧電効果素子の電圧変化によって検出する表面位置検出工程を備えたことを特徴とする表面加工方法が提供される。こうした表面加工方法によれば、高価なレーザ装置やオートフォーカス装置を使用しなくても、加工具にピエゾ圧電効果素子を設けるだけで、安価で精度の良い加工原点位置の検出が可能になる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。図1は、本発明の表面加工機の概略を示す説明図である。表面加工機10は、被加工材9に加工を行う加工部11と、この加工部11を制御する制御部12に大別される。加工部11は、案内軸13の長手方向(図中X方向)に沿って移動体14を移動させる移動装置15と、被加工材9を保持する回転チャック16を回転させる回転装置17とからなる。
【0013】
移動装置15を構成する移動体14には、ステッピングモータ18(或いはサーボモータ)を介して駆動ユニット19が取り付けられている。ステッピングモータ18は駆動ユニット19を上下動させて、大まかな位置決めを行う(粗動位置決め装置)。移動体14の一端には原点標識25が形成されると共に、この原点標識25を検出するX軸原点センサ26が形成される。或いはまた、被加工材9の軸上のある1点(有効使用部でない場所)に原点用の点加工がされる方法であってもよい。この方法は、加工材上に形成されるので、精度の点で更に有利である。この原点標識25およびX軸原点センサ26によって、移動体14を移動装置15の原点位置に戻すことができる。
【0014】
駆動ユニット19は、加工具押圧手段を成す駆動用ピエゾ圧電効果素子21と、被加工材9の表面を検出する検出用ピエゾ圧電効果素子22と、先端が所定形状に形成された加工具23とから構成される。こうした駆動ユニット19の作用は後ほど詳述する。
【0015】
回転装置17を構成する回転チャック16は被加工材9を保持し、被加工材9を図中θ方向に回転させる。回転装置17の一端には原点標識27が形成されると共に、この原点標識27を検出するθ軸原点センサ28が形成される。この原点標識27およびθ軸原点センサ28によって、回転チャック16を回転装置17の原点位置に戻すことができる。なお、被加工材9上に原点を加工して検出する場合には、原点確認センサ類を置かなくても、制御信号を用いてフィードバックすることができる。
【0016】
制御部12は、表面加工機10全体を制御するパーソナルコンピュータ(PC)31と、信号変換装置、例えばデジタル−アナログ変換部(D/A変換部)32と、信号変換装置、例えばアナログ−デジタル変換部(A/D変換部)33と、移動装置ドライバ34と、回転装置ドライバ35と、ピエゾ圧電素子駆動ドライバ38と、粗動位置決め装置ドライバ39とから構成されている。D/A変換部32は、ステッピングモータ18および駆動用ピエゾ圧電効果素子21に制御信号を送出する。A/D変換部33は、被加工材表面の検出用ピエゾ圧電効果素子22から出力された検出信号をD/A変換部32にフィードバックする。移動装置ドライバ34、回転装置ドライバ35、粗動位置決め装置ドライバ39は、パーソナルコンピュータ(PC)31からの命令に応じて移動装置15、回転装置17、ステッピングモータ18(粗動位置決め装置)をそれぞれ制御する。なお、図1ではPC31からD/A変換部32、A/D変換部33、移動装置ドライバ34、回転装置ドライバ35を制御する例を示したが、制御信号のやり取りを高速化するために、移動装置ドライバ34、回転装置ドライバ35をマイコン付きのボード化してもよい。
【0017】
図2は駆動ユニットを示す拡大平面図である。駆動用ピエゾ圧電効果素子(加工具押圧手段)21は、ピエゾ圧電効果によって通電するとその長さが伸長して、図2中の矢印A方向に加工具23を被加工材9に押し付ける。こうした駆動用ピエゾ圧電効果素子21は、例えば薄いピエゾ圧電効果膜を多数積層して形成した積層型ピエゾ圧電効果素子であり、それぞれのピエゾ圧電効果膜に通電することによって、素子全体で例えばフルストロークで10〜100μm程度の伸縮を行う。
【0018】
駆動用ピエゾ圧電効果素子21の下面には接続手段41(例えば硬化型接着材)が固着され、この接続手段41を介して検出用ピエゾ圧電効果素子22が駆動用ピエゾ圧電効果素子21の下側に取り付けられる。検出用ピエゾ圧電効果素子22は、僅かに圧縮されるとピエゾ圧電効果によって電圧が発生変化する。これにより、検出用ピエゾ圧電効果素子22の電圧値の変化を監視していれば、駆動用ピエゾ圧電効果素子21を伸長させて加工具23が被加工材9の表面9aに接した瞬間、即ち被加工材9の表面9aの位置を検出することができる。こうした検出用ピエゾ圧電効果素子22は、例えばフルストロークで数μm、例えば9μm程度の伸縮が可能である。検出用ピエゾ圧電効果素子22は、例えば薄いピエゾ圧電効果膜を多数積層して形成した積層型ピエゾ圧電効果素子であり、素子全体として数百μm程度の圧縮で微小電圧変化を観察することが可能である。
【0019】
検出用ピエゾ圧電効果素子22の下面には加工具固着手段42(例えばチャック治具または接着剤)が固着され、この加工具固着手段42を介して加工具23が検出用ピエゾ圧電効果素子22の下側に取り付けられる。加工具23は、その先端23aの形状が被加工材9の表面9aに対応して形成される微細な凹みを象っており、加工具23全体は硬質な金属等で形成されれば良い。検出用ピエゾ圧電効果素子22は、このような加工具23の先端23aの移動軸C上に形成されている。これによって、検出用ピエゾ圧電効果素子22は加工具23の先端23aが被加工材9の表面9aに接した瞬間を確実に検出することが可能になる。
