JP2004342170A - 強誘電体記憶装置および強誘電体記憶装置のデータ初期化方法 - Google Patents

強誘電体記憶装置および強誘電体記憶装置のデータ初期化方法 Download PDF

Info

Publication number
JP2004342170A
JP2004342170A JP2003134983A JP2003134983A JP2004342170A JP 2004342170 A JP2004342170 A JP 2004342170A JP 2003134983 A JP2003134983 A JP 2003134983A JP 2003134983 A JP2003134983 A JP 2003134983A JP 2004342170 A JP2004342170 A JP 2004342170A
Authority
JP
Japan
Prior art keywords
ferroelectric
initialization
power supply
signal
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003134983A
Other languages
English (en)
Inventor
Shoichi Masui
昇一 桝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003134983A priority Critical patent/JP2004342170A/ja
Publication of JP2004342170A publication Critical patent/JP2004342170A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

【課題】強誘電体記憶装置内に保持されるデータを容易に初期化する。また、強誘電体記憶装置内に保持されるデータをランダムに書き換える。
【解決手段】初期化回路は、複数の強誘電体キャパシタの分極状態を”0状態”でも”1状態”でもない状態に初期化する。このため、強誘電体記憶装置のセキュリティを向上できる。初期化動作は、ビット線の電圧に対するプレート線の電圧を、正および負に交互に切り替えながら徐々に下げていくことで実行される。このため、強誘電体キャパシタの誘電分極値を徐々にゼロに近づけることができる。この結果、初期化後、強誘電体キャパシタから読み出されるデータの論理値を、ランダムにできる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、強誘電体キャパシタを有する強誘電体メモリおよび強誘電体メモリを搭載するシステムLSI等の強誘電体記憶装置に関する。
特に、本発明は、強誘電体記憶装置に保持されるデータを初期化する技術に関する。
【0002】
【従来の技術】
強誘電体記憶装置は、強誘電体を絶縁材料とする強誘電体キャパシタを記憶用キャパシタとして動作させ、強誘電体キャパシタへの印加電圧をゼロにしても残留分極が残ることを利用することで、電源が供給されなくてもデータを保持できる。強誘電体キャパシタとして、PZT(チタン酸ジルコン酸鉛)を主な組成とする強誘電体材料、あるいはSBT(タンタル酸ビスマス・ストロンチウム)などのビスマス層状ペロブスカイト構造を持つ強誘電体材料が利用できる。
【0003】
強誘電体メモリでは、メモリセルとして1T1C型セルと2T2C型セルとが存在する。1T1C型セルは、1ビットの情報を保持するために1つの転送トランジスタと1つの強誘電体キャパシタで構成される。1T1C型セルは、メモリセルのサイズを小さくできるため、大容量用途の強誘電体メモリに採用されている。2T2C型セルは、1ビットの情報を保持するために2つの転送トランジスタと2つの強誘電体キャパシタで構成される。2T2C型セルは、相補のデータを2つの強誘電体キャパシタで記憶するため、読み出しマージンを大きくできる。このため、2T2C型セルは、高信頼度用途の強誘電体メモリに採用されている(非特許文献(1)参照)。
【0004】
