JP2004342743A - 通信機器用半導体装置 - Google Patents

通信機器用半導体装置 Download PDF

Info

Publication number
JP2004342743A
JP2004342743A JP2003135803A JP2003135803A JP2004342743A JP 2004342743 A JP2004342743 A JP 2004342743A JP 2003135803 A JP2003135803 A JP 2003135803A JP 2003135803 A JP2003135803 A JP 2003135803A JP 2004342743 A JP2004342743 A JP 2004342743A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
semiconductor
semiconductor device
hfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003135803A
Other languages
English (en)
Inventor
Chiyoujitsuriyo Suzuki
朝実良 鈴木
Nobuyuki Otsuka
信之 大塚
Koichi Mizuno
紘一 水野
Shigeo Yoshii
重雄 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003135803A priority Critical patent/JP2004342743A/ja
Publication of JP2004342743A publication Critical patent/JP2004342743A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】耐圧性、特性安定化に優れ、ゲートリーク電流が低減されたHFETを提供すること。
【解決手段】本発明に係る通信機器用半導体装置は
第1の半導体層102と、
第1の半導体層102よりもバンドギャップが小さい第2の半導体層103と、
第2の半導体層103との間でヘテロ障壁を生ぜしめる材料からなる第3の半導体層104・106とを備え、
第2の半導体層103は窒素を含み、
第2の半導体層103と第3の半導体層104・106との界面において、第3の半導体層104・106は第2の半導体層103よりも電子親和力が小さく、
第3の半導体層104・106と第2の半導体層103との界面において、第3の半導体層104・106の価電子帯端のポテンシャルと第2の半導体層103の価電子帯端のポテンシャルとの差が−0.4eV以上0.18eV以下である。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、通信機器用半導体装置に関し、特にヘテロ接合電界効果型トランジスタに関するものである。
【0002】
【従来の技術】
近年、高周波特性,発光特性,耐圧特性など特定の特性が優れた特殊な機能を有する半導体デバイスを実現するために、新しい半導体材料や半絶縁材料の開発が活発に行われている。半導体材料の中でもインジウム燐(InP)系半導体は、代表的な半導体材料である珪素(Si)に比べて電子移動度や飽和電子速度が大きい半導体であることから、次世代の高周波デバイス、高温デバイスなどへの応用が期待される材料である。そして、携帯電話や携帯情報端末(PDA)の他、家庭やオフィスの機器などをネットワーク化する、高周波を用いた通信用システムへの応用は、InP材料の用途として非常に有望である。
【0003】
InPを用いたデバイスの1つとして、InP基板に格子整合するInAlAs/InGaAsへテロ接合を用いたヘテロ接合電界効果型トランジスタ(以下、HFETと称す)がある。このHFETの高性能化は従来より進められており、集積回路に応用するための研究も盛んに行われている。
【0004】
図10は、従来の代表的なHFET(以下、「従来のHFET」と称す)の構造を示す断面図である。同図に示すように、従来のHFETは、半絶縁性のInP基板1001と、InP基板1001上に設けられたアンドープのInAlAsからなる厚さ200nmのバッファ層1002と、バッファ層002上に設けられたアンドープのInGaAsからなる厚さ15nmのチャネル層1003と、チャネル層1003の上に設けられたアンドープのInAlAsからなる厚さ2nmのスペーサ層1004と、スペーサ層1004の上に例えば共蒸着により設けられた面密度5×1012cm−2のSiを含む原子層ドーピング面からなる不純物添加層1005と、不純物添加層1005の上に設けられたアンドープのInAlAsからなる厚さ15nmのバリア層1006と、バリア層1006の上に設けられたゲート電極1011と、バリア層1006の上のゲート電極1011の両側方に設けられた1×1019cm−3のSiを含むn型InGaAsからなるキャップ層1007と、チャネル層1003,スペーサ層1004,不純物添加層1005,バリア層1006及びキャップ層1007の一部にSiをイオン注入することにより設けられたソース領域1012及びドレイン領域1013と、ソース領域1012上に設けられたソース電極1010と、ドレイン領域1013の上に設けられたドレイン電極1009を備えている。
【0005】
また、バッファ層1002,チャネル層1003,スペーサ層1004,バリア層1006及びキャップ層1007はそれぞれ分子線エピタキシー(MBE)法や化学気相成長(CVD)法などにより堆積された層であり、InP基板1001に格子整合している。なお、ドレイン電極1009及びソース電極1010は共にAuGe/Ni等からなっており、ドレイン領域1013とース領域1012とそれぞれオーミック接触している。
【0006】
次に、図11は、図10に示すVII−VII線における従来のHFETのエネルギーバンド図である。同図は、HFETの駆動時におけるエネルギーバンド図であり、ゲート電極1011に電圧が印加された状態を示している。