【0020】
次に、上述した構成の表面加工機10の作用を図1及び図3を交えて説明する。いま、被加工材9の表面9aに深さd、例えば1μmの微細な凹み(ディンプル)41を形成することを想定する。なお、被加工材9は、例えば図4に示すように、反射型液晶表示装置などに用いられる反射膜44の表面加工に用いられる母型が挙げられる。反射膜44は、反射型液晶表示装置の画素45よりも小さい、極めて微細な凹部46を表面に多数形成したものである。
【0021】
こうした反射膜44を形成する凹部46は、例えば幅tが数百μm〜数十μm程度であり、深さも数百μm〜数十μm程度の断面略円形あるいは楕円形の微細な窪みである。こうした凹部46を多数形成することによって、反射膜44は入射した光をムラ無く拡散反射することができる。被加工材9は、こうした反射膜44を製造するにあたって、反射膜44に凹部46を与える樹脂膜を形成する工程で、樹脂膜にこの被加工材9を押し当てて表面に凹凸を形成するのに用いられる。
【0022】
まず、被加工材9への加工を開始するにあたって、回転チャック16に被加工材9を固定する。次いでパーソナルコンピュータ(PC)31から加工準備を命令すると、X軸原点センサ26が原点標識25を検出するまで移動装置15の移動体14を動かして、移動体14を原点位置にセットする。また、θ軸原点センサ28が原点標識27を検出するまで回転装置17の回転チャック16を回転させ、回転チャック16を原点位置にセットする。被加工材9は、例えば円筒形の金属材であればよい。または、被加工材9を回転チャック16にセットした状態で駆動ユニット19により1つの凹部を加工し、それを原点標識としてX軸、θ軸をそれぞれ原点に戻しても良い。
【0023】
回転チャック16に被加工材9がセットされた状態で、移動体14および回転チャック16がそれぞれ原点位置に戻ったら、パーソナルコンピュータ(PC)31はD/A変換部32を介して、図3aに示すように、粗動位置決め装置ドライバ39をPC31もしくは手動で操作し、ステッピングモータ18を動かして、駆動ユニット19を被加工材9に向けて緩やかに降下させる。やがて、図3bに示すように、加工具23の先端23aが被加工材9の表面9aに接すると、検出用ピエゾ圧電効果素子22は僅かに圧縮され、圧電効果によって電圧値が変化する(表面位置検出工程)。検出用ピエゾ圧電効果素子22の電圧値の変化は、加工具23の先端23aの着地信号MとしてA/D変換部33に出力される。
【0024】
A/D変換部33に検出用ピエゾ圧電効果素子22から着地信号Mが入力されると、A/D変換部33は直ちに31はD/A変換部32にステッピングモータ18の停止を要求する。D/A変換部32はステッピングモータ18を停止させ、駆動ユニット19の降下を止める。これによって、加工具23の先端23aが被加工材9の表面9aに僅かに接した状態で駆動ユニット19を停止することができる。パーソナルコンピュータ(PC)31は加工具23の先端23aが被加工材9の表面9aに僅かに接した位置を原点位置として規定する。
【0025】
パーソナルコンピュータ(PC)31は検出用ピエゾ圧電効果素子22によって検出された原点位置を基準にして、加工具23が被加工材9を穿つのに必要なストロークxを開けるため、粗動位置決め装置ドライバ39にステッピングモータ18(或いはサーボモータ)の駆動を要求する。図3cに示すように、ステッピングモータ18は駆動ユニット19を上昇させ、加工具23の先端23aと被加工材9の表面9aとの間にストロークxを開ける。このストロークxは例えば数μm〜10数μm程度に設定されれば良い。
【0026】
パーソナルコンピュータ(PC)31には、凹み(ディンプル)41を形成する際のX軸、θ軸それぞれの駆動ピッチやスピード、またそのタイミングや回数等のパラメータをメモリしておき、ピエゾ圧電素子駆動ドライバ38、移動装置ドライバ34、回転装置ドライバ35をそれぞれ同期させて駆動できるようにしておく。また、同時にA/D変換部33に検出用ピエゾ圧電効果素子22の駆動スピード、凹みの深さ等に関わるパラメータを記憶させておく。以上で、被加工材9に凹み(ディンプル)41を形成する際の準備工程は完了する。
【0027】
これまで説明したように、本発明の表面加工機10では、加工具23の先端23aの移動軸C上に検出用ピエゾ圧電効果素子22を形成したので、加工具23の先端23aが被加工材9の表面9aに接した瞬間を高精度で確実に検出することが可能になる。こうした検出用ピエゾ圧電効果素子22は、安価で、かつ僅かな圧縮で鋭敏に電圧変化を示すので、従来のように、高価なレーザ装置やオートフォーカス装置を使用しなくても、加工具23にピエゾ圧電効果素子を設けるだけで、安価で精度の良い加工原点位置の検出が可能な表面加工機10を実現することができる。
【0028】
この後、表面加工機10が加工作業を開始すると、図3dに示すようにD/A変換部32は駆動用ピエゾ圧電効果素子21に通電して「深さd+ストロークx」だけ駆動用ピエゾ圧電効果素子21を伸長させる。これによって、加工具23の先端23aは被加工材9の表面9aに達し、この時、検出用ピエゾ圧電効果素子22から圧電効果による電圧信号が発せられ、A/D変換部33を通じてD/A変換部32にトリガを立て、その後、所望のディンプル深さ分、更に駆動用ピエゾ圧電効果素子21を伸長することにより、被加工材9には任意の所望深さdの凹み(ディンプル)41が形成される。
【0029】