また、本発明者らは、6つトランジスタで構成されるSRAMのメモリセルをベースに、4つ強誘電体キャパシタを設けた不揮発性SRAM型のメモリセルを、プログラマブル論理デバイスに応用する例を発表している(非特許文献(2)参照)。この不揮発性SRAMは、1T1C型セルおよび2T2C型セルを有する強誘電体メモリと比較して、データを20倍以上高速に読み出すことができる。さらに、1T1C型セルおよび2T2C型セルに比べ、読み出し可能回数(書き換え回数)を大幅に向上している。(1T1C型セルおよび2T2C型セルの欠点であった読み出し可能回数(書き換え回数)の制約を除去している。
【0005】
上述したように、強誘電体記憶装置に保持されているデータは電源をオフしても消えない。このため、例えば、システムの動作中に電源が落ちた場合、計算途中のデータが強誘電体記憶装置内に残ってしまう。これは、セキュリティ上好ましくない。
従来、電源が落ちたときに処理中のデータを残さないようにするため、強誘電体記憶装置の他にSRAMを用意し、SRAMを計算途中のワークメモリとして使用している。
【0006】
一方、強誘電体メモリのデータを”論理0”または”論理1”に一度に書き換える技術が開発されている(例えば、特許文献(1)、(2)、(3)参照)。
【非特許文献1】
A. Sheikholeslami and G. Gulak, ”A Survey of Circuit Innovations in Ferroelectric Random−Access Memories,” Proceedings of IEEE, vol. 88, no.5, pp667−689, 2000
【非特許文献2】
S. Masui et al., ”Ferroelectric Memory Based Secure Dynamically Programmable Gate Array,” 2002 Symposium on VLSI Circuits Digest of Technical Papers, pp. 200−203
【特許文献1】
特開平5−136378号公報 (段落番号0033)
【特許文献2】
特開平11−120795号公報 (段落番号0049、0050)
【特許文献3】
特開平8−235872号公報 (段落番号0020)
【0007】
【発明が解決しようとする課題】
計算途中のデータを記憶するためにSRAMを用いる場合、システムLSIではSRAMマクロを新たに搭載しなくてはならない。システム基板では、SRAMチップを新たに搭載しなくてはならない。SRAMは、メモリセルを構成するトランジスタ数が多く、セルサイズが大きい。さらに、SRAMをアクセスするための制御回路は、強誘電体記憶装置をアクセスするための制御回路と共有できない。このため、システムLSIのチップサイズあるいはシステム基板の大きさは、大きくなってしまう。この結果、システムコストは増加する。
【0008】
また、強誘電体記憶装置内に保持される計算途中のデータを残さないために、電源が落ちるときに、メモリセルの内容を”論理0”または”論理1”にクリアすることが考えられる。この場合、クリア後のデータは、全て”論理0”または全て”論理1”になる。ワード線単位でデータをクリアしても、データは論理値毎に規則正しく並んでしまう。
【0009】
クリア後のデータは、セキュリティ上、SRAMの電源オフ後の状態と同様に、ランダムであることが望ましい。クリア後のデータがランダムであれば、強誘電体記憶装置内のデータが解析されても、それが意味を持つデータなのか、クリアされたデータなのかを判別できない。
本発明の目的は、強誘電体記憶装置内に保持されるデータを容易に初期化することにある。
【0010】
本発明の別の目的は、強誘電体記憶装置内に保持されるデータをランダムに書き換えることにある。特に、システムコストを増加させることなく、データをランダムに書き換えることにある。
【0011】
【課題を解決するための手段】
図1は、本発明の基本原理を示している。
請求項1の強誘電体記憶装置では、初期化回路は、複数の強誘電体キャパシタの分極状態を”0状態”と”1状態”の中間状態となるように初期化する。例えば、強誘電体キャパシタは、強誘電体記憶装置を製造したときの分極状態になる。分極状態を”0状態”でも”1状態”でもない状態に初期化することで、強誘電体記憶装置のセキュリティを容易に向上できる。換言すれば、強誘電体キャパシタに計算途中のデータを記憶できるため、別途ワークメモリを用意する必要が無くなる。この結果、システムコストが増加することを防止できる。