【0007】
図10及び図11から分かるように、従来のHFETは、共にバンドギャップの大きいInAlAsからなるバッファ層1002とスペーサ層1004との間にバンドギャップの小さいInGaAsからなるチャネル層1003が挟まれた、いわゆるダブルヘテロ構造をとっている。このため、伝導帯側においては、スペーサ層1004とチャネル層1003との間、及びバッファ層1002とチャネル層1003との間には、それぞれ0.55eVのエネルギー障壁(バンド不連続量α)が形成され、キャリアとなる電子を2次元電子ガス1108としてチャネル領域中の狭い領域に閉じこめることができる。その結果、キャリアがチャネル層1003とスペーサ層1004との界面に蓄積し、散乱が抑制された状態でチャネル層1003中を図11の紙面に対して垂直方向に移動する。こうして、バルク中を走行する電子よりも移動度の大きい二次元電子ガス1008が生じるため、従来のHFETは、高速動作が可能になっている。
【0008】
なお、従来のHFETにおいては、ゲート電極1011に印加する電圧を調節することで二次元電子ガス1008の濃度を変化させ、ソース電極−ドレイン電極間を流れる電流を制御することを可能にしている。
【0009】
このように、従来のHFETは、キャリア電子の移動度が大きく、高周波を利用した通信機器に要求される優れた高周波特性を有している。
【0010】
【特許文献1】
特開平11−17284号公報
【特許文献2】
特開平08−191144号公報
【0011】
【発明が解決しようとする課題】
上記構造のHFETではキャリアが走行するチャネル層1003にInPに格子整合したInGaAsを使用している。また、InGaAsチャネル層1003に隣接するようにInAlAsスペーサ層1004が用いられているが、この層はInGaAsとの間に0.5eVの伝導帯バンド不連続量を持ち、これによって二次元電子ガス1108の強い閉じこめを実現している。また、InGaAsチャネル層1003は電子の有効質量が小さく、高い移動度を実現することができるので、トランジスタの高周波特性にとっては有利である。しかしながらその反面、InP基板1001に格子整合したInGaAsはバンドギャップが0.77eVと小さく、衝突イオン化が起こりやすいとともに走行中のキャリアが大きな運動エネルギーを持ったときにより上の準位へ遷移しやすい。
【0012】
衝突イオン化が起こると電子・ホール対が生成される。チャネル内に蓄積したホールはトランジスタ内のポテンシャル分布を変化させ、ソース抵抗やしきい値電圧を変化させ、その結果として、トランジスタの出力特性が不安定となる。さらにそれらの特性の変化がドレイン電流の増加を誘起し、電流の増加が衝突イオン化をさらに増加させることによってトランジスタの破壊に至ることもある。すなわちホールの蓄積によってトランジスタの耐圧は著しく低下する。
【0013】
一方、衝突イオン化が起こるまでのエネルギーを持っていないとしても走行中のキャリアが大きな運動エネルギーを持ったときにより上の準位へ遷移してしまうとキャリアの閉じこめが弱くなり、移動度が下がるという問題がある。
【0014】
InP基板1001に格子整合したInGaAsチャネル層1003は、バンドギャップが0.77eVと小さいため衝突イオン化が起こりやすく、走行中のキャリアが大きな運動エネルギーを持ったときに、より上の準位へ遷移しやすい。また、衝突イオン化が起こると電子・ホール対が生成され、このうち電子は他のキャリア電子と同様にドレイン電極へと流れる。これに対し、生成したホールは、電子に比べて非常に速度が遅く、電子の動作には追随できない。このため、HFETの動作中にホールが滞留しやすく、雑音の発生要因となり易い。
【0015】
本発明が解決しようとする課題は、上記の問題を解決し、耐圧性、特性安定化に優れ、ゲートリーク電流が低減されたHFETを提供することである。
【0016】
【課題を解決するための手段】
上記の問題は高速化を実現するために低いバンドギャップエネルギーを持つ材料でチャネルが動作していることに起因する。バンドギャップエネルギーが低いことは電子の有効質量が軽いことと等価であり、高速動作には欠かせない特性である。従って、電子が流れるチャネル部分には極力エネルギーギャップの低い材料を使用したうえで二次元電子ガスの閉じこめを強力にし、衝突イオン化を抑制してホールが生成されないようにしておく必要がある。また、高濃度で高移動度の二次元電子ガスを発生させるためには閉じこめが十分になされている必要があるので、チャネル層とスペーサ層との界面に存在する伝導帯側バンド不連続量は極力大きくあるべきである。これらの目的を達成するために、本発明においてはスペーサ層にSb(アンチモン)系材料を導入してチャネル層へP(燐)やN(窒素)などのV族元素を積極的に使用した材料を導入することでエネルギーバンドギャップを大きく変えることなく二次元電子ガスの閉じこめを維持し、なおかつチャネル層とバッファ層の間にあるエネルギー障壁を低くする。
【0017】
本発明の通信機器用半導体装置は、第1の半導体層と、上記第1の半導体層の上に設けられ、上記第1の半導体層よりもバンドギャップが小さい第2の半導体層と、上記第2の半導体層の上に設けられ、上記第2の半導体層との間でヘテロ障壁を生ぜしめる材料からなる第3の半導体層とを備え、上記第2の半導体層と上記第3の半導体層との界面において、上記第2の半導体層の伝導帯端のポテンシャルが上記第3の半導体層の伝導帯端のポテンシャルよりも低く、上記第1の半導体層と上記第2の半導体層との界面において、上記第2の半導体層の価電子帯端のポテンシャルが上記第1の価電子帯端のポテンシャルよりも高いときのポテンシャル差を正の値とすると、上記第1の半導体層の価電子帯端のポテンシャルと上記第2の半導体層の価電子帯端のポテンシャルとの差が−0.4eV以上0.18eV以下である。
【0018】
