JP4524097B2 - Spherical surface generating device and spherical surface generating method - Google Patents

Spherical surface generating device and spherical surface generating method Download PDF

Info

Publication number
JP4524097B2
JP4524097B2 JP2003418264A JP2003418264A JP4524097B2 JP 4524097 B2 JP4524097 B2 JP 4524097B2 JP 2003418264 A JP2003418264 A JP 2003418264A JP 2003418264 A JP2003418264 A JP 2003418264A JP 4524097 B2 JP4524097 B2 JP 4524097B2
Authority
JP
Japan
Prior art keywords
tool
mounting table
workpiece
spherical surface
stopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003418264A
Other languages
Japanese (ja)
Other versions
JP2005177874A (en
Inventor
拓也 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003418264A priority Critical patent/JP4524097B2/en
Publication of JP2005177874A publication Critical patent/JP2005177874A/en
Application granted granted Critical
Publication of JP4524097B2 publication Critical patent/JP4524097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、光学レンズや光学素子などに対し、微小な凹球面を所望の深さに精度良く創成加工する球面創成加工装置及び球面創成加工方法に関する。   The present invention relates to a spherical surface generating device and a spherical surface generating method for accurately generating a minute concave spherical surface to a desired depth with respect to an optical lens or an optical element.

従来、光学レンズや光学素子等の球面創成加工装置及び球面創成加工方法が知られている(例えば、特許文献1参照。)。この特許文献1に開示された球面創成加工方法及び球面創成加工装置は、図12に示すように構成されている。   Conventionally, a spherical surface generating apparatus and a spherical surface generating method such as an optical lens and an optical element are known (see, for example, Patent Document 1). The spherical surface generating method and the spherical surface generating device disclosed in Patent Document 1 are configured as shown in FIG.

すなわち、図12中、101は被加工物である光学素子であり、載置台102に固定されている。載置台102は加圧シリンダ103及び不図示の案内機構により、上方へ加圧されることができる。また、載置台102の上面にはマイクロメータ104の端子が接触しており、載置台102の高さの検出が可能となっている。一方、鋼球からなる球状の工具105は、テーパ状の外形に成型されたホーン106により転動自在に保持されている。ホーン106は、軸体107を介して超音波発振器108に固定されており、コントローラ109によって超音波の出力を制御可能になっている。   That is, in FIG. 12, reference numeral 101 denotes an optical element which is a workpiece, and is fixed to the mounting table 102. The mounting table 102 can be pressurized upward by a pressure cylinder 103 and a guide mechanism (not shown). Further, the terminal of the micrometer 104 is in contact with the upper surface of the mounting table 102, and the height of the mounting table 102 can be detected. On the other hand, a spherical tool 105 made of a steel ball is rotatably held by a horn 106 formed into a tapered outer shape. The horn 106 is fixed to an ultrasonic oscillator 108 via a shaft body 107, and an ultrasonic output can be controlled by a controller 109.

前記ホーン106、軸体107及び超音波発振器108によって上軸部110を構成しており、この上軸部110は、ボールネジ111と、不図示の案内機構及びモータ112により球状の工具105を保持したまま昇降可能となっている。ディスペンサ113は不図示の案内によってディスペンサ113の針の先端が工具105及び光学素子101近辺に移動することが可能で、球状の工具105と光学素子101の間に加工液114を塗布することが可能である。   The horn 106, the shaft body 107, and the ultrasonic oscillator 108 constitute an upper shaft portion 110. The upper shaft portion 110 holds a spherical tool 105 by a ball screw 111, a guide mechanism (not shown) and a motor 112. It can be moved up and down. The dispenser 113 can move the tip of the needle of the dispenser 113 to the vicinity of the tool 105 and the optical element 101 by a guide (not shown), and can apply the processing liquid 114 between the spherical tool 105 and the optical element 101. It is.

次に作用について説明する。光学素子101は、載置台102に固定されたまま、加圧シリンダ103及び案内機構によって上方に加圧され、加圧シリンダ103のストロークエンドで停止する。上軸部110は、球状の工具105を保持したままボールネジ111と、案内機構及びモータ112により下降し、やがて工具105は光学素子101に接触する。   Next, the operation will be described. The optical element 101 is pressed upward by the pressure cylinder 103 and the guide mechanism while being fixed to the mounting table 102, and stops at the stroke end of the pressure cylinder 103. The upper shaft portion 110 is lowered by the ball screw 111 and the guide mechanism and the motor 112 while holding the spherical tool 105, and the tool 105 eventually comes into contact with the optical element 101.

そのまま下降すると、載置台102は上軸部110に押し下げられ、マイクロメータ104の値が変化する。この変化を検知してモータ112は停止し、上軸部は下降を停止する。ここで案内機構によりディスペンサ113が移動し、工具105と光学素子101の間に加工液114を塗布した後、ディスペンサ113は待機位置に戻る。このときのマイクロメータ104の値を記憶し、目標加工深さの値を加算して、加工を停止すべきマイクロメータ104の値を算出する。   When lowered as it is, the mounting table 102 is pushed down by the upper shaft portion 110, and the value of the micrometer 104 changes. Upon detecting this change, the motor 112 stops and the upper shaft portion stops descending. Here, the dispenser 113 is moved by the guide mechanism, and after applying the processing liquid 114 between the tool 105 and the optical element 101, the dispenser 113 returns to the standby position. The value of the micrometer 104 at this time is stored, the value of the target machining depth is added, and the value of the micrometer 104 that should stop machining is calculated.