【0012】
請求項2の強誘電体記憶装置および請求項5の強誘電体記憶装置のデータ初期化方法では、強誘電体キャパシタの一端および他端にビット線およびプレート線がそれぞれ接続されている。初期化動作は、ビット線の電圧に対するプレート線の電圧を、正および負に交互に切り替えながら徐々に下げていくことで実行される。このため、強誘電体キャパシタは、分極状態を、”0状態”と”1状態”とに交互に繰り返し、その誘電分極値は徐々に小さくなる。すなわち、初期化動作により、誘電分極値を徐々にゼロに近づけることができる。例えば、誘電分極値を初期化動作によりほぼゼロに設定することで、初期化後、強誘電体キャパシタから読み出されるデータの論理値は、ランダムになる。この結果、強誘電体記憶装置内のデータが解析されても、それが意味を持つデータなのか、クリアされたデータなのかを判別できない。
【0013】
請求項3の強誘電体記憶装置では、コントローラは、情報を保持する複数の強誘電体キャパシタを有するメモリアレイをアクセスする。周波数検出回路は、コントローラに供給されるクロックの周波数が所定値以下になったとき周波数検出信号を出力する。初期化回路は、周波数検出信号を受けたときに、強誘電体キャパシタの分極状態を”0状態”と”1状態”の中間状態となるように初期化する。このため、マニュアル解析装置等を使用して、低いクロック周波数で強誘電体記憶装置が不正に解析されるときに、強誘電体キャパシタを強制的に初期化できる。この結果、強誘電体記憶装置のセキュリティを向上できる。
【0014】
請求項4の強誘電体記憶装置では、複数のメモリセルは、入力と出力とが互いに接続された一対のインバータで構成されるラッチ回路、およびインバータの入力とプレート線との間にそれぞれ接続される強誘電体キャパシタを有している。初期化回路は、強誘電体キャパシタの誘電分極値を初期化する初期化動作において、各メモリセルのインバータを構成するトランジスタのソースに高レベル電圧および低レベル電圧をそれぞれ与えるとともに、プレート線にパルス電圧を与える。このため、トランジスタのソース電圧を制御するだけで容易に強誘電体キャパシタを初期化できる。特に、多数のメモリセルを同時に初期化するときに有効である。
【0015】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて説明する。図中の二重丸は、外部端子を示している。図中、太線で示した信号線は、複数本で構成されている。また、太線が接続されているブロックの一部は、複数の回路で構成されている。外部端子を介して供給される信号には、端子名と同じ符号を使用する。また、信号が伝達される信号線には、信号名と同じ符号を使用する。
図2は、本発明の第1の実施形態を示している。この実施形態は、請求項1、請求項2および請求項5に対応する。
【0016】
この実施形態の強誘電体記憶装置は、シリコン基板上にCMOSプロセスを使用して、例えば、ICカードに搭載される強誘電体メモリチップとして形成されている。
強誘電体メモリは、コマンドバッファ10、コマンドデコーダ12、アドレスバッファ14、カウンタ16、ロウデコーダ18、コラムデコーダ20、動作制御回路22、内部電源制御回路24、ワードドライバ26、プレートドライバ28、コラム制御回路30、データ入出力回路32およびメモリアレイ34を有している。動作制御回路22、内部電源制御回路24、ワードドライバ26、プレートドライバ28およびコラム制御回路30は、強誘電体キャパシタFCの分極状態を初期化する初期化回路として動作する。
【0017】
コマンドバッファ10は、チップセレクト信号、出力イネーブル信号およびライトイネーブル信号等のコマンド信号CMDをコマンド端子CMDを介して受信し、コマンドデコーダ12に出力する。コマンドデコーダ12は、コマンド信号CMDを解読し、解読結果を動作制御回路22に出力する。
アドレスバッファ14は、アドレス信号ADをアドレス端子ADを介して受信し、受信したアドレス信号ADの上位ビットおよび下位ビットを、それぞれロウアドレス信号RADおよびコラムアドレス信号CADとして出力する。ロウデコーダ18は、ロウアドレス信号RADをデコードしてデコード信号RDECを生成し、ワードドライバ26およびプレートドライバ28に出力する。コラムデコーダ20は、コラムアドレス信号CADをデコードしてデコード信号CDECを生成し、コラム制御回路30に出力する。