これにより、第2の半導体層の伝導帯端のポテンシャルが第3の半導体層の伝導帯端のポテンシャルよりも低いので、本発明の通信機器用半導体装置がHFETである場合に、第2の半導体層をトランジスタのチャネルとして機能させることができる。
【0019】
なお、本発明の通信機器用半導体装置は、上記第1の半導体層の下にInP基板を備えていてもよい。
【0020】
上記第2の半導体層のバンドギャップエネルギーが0.77eV以上であることにより、駆動時にチャネル内で衝突イオン化が起こる頻度を従来のHFETと同等以下に抑えることができるので、ホールの発生が抑えられる。その結果、第2の半導体層内でのホールの蓄積が抑えられるので、本発明の通信機器用半導体装置は、高耐圧で信頼性の高いHFETとして機能させることができる。
【0021】
また、上記第2の半導体層は、少なくともInを含むIII−V族半導体であることにより、優れた高周波特性を有し、Siからなるトランジスタに比べて移動度の大きいHFETを実現することができる。
【0022】
特に、上記第2の半導体層は、InGa1−sAs1−tからなることにより、Pの濃度を変化させることでバンド構造を変えることが可能になるので、バンドギャップの大きさ,ヘテロ障壁の大きさ,第2の半導体層−第3の半導体層間の伝導帯のポテンシャル差などを最適に調節することができる。
【0023】
上記第2の半導体層は、InGa1−x(PAs1−y1−zからなることにより、P及びNの濃度を変化させてバンド構造を変えることが可能になるので、第2の半導体層がInGa1−sAs1−tからなる場合と比べてバンド構造を調節するための自由度がさらに増す。例えば、第1及び第3の半導体層が共にInAlAsからなるときには、第2の半導体層のバンドギャップを従来のHFETと同じ大きさにしたまま第2の半導体層と第3の半導体層の界面における伝導帯端のポテンシャル差を大きくすることができる。この結果、ホールの発生が起こりにくく、高速動作が可能なHFETを実現することができる。
【0024】
上記第1〜第3の半導体層は、上記InP基板とほぼ格子整合していることが好ましい。
【0025】
上記第3の半導体層がAlGaAsSbまたはAlGaPSbからなっていることにより、例えば第2の半導体層がInGaAsPからなっているときには、バンドギャップが従来用いてこられたInAlAsよりも大きくなるので、第2の半導体層内に効果的にキャリア電子を閉じこめることが可能になる。したがって、本発明の通信機器用半導体装置の動作を高速化することができる。
【0026】
【発明の実施の形態】
−改良点についての検討−
HFETにおいて、ホールのチャネル層内への蓄積を防ぐためには、衝突イオン化の発生を抑えることが重要である。
【0027】
衝突イオン化を防ぐためにはチャネル層のバンドギャップを大きくする必要があるが、バンドギャップを大きくすると、電子の有効質量は重くなり、HFETの最大の長所である高速動作性が失われる。また、バンドギャップを大きくすることで伝導帯側のエネルギー障壁が小さくなる場合には、電子の閉じこめが不十分になり、高移動度の二次元電子ガスを発生させることが困難になる。
【0028】
以上のことから、本願発明者らは衝突イオン化の抑制について、該バンドギャップを大きく変えないか、バンドギャップを広くするとしてもキャリアの移動度に影響しない程度にするように留意した。加えて、チャネル層内への電子の閉じこめを維持することにも留意した。
【0029】
(第1の実施形態)
本発明の第1の実施形態に係る通信機器用のHFETについて、以下説明する。
【0030】
図1は、本実施形態に係るHFETの構造を示す断面図である。同図に示すように、本実施形態のHFETは、半絶縁性のInP基板101と、InP基板101上に設けられたIn0.52Al0.48Asからなる厚さ200nmのバッファ層102と、バッファ層102上に設けられたアンドープのInGa1−sAs1−tであって、sとtがそれぞれ以下の範囲
0.53≦s≦1 かつ 0<t≦1
を満たしていて、厚さが15nmのチャネル層103と、チャネル層103の上に設けられた、
GaAl1−aAsSb1−bであって、aとbがそれぞれ以下の範囲
0≦a≦0.3 かつ 0.45≦b≦0.65
を満たしているかまたは
GaAl1−cSb1−dであって、cとdがそれぞれ以下の範囲
0≦c≦0.65 かつ 0.3≦d≦0.5
を満たしている厚さ2nmのスペーサ層104と、
スペーサ層104の上に共蒸着等により設けられた面密度5×1012cm−2のSiを含む原子層ドーピング面からなる不純物添加層105と、
不純物添加層105の上に設けられ、スペーサ層と同じ材料で構成される厚さ15nmのバリア層106と、
バリア層106の上に設けられたゲート電極111と、バリア層106の上のゲート電極111の両側方に設けられた1×1019cm−3のSiを含むn型InGaAsからなるキャップ層107と、
チャネル層103,スペーサ層104,不純物添加層105,バリア層106及びキャップ層107の一部にSiをイオン注入する等して設けられたソース領域112及びドレイン領域113と、
ソース領域112上に設けられたソース電極110と、ドレイン領域113の上に設けられたドレイン電極109を備えている。
【0031】
また、バッファ層102,チャネル層103,スペーサ層104,バリア層106及びキャップ層107はそれぞれMBE法やCVD法などによりエピタキシャル成長された層であり、各層はInP基板101に格子整合されている。なお、ドレイン電極109及びソース電極110は共にAuGe/Ni等からなっており、ドレイン領域113とソース領域112とそれぞれオーミック接触している。
【0032】
本実施形態のHFETにおいては、駆動時にチャネル層103のうちスペーサ層104との界面付近にキャリアが蓄積し、二次元電子ガス208を生じる。このとき、電流はドレイン電極109から順にドレイン領域113、二次元電子ガス208,ソース領域112,ソース電極110の経路を流れる。
【0033】