コントローラ109によって出力を制御された超音波が超音波発振器108から発振され、軸体107、ホーン106を介して工具105が振動する。この振動により加工液114と光学素子101の間に摩擦が生じ、光学素子101は徐々に削れ、やがて工具105と反対形状、つまり凹面が形成される。光学素子101に凹面が形成されると、工具105はその分光学素子101の中にのめりこむ形となり、載置台102は徐々に上昇する。やがてマイクロメータ104の値が加工を停止すべき値になった時点で、超音波の出力を停止し、加工を終了すれば、光学素子101に工具105とほぼ同じ半径の凹面が目標深さで形成される。
特開平11−333702号公報
The ultrasonic wave whose output is controlled by the controller 109 is oscillated from the ultrasonic oscillator 108, and the tool 105 vibrates via the shaft body 107 and the horn 106. This vibration causes friction between the machining liquid 114 and the optical element 101, and the optical element 101 is gradually scraped, eventually forming a shape opposite to the tool 105, that is, a concave surface. When the concave surface is formed on the optical element 101, the tool 105 is recessed into the optical element 101 correspondingly, and the mounting table 102 gradually rises. When the value of the micrometer 104 reaches a value at which machining is to be stopped, the output of the ultrasonic wave is stopped and the machining is terminated. Then, a concave surface having substantially the same radius as the tool 105 is formed on the optical element 101 at the target depth. It is formed.
JP-A-11-333702

前記特許文献1の球面創成加工方法及び球面創成加工装置は、マイクロメータ104によって目標加工深さを検出するが、加工は超音波発振器108が発生する振動によって行われるため、加工時のマイクロメータ104の値はある振幅を持ったチャタリングを発生した状態となる。従って、チャタリング中のマイクロメータ104の値が加工を停止すべき値に一瞬でもなった時に加工を停止しても、実際の光学素子101の凹面は、目標深さに到達していないことが多い。このチャタリングの発生により、マイクロメータ104の値から光学素子101の正確な目標凹面深さを検知することが難しい。   The spherical surface generating method and the spherical surface generating device disclosed in Patent Document 1 detect the target processing depth by the micrometer 104. However, since the processing is performed by vibration generated by the ultrasonic oscillator 108, the micrometer 104 at the time of processing is used. The value of becomes a state where chattering having a certain amplitude is generated. Therefore, even if the processing stops when the value of the micrometer 104 during chattering becomes a value to stop processing for a moment, the actual concave surface of the optical element 101 often does not reach the target depth. . Due to the occurrence of chattering, it is difficult to detect the exact target concave surface depth of the optical element 101 from the value of the micrometer 104.

また、このため、超音波発振を停止するタイミングは、マイクロメータ104が加工を停止すべき値を検知した後、ある一定のタイムラグをおくことが要求されるが、凹面の加工速度は加工が進むにつれて徐々に早くなるため、加工速度が一定とならない。また塗布された加工液114内の砥粒の形状や量のばらつきや、工具105の面精度のばらつき、光学素子101の加工面形状のばらつきによっても、加工速度が変化し、同じ段階においても、加工速度が一定とはなり得ない。従って、同一のタイムラグをおいて加工を終了しても、光学素子101の凹面深さにばらつきが生じ、目標の凹面深さで生産することが、困難であった。   For this reason, the timing for stopping the ultrasonic oscillation is required to have a certain time lag after the micrometer 104 detects a value to stop processing, but the processing speed of the concave surface advances. As the speed gradually increases, the machining speed is not constant. Also, the processing speed changes due to variations in the shape and amount of abrasive grains in the applied processing liquid 114, variations in the surface accuracy of the tool 105, and variations in the processing surface shape of the optical element 101. The processing speed cannot be constant. Therefore, even if the processing is finished with the same time lag, the concave depth of the optical element 101 varies, making it difficult to produce the target concave depth.

この発明は、前記事情に着目してなされたもので、その目的とするところは、加工液、工具、被加工物のばらつきに左右されることなく、正確な目標の凹面深さの加工物が得られる球面創成加工装置及び球面創成加工方法を提供することである。   The present invention has been made paying attention to the above circumstances, and the object of the present invention is that a workpiece having an accurate target concave surface depth can be obtained without being affected by variations in the machining fluid, tool, and workpiece. It is an object to provide an obtained spherical surface forming apparatus and a spherical surface generating method.