【0018】
カウンタ16は、動作制御回路22からのアクセス信号ACSを、ロウアドレス信号RAD毎にカウントする。すなわち、カウンタ16は、メモリセルMCのアクセス回数をワード線WL(WLE、WLO)毎にカウントする。カウンタ16は、カウンタ値のいずれかが上限値を超えたとき、オーバーフロー信号OVFを出力する。ここで、上限値は、強誘電体キャパシタの信頼度を維持できる最大書き換え回数に設定されている。なお、カウンタ16は、強誘電体キャパシタを有するメモリセルを利用して形成されており、カウンタ値は、電源がオフされても消えない。
【0019】
動作制御回路22は、ワードドライバ26、プレートドライバ28、コラム制御回路30およびデータ入出力回路32を動作させる制御信号を生成する。また、動作制御回路22は、メモリアレイ34がアクセスされたことを示すアクセス信号ACSをカウンタ16に出力する。動作制御回路22は、カウンタ16からのオーバーフロー信号OVFを受けたときに、内部電源制御回路24が生成する内部電源電圧VDDIを変更するためのステップ信号VSTEPの論理値を所定時間毎に順次変更する。ステップ信号VSTEPは、2ビットで構成されている。
【0020】
内部電源制御回路24は、シリーズ・レギュレータあるいはスイッチング・レギュレータにより構成され、外部電源電圧VDDを、ステップ信号VSTEPに応じた値の内部電源電圧VDDIに変換する。
ワードドライバ26は、動作制御回路22からの制御信号に応答して、デコード信号RDECに対応するワード線WL(WLEまたはWLO)を選択する。選択されたワード線WLは、電源電圧VDDあるいはそれより高い電圧に設定され、選択されないワード線WLは、接地電圧に設定される。
【0021】
プレートドライバ28は、動作制御回路22からの制御信号に応答して、デコード信号RDECに対応するプレート線PLを選択する。選択されたプレート線PLは、内部電源電圧VDDIあるいはそれよりも高い電圧に設定され、選択されないプレート線PLは、接地電圧に設定される。
コラム制御回路30は、ビット線BLE、BLOに接続された複数のセンスアンプ、複数のライトアンプおよび複数のコラムスイッチを有している。センスアンプは、読み出し動作において、強誘電体キャパシタFCの残留分極値に応じて発生したビット線BLE、BLOの電圧差を増幅する。なお、ビット線BLEに接続された強誘電体キャパシタFCからデータを読み出すとき、ビット線BLOは、図3に示すリファレンスキャパシタFCRに接続される。ライトアンプは、書き込み動作において、外部から供給される書き込みデータに応じて内部電源電圧VDDIまたは接地電圧を、ビット線BLE(またはBLO)に供給する。コラムスイッチは、デコード信号CDECに応じてオンし、ビット線BLE、BLOとデータバス線DBとを接続する。
【0022】
データ入出力回路32は、動作制御回路22からの制御信号に応じて外部からの書き込みデータをコラム制御回路30に出力し、または、コラム制御回路30からの読み出しデータをデータ端子I/Oに出力する。
メモリアレイ34は、マトリックス状に配置された複数のメモリセルMCと、メモリセルMCに接続された複数のワード線WL(WLE、WLO)、複数のプレート線PLおよび複数のビット線BL(BLE、BLO)を有している。メモリセルMCは、1T1C型メモリセルであり、強誘電体キャパシタFCおよび転送トランジスタTRを有している。強誘電体キャパシタFCは、一端が転送トランジスタTRを介してビット線BLE(またはBLO)に接続され、他端がプレート線PLに接続されている。転送トランジスタTRのゲートは、ワード線WLE(またはWLO)に接続されている。
【0023】
ワード線WLおよびビット線BLE、BLOの末尾の”E”、”O”は、それぞれ偶数、奇数を示している。偶数のワード線WLEは、メモリセルMCを介して偶数のビット線BLEに接続されている。奇数のワード線WLOは、メモリセルMCを介して奇数のビット線BLOに接続されている。このため、1本のワード線WLが選択されるときに、常にビット線対の一方のビット線(BLEまたはBLO)とメモリセルMCとが接続される。