本実施形態のHFETが従来のHFETと異なっている点は、チャネル層103の組成にPが加わり、InGaAsPとなっている点である。以下に、チャネル層103の組成にPを加えたことの効果について説明する。
【0034】
図2は、図1に示す本実施形態に係るHFETのII−II’線におけるエネルギーバンド図である。同図は、HFETの駆動時におけるエネルギーバンド図であり、ゲート電極111に電圧が印加された状態を示している。なお、比較しやすいように、従来のHFETのエネルギーバンドを点線で示している。なお、図1と図2との間の相関性は、図2の上部に図1において示されている各要素を示している通りである。このことは、図7と図8との間、および図10と図11との間でも同様である。
【0035】
図2に示すように、本実施形態のHFETは、バンドギャップの大きいInAlAsからなるバッファ層102とAlGaAsSbまたはAlGaPSbからなるスペーサ層104との間にバンドギャップの小さいInGaAsPからなるチャネル層103が挟まれた構造をとっている。
【0036】
また、本実施形態のHFETにおいては、例えば組成をIn0.8Ga0.2As0.60.4とするとチャネル層103にPを導入することによって従来のHFETと比べてバンドギャップが約1.0eVに広がっており、特にチャネル層103とバッファ層102との界面における両層の価電子帯端のバンド不連続量βをほぼ0eVとすることができる。
【0037】
すなわち、本実施形態のHFETにおいては、チャネル層103のバンドギャップエネルギーが従来の0.77eVに比べ大きくなっている。このため、本実施形態のHFETにおいては、従来のHFETに比べてチャネル層103内での電離衝突によるイオン化が起こりにくくなっている。つまり、本実施形態のHFETにおいては、チャネル層103内でのホール生成が抑制されている。
【0038】
また、チャネル層103とスペーサ層104との界面における両層の伝導帯端間のバンド不連続量αは0.6eV以上となっており、従来のHFETにおけるバンド不連続量0.55eVより大きい。このため、バイアス印加時にはチャネル層103のうちスペーサ層104との界面付近に電子が閉じこめられ、従来のHFETと同様、移動度の大きい二次元電子ガス208が生じ、HFETの高速動作が可能になる。
【0039】
このようにPを加えることによって伝導帯不連続量をほとんど小さくすることなくエネルギーギャップを大きくすることができる。更にバリア層106としてAlGaAsSbやAlGaPSbを選ぶことによって伝導帯不連続量αを大きく取ることができる。
【0040】
ここまでに示したようにInGaAsPチャネル層103に対してはInAsとAlAsとの混晶であるInAlAsよりもAlSbとAlAsとの混晶であるAlAsSbの方が伝導帯側のバンド不連続量を大きくとることができ、HFET素子のバリア層及び/又はスペーサ層としては適していることがわかる。また、AlSbとAlPとの混晶であるAlPSbについても同様なことが言え、さらにはGaを含めたAlGaAsSbやAlGaPSbといった4元混晶についても同様で、図2にも示したようにInAlAsを用いた場合の伝導帯の位置204よりも高い位置に伝導帯の底を持っていくことができて、0.5eV以上のバンド不連続量208をInPに格子整合させた状態で実現することができる。
【0041】
それらを図示するため、GaAl1−aAsSb1−b(0≦a≦0.3,0.45≦b≦0.65)とInGa1−sAs1−t(0.53≦s≦1,0<t≦1≦s≦1)のバンド接合の状態を図3に、GaAl1−cSb1−d(0≦c≦0.65,0.3≦d≦0.5)とInGa1−sAs1−t(0.53≦s≦1,0<t≦1)のバンド接合の状態を図4に示した。
【0042】
図4に示したように、チャネル層103の材料をInGaAsからInGaAsPへと変化させていくことにより、伝導帯バンド不連続量を大きく減少させることなくバンドギャップエネルギーを0.77eVよりも大きくとることができるようになる。これにより、二次元電子ガスの閉じこめは変わらず、高い濃度とともに高い移動度を維持し、電離衝突によるイオン化が生じにくい構造にすることができ、素子の高性能化が実現できる。
【0043】
さらに、GaAl1−aAsSb1−b(0≦a≦0.3,0.45≦b≦0.65)の取りうる範囲を図5に、GaAl1−cSb1−d(0≦c≦0.65,0.3≦d≦0.5)の取りうる範囲を図6に図示した。
【0044】
このように、本実施形態のHFETでは、ヘテロ接合における伝導帯端のバンド不連続量は大きく変化せず、価電子帯端のバンド不連続量が小さくなっているので、キャリアの大きい移動度を維持したままチャネル層103内へのホールの蓄積が抑制される。これにより、ゲートリーク電流などの不具合の発生が抑えられ、安定した高速動作が実現できる。さらに、バンドギャップエネルギーの大きな材料をスペーサ層104やバリア層102に用いることはゲート直下のショットキーバリアを薄くすることを可能とするので、しきい値電圧の揺らぎを抑制することが可能となり、素子の安定性を向上させることができる。加えて、本実施形態のHFETは化合物本来の優れた高周波特性を有しているので、高周波を利用した通信機器に好ましく用いられる。
【0045】
また、本実施形態のHFETにおいて、InP基板101上の各層はCVD法やMBE法により形成されるなど、従来のHFETとほぼ同様の公知技術により容易に製造できることも利点の1つである。具体的には、InP基板100の表面に、所定組成のIII族−V族化合物半導体をチャンバの内部で結晶成長させることにより本実施の形態のHFETを得ることができる。III族の原料(Ga、Al、Inなど)は一般的に固体であり、結晶成長時にはこれらの各固体は加熱されてGaSb基板100の表面に供給される。V族の原料のうち、AsおよびPは、それぞれAsHガスおよびPHガスを熱分解しながらGaSb基板100の表面に供給される。Sbは固体であるので、結晶成長時にはこれらの各固体は加熱されてGaSb基板100の表面に供給される。Nは以下のようにして得られる。まずNガスを高周波のRFプラズマに曝し、NからNラジカルを発生させ、このNラジカルをチャンバに供給する。