前記目的を達成するために、請求項1に係る発明は、被加工物に凹球面を加工する球状の工具と、この工具を保持する保持部を一端に有し、この保持部に保持された前記工具を超音波発振器からの超音波によって超音波振動させるホーンと、このホーンに保持された工具と対向するように前記被加工物を配置して前記被加工物を固定し、加工時にその加工量に応じて前記工具側へ移動可能な載置台と、前記超音波発振器からの超音波によって前記ホーンを介して超音波振動させた前記工具と前記被加工物とを所定の荷重を加えて当接させて前記工具により前記被加工物に凹球面を創成する加圧手段と、前記工具の加工によって生じる前記載置台の変位量を測定する測定手段と、前記測定手段により測定した変位量が加工の目標値に相当する値に達した後も前記工具の超音波振動を続行し、タイムラグを持って前記工具の超音波振動を停止させるコントローラと、前記加圧手段の加圧方向に移動する前記載置台の高さが目標値に対応した位置に達したときその位置に前記載置台を固定するストッパと、前記ストッパを移動して前記ストッパの位置を前記目標値に対応した位置に決める位置決め手段と、砥粒を含む加工液を前記被加工物と前記工具との当接部位に供給する加工液供給手段と、を備えたことを特徴とする球面創成加工装置である。 In order to achieve the object, the invention according to claim 1 has a spherical tool for processing a concave spherical surface on a workpiece and a holding portion for holding the tool at one end, and is held by the holding portion. A horn that ultrasonically vibrates the tool with ultrasonic waves from an ultrasonic oscillator, and the workpiece is disposed so as to face the tool held by the horn, and the workpiece is fixed, and the machining is performed during machining. A predetermined load is applied to the mounting table that can be moved to the tool side according to the amount, the tool that has been ultrasonically vibrated through the horn by the ultrasonic wave from the ultrasonic oscillator, and the workpiece. a pressurizing means you creating a concave spherical surface on the workpiece by contact is allowed by the tool, a measuring means for measuring the amount of displacement of the mounting table generated by the processing of the tool, the displacement amount measured by the measuring means Value equivalent to machining target value After reaching even to continue the ultrasonic vibration of the tool, and a controller for stopping the ultrasonic vibration of the tool with a time lag, height target value of the mounting table to move to the pressing direction of the pressing means A stopper for fixing the mounting table to the position corresponding to the position, a positioning means for moving the stopper to determine the position of the stopper at a position corresponding to the target value, and a working fluid containing abrasive grains And a machining fluid supply means for supplying a machining fluid supply means to a contact portion between the workpiece and the tool.

請求項2に係る発明は、超音波発振器に接続されたホーンの保持部に球状の工具を保持し、被加工物を載置する載置台の加圧方向に対向する位置にあるストッパを載置台に当接させた状態で、前記被加工物を加圧手段によって所定の荷重で前記工具に当接させ、砥粒を含む加工液を前記工具と被加工物との当接部位に供給し、このときの前記載置台の位置を載置台の変位量を測定する測定手段によって記憶した後、前記ストッパを目標加工の深さ分、前記載置台の加圧方向に移動させてその位置に固定し、前記ホーンを介して前記工具を超音波振動させて前記被加工物に凹球面を創成すると共に、この凹球面の創成に伴って生じる前記載置台の変位量を前記測定手段によって測定し、この測定した値が目標値に達した後も超音波振動を続行し、タイムラグを持って前記載置台が前記ストッパに当接したと判断し、超音波振動を停止し、加工終了とすることを特徴とする球面創成加工方法である。 According to a second aspect of the present invention, a spherical tool is held in a holding portion of a horn connected to an ultrasonic oscillator, and a stopper at a position facing the pressing direction of the mounting table on which a workpiece is mounted is mounted. In a state where the workpiece is in contact with the workpiece, the workpiece is brought into contact with the tool with a predetermined load by a pressurizing means, and a working fluid containing abrasive grains is supplied to the contact portion between the tool and the workpiece, After the position of the mounting table at this time is stored by a measuring means for measuring the amount of displacement of the mounting table, the stopper is moved in the pressurizing direction of the mounting table by the target machining depth and fixed at that position. , The tool is ultrasonically vibrated through the horn to create a concave spherical surface on the workpiece, and the displacement of the mounting table generated along with the creation of the concave spherical surface is measured by the measuring means. Continue ultrasonic vibration even after the measured value reaches the target value. Determines that the mounting table before with a time lag is in contact with the stopper stops the ultrasonic vibration, a spherical creation processing method, characterized in that the machining end.

この発明によれば、チャタリングに影響されることなく、より高精度な凹面加工深さを持った加工物を量産することが可能となる。   According to the present invention, it is possible to mass-produce a workpiece having a more accurate concave processing depth without being affected by chattering.

以下、この発明の各実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は第1の実施形態を示す球面創成加工装置の概略的構成図である。1は被加工物である光学素子であり、載置台2に固定されている。載置台2は加圧手段としての加圧シリンダ3及び不図示の案内機構により、上方へ加圧されることができる。また、載置台2の上面には測定手段としてのマイクロメータ4の端子4aが接触しており、載置台2の高さの検出が可能となっている。また、他方の載置台2の上面にはストッパ12が接触している。このストッパ12はボールネジ13、不図示の案内機構及び位置決め手段としてのサーボモータ14により、ナット15を介して昇降可能となっている。   FIG. 1 is a schematic configuration diagram of a spherical surface generating apparatus showing the first embodiment. Reference numeral 1 denotes an optical element which is a workpiece, and is fixed to the mounting table 2. The mounting table 2 can be pressurized upward by a pressure cylinder 3 as a pressure means and a guide mechanism (not shown). Moreover, the terminal 4a of the micrometer 4 as a measuring means is in contact with the upper surface of the mounting table 2 so that the height of the mounting table 2 can be detected. A stopper 12 is in contact with the upper surface of the other mounting table 2. The stopper 12 can be moved up and down via a nut 15 by a ball screw 13, a guide mechanism (not shown) and a servo motor 14 as positioning means.