【0024】
図3は、図2に示したワードドライバ26、プレートドライバ28、コラム制御回路30およびメモリアレイ34の詳細を示している。
ワードドライバ26は、各ワード線WL(WLE1、WLO1、...)に対応するワードドライバ回路およびリファレンスワード線RWLE、RWLOに対応するリファレンスワードドライバ回路を有している。ワードドライバ回路は、全ワード線選択信号WLALLを受けるORゲートを挿入して構成されている。ORゲートは、後述する初期化動作時に全てのワード線WLに電源電圧VDD(第3電圧)を供給するための多重選択回路として動作する。
【0025】
ワードドライバ回路26は、オーバーフロー信号OVFが出力されず、全ワード線選択信号WLALLが低レベルのときに、デコード信号RDECから生成されるワード線選択信号WLES1、WLOS1、...に対応して個別に動作する。ワードドライバ回路は、カウンタ16からのオーバーフロー信号OVFの出力に応答して、全ワード線選択信号WLALLが高レベルに変化したときに、同時に動作する。すなわち、オーバーフロー信号OVFが出力されたとき、全てのワード線WLE、WLOは、同時に電源電圧VDDに設定され、全てのメモリセルMCと全てのビット線BLE(またはBLO)とが互いに接続される。リファレンスワードドライバ回路は、オーバーフロー信号OVFに依存せず、アクセス動作において、そのいずれかかが電源電圧VDDに設定される。
【0026】
プレートドライバ28は、各プレート線PL(PL1、PL2、...)に対応するプレートドライバ回路を有している。プレートドライバ回路は、全プレート線選択信号PLALLを受けるORゲートを挿入して構成されている。ORゲートは、後述する初期化動作時に全てのプレート線PLに第2電圧(内部電源電圧VDDIまたは接地電圧)を供給するための多重選択回路として動作する。
【0027】
プレートドライバ回路は、オーバーフロー信号OVFが出力されず、全プレート線選択信号PLALLが低レベルのときに、デコード信号RDECから生成されるプレート線選択信号PLS1、PLS2、...に対応して個別に動作する。プレートドライバ回路は、カウンタ16からのオーバーフロー信号OVFの出力に応答して、全プレート線選択信号PLALLが高レベルに変化したときに、同時に動作する。すなわち、オーバーフロー信号OVFが出力されたとき、全てのプレート線PLは、同時に内部電源電圧VDDIに設定される。
【0028】
コラム制御回路30のライトアンプは、オーバーフロー信号OVFが出力されず、全ビット線選択信号BLALL信号が低レベルのときに、デコード信号CDECに対応して個別に動作する。ライトアンプは、カウンタ16からのオーバーフロー信号OVFに応答して、全ビット線選択信号BLALL信号が高レベル変化したときに、同時に動作する。オーバーフロー信号OVFが出力されたとき、全てのビット線BLE、BLOは、同時に内部電源電圧VDDIまたは接地電圧に設定される。すなわち、ライトアンプは、後述する初期化動作時に全てのビット線BLE、BLOに第1電圧(内部電源電圧VDDIまたは接地電圧)を供給するための多重選択回路として動作する。
【0029】
メモリアレイ34は、上述した1T1C型のメモリセルMCおよびビット線対BLE、BLOにそれぞれ接続されるリファレンスメモリセルRMCを有している。
リファレンスメモリセルRMCは、強誘電体キャパシタからなるリファレンスキャパシタFCRと、2つのnMOSトランジスタN10、N11とを有している。リファレンスキャパシタFCRは、”論理0”を記憶する強誘電体キャパシタFCの容量値と、”論理1”を記憶する強誘電体キャパシタFCの容量値の中間の容量値を有している。nMOSトランジスタN10は、リファレンスワード線RWLOが高レベルのときに、リファレンスキャパシタFCRをビット線BLEに接続する。nMOSトランジスタN11は、リファレンスワード線RWLEが高レベルのときに、リファレンスキャパシタFCRをビット線BLOに接続する。
【0030】
図4は、第1の実施形態の初期化動作を示している。
初期化動作は、図2に示した動作制御回路22がカウンタ16からオーバーフロー信号OVFを受けたときに実行される。すなわち、初期化動作は、強誘電体キャパシタの書き換え回数が上限値を超えたときに実行される。