パーソナルコンピュータ(PC)31は、回転装置ドライバ35を介して回転装置17を制御して、回転チャック16を図1中θ方向に所定のピッチづつ回転させる。これを同時または一方づつおこなうことにより、被加工材9には、所定ピッチ毎に深さdの凹み41が、略螺旋状、X軸方向平行線状、θ軸方向平行線状等、種々のパターンで形成できる。被加工材9上を原点から所定の距離まで加工すると、移動体14と回転チャック16をX軸原点センサ26とθ軸原点センサ28とでそれぞれ原点位置に戻し、所定のピッチだけそれぞれずらした位置から異なるパラメータでの加工を行い、この工程を繰り返すことによって、円筒形の被加工材9には全周面に渡って多数の微細な凹み41を精度よく形成できる。
【0030】
なお、こうした検出用ピエゾ圧電効果素子22を利用して、表面加工機10の回転チャック16に被加工材9を固定する際に中心からのズレを検出して、加工時のズレ補正を行うこともできる。被加工材9に高精度に凹み41を形成する際には、回転チャック16の回転中心に正確に被加工材9を固定して、回転中に被加工材9がブレの無いようにする必要がある。こうした被加工材9の中心出しを行う際には、図5aおよび図5bに示すように、例えば被加工材9の円周方向θを45°づつ区切って順に0°=a,45°=b,・・・315°=hとする。また、被加工材9のX軸方向を一定長さで区切って順に例えばX1,X2・・・X6,X7として、被加工材9の全周面にX1−a,X1−b・・・X7−g,X7−hというふうに等角度、等間隔で測定点を設定する。
【0031】
そして、加工具23の先端23aが被加工材9の表面9aに接触した時に生じる検出用ピエゾ圧電効果素子22の電圧変化を利用して、一定高さまで引き上げた加工具23を、上述した各測定点X1−a,X1−b・・・X7−g,X7−hで降下させて、それぞれの測定点での被加工材9の表面9aまでの加工具23の降下量を測定する。
【0032】
図5cに示すように、縦軸に被加工材9の円周方向θ、横軸に被加工材9のX軸方向として、こうした各測定点での降下量を表で表すと、被加工材9の中心Cと回転チャック16の回転中心とのブレを容易に把握することができる。こうして得られた被加工材9の取り付けブレのデータに基づいて、被加工材9の加工時に、ステッピングモータ18を予め設定した基準値からブレ量に応じて増減することによって、被加工材9には設定した所定の深さの凹部を正確に形成することが可能になる。
【0033】
なお、表面加工機の駆動ユニットの構成は、上述したような実施形態以外にも、例えば、図6aに示すように、検出用ピエゾ圧電効果素子22および駆動用ピエゾ圧電効果素子21を板バネ51で囲う構造とし、この板バネ51を介して加工具23を取り付けた構成であってもよい。こうした板バネ51は、駆動用ピエゾ圧電効果素子21および検出用ピエゾ圧電効果素子22に予圧を与えることで、圧電効果素子自身の伸長による自己破壊を防止するという役割を果たす。
【0034】
また、図6bに示すように、駆動用ピエゾ圧電効果素子21を板バネ52で囲う構造とし、この板バネ52を介して検出用ピエゾ圧電効果素子22を取り付け、さらにこの検出用ピエゾ圧電効果素子22に加工具23を取り付けた構成であってもよい。こうした板バネ51も、駆動用ピエゾ圧電効果素子21に予圧を与えることで、圧電効果素子自身の伸長による自己破壊を防止するという役割を果たす。
【0035】
また、上述した各実施形態では、被加工材に加工を施すための駆動用ピエゾ圧電効果素子21と、被加工材の表面を検出する検出用ピエゾ圧電効果素子22と2つのピエゾ圧電効果素子を備えているが、こうした2つのピエゾ圧電効果素子を兼用して、1つのピエゾ圧電効果素子で被加工材に加工を施すため伸長と、被加工材の表面を検出とを行ってもよい。
【0036】
【発明の効果】
以上、詳細に説明したように、本発明によれば、このような表面加工機によれば、加工具の先端の移動軸上に検出用のピエゾ圧電効果素子を形成したので、加工具の先端が被加工材の表面に接した瞬間を高精度で確実に検出することが可能になる。こうしたピエゾ圧電効果素子は、安価で、かつ僅かな圧縮で鋭敏に電圧変化を示すので、従来のように、高価なレーザ装置やオートフォーカス装置を使用しなくても、加工具にピエゾ圧電効果素子を設けるだけで、安価で精度の良い加工原点位置の検出が可能な表面加工機を実現することができる。
【図面の簡単な説明】
【図1】図1は、本発明の表面加工機の概要を示す説明図である。
【図2】図2は、図1に示す表面加工機の駆動ユニットの拡大平面図である。
【図3】図3は、本発明の表面加工機の作用を説明する説明図である。
【図4】図4は、被加工材によって形成される反射膜の一例を示す平面図である。
【図5】図5は、本発明の表面加工機を用いて被加工物の中心出しを行う際の手順を説明した説明図である。
【図6】図6は、他の実施形態を示す平面図である。
【符号の説明】
9 被加工材
9a 表面
10 表面加工機
18 ステッピングモータ
21 駆動用ピエゾ圧電効果素子(加工具押圧手段)
22 検出用ピエゾ圧電効果素子
23 加工具
23a 先端
41 凹み(ディンプル)
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface processing machine that presses a tip of a processing tool against a surface of a workpiece to form irregularities on the workpiece.