【0046】
なお、チャンバの温度は約400℃〜約500℃である。このことは、後述する実施形態でも同様である。
【0047】
なお、本実施形態のHFETのチャネル層103の組成は一定であったが、例えばPの濃度を段階的に変えてもよい。この際には、スペーサ層104とチャネル層103との界面において、チャネル層103内にキャリア電子を閉じこめるためのバンド不連続量αが確保され、且つチャネル層103とバッファ層102及びスペーサ層104との界面における両層の価電子帯端のポテンシャル差が0.1eV以内であればよい。
【0048】
なお、本実施形態のHFETにおいては、バッファ層102とチャネル層103との界面において、バッファ層102の伝導帯端のポテンシャルがチャネル層103のポテンシャルより高くなっていたが、逆に、チャネル層103の伝導帯端のポテンシャルの方を高くしてもよい。駆動時にはゲート電極に電圧を印加するため、この場合でもキャリア電子をチャネル層103内に閉じこめることは可能である。
【0049】
なお、本実施形態のHFETにおいて、バッファ層102を設けず、InP基板101上に直接チャネル層103が設けられた構造をとることもできる。この場合にはバンド不連続量βの値は0にはならないが、チャネル層103のP濃度を調節してバンド不連続量βの値を0.18eV以下にすることは可能である。
【0050】
(第2の実施形態)
本発明の第2の実施形態として、チャネル層の材料にN(窒素)を加えてヘテロ接合におけるバンド不連続量やチャネル層のバンドギャップを調節する通信機器用のHFETを説明する。
【0051】
図7は、本発明の第2の実施形態に係るHFETを示す断面図である。同図に示すように、本実施形態のHFETは、半絶縁性のInP基板701と、InP基板701上に設けられたアンドープのIn0.52Al0.48Asからなる厚さ200nmのバッファ層702と、バッファ層702上に設けられたアンドープのInGa1−x(PAs1−y1−zであって、xとyとzがそれぞれ以下の範囲
0.7≦x≦1 かつ 0.2≦y≦1 かつ0<z≦0.07
を満たしている厚さ15nmのチャネル層703と、チャネル層703の上に設けられたアンドープのIn0.52Al0.48Asからなる厚さ2nmのスペーサ層704と、
スペーサ層704の上に設けられた面密度5×1012cm−2のSiを含む原子層ドーピング面からなる不純物添加層705と、
不純物添加層705の上に設けられたアンドープのInAlAsからなる厚さ15nmのバリア層706と、
バリア層706の上に設けられたゲート電極711と、バリア層706の上のゲート電極711の両側方に設けられた1×1019cm−3のSiを含むn型InGaAsからなるキャップ層707と、チャネル層703,スペーサ層704,不純物添加層705、バリア層706及びキャップ層707の一部にSiをイオン注入することにより設けられたソース領域712及びドレイン領域713と、ソース領域712上に設けられたソース電極710と、ドレイン領域713の上に設けられたドレイン電極709を備えている。
【0052】
また、バッファ層702,チャネル層703,スペーサ層704,バリア層706及びキャップ層707はそれぞれMBE法やCVD法などによりエピタキシャル成長された層であり、各層はInP基板701に格子整合されている。なお、ドレイン電極709及びソース電極710は共にAuGe/Ni等からなっており、ドレイン領域713とソース領域712とそれぞれオーミック接触している。HFETの駆動時には、キャリアがチャネル層703のうちスペーサ層704との界面付近に蓄積し、二次元電子ガス708を生じる。このとき、電流はドレイン電極709から順にドレイン領域713,二次元電子ガス708,ソース領域712,ソース電極710の経路を流れる。
【0053】
本実施形態のHFETが第1の実施形態のHFETと異なっている点は、チャネル層703の組成にさらにNが加わり、InGaAsPNとなっている点である。以下に、チャネル層703の組成にNを加えたことの効果について説明する。
【0054】
図8は、図7に示す本実施形態に係るHFETのV−V線におけるエネルギーバンド図である。同図は、ゲート電極711に電圧が印加された状態を示している。なお、比較のため従来のHFETのエネルギーバンドを点線で示している。
【0055】
まず、本実施形態のHFETが従来のHFETと異なっているのは、PとNとを導入することで、チャネル層803とバッファ層802との界面における両層の価電子帯端のバンド不連続量βがほぼ0eVになっていることである。
【0056】
実施例1で説明したように、バンド不連続量は相手の材料が何であるかによって値が異なる。本実施例では価電子帯側の不連続量にも着目し、Pを導入することによって伝導帯側のバンド不連続量を大きく減らすことなく、価電子帯のバンド不連続量を減らしていき、さらにはチャネル層側の価電子帯頂上がスペーサ層側の価電子帯頂上よりも下へ来る状態を作り上げることを目的とする。
【0057】
第1の実施形態においては、Pの濃度を上げる程チャネル層103とスペーサ層104との界面における両層の伝導帯端間のバンド不連続量αの値が小さくなっていたが、本実施形態のHFETにおいては、チャネル層803にさらにNが導入されているため、バンド不連続量αの値を例えば従来と同じ0.55eVとしたまま、あるいはそれ以上とした上でバンド不連続量βの値を約0eVとすることができる。このため、本実施形態のHFETにおいては、電子のチャネル層803への閉じこめがさらに良好となり、二次元電子ガス808の移動度をさらに向上させることが可能となる。また、チャネル層803のバンドギャップエネルギーは、導入するPとNの濃度を調節することにより、従来の例よりも大きなバンドギャップエネルギーである0.77eV以上とすることができる。これにより、高い移動度を保ちながら、衝突イオン化によるホールの発生を抑えたHFETが実現できる。