動作制御回路22は、オーバーフロー信号OVF(高レベルのパルス)を受けたとき、”0”を示すステップ信号VSTEPを出力している(図4(a))。内部電源制御回路24は、ステップ信号VSTEPの”0”に応答して、電源電圧VDDから3.3Vの内部電源電圧VDDIを生成している(図4(b))。なお、この実施形態では、強誘電体メモリには、電源電圧VDDとして3.3Vが供給される。このため、内部電源制御回路24は、ステップ信号VSTEPが”0”を示すとき、電源電圧VDDを内部電源電圧VDDIとして出力する。
【0031】
動作制御回路22は、オーバーフロー信号OVFの立ち上がりエッジに応答して、全ワード線選択信号WLALL、全ビット線選択信号BLALLおよび全プレート線選択信号PLALLを高レベルに活性化する(図4(c、d、e))。ワードドライバ26は、WLALL信号に同期して、全てのワード線WLE、WLOを低レベルから高レベル(電源電圧VDD)に変化する(図4(f))。また、ワードドライバ26は、リファレンスワード線RWLE、RWLOを低レベル”L”に固定する(図4(g))。
【0032】
ライトアンプは、BLALL信号に同期して、全てのビット線BLE、BLOを0V(接地電圧)に設定する(図4(h))。なお、ライトアンプは、オーバーフロー信号OVFが偶数を示すとき、ビット線BLE、BLOを0Vに設定し、オーバーフロー信号OVFが奇数を示すとき、ビット線BLE、BLOを内部電源電圧VDDIに設定する。
プレートドライバ28は、PLALL信号に同期して、全てのプレート線PLを内部電源電圧VDDIに設定する(図4(i))。なお、プレートドライバ28は、オーバーフロー信号OVFが偶数を示すとき、プレート線PLを内部電源電圧VDDIに設定し、オーバーフロー信号OVFが奇数を示すとき、プレート線PLを0Vに設定する。
【0033】
この結果、ステップ信号VSTEPが”0”を示すステップ0において、各強誘電体キャパシタFCに3.3Vが印加される。強誘電体キャパシタFCの誘電分極値は、後述する図5に示すように、論理”0”の書き込みと同様に変化する。
動作制御回路22は、オーバーフロー信号OVFを受信してから所定時間後に、ステップ信号VSTEPを”1”に変化させる(図4(j))。内部電源制御回路24は、ステップ信号VSTEPの”1”に応答して、電源電圧VDDを降圧して1.5Vの内部電源電圧VDDIを生成する(図4(k))。
【0034】
ライトアンプは、ステップ信号VSTEPの”1”への変化に同期して、全てのビット線BLE、BLOを接地電圧から内部電源電圧VDDI(1.5V)に切り替える(図4(l))。プレートドライバ28は、ステップ信号VSTEPの”1”への変化に同期して、全てのプレート線PLを内部電源電圧VDDIから接地電圧に切り替える(図4(m))。この結果、ステップ信号VSTEPが”1”を示すステップ1において、各強誘電体キャパシタFCに−1.5Vが印加され、誘電分極値は反転する。強誘電体キャパシタFCに印加される電圧の絶対値がステップ0の約半分になるため、残留分極値の絶対値は小さくなる。
【0035】
次に、動作制御回路22は、オーバーフロー信号OVFを”2”に変化させる(図4(n))。内部電源制御回路24は、ステップ信号VSTEPの”2”に応答して、電源電圧VDDをさらに降圧して1Vの内部電源電圧VDDIを生成する(図4(o))。
ライトアンプは、ステップ信号VSTEPの”2”への変化に同期して、全てのビット線BLE、BLOを内部電源電圧VDDIから接地電圧に切り替える(図4(p))。プレートドライバ28は、ステップ信号VSTEPの”2”への変化に同期して、全てのプレート線PLを接地電圧から内部電源電圧VDDI(1V)に切り替える(図4(q))。この結果、ステップ信号VSTEPが”2”を示すステップ2において、各強誘電体キャパシタFCに1Vが印加され、誘電分極値は再び反転する。残留分極値の絶対値はさらに小さくなる。
【0036】
次に、動作制御回路22は、オーバーフロー信号OVFを”3”に変化させる(図4(r))。内部電源制御回路24は、ステップ信号VSTEPの”3”に応答して、電源電圧VDDをさらに降圧して0.5Vの内部電源電圧VDDIを生成する(図4(s))。