[0002]
[Prior art]
For example, a metal thin film having a large number of fine dents or protrusions of several hundreds to several tens of μm formed on its surface can efficiently reflect incident light, and is therefore used as a reflection film of a liquid crystal display device. I have. Such a reflective film is formed by rotating a roller-shaped master mold imitating a fine dent on a resin layer and pressing the same, and laminating a metal thin film on the resin layer on which the fine dent is formed. When creating a roller-shaped mother die in the shape of such a fine dent, the roller-shaped workpiece is rotated, and a processing tool with a sharp tip is intermittently pressed against the workpiece. A fine dent is formed on the surface of the workpiece.
[0003]
A surface processing machine that forms a dent on the surface of a workpiece detects the surface position of the workpiece having various thicknesses, and then forms the dent accurately to a predetermined position based on the surface position. Conventionally, the detection of the surface position of the workpiece has been performed by using the reflection of a laser beam or by detecting the in-focus position by an autofocus device (for example, Patent Document 1).
[0004]
[Patent Document 1]
JP-A-10-47916
[Problems to be solved by the invention]
However, in the reflection of a laser beam and the detection of the surface position of a workpiece using an autofocus device as described above, it is necessary to form a fine dent of several hundred μm to several tens μm such as a reflection film of a liquid crystal display device. The error was too large, and it was difficult to accurately detect the surface position of the workpiece.
[0006]
In addition, the above-described laser beam reflection and detection of the surface position of a workpiece using an autofocus device require a laser light generating device or an optical lens for detecting a focus position, and the like. This was an obstacle to miniaturization and cost reduction.
[0007]
The present invention has been made in view of the above circumstances, and has as its object to provide a surface processing machine and a surface processing method capable of accurately detecting the surface position of a workpiece with a simple configuration.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a surface processing machine that presses a tip of a processing tool against a surface of a workpiece to form irregularities on the workpiece, There is provided a surface processing machine including a piezo piezoelectric effect element for detecting that the tip of the processing tool has contacted the surface of a workpiece, coaxially with a moving direction.
[0009]
According to such a surface processing machine, the piezo piezoelectric effect element for detection is formed on the movement axis of the tip of the processing tool, so the moment when the tip of the processing tool contacts the surface of the workpiece can be detected with high accuracy. Can be detected. These piezo piezoelectric effect elements are inexpensive and show a sharp voltage change with a slight compression, so that a piezoelectric piezo effect element can be used as a processing tool without using an expensive laser device or autofocus device as in the past. By simply providing a surface processing machine, it is possible to realize a surface processing machine that is inexpensive and can accurately detect the processing origin position.
[0010]
A processing tool pressing means for pressing the processing tool against the surface of the workpiece to form irregularities on the workpiece may be provided adjacent to the piezoelectric effect element. Further, the piezo piezoelectric effect element may be processing tool pressing means for pressing the processing tool against the surface of the workpiece to form irregularities on the workpiece. By providing the processing tool pressing means adjacent to the piezoelectric element, it is possible to provide a compact and low-cost surface processing machine with a simple configuration. Further, by using such a piezoelectric effect element as a processing tool pressing means, the structure of the surface processing machine can be further simplified. The workpiece is preferably, for example, substantially cylindrical or cylindrical.
[0011]
A surface processing method in which the tip of a processing tool is pressed against the surface of a workpiece to form irregularities on the workpiece, wherein the contact of the tip of the processing tool with the surface of the workpiece is performed by a piezoelectric element. There is provided a surface processing method including a surface position detecting step of detecting by a voltage change. According to such a surface processing method, it is possible to detect a processing origin position at low cost and with high accuracy by simply providing a piezo piezoelectric effect element on a processing tool without using an expensive laser device or an autofocus device.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view schematically showing a surface processing machine of the present invention. The surface processing machine 10 is roughly divided into a processing unit 11 that processes the workpiece 9 and a control unit 12 that controls the processing unit 11. The processing unit 11 includes a moving device 15 that moves the moving body 14 along the longitudinal direction of the guide shaft 13 (the X direction in the figure), and a rotating device 17 that rotates a rotary chuck 16 that holds the workpiece 9. .
[0013]
A driving unit 19 is attached to the moving body 14 constituting the moving device 15 via a stepping motor 18 (or a servo motor). The stepping motor 18 moves the drive unit 19 up and down to perform rough positioning (coarse movement positioning device). An origin marker 25 is formed at one end of the moving body 14, and an X-axis origin sensor 26 for detecting the origin marker 25 is formed. Alternatively, a method may be used in which point processing for the origin is performed at a certain point on the axis of the workpiece 9 (a place that is not the effective use part). This method is more advantageous in terms of accuracy since it is formed on the workpiece. With the origin marker 25 and the X-axis origin sensor 26, the moving body 14 can be returned to the origin position of the moving device 15.
[0014]
The driving unit 19 includes a driving piezoelectric element 21 serving as a processing tool pressing unit, a detection piezoelectric element 22 for detecting the surface of the workpiece 9, and a processing tool 23 having a tip formed in a predetermined shape. Consists of The operation of the drive unit 19 will be described later in detail.
[0015]
The rotating chuck 16 constituting the rotating device 17 holds the workpiece 9 and rotates the workpiece 9 in the θ direction in the figure. An origin marker 27 is formed at one end of the rotating device 17, and a θ-axis origin sensor 28 for detecting the origin marker 27 is formed. The origin chuck 27 and the θ-axis origin sensor 28 can return the rotary chuck 16 to the origin position of the rotating device 17. In the case where the origin is processed and detected on the workpiece 9, feedback can be performed using a control signal without placing an origin confirmation sensor.