【0058】
このように、本発明第一の実施例で示したチャネル層103のInGaAsPにNを加えることにより、伝導帯端のポテンシャルと価電子帯端のポテンシャル位置は共に従来のInGaAsを使用した場合に比べて低くなる。このため、PとNの濃度を調節することにより、バンドギャップの大きさを従来のInGaAsを使用した場合より大きくし、バンド不連続量αの値を大きくするとともにバンド不連続量βの値を小さくするなど、バンド構造が最適になるように調節することが可能となる。ここで、バンドギャップエネルギーは、衝突イオン化を防ぐために0.77eV以上が好ましく、バンド不連続量αの値はキャリアを閉じこめるために0.55eV以上が好ましい。
【0059】
InGa1−x(PAs1−y1−z(0.7≦x≦1,0.2≦y≦1,0<z≦0.07)の取りうる範囲は図9に示した。
【0060】
以上に説明したように、本実施形態のHFETにおいては、InGaAsPNをチャネル層703とすることによって第1の実施形態に比べチャネル層の性質を最適化するための自由度がさらに増す。すなわち、チャネル層にPとNとを導入することで、二次元電子ガスのキャリア濃度が増加するとともに移動度が向上し、電離衝突によるイオン化が生じにくくすることができる。
【0061】
また、第一の実施形態のようにバンドギャップエネルギーの大きな材料をスペーサ層やバリア層に用いることでゲート直下のショットキーバリアを薄くすることを可能とするのではなく、単にチャネル層のバリア層やスペーサ層に対する接合の位置を変化させることによって大きな伝導帯側のバンド不連続を実現することによって、ゲート直下のショットキーバリアを薄くすることを可能とする。これによってしきい値電圧の揺らぎを抑制することが可能となり、素子の安定性を向上させることができる。
【0062】
その結果、高い移動度と耐圧性を有し、動作の安定性に優れたHFETが実現される。
【0063】
なお、ここまではバッファ層702及びスペーサ層704をInAlAsとする一例の場合について述べてきたが、これはあくまでも価電子帯のバンド不連続量をType−Iの状態(バンドギャップ図において禁制帯が下に向けて突出し、価電子帯が上に向けて突出する状態)からType−IIの状態(バンドギャップ図において禁制帯も価電子体も下に向けて突出する状態)とするための材料の一例であり、実施形態1においては従来のInAlAsよりもバンドギャップが大きく、伝導帯のバンド不連続量をはるかに大きくとれる材料をバッファ層、スペーサ層、キャリア供給層、バリア層の内少なくとも一つの層に導入することを前提にしているので、価電子帯のバンド不連続量をType−Iの状態からType−IIの状態とすることができる材料であれば基本的にはどの材料でも良く、バッファ層702及びスペーサ層704の材料は、チャネル層703の材料よりもバンドギャップが大きいものであれば同じ効果が得られる。すなわち、本発明第一の実施例で示したようなAlGaAsSbやAlGaPSbをバッファ層702及びスペーサ層704に用いることによってより大きな効果が得られる。このとき、バッファ層702及びスペーサ層704の材料は互いに異なる材料であってもよい。
【0064】
また、スペーサ層704,不純物添加層705及びバリア層706の代わりにチャネル層703の上にδドープの積層構造を設けてもよい。
【0065】
【発明の効果】
本発明の通信機器用半導体装置によれば、HFETの構造を有し、チャネル層に使用する材料にInやAsを含むIII族−V族化合物半導体の他、PあるいはP及びNなどのV族元素を導入してバンドギャップの大きさやヘテロ接合界面における伝導帯端のポテンシャルの差を最適化しているので、駆動時に高い移動度と高いキャリア濃度の二次元電子ガスを生じ、且つ電離衝突によるイオン化が抑制抑制されたHFET素子を実現することができる。また、HFETにおけるバッファ層、スペーサ層、キャリア供給層、バリア層の内少なくとも一つの層に従来のInAlAsよりもバンドギャップが大きく、伝導帯のバンド不連続量をはるかに大きくとれる材料を導入することで伝導帯バンド不連続量を従来よりも大きくとり、チャネル層に使用する材料のバンドギャップとバンドラインナップとを最適化していくことにより、さらに大きな伝導帯バンド不連続を実現して従来よりも高い移動度と高いキャリア濃度の二次元電子ガスをもつHFET素子を実現し、性能の安定した半導体装置が実現できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係るHFETを示す断面図
【図2】第1の実施形態に係るHFETの図1に示すII−II線におけるエネルギーバンド図
【図3】本発明の第1の実施例にかかるAlGaAsSbとInGaAsPのバンドラインナップを示す図
【図4】本発明の第1の実施例にかかるAlGaPSbとInGaAsPのバンドラインナップを示す図
【図5】第1の実施形態に係るAlGaAsSbの取りうる範囲を示す図
【図6】第1の実施形態に係るAlGaPSbの取りうる範囲を示す図
【図7】本発明の第2の実施形態に係るHFETを示す断面図
【図8】第2の実施形態に係るHFETのV−V線におけるエネルギーバンド図
【図9】第2の実施形態に係るInGaAsPNの取りうる範囲を示す図
【図10】従来のHFETを示す断面図
【図11】従来のHFETの図10に示すVII−VII線におけるエネルギーバンド図
【符号の説明】
101,701 InP基板
102,702 バッファ層
103,703 チャネル層
104,704 スペーサ層
105,705 不純物添加層
106,706 バリア層
107,707 キャップ層
108,708 二次元電子ガス
109,709 ドレイン電極
110,710 ソース電極
111,711 ゲート電極
201 i−AlGaAsSbまたはAlGaPSbショットキーバリア層
202 n+−GaAlAsSbまたはAlGaPSbキャリア供給層
203 i−AlGaAsSbまたはAlGaPSbスペーサ層