一方、鋼球からなる球状の工具5は、テーパ状の外形に成型されたホーン6により、転動自在に保持されている。ホーン6は、軸体7を介して超音波発振器8に固定されており、超音波コントローラ16によって超音波の出力を制御可能になっている。前記ホーン6、軸体7及び超音波発振器8によって上軸部9が構成されている。上軸部9は、ナット17を介してボールネジ18と、不図示の案内機構及びサーボモータ19により、工具5を保持したまま昇降可能となっている。加工液供給手段としてのディスペンサ20は不図示の案内によってディスペンサ20の針20aの先端部が工具5及び光学素子1近辺に移動することが可能で、工具5と光学素子1の間に加工液10を塗布することが可能である。   On the other hand, the spherical tool 5 made of a steel ball is held by a horn 6 formed into a tapered outer shape so as to be freely rollable. The horn 6 is fixed to the ultrasonic oscillator 8 through the shaft body 7, and the ultrasonic output can be controlled by the ultrasonic controller 16. The horn 6, the shaft body 7, and the ultrasonic oscillator 8 constitute an upper shaft portion 9. The upper shaft portion 9 can be raised and lowered while holding the tool 5 by a ball screw 18 and a guide mechanism (not shown) and a servo motor 19 via a nut 17. The dispenser 20 as the processing liquid supply means can move the tip of the needle 20a of the dispenser 20 to the vicinity of the tool 5 and the optical element 1 by a guide (not shown). It is possible to apply.

次に、図2〜図9に基づいて、第1の実施形態の作用を説明する。図2において、加圧シリンダ3はある一定の加圧力で載置台2及び光学素子1を持ち上げ、加圧シリンダ3の上端ストロークエンドで停止している。このとき、サーボモータ14は励磁していない状態であり、ストッパ12は、ストッパ12及びナット15の自重により下降し、載置台2の上端に接している。   Next, the operation of the first embodiment will be described based on FIGS. In FIG. 2, the pressurizing cylinder 3 lifts the mounting table 2 and the optical element 1 with a certain pressurizing force, and stops at the upper end stroke end of the pressurizing cylinder 3. At this time, the servo motor 14 is not excited, and the stopper 12 is lowered by its own weight of the stopper 12 and the nut 15 and is in contact with the upper end of the mounting table 2.

加圧シリンダ3の加圧力は、前記載置台2、光学素子1、マイクロメータ4の端子4a、ストッパ12、ナット15の総重量よりも大きな力のため、載置台2の高さは加圧シリンダ3の上端ストロークエンドのままである。一方、工具5は上軸部9に転動自在に保持されている。図3において、上軸部9はナット17、ボールネジ18を介してサーボモータ19により下降する。やがて工具5が光学素子1に接触し、上軸部9は光学素子1、載置台2、マイクロメータ4の端子4a及びストッパ12、ナット15を押し下げる。加圧シリンダ3のストローク範囲内でサーボモータ19は停止し、上軸部9も停止する。   The pressurizing force of the pressurizing cylinder 3 is larger than the total weight of the mounting table 2, the optical element 1, the terminal 4 a of the micrometer 4, the stopper 12, and the nut 15. The upper stroke end of 3 remains. On the other hand, the tool 5 is held on the upper shaft portion 9 so as to be freely rollable. In FIG. 3, the upper shaft portion 9 is lowered by a servo motor 19 through a nut 17 and a ball screw 18. Eventually, the tool 5 comes into contact with the optical element 1, and the upper shaft portion 9 pushes down the optical element 1, the mounting table 2, the terminal 4 a of the micrometer 4, the stopper 12, and the nut 15. Within the stroke range of the pressure cylinder 3, the servo motor 19 stops and the upper shaft part 9 also stops.

このときのマイクロメータ4の値と、サーボモータ14のエンコーダの値より、載置台2の現在位置及びストッパ12の現在位置を不図示の本装置コントローラが記憶する。あらかじめ設定された目標凹面深さを前記マイクロメータ4の現在値に加算することにより、不図示の本装置コントローラは、加工を停止すべきマイクロメータ4の値と、加工時のストッパ12の位置を算出する。   The device controller (not shown) stores the current position of the mounting table 2 and the current position of the stopper 12 from the value of the micrometer 4 and the value of the encoder of the servo motor 14 at this time. By adding the preset target concave surface depth to the current value of the micrometer 4, the present device controller (not shown) determines the value of the micrometer 4 at which machining should be stopped and the position of the stopper 12 at the time of machining. calculate.

図4において、ディスペンサ20が不図示の案内機構によって突出し、工具5と光学素子1の間に加工液10を塗布した後、前記案内機構によって待機位置に戻る。図5において、サーボモータ14が励磁し、不図示の本装置コントローラによって算出された加工時の位置までストッパ12をボールネジ13、ナット15を介して上昇させて停止する。このときの載置台2とストッパ12の僅かな隙間11は、目標凹面加工深さに相当する。   In FIG. 4, the dispenser 20 protrudes by a guide mechanism (not shown), and after applying the processing liquid 10 between the tool 5 and the optical element 1, the dispenser 20 returns to the standby position by the guide mechanism. In FIG. 5, the servo motor 14 is excited, and the stopper 12 is raised through the ball screw 13 and the nut 15 to the position at the time of machining calculated by the apparatus controller (not shown) and stopped. The slight gap 11 between the mounting table 2 and the stopper 12 at this time corresponds to the target concave surface processing depth.