[0016]
The control unit 12 includes a personal computer (PC) 31 that controls the entire surface processing machine 10, a signal conversion device such as a digital-analog conversion unit (D / A conversion unit) 32, and a signal conversion device such as an analog-digital conversion. A (D / A converter) 33, a moving device driver 34, a rotating device driver 35, a piezo piezoelectric element driving driver 38, and a coarse positioning device driver 39. The D / A converter 32 sends a control signal to the stepping motor 18 and the driving piezoelectric effect element 21. The A / D converter 33 feeds back a detection signal output from the piezoelectric sensor 22 for detecting the surface of the workpiece to the D / A converter 32. A moving device driver 34, a rotating device driver 35, and a coarse positioning device driver 39 control the moving device 15, the rotating device 17, and the stepping motor 18 (coarse positioning device), respectively, according to a command from a personal computer (PC) 31. I do. Although FIG. 1 shows an example in which the PC 31 controls the D / A converter 32, the A / D converter 33, the moving device driver 34, and the rotating device driver 35, in order to speed up the exchange of control signals, The moving device driver 34 and the rotating device driver 35 may be formed as a board with a microcomputer.
[0017]
FIG. 2 is an enlarged plan view showing the drive unit. When the piezoelectric element for driving (working tool pressing means) 21 is energized by the piezoelectric effect, its length is elongated, and presses the working tool 23 against the workpiece 9 in the direction of arrow A in FIG. The driving piezo-electric effect element 21 is, for example, a stacked piezo-electric effect element formed by laminating a large number of thin piezo-electric effect films. To expand and contract by about 10 to 100 μm.
[0018]
Connecting means 41 (for example, a curable adhesive) is fixed to the lower surface of the driving piezoelectric effect element 21, and the detecting piezoelectric effect element 22 is connected to the lower side of the driving piezoelectric effect element 21 via the connecting means 41. Attached to. When the detection piezoelectric element 22 is slightly compressed, a voltage is generated and changed by the piezoelectric effect. As a result, if the change in the voltage value of the piezoelectric element for detection 22 is monitored, the moment the processing tool 23 comes into contact with the surface 9a of the workpiece 9 by extending the piezoelectric element 21 for driving, that is, The position of the surface 9a of the workpiece 9 can be detected. Such a piezoelectric element for detection 22 can expand and contract by several μm, for example, about 9 μm in full stroke. The detecting piezoelectric effect element 22 is, for example, a laminated piezoelectric effect element formed by laminating a large number of thin piezoelectric effect films, and a small voltage change can be observed with a compression of about several hundred μm as a whole element. It is.
[0019]
A processing tool fixing means 42 (for example, a chuck jig or an adhesive) is fixed to the lower surface of the detection piezoelectric element 22, and the processing tool 23 is attached to the detection piezoelectric element 22 via the processing tool fixing means 42. Attached to the lower side. The shape of the tip 23a of the processing tool 23 is like a fine dent formed corresponding to the surface 9a of the workpiece 9, and the entire processing tool 23 may be formed of a hard metal or the like. The detection piezoelectric element 22 is formed on the movement axis C of the tip 23a of the processing tool 23. Thus, the detection piezoelectric effect element 22 can reliably detect the moment when the tip 23a of the processing tool 23 contacts the surface 9a of the workpiece 9.
[0020]
Next, the operation of the surface processing machine 10 having the above-described configuration will be described with reference to FIGS. Now, it is assumed that a fine recess (dimple) 41 having a depth d, for example, 1 μm, is formed on the surface 9 a of the workpiece 9. In addition, as the workpiece 9, for example, as shown in FIG. 4, a matrix used for processing the surface of the reflective film 44 used in a reflective liquid crystal display device or the like can be given. The reflection film 44 is formed by forming a large number of extremely fine concave portions 46 smaller than the pixels 45 of the reflection type liquid crystal display device on the surface.
[0021]
The concave portion 46 forming such a reflective film 44 is, for example, a fine depression having a substantially circular or elliptical cross section with a width t of about several hundred μm to several tens μm and a depth of about several hundred μm to several tens μm. By forming a large number of such concave portions 46, the reflection film 44 can diffusely reflect incident light without unevenness. In manufacturing such a reflective film 44, the workpiece 9 is formed by pressing the workpiece 9 against the resin film to form irregularities on the surface in the step of forming a resin film that gives the concave portion 46 to the reflective film 44. Used for
[0022]
First, when starting working on the workpiece 9, the workpiece 9 is fixed to the rotary chuck 16. Next, when a personal computer (PC) 31 instructs processing preparation, the moving body 14 of the moving device 15 is moved until the X-axis origin sensor 26 detects the origin mark 25, and the moving body 14 is set at the origin position. Further, the rotating chuck 16 of the rotating device 17 is rotated until the θ axis origin sensor 28 detects the origin marker 27, and the rotating chuck 16 is set at the origin position. The workpiece 9 may be, for example, a cylindrical metal material. Alternatively, one concave portion may be processed by the drive unit 19 in a state where the workpiece 9 is set on the rotary chuck 16, and the X axis and the θ axis may be returned to the origins using the concave portions as origin markers.