204 IInGaAsPチャネル層
205 IInAlAsバッファ層
206 二次元電子ガス
207 チャネル層を従来構造におけるInGaAsで構成した場合のバンドギャップ
208 キャップ層、キャリア供給層、スペーサ層を従来構造におけるInAlAsで構成した場合の伝導帯底
208 二次元電子ガス
801 IInAlAsショットキーバリア層
802 n+−InAlAsキャリア供給層
803 IInAlAsスペーサ層
804 IInGaAsPNチャネル層
805 IInAlAsバッファ層
806 チャネル層をInGaAsで構成した場合のバンドギャップ
807 二次元電子ガス
1001 i−InP基板
1002 i−InAlAsバッファ層
1003 i−InGaAsチャネル層
1004 i−InAlAsスペーサ層
1005 n+ −InAlAsキャリア供給層
1006 i−InAlAsショットキーバリア層
1007 n+ −InGaAsキャップ層
1008 二次元電子ガス
1009 ドレイン電極
1010 ソース電極
1011 ゲート電極
1101 i−InAlAsショットキーバリア層
1102 n+ −InAlAsキャリア供給層
1103 i−InAlAsスペーサ層
1104 i−InGaAチャネル層
1105 i−InAlAsバッファ層
1106 InAlAsスペーサ層とInGaAsチャネル層との伝導帯側バンド不連続量
1107 InGaAsチャネル層とInAlAsバッファ層との価電子帯側バンド不連続量
1108 二次元電子ガス

Claims (12)

  1. 第1の半導体層と、
    上記第1の半導体層の上に設けられ、上記第1の半導体層よりもバンドギャップが小さい第2の半導体層と、
    上記第2の半導体層の上に設けられ、上記第2の半導体層との間でヘテロ障壁を生ぜしめる材料からなる第3の半導体層とを備え、
    上記第2の半導体層と上記第3の半導体層との界面において、上記第3の半導体層は上記第2の半導体層よりも電子親和力が小さく、
    上記第3の半導体層と上記第2の半導体層との界面において、上記第2の半導体層の価電子帯端のポテンシャルが上記第1の価電子帯端のポテンシャルよりも高いときのポテンシャル差を正の値とすると、上記第3の半導体層の価電子帯端のポテンシャルと上記第2の半導体層の価電子帯端のポテンシャルとの差が−0.4eV以上0.18eV以下である通信機器用半導体装置。
  2. 請求項1に記載の通信機器用半導体装置において、
    上記第1の半導体層の下にInP基板をさらに備えていることを特徴とする通信機器用半導体装置。
  3. 基板のInPに格子整合していてなおかつバンドギャップエネルギーが1.45eV以上となるような材料を、バッファ層、キャップ層、キャリア供給層、スペーサ層のうち少なくとも一つの層に使用していることを特徴とする通信機器用半導体装置。
  4. バンドギャップエネルギーが1.45eV以上となるような材料が安定性とバンドギャップの大きさとを考慮に入れた上で構成され、III族原料をIn、Al、Gaのうち少なくとも一つを使用し、V族原料をN、As、P、Sbのうち少なくとも一つを使用するように構成されるIII−V族化合物半導体であることを特徴とする請求項1又は2に記載の通信機器用半導体装置。
  5. バンドギャップエネルギーが1.45eV以上となるような材料がGaAl1−aAsSb1−bであって、aとbがそれぞれ以下の範囲
    0≦a≦0.3 かつ 0.45≦b≦0.65
    であることを特徴とする請求項1から4の何れかに記載の通信機器用半導体装置。
  6. バンドギャップエネルギーが1.45eV以上となるような材料がGaAl1−cSb1−dであって、aとbがそれぞれ以下の範囲
    0≦c≦0.65 かつ 0.3≦d≦0.5
    であることを特徴とする請求項1から4の何れかに記載の通信機器用半導体装置。
  7. 請求項1〜5のうちいずれか1つに記載の通信機器用半導体装置において、
    上記第1の半導体層及び上記第3の半導体層のいずれかがIn0.52Al0.48Asからなっていることを特徴とする通信機器用半導体装置。
  8. 請求項1〜6のうちいずれか1つに記載の通信機器用半導体装置において、
    上記第2の半導体層のバンドギャップエネルギーが0.5eV以上であることを特徴とする通信機器用半導体装置。
  9. 請求項1〜7のうちいずれか1つに記載の通信機器用半導体装置において、
    上記第2の半導体層は、少なくともInを含むIII−V族半導体であることを特徴とする通信機器用半導体装置。
  10. 請求項8に記載の通信機器用半導体装置において、
    上記第2の半導体層は、InGa1−sAs1−tであって、sとtがそれぞれ以下の範囲
    0.53≦s≦1 かつ 0<t≦1
    であることを特徴とする通信機器用半導体装置。
  11. 請求項8に記載の通信機器用半導体装置において、
    上記第2の半導体層は、InGa1−x(PAs1−y1−zであって、xとyとzがそれぞれ以下の範囲
    0.7≦x≦1 かつ 0.2≦y≦1 かつ 0<z≦0.07
    であることを特徴とする通信機器用半導体装置。
  12. 請求項2〜10のうちいずれか1つに記載の通信機器用半導体装置において、
    上記第1〜第3の半導体層は、上記InP基板とほぼ格子整合していることを特徴とする通信機器用半導体装置。
JP2003135803A 2003-05-14 2003-05-14 通信機器用半導体装置 Pending JP2004342743A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003135803A JP2004342743A (ja) 2003-05-14 2003-05-14 通信機器用半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135803A JP2004342743A (ja) 2003-05-14 2003-05-14 通信機器用半導体装置