ライトアンプは、ステップ信号VSTEPの”3”への変化に同期して、全てのビット線BLE、BLOを接地電圧から内部電源電圧VDDI(0.5V)に切り替える(図4(t))。プレートドライバ28は、ステップ信号VSTEPの”3”への変化に同期して、全てのプレート線PLを内部電源電圧VDDIから接地電圧に切り替える(図4(u))。この結果、ステップ信号VSTEPが”3”を示すステップ3において、各強誘電体キャパシタFCに−0.5Vが印加され、誘電分極値は再び反転する。残留分極値の絶対値はさらに小さくなる。
【0037】
この後、動作制御回路22は、ビット線BLE、BLOおよびプレート線PLを低レベルにリセットするために、BLALL信号およびPLALL信号を低レベルに変化させる(図4(v、w))。このため、各強誘電体キャパシタFCの両端の電圧差は、0Vになる。この状態で、強誘電体キャパシタの誘電分極値は、ほぼゼロになる。すなわち、強誘電体メモリが製造された直後の状態になる。この後、動作制御回路22は、ワード線WLE、WLOを低レベルにリセットするために、WLALL信号を低レベルに変化する(図4(x))。
【0038】
このように、ビット線BLE、BLOおよびプレート線PLの電圧を順次切り替えて、強誘電体キャパシタFCの両端に掛かる電圧を、正および負に変化させながら徐々に下げていくことで、強誘電体キャパシタFCの残留分極値をほぼゼロに設定することができる。すなわち、強誘電体キャパシタFCの分極状態を”0状態”と”1状態”の中央に初期化できる。
【0039】
図5は、図4に示したステップ0からステップ3における強誘電体キャパシタFCの誘電分極値の変化を示している。
誘電分極値は、ステップ0からステップ3に移行する間、P0、P1、P2、P3に順次変化しながら、その絶対値が徐々に小さくなり、最終的にほぼゼロになる。すなわち、誘電分極値は、”論理0”、”論理1”の何れでもない値に設定される。なお、破線で示したヒステリシスループは、”論理0”および”論理1”を書き込む通常の書き込む動作における誘電分極値の変化である。
【0040】
以上、第1の実施形態では、強誘電体キャパシタFCの分極状態を”0状態”と”1状態”の中間状態となるように初期化することで、強誘電体キャパシタFCを、強誘電体メモリを製造したときの分極状態に設定できる。初期化された強誘電体キャパシタFCから読み出されるデータの論理値は、ランダムになる。このため、強誘電体メモリのセキュリティを向上できる。計算途中のデータを保持するワークメモリを別途用意する必要が無くなるため、システムコストが増加することを防止できる。
【0041】
初期化動作は、ビット線BLE、BLOの電圧に対するプレート線PLの電圧を、正および負に交互に切り替えながら徐々に下げていくことで実行される。このため、強誘電体キャパシタの残留分極値をほぼゼロにできる。この結果、初期化された強誘電体キャパシタFCから読み出されるデータの論理値を、確実にランダムにできる。したがって、強誘電体メモリ内のデータが解析されても、それが意味を持つデータなのか、クリアされたデータなのかを判別できない。
【0042】
プレートドライバ回路に全プレート線選択信号PLALLを受けるORゲートを挿入することで、全プレート線選択信号PLALLを受けたときに、全てのプレート線に同時に内部電源電圧VDDIまたは接地電圧が供給される。同様に、ライトアンプは、全ビット線選択信号BLALLを受けたときに、複数のビット線BLE、BLOに同時に内部電源電圧VDDIまたは接地電圧を供給する。このため、メモリアレイ34内の全ての強誘電体キャパシタFCを一度に初期化できる。
【0043】
ワードドライバ回路に全ワード線選択信号WLALLを受けるORゲートを挿入することで、全ワード線選択信号WLALLを受けたときに、全てのワード線WLE、WLOは、同時に選択される。このため、初期化動作中に、ビット線BLE、BLOの電圧を、強誘電体キャパシタFCに確実に伝達できる。
カウンタ16のカウンタ値が所定値を超えたときに、初期化動作を開始することで、強誘電体メモリが信頼度の低い状態で利用されることを防止できる。
【0044】
図6は、本発明の第2の実施形態を示している。この実施形態は、請求項1、請求項2および請求項5に対応する。第1の実施形態と同じ要素には、同じ符号を付し、詳細な説明を省略する。この実施形態の強誘電体記憶装置は、シリコン基板上にCMOSプロセスを使用して、例えば、ICカードに搭載される強誘電体メモリチップとして形成されている。