[0023]
With the workpiece 9 set on the rotary chuck 16 and the moving body 14 and the rotary chuck 16 returning to the respective origin positions, the personal computer (PC) 31 is connected to the rotary chuck 16 via the D / A converter 32 as shown in FIG. As shown, the coarse movement positioning device driver 39 is operated by the PC 31 or manually, and the stepping motor 18 is moved to gradually lower the drive unit 19 toward the workpiece 9. Eventually, as shown in FIG. 3B, when the tip 23a of the processing tool 23 contacts the surface 9a of the workpiece 9, the detection piezoelectric element 22 is slightly compressed, and the voltage value changes due to the piezoelectric effect (surface). Position detection step). The change in the voltage value of the detection piezo piezoelectric effect element 22 is output to the A / D converter 33 as a landing signal M of the tip 23a of the processing tool 23.
[0024]
When the landing signal M is input from the detecting piezoelectric element 22 to the A / D converter 33, the A / D converter 33 immediately requests the D / A converter 32 to stop the stepping motor 18. The D / A converter 32 stops the stepping motor 18 and stops the drive unit 19 from lowering. Thus, the drive unit 19 can be stopped in a state where the tip 23a of the processing tool 23 is slightly in contact with the surface 9a of the workpiece 9. The personal computer (PC) 31 defines a position where the tip 23a of the processing tool 23 slightly touches the surface 9a of the workpiece 9 as an origin position.
[0025]
The personal computer (PC) 31 opens a stroke x necessary for the processing tool 23 to pierce the workpiece 9 with reference to the origin position detected by the detecting piezoelectric element 22. The controller 39 requests the drive of the stepping motor 18 (or the servo motor). As shown in FIG. 3c, the stepping motor 18 raises the drive unit 19 to open a stroke x between the tip 23a of the processing tool 23 and the surface 9a of the workpiece 9. The stroke x may be set to, for example, about several μm to several tens μm.
[0026]
The personal computer (PC) 31 stores parameters such as the drive pitch and speed of the X-axis and the θ-axis when forming the dimples 41, and the timing and the number of times, and stores them in the piezo piezoelectric element drive driver. 38, the moving device driver 34, and the rotating device driver 35 can be driven in synchronization with each other. At the same time, the A / D converter 33 stores parameters relating to the drive speed of the detection piezoelectric effect element 22, the depth of the depression, and the like. Thus, the preparation process for forming the dents (dimples) 41 in the workpiece 9 is completed.
[0027]
As described above, in the surface processing machine 10 of the present invention, since the detection piezo piezoelectric effect element 22 is formed on the movement axis C of the tip 23a of the processing tool 23, the tip 23a of the processing tool 23 is It is possible to detect the moment when it comes into contact with the surface 9a with high accuracy. Since such a piezoelectric element for detection 22 is inexpensive and shows a sharp voltage change with a slight compression, it is possible to use a processing tool 23 without using an expensive laser device or autofocus device as in the related art. Only by providing the piezo piezoelectric effect element, it is possible to realize the surface processing machine 10 capable of detecting the processing origin position with low cost and high accuracy.
[0028]
Thereafter, when the surface processing machine 10 starts the processing operation, as shown in FIG. 3D, the D / A converter 32 energizes the driving piezoelectric effect element 21 to drive the driving piezoelectric piezoelectric element by "depth d + stroke x". The effect element 21 is extended. As a result, the tip 23a of the processing tool 23 reaches the surface 9a of the workpiece 9, and at this time, a voltage signal is generated by the piezoelectric effect from the piezoelectric element 22 for detection, and the D / A is transmitted through the A / D converter 33. By setting a trigger on the conversion unit 32 and then extending the driving piezoelectric element 21 by the desired dimple depth, the work material 9 is provided with a dent (dimple) 41 having an arbitrary desired depth d. It is formed.
[0029]
The personal computer (PC) 31 controls the rotating device 17 via the rotating device driver 35 to rotate the rotating chuck 16 at a predetermined pitch in the θ direction in FIG. By performing this simultaneously or one by one, the work material 9 is provided with various recesses 41 having a depth d at predetermined intervals, such as a substantially spiral shape, a parallel shape in the X-axis direction, and a parallel shape in the θ-axis direction. It can be formed in a pattern. When the workpiece 9 is processed to a predetermined distance from the origin, the moving body 14 and the rotary chuck 16 are returned to the origin positions by the X-axis origin sensor 26 and the θ-axis origin sensor 28, and are shifted by a predetermined pitch. By performing the processing with different parameters from, and repeating this process, a large number of fine dents 41 can be accurately formed on the cylindrical workpiece 9 over the entire peripheral surface.
[0030]
It is to be noted that when the workpiece 9 is fixed to the rotary chuck 16 of the surface processing machine 10 by using the detection piezoelectric element 22 for detection, a deviation from the center is detected, and the deviation is corrected during the processing. You can also. When forming the recess 41 in the workpiece 9 with high precision, it is necessary to fix the workpiece 9 accurately to the center of rotation of the rotary chuck 16 so that the workpiece 9 does not shake during rotation. There is. When the centering of the workpiece 9 is performed, as shown in FIGS. 5A and 5B, for example, the circumferential direction θ of the workpiece 9 is divided by 45 ° and 0 ° = a, 45 ° = b ,... 315 ° = h. X1, X2,..., X6, X7 in the X-axis direction of the workpiece 9 at regular intervals, and X1-a, X1-b,. Measurement points are set at equal angles and at equal intervals, such as -g, X7-h.
[0031]
Then, using the voltage change of the piezoelectric element for detection 22 generated when the tip 23a of the processing tool 23 comes into contact with the surface 9a of the workpiece 9, the processing tool 23 pulled up to a certain height is subjected to each of the above-described measurements. X7-g, X7-h are lowered at points X1-a, X1-b,..., And X7-h, and the amount of drop of the processing tool 23 to the surface 9a of the workpiece 9 at each measurement point is measured.