Publications (1)

Publication Number Publication Date
JP2004342743A true JP2004342743A (ja) 2004-12-02

Family

ID=33525953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135803A Pending JP2004342743A (ja) 2003-05-14 2003-05-14 通信機器用半導体装置

Country Status (1)

Country Link
JP (1) JP2004342743A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073659A (ja) * 2005-09-06 2007-03-22 Nippon Telegr & Teleph Corp <Ntt> 電界効果トランジスタ
JP2007304472A (ja) * 2006-05-15 2007-11-22 Nippon Telegr & Teleph Corp <Ntt> 半導体光変調器
WO2010113501A1 (ja) * 2009-03-31 2010-10-07 旭化成エレクトロニクス株式会社 半導体デバイス

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073659A (ja) * 2005-09-06 2007-03-22 Nippon Telegr & Teleph Corp <Ntt> 電界効果トランジスタ
JP2007304472A (ja) * 2006-05-15 2007-11-22 Nippon Telegr & Teleph Corp <Ntt> 半導体光変調器
WO2010113501A1 (ja) * 2009-03-31 2010-10-07 旭化成エレクトロニクス株式会社 半導体デバイス
CN102379033A (zh) * 2009-03-31 2012-03-14 旭化成微电子株式会社 半导体器件
US8441037B2 (en) 2009-03-31 2013-05-14 Asahi Kasei Microdevices Corporation Semiconductor device having a thin film stacked structure
JP5451750B2 (ja) * 2009-03-31 2014-03-26 旭化成エレクトロニクス株式会社 半導体デバイス

Similar Documents

Publication Publication Date Title
EP1714325B1 (en) Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same
US9685445B2 (en) Semiconductor device and manufacturing method of the same
WO2012029292A1 (ja) 半導体基板、絶縁ゲート型電界効果トランジスタおよび半導体基板の製造方法
US5351128A (en) Semiconductor device having reduced contact resistance between a channel or base layer and a contact layer
US20050067629A1 (en) Semimetal semiconductor
JP2009060042A (ja) 半導体デバイス
US6861679B2 (en) Gallium indium nitride arsenide based epitaxial wafer, a hetero field effect transistor using the wafer, and a method of fabricating the hetero field effect transistor
JP2004342743A (ja) 通信機器用半導体装置
US6121641A (en) Compound semiconductor field-effect transistor with improved current flow characteristic
JP2004342742A (ja) 通信機器用半導体装置
JP5119644B2 (ja) Iii−v族化合物半導体エピタキシャルウェハ
JPH06188271A (ja) 電界効果トランジスタ
JP2003332353A (ja) 通信機器用半導体装置及び通信システム用機器
EP0718890B1 (en) Field effect transistor
JP3158467B2 (ja) InAlAs/InGaAsヘテロ接合構造電界効果トランジスタ
JP2013187345A (ja) 化合物半導体エピタキシャルウェハ及び化合物半導体装置
JP2003197644A (ja) 通信機器用半導体装置
JPH0541355A (ja) 変調半導体材料およびそれを用いた半導体装置
KR20130105804A (ko) 반도체 기판 및 절연 게이트형 전계 효과 트랜지스터
JP2012104738A (ja) 化合物半導体装置
JP2003203931A (ja) ヘテロ接合電界効果型トランジスタ
JP2006114659A (ja) 電界効果トランジスタ
JP3299188B2 (ja) 半導体装置
Chu et al. Impact of dopants in GaN on the formation of two-dimensional electron gas in AlGaN/GaN heterostructure field-effect transistors
JP4243593B2 (ja) ヘテロ電界効果トランジスタ、およびその製造方法、ならびにそれを備えた送受信装置