【0045】
この実施形態では、第1の実施形態のカウンタ16、動作制御回路22、ワードドライバ26、プレートドライバ28、コラム制御回路30およびメモリアレイ34の代わりに、光学センサ36、動作制御回路22A、ワードドライバ26A、プレートドライバ28A、コラム制御回路30Aおよびメモリアレイ34Aが形成されている。その他の構成は、第1の実施形態とほぼ同じである。動作制御回路22A、内部電源制御回路24、ワードドライバ26A、プレートドライバ28Aおよびコラム制御回路30Aは、強誘電体キャパシタFC1、FC2の分極状態を初期化する初期化回路として動作する。
【0046】
光学センサ36は、所定の明るさ以上の光を受けたときに光検出信号ODTを出力する。換言すれば、光学センサ36は、ICカードが壊され、強誘電体メモリを封止しているパッケージが開口された状態で、強誘電体メモリに電源電圧VDDが供給されたときに、光検出信号ODTを出力する。
動作制御回路22Aは、光検出信号ODT(正のパルス)を受けたときに、第1の実施形態と同様に、強誘電体キャパシタFC(FC1、FC2)の初期化動作を開始する。
【0047】
メモリアレイ34Aは、マトリックス状に配置された複数のメモリセルMCと、メモリセルMCに接続された複数のワード線WL、複数のプレート線PLおよび複数のビット線BL、XBLを有している。メモリセルMCは、2T2C型メモリセルであり、一対の強誘電体キャパシタFC1、FC2および一対の転送トランジスタTR1、TR2を有している。強誘電体キャパシタFC1、FC2は、一端が転送トランジスタTR1、TR2を介してそれぞれビット線BL、XBLに接続され、他端がプレート線PLに接続されている。転送トランジスタTR1、TR2のゲートは、共通のワード線WLに接続されている。
【0048】
ワードドライバ26A、プレートドライバ28Aおよびコラム制御回路30Aは、メモリアレイ34Aの構造(2T2C型)に対応して形成されており、その機能は、第1の実施形態のワードドライバ26、プレートドライバ28およびコラム制御回路30とほぼ同じである。
図7は、図6に示したワードドライバ26A、プレートドライバ28A、コラム制御回路30Aおよびメモリアレイ34Aの詳細を示している。
【0049】
ワードドライバ26Aは、各ワード線WL(WL1、WL2、...)に対応するワードドライバ回路を有している。ワードドライバ回路は、光検出信号ODTが出力されず、全ワード線選択信号WLALLが低レベルのときに、デコード信号RDECから生成されるワード線選択信号WLS1、WLS2、...に対応して個別に動作する。ワードドライバ回路は、光検出信号ODTの出力に応答して、全ワード線選択信号WLALLが高レベルに変化したときに、同時に動作する。すなわち、光検出信号ODTが出力されたとき、全てのワード線WLは、同時に電源電圧VDDに設定され、全てのメモリセルMCと全てのビット線BL(BL1、BL2、...)、XBL(XBL1、XBL2、...)とが互いに接続される。
【0050】
プレートドライバ28Aは、各プレート線PL(PL1、PL2、...)に対応するプレートドライバ回路を有している。プレートドライバ28Aの機能は、第1の実施形態のプレートドライバ28とほぼ同じである。すなわち、光検出信号ODTが出力されたとき、全てのプレート線PLは、PLALL信号が高レベルのときに内部電源電圧VDDIに設定され、PLALL信号が低レベルのときに接地電圧に設定される。光検出信号ODTが出力されないとき、プレート線PLは個別に選択される。なお、デコード信号RDECにより選択されるプレート線選択信号PLS1、PLS2、...は、第1の実施形態と異なる。これは、2T2C型メモリセルでは、プレート線PL1、PL2、...は、ワード線WL1、WL2、...に対応してそれぞれ配線されるためである。
【0051】
コラム制御回路30Aのライトアンプの機能は、第1の実施形態のコラム制御回路30とほぼ同じである。すなわち、光検出信号ODTが出力されたとき、全てのビット線BL、XBLは、同時に内部電源電圧VDDIまたは接地電圧に設定され、光検出信号ODTが出力されないとき、ビット