図6において、超音波コントローラ16によって出力を制御された超音波が超音波発振器8より出力され、軸体7、ホーン6を介して工具5が振動し、加工液10と光学素子1の摩擦により徐々に光学素子1が削られ、加工が開始される。光学素子1には工具5の曲率半径とほぼ同一の凹球面が形成され始め、球状の工具5が光学素子1の中にのめりこむような形となり、載置台2は加圧シリンダ3の加圧力により、チャタリングを発生しながらも徐々に上昇しはじめる。載置台2の上昇に伴い、マイクロメータ4の端子4aも上昇を始め、マイクロメータ4の値が変化し始める。   In FIG. 6, the ultrasonic wave whose output is controlled by the ultrasonic controller 16 is output from the ultrasonic oscillator 8, and the tool 5 vibrates through the shaft body 7 and the horn 6, and the friction between the machining liquid 10 and the optical element 1 causes the vibration. The optical element 1 is gradually scraped and the machining is started. A concave spherical surface almost the same as the radius of curvature of the tool 5 begins to be formed on the optical element 1, and the spherical tool 5 is shaped to be recessed into the optical element 1. It begins to rise gradually while chattering. As the mounting table 2 rises, the terminal 4a of the micrometer 4 also starts to rise, and the value of the micrometer 4 starts to change.

図7において、マイクロメータ4は加工を終了すべき目標の値となり、不図示の本装置コントローラはこれを検知するが、加工はある一定の時間続行される。やがて載置台2の上面がストッパ12に完全に接触することにより工具5に対する、光学素子1の上方への加圧力はなくなり、チャタリングも停止する。   In FIG. 7, the micrometer 4 becomes a target value to be processed, and this apparatus controller (not shown) detects this, but the processing is continued for a certain time. Eventually, when the upper surface of the mounting table 2 completely comes into contact with the stopper 12, the pressure applied to the tool 5 above the optical element 1 disappears, and chattering also stops.

図8において、十分に余裕を持ったタイムラグによって不図示の本装置コントローラは加工停止命令を出力し、超音波コントローラ16は出力を停止する。図9において、上軸部9は工具5を保持したままナット17、ボールネジ18を介してサーボモータ19により上昇し、加工完了となる。   In FIG. 8, the apparatus controller (not shown) outputs a machining stop command due to a sufficiently long time lag, and the ultrasonic controller 16 stops the output. In FIG. 9, the upper shaft portion 9 is lifted by the servo motor 19 via the nut 17 and the ball screw 18 while holding the tool 5, and the machining is completed.

本実施形態1によれば、マイクロメータ4が加工を終了すべき目標の値になっても加工は継続されるが、載置台2の上面がストッパ12に完全に接触した時点で、工具5に対する光学素子1の上方への加圧力はなくなり、チャタリングも停止して加工は進行しなくなる。従って、十分なタイムラグを持って加工を終了させても、常に加工終了後の光学素子1の凹面加工深さは隙間11と同じで一定であり、ばらつきのない精度の高い加工が可能となる。   According to the first embodiment, the processing is continued even when the micrometer 4 reaches a target value to be processed, but when the upper surface of the mounting table 2 is completely in contact with the stopper 12, the processing with respect to the tool 5 is performed. The pressing force above the optical element 1 is lost, chattering is stopped, and the processing does not proceed. Therefore, even if the processing is finished with a sufficient time lag, the processing depth of the concave surface of the optical element 1 after the processing is always the same as the gap 11 and is constant, and high-precision processing without variations is possible.

図10及び図11は第2の実施形態を示し、第1の実施形態と同一構成部分は同一番号を付して説明を省略する。本実施形態は、第1の実施形態に改良を加えたもので、ストッパ12を現状位置で強制的に固定することが可能なチャック21及びチャックシリンダ22を追加したものである。   10 and 11 show a second embodiment, and the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. In this embodiment, the first embodiment is improved and a chuck 21 and a chuck cylinder 22 capable of forcibly fixing the stopper 12 at the current position are added.

図10は、第1の実施形態における図5の工程と同じ工程を示したものであり、サーボモータ14が励磁し、不図示の本装置コントローラによって算出された加工時の位置までストッパ12をボールネジ13、ナット15を介して上昇させて停止する。このときの載置台2と、ストッパ12のわずかな隙間11は、目標凹面加工深さに相当する。ここでチャックシリンダ22が爪を閉じることにより、チャック21が両側よりストッパ12を挟み込み、ストッパ12を現状位置で固定する。固定後、再びサーボモータ14の励磁を解除する。   FIG. 10 shows the same process as that of FIG. 5 in the first embodiment. When the servo motor 14 is excited, the stopper 12 is moved to the position of the ball screw calculated by the apparatus controller (not shown). 13. Raise through the nut 15 and stop. The slight gap 11 between the mounting table 2 and the stopper 12 at this time corresponds to the target concave surface processing depth. Here, when the chuck cylinder 22 closes the pawl, the chuck 21 sandwiches the stopper 12 from both sides and fixes the stopper 12 at the current position. After fixing, the excitation of the servo motor 14 is released again.

図11は、第1の実施形態における図7の工程と同じ工程を示したものであり、加工が進行し、載置台2の上面がストッパ12に接触した状態であるが、この時もチャックシリンダ22及びチャック21はストッパ12を固定し続け、加工が終了して上軸部9が上昇した時点で固定を解除する。   FIG. 11 shows the same process as the process of FIG. 7 in the first embodiment, in which the processing progresses and the upper surface of the mounting table 2 is in contact with the stopper 12. 22 and the chuck 21 continue to fix the stopper 12 and release the fixing when the upper shaft portion 9 is lifted after finishing the processing.