[0032]
As shown in FIG. 5C, when the vertical axis represents the circumferential direction θ of the workpiece 9 and the horizontal axis represents the X-axis direction of the workpiece 9, the amount of drop at each of these measurement points is represented in a table. The deviation between the center C of the rotary shaft 9 and the rotation center of the rotary chuck 16 can be easily grasped. On the basis of the data on the mounting deviation of the workpiece 9 obtained in this manner, the stepping motor 18 is increased or decreased from a preset reference value in accordance with the amount of blurring when the workpiece 9 is processed, so that Can accurately form a concave portion having a set predetermined depth.
[0033]
The configuration of the drive unit of the surface processing machine is not limited to the above-described embodiment. For example, as shown in FIG. 6A, the detection piezoelectric piezoelectric effect element 22 and the drive piezoelectric piezoelectric element 21 A structure in which the processing tool 23 is attached via the leaf spring 51 may be adopted. Such a leaf spring 51 plays a role of preventing self-destruction due to extension of the piezoelectric effect element by applying a preload to the driving piezoelectric effect element 21 and the detection piezoelectric effect element 22.
[0034]
As shown in FIG. 6B, the driving piezo-electric effect element 21 is surrounded by a leaf spring 52, and the detecting piezo-electric effect element 22 is attached via the leaf spring 52. A configuration in which a processing tool 23 is attached to the processing tool 22 may be used. Such a leaf spring 51 also serves to prevent self-destruction due to extension of the piezoelectric effect element itself by applying a preload to the driving piezoelectric element 21.
[0035]
Further, in each of the above-described embodiments, the driving piezoelectric element 21 for processing the workpiece, the detection piezoelectric element 22 for detecting the surface of the workpiece, and the two piezoelectric elements are provided. However, it is also possible to use these two piezo-piezoelectric effect elements to perform elongation and to detect the surface of the to-be-processed material by using one piezo-piezoelectric effect element to process the work.
[0036]
【The invention's effect】
As described above in detail, according to the present invention, according to such a surface processing machine, the piezo piezoelectric effect element for detection is formed on the movement axis of the tip of the processing tool. It is possible to reliably and accurately detect the moment when the object comes into contact with the surface of the workpiece. These piezo piezoelectric effect elements are inexpensive and show a sharp voltage change with a small compression.Therefore, the piezo piezoelectric effect element can be used as a processing tool without using an expensive laser device or autofocus device as in the past. By simply providing a surface processing machine, it is possible to realize a surface processing machine that is inexpensive and can accurately detect the processing origin position.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an outline of a surface processing machine of the present invention.
FIG. 2 is an enlarged plan view of a drive unit of the surface processing machine shown in FIG.
FIG. 3 is an explanatory diagram illustrating the operation of the surface processing machine of the present invention.
FIG. 4 is a plan view showing an example of a reflection film formed of a workpiece.
FIG. 5 is an explanatory diagram illustrating a procedure for centering a workpiece using the surface processing machine of the present invention.
FIG. 6 is a plan view showing another embodiment.
[Explanation of symbols]
9 Workpiece 9a Surface 10 Surface processing machine 18 Stepping motor 21 Piezoelectric piezoelectric element for driving (working tool pressing means)
22 Piezoelectric detecting element 23 for detection 23 Processing tool 23a Tip 41 Depression (dimple)

Claims (5)

加工具の先端を被加工材の表面に押し付けて、被加工材に凹凸を形成する表面加工機であって、
前記加工具の先端の移動方向と同軸上に、前記加工具の先端が被加工材の表面に接触したことを検出するピエゾ圧電効果素子を備えたことを特徴とする表面加工機。
A surface processing machine that presses a tip of a processing tool against a surface of a workpiece to form irregularities on the workpiece,
A surface processing machine comprising a piezo piezoelectric effect element for detecting that the tip of the processing tool has contacted the surface of the workpiece, coaxially with the moving direction of the tip of the processing tool.
前記ピエゾ圧電効果素子に隣接して、前記加工具を被加工材の表面に押し付けて被加工材に凹凸を形成する加工具押圧手段を備えたことを特徴とする請求項1に記載の表面加工機。2. The surface processing according to claim 1, further comprising a processing tool pressing unit that presses the processing tool against a surface of the workpiece to form irregularities on the workpiece, adjacent to the piezoelectric element. Machine. 前記ピエゾ圧電効果素子は、前記加工具を被加工材の表面に押し付けて被加工材に凹凸を形成する加工具押圧手段であることを特徴とする請求項1に記載の表面加工機。2. The surface processing machine according to claim 1, wherein the piezo piezoelectric effect element is a processing tool pressing unit configured to press the processing tool against a surface of the workpiece to form irregularities on the workpiece. 3. 前記被加工材は略円筒状または円筒状であることを特徴とする請求項1ないし3のいずれか1項に記載の表面加工機。The surface processing machine according to any one of claims 1 to 3, wherein the workpiece has a substantially cylindrical shape or a cylindrical shape. 加工具の先端を被加工材の表面に押し付けて、被加工材に凹凸を形成する表面加工方法であって、
前記加工具の先端が被加工材の表面に接触したことをピエゾ圧電効果素子の電圧変化によって検出する表面位置検出工程を備えたことを特徴とする表面加工方法。
A surface processing method in which a tip of a processing tool is pressed against a surface of a workpiece to form irregularities on the workpiece,
A surface processing method comprising: a surface position detecting step of detecting, by a voltage change of a piezoelectric element, that a tip of the processing tool has contacted a surface of a workpiece.