第2の実施形態2によれば、第1の実施形態の効果に加えて、ストッパ12をサーボモータ14の励磁で固定するのではなく、チャックシリンダ22によって駆動するチャック21の圧力で強制的に固定するため、加工が進行して載置台2の上面がストッパ12に当接する際、載置台2からのチャタリングに左右されることなく、ストッパ12を確実に固定しておくことができる。従って、第1の実施形態よりも、より精度の高い凹面加工深さの光学素子を得ることができる。   According to the second embodiment, in addition to the effects of the first embodiment, the stopper 12 is not fixed by the excitation of the servo motor 14 but forcedly by the pressure of the chuck 21 driven by the chuck cylinder 22. Therefore, when the processing proceeds and the upper surface of the mounting table 2 comes into contact with the stopper 12, the stopper 12 can be reliably fixed without being affected by chattering from the mounting table 2. Therefore, an optical element having a concave processing depth with higher accuracy than in the first embodiment can be obtained.

前記構成によれば、次のような構成が得られる。   According to the said structure, the following structures are obtained.

(付記1)被加工物に凹球面を加工する球状の工具と、この工具を転動自在に保持する保持部を一端に有すると共に、この保持部内に保持された前記工具を超音波発振器からの超音波によって超音波振動させるホーンと、このホーンに保持された工具と対向するように前記被加工物を固定する載置台と、前記工具と前記被加工物とを所定の荷重を有して当接させる加圧手段と、前記工具の加工によって生じる前記載置台の変位量を測定する測定手段と、前記加圧手段の加圧方向に対向して前記載置台の高さを固定できるストッパと、前記ストッパを昇降位置決めできる位置決め手段と、砥粒を含む加工液を前記被加工物と前記工具との当接部位に供給する加工液供給手段とを備えたことを特徴とする球面創成加工装置。   (Supplementary note 1) A spherical tool for processing a concave spherical surface on a workpiece and a holding part for holding the tool so as to roll freely are provided at one end, and the tool held in the holding part is supplied from an ultrasonic oscillator. A horn that is ultrasonically vibrated by ultrasonic waves, a mounting table that fixes the work piece so as to face the tool held by the horn, and the tool and the work piece that are applied with a predetermined load. A pressurizing means for contacting, a measuring means for measuring a displacement amount of the mounting table generated by processing of the tool, a stopper capable of fixing the height of the mounting table facing the pressing direction of the pressing means, A spherical generating apparatus comprising: positioning means capable of raising and lowering the stopper; and processing liquid supply means for supplying a processing liquid containing abrasive grains to a contact portion between the workpiece and the tool.

(付記2)前記加圧手段は、加圧シリンダであることを特徴とする付記1記載の球面創成加工装置。   (Additional remark 2) The spherical surface creation apparatus of Additional remark 1 characterized by the said pressurizing means being a pressurization cylinder.

(付記3)前記測定手段は、マイクロメータであることを特徴とする付記1記載の球面創成加工装置。   (Supplementary note 3) The spherical surface generating apparatus according to supplementary note 1, wherein the measuring means is a micrometer.

(付記4)前記位置決め手段は、サーボモータ及びこのサーボモータによって駆動するボールネジであることを特徴とする付記1記載の球面創成加工装置。   (Supplementary note 4) The spherical surface generating apparatus according to Supplementary note 1, wherein the positioning means is a servo motor and a ball screw driven by the servo motor.

(付記5)前記位置決め手段は、チャック及びチャックを駆動するチャックシリンダであることを特徴とする付記1記載の球面創成加工装置。   (Supplementary note 5) The spherical surface generating apparatus according to supplementary note 1, wherein the positioning means is a chuck and a chuck cylinder for driving the chuck.

なお、この発明は、前記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、前記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

この発明の第1の実施形態を示し、球面創成加工装置の概略的構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic structure figure of the spherical surface creation processing apparatus which shows 1st Embodiment of this invention. 同実施形態を示し、球面創成加工装置の作用説明図。Operation | movement explanatory drawing of the spherical surface creation processing apparatus which shows the same embodiment. 同実施形態を示し、球面創成加工装置の作用説明図。Operation | movement explanatory drawing of the spherical surface creation processing apparatus which shows the same embodiment. 同実施形態を示し、球面創成加工装置の作用説明図。Operation | movement explanatory drawing of the spherical surface creation processing apparatus which shows the same embodiment. 同実施形態を示し、球面創成加工装置の作用説明図。Operation | movement explanatory drawing of the spherical surface creation processing apparatus which shows the same embodiment. 同実施形態を示し、球面創成加工装置の作用説明図。Operation | movement explanatory drawing of the spherical surface creation processing apparatus which shows the same embodiment. 同実施形態を示し、球面創成加工装置の作用説明図。Operation | movement explanatory drawing of the spherical surface creation processing apparatus which shows the same embodiment. 同実施形態を示し、球面創成加工装置の作用説明図。Operation | movement explanatory drawing of the spherical surface creation processing apparatus which shows the same embodiment. 同実施形態を示し、球面創成加工装置の作用説明図。Operation | movement explanatory drawing of the spherical surface creation processing apparatus which shows the same embodiment. この発明の第2の実施形態を示し、球面創成加工装置の概略的構成図。The schematic block diagram of the spherical surface creation processing apparatus which shows 2nd Embodiment of this invention. 同実施形態を示し、球面創成加工装置の作用説明図。Operation | movement explanatory drawing of the spherical surface creation processing apparatus which shows the same embodiment. 従来技術における球面創成加工装置の概略的構成図。The schematic block diagram of the spherical surface creation processing apparatus in a prior art.

符号の説明Explanation of symbols

1…光学素子(被加工物)、2…載置台、3…加圧シリンダ(加圧手段)、4…マイクロメータ(測定手段)、5…工具、6…ホーン、7…軸体、8…超音波発振器、9…上軸部、10…加工液、11…隙間、12…ストッパ、13…ボールネジ、14…サーボモータ(位置決め手段)、15…ナット、16…超音波コントローラ、17…ナット、18…ボールネジ、19…サーボモータ、20…ディスペンサ(加工液供給手段)、21…チャック、22…チャックシリンダ   DESCRIPTION OF SYMBOLS 1 ... Optical element (workpiece), 2 ... Mounting stand, 3 ... Pressure cylinder (pressurization means), 4 ... Micrometer (measurement means), 5 ... Tool, 6 ... Horn, 7 ... Shaft, 8 ... Ultrasonic oscillator, 9 ... upper shaft portion, 10 ... machining fluid, 11 ... gap, 12 ... stopper, 13 ... ball screw, 14 ... servo motor (positioning means), 15 ... nut, 16 ... ultrasonic controller, 17 ... nut, DESCRIPTION OF SYMBOLS 18 ... Ball screw, 19 ... Servo motor, 20 ... Dispenser (working fluid supply means), 21 ... Chuck, 22 ... Chuck cylinder

Claims (2)

被加工物に凹球面を加工する球状の工具と、
この工具を保持する保持部を一端に有し、この保持部に保持された前記工具を超音波発振器からの超音波によって超音波振動させるホーンと、
このホーンに保持された工具と対向するように前記被加工物を配置して前記被加工物を固定し、加工時にその加工量に応じて前記工具側へ移動可能な載置台と、
前記超音波発振器からの超音波によって前記ホーンを介して超音波振動させた前記工具と前記被加工物とを所定の荷重を加えて当接させて前記工具により前記被加工物に凹球面を創成する加圧手段と、
前記工具の加工によって生じる前記載置台の変位量を測定する測定手段と、
前記測定手段により測定した変位量が加工の目標値に相当する値に達した後も前記工具の超音波振動を続行し、タイムラグを持って前記工具の超音波振動を停止させるコントローラと、
前記加圧手段の加圧方向に移動する前記載置台の高さが目標値に対応した位置に達したときその位置に前記載置台を固定するストッパと、
前記ストッパを移動して前記ストッパの位置を前記目標値に対応した位置に決める位置決め手段と、
砥粒を含む加工液を前記被加工物と前記工具との当接部位に供給する加工液供給手段と、
を備えたことを特徴とする球面創成加工装置。
A spherical tool for machining a concave spherical surface on the workpiece;
A horn for holding the tool at one end, and ultrasonically vibrating the tool held by the holding part with ultrasonic waves from an ultrasonic oscillator;
The work piece is placed so as to face the tool held by the horn, the work piece is fixed, and a mounting table that can move to the tool side according to the amount of work during processing ,
A concave spherical surface is created on the workpiece by the tool by applying a predetermined load to the workpiece which is ultrasonically vibrated through the horn by ultrasonic waves from the ultrasonic oscillator. and a pressure means you,
Measuring means for measuring the amount of displacement of the mounting table generated by machining the tool;
A controller that continues the ultrasonic vibration of the tool even after the displacement measured by the measuring means reaches a value corresponding to a target value for machining, and stops the ultrasonic vibration of the tool with a time lag,
A stopper for fixing the mounting table at the position when the height of the mounting table moving in the pressurizing direction of the pressing means reaches a position corresponding to a target value ;
Positioning means for moving the stopper to determine the position of the stopper at a position corresponding to the target value ;
A working fluid supply means for supplying a working fluid containing abrasive grains to a contact portion between the workpiece and the tool;
A spherical surface generating device characterized by comprising:
超音波発振器に接続されたホーンの保持部に球状の工具を保持し、被加工物を載置する載置台の加圧方向に対向する位置にあるストッパを載置台に当接させた状態で、前記被加工物を加圧手段によって所定の荷重で前記工具に当接させ、砥粒を含む加工液を前記工具と被加工物との当接部位に供給し、このときの前記載置台の位置を載置台の変位量を測定する測定手段によって記憶した後、前記ストッパを目標加工の深さ分、前記載置台の加圧方向に移動させてその位置に固定し、前記ホーンを介して前記工具を超音波振動させて前記被加工物に凹球面を創成すると共に、この凹球面の創成に伴って生じる前記載置台の変位量を前記測定手段によって測定し、この測定した値が目標値に達した後も超音波振動を続行し、タイムラグを持って前記載置台が前記ストッパに当接したと判断し、超音波振動を停止し、加工終了とすることを特徴とする球面創成加工方法。 In a state where the spherical tool is held in the holding portion of the horn connected to the ultrasonic oscillator, and the stopper at the position facing the pressing direction of the mounting table on which the workpiece is mounted is in contact with the mounting table, The workpiece is brought into contact with the tool with a predetermined load by a pressurizing means, and a working fluid containing abrasive grains is supplied to a contact portion between the tool and the workpiece, and the position of the mounting table at this time Is stored by the measuring means for measuring the displacement amount of the mounting table, and then the stopper is moved in the pressurizing direction of the mounting table by the target machining depth and fixed at the position, and the tool is inserted through the horn. Is created by oscillating the workpiece to create a concave spherical surface on the workpiece, and measuring the displacement of the mounting table as a result of creation of the concave spherical surface by the measuring means, and the measured value reaches a target value. Continue the ultrasonic vibration after the It determines that the mounting base is in contact with the stopper stops the ultrasonic vibration, the spherical creation processing method characterized by the processing ends.
JP2003418264A 2003-12-16 2003-12-16 Spherical surface generating device and spherical surface generating method Expired - Fee Related JP4524097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003418264A JP4524097B2 (en) 2003-12-16 2003-12-16 Spherical surface generating device and spherical surface generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003418264A JP4524097B2 (en) 2003-12-16 2003-12-16 Spherical surface generating device and spherical surface generating method