JP2003143560A 2003-05-21 2003-05-21 Surface processing machine and surface processing method Pending JP2004344916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143560A JP2004344916A (en) 2003-05-21 2003-05-21 Surface processing machine and surface processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143560A JP2004344916A (en) 2003-05-21 2003-05-21 Surface processing machine and surface processing method

Publications (1)

Publication Number Publication Date
JP2004344916A true JP2004344916A (en) 2004-12-09

Family

ID=33531315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143560A Pending JP2004344916A (en) 2003-05-21 2003-05-21 Surface processing machine and surface processing method

Country Status (1)

Country Link
JP (1) JP2004344916A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218481A (en) * 2005-02-08 2006-08-24 Alps Electric Co Ltd Indentation working apparatus and indentation working method
JP2008272925A (en) * 2007-04-05 2008-11-13 Toshiba Mach Co Ltd Roll surface processing method and device
US7849769B2 (en) 2006-06-14 2010-12-14 Toshiba Kikai Kabushiki Kaisha Precision roll turning lathe
US8020268B2 (en) 2006-06-15 2011-09-20 Toshiba Kikai Kabushiki Kaisha Precision roll turning lathe
US8020267B2 (en) 2006-04-27 2011-09-20 Toshiba Kikai Kabushiki Kaisha Precision roll turning lathe
US8215211B2 (en) 2008-07-17 2012-07-10 Toshiba Kikai Kabushiki Kaisha Method and apparatus for machning V grooves
JP2014207948A (en) * 2013-04-16 2014-11-06 ヨシダ工業株式会社 Method and apparatus of forming concave part of hollow needle
CN113732163A (en) * 2021-11-08 2021-12-03 山东国创风叶制造有限公司 Machining device and machining method for offshore wind turbine base
US11491672B2 (en) 2018-09-21 2022-11-08 Dexerials Corporation Microfabrication device, microfabrication method, transfer mold, and transfer object

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644000B2 (en) * 2005-02-08 2011-03-02 アルプス電気株式会社 Indentation processing method
JP2006218481A (en) * 2005-02-08 2006-08-24 Alps Electric Co Ltd Indentation working apparatus and indentation working method
US8020267B2 (en) 2006-04-27 2011-09-20 Toshiba Kikai Kabushiki Kaisha Precision roll turning lathe
US7849769B2 (en) 2006-06-14 2010-12-14 Toshiba Kikai Kabushiki Kaisha Precision roll turning lathe
US8020268B2 (en) 2006-06-15 2011-09-20 Toshiba Kikai Kabushiki Kaisha Precision roll turning lathe
KR101045140B1 (en) * 2007-04-05 2011-06-30 도시바 기카이 가부시키가이샤 Method and Apparatus for Machining Surface of Roll
JP2008272925A (en) * 2007-04-05 2008-11-13 Toshiba Mach Co Ltd Roll surface processing method and device
US8413557B2 (en) 2007-04-05 2013-04-09 Toshiba Kikai Kabushiki Kaisha Method and apparatus for machining roll surface
US8424427B2 (en) 2007-04-05 2013-04-23 Toshiba Kikai Kabushiki Kaisha Method and apparatus for roll surface machining
US8215211B2 (en) 2008-07-17 2012-07-10 Toshiba Kikai Kabushiki Kaisha Method and apparatus for machning V grooves
JP2014207948A (en) * 2013-04-16 2014-11-06 ヨシダ工業株式会社 Method and apparatus of forming concave part of hollow needle
US11491672B2 (en) 2018-09-21 2022-11-08 Dexerials Corporation Microfabrication device, microfabrication method, transfer mold, and transfer object
CN113732163A (en) * 2021-11-08 2021-12-03 山东国创风叶制造有限公司 Machining device and machining method for offshore wind turbine base
CN113732163B (en) * 2021-11-08 2022-03-29 山东富瑞工贸有限公司 Machining device and machining method for offshore wind turbine base

Similar Documents

Publication Publication Date Title
US7837461B2 (en) Microlens transcription molding roller and manufacturing method thereof
US9126347B2 (en) Microscopic geometry cutting device and microscopic geometry cutting method
EP2463051A1 (en) Pulse laser machining apparatus and pulse laser machining method
JP2008194729A (en) Manufacturing method, laser beam machining method and laser beam machining apparatus for small device
JP2010058218A (en) Fitting device for correcting clogging state of fitting
JP2004344916A (en) Surface processing machine and surface processing method
JP6861487B2 (en) Coating device and ink coating method
JP2007021593A (en) Machining device
JP4644000B2 (en) Indentation processing method
JP3806661B2 (en) Paste application method and paste applicator
JP2002283225A (en) Machining device and machining method of concave spherical surface
JP2003311331A (en) Method and device for bending metal plate
JP2008212941A (en) Laser beam machining apparatus and its control method
JP2007253206A (en) Laser beam machining method, workpiece fixing method, laser beam machining device and workpiece fixing device
WO2001091534A1 (en) Chip-mounting device and method of alignment
JP2005177943A (en) Surface processing machine
JP5072743B2 (en) Micromachine and micromilling machine
JP2009196003A (en) Method of interpolating tool length of micromachine or micro milling machine
JPH09122554A (en) Paste applying device
TW201810505A (en) Alignment system and method of using the same
JP2621416B2 (en) Plate for measuring travel distance
JP2000317373A (en) Method for positioning nozzle height of paste coater
JP2007144586A (en) Controlling method for automatic teaching device, automatic teaching device, and program
JPH07132259A (en) Paste applying machine
JP4524097B2 (en) Spherical surface generating device and spherical surface generating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520