Publications (2)

Publication Number Publication Date
JP2005177874A JP2005177874A (en) 2005-07-07
JP4524097B2 true JP4524097B2 (en) 2010-08-11

Family

ID=34780521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003418264A Expired - Fee Related JP4524097B2 (en) 2003-12-16 2003-12-16 Spherical surface generating device and spherical surface generating method

Country Status (1)

Country Link
JP (1) JP4524097B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528572B (en) * 2011-12-13 2013-09-25 河南理工大学 Single driven ultrasonic elliptical vibrating device
CN104476337A (en) * 2014-12-09 2015-04-01 苏州科技学院 Single electric signal excitation ultrasonic elliptic vibration centerless grinding device
CN104440416A (en) * 2014-12-09 2015-03-25 苏州科技学院 Single-excitation ultrasonic elliptical vibration centerless grinding device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245917A (en) * 1990-02-23 1991-11-01 Olympus Optical Co Ltd Electrolytic polishing device for spherical form and method therefor
JPH11333702A (en) * 1998-05-27 1999-12-07 Olympus Optical Co Ltd Device and method for generating spherical surface
JP2000153434A (en) * 1998-11-17 2000-06-06 Olympus Optical Co Ltd Ultrasonic spherical surface generating device and ultrasonic spherical surface generating method
JP2002233939A (en) * 2001-02-07 2002-08-20 Olympus Optical Co Ltd Polishing method for optical curved surface
JP2002307266A (en) * 2001-04-12 2002-10-23 Matsushita Electric Ind Co Ltd Ultrasonic processing method and device
JP2003245848A (en) * 2002-02-22 2003-09-02 Takenaka Komuten Co Ltd Horizontal polishing machine for concrete block on site

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245917A (en) * 1990-02-23 1991-11-01 Olympus Optical Co Ltd Electrolytic polishing device for spherical form and method therefor
JPH11333702A (en) * 1998-05-27 1999-12-07 Olympus Optical Co Ltd Device and method for generating spherical surface
JP2000153434A (en) * 1998-11-17 2000-06-06 Olympus Optical Co Ltd Ultrasonic spherical surface generating device and ultrasonic spherical surface generating method
JP2002233939A (en) * 2001-02-07 2002-08-20 Olympus Optical Co Ltd Polishing method for optical curved surface
JP2002307266A (en) * 2001-04-12 2002-10-23 Matsushita Electric Ind Co Ltd Ultrasonic processing method and device
JP2003245848A (en) * 2002-02-22 2003-09-02 Takenaka Komuten Co Ltd Horizontal polishing machine for concrete block on site

Also Published As

Publication number Publication date
JP2005177874A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
US5314105A (en) Wire bonding ultrasonic control system responsive to wire deformation
TWI434812B (en) Breaking device and breaking method
JP2006231698A (en) Ultrasonic welding device
JP4524097B2 (en) Spherical surface generating device and spherical surface generating method
JP2010067780A (en) Bonding method, bonding device, and manufacturing method
JP5716917B2 (en) Swing forging device and swing forging method
US10350722B2 (en) Polishing apparatus
JP2002283225A (en) Machining device and machining method of concave spherical surface
JP2011096840A (en) Mounting apparatus and method for electronic component
JP2004344916A (en) Surface processing machine and surface processing method
JP2006329795A (en) Shape measuring device
JP2002357520A (en) Viscoelasticity-measuring apparatus
US20050097728A1 (en) Contact start detecting apparatus for mounting process apparatus, and mounting process apparatus provided with the same
JPH02110309A (en) Measurement using ultrasonic thickness gage and measuring apparatus therefor
JP4009376B2 (en) Ultrasonic spherical surface creation apparatus and ultrasonic spherical surface creation method
JP3575399B2 (en) Electronic component bonding apparatus and bonding method
JP2002178252A (en) Method and device for machining lens
KR20090049985A (en) Method and apparatus for scribing of substrate using displacement sensor
JP4137843B2 (en) Ultrasonic processing equipment
JP4722117B2 (en) Wire bonding equipment
JP3598892B2 (en) Welding device and welding method
JP2001252868A (en) Method and device for machining lens
JP2004188492A (en) Bending machine and bending method
JP4190682B2 (en) Ultrasonic processing equipment
JP5797986B2 (en) Lens polishing method and lens polishing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R151 Written notification of patent or utility model registration

Ref document number: 4524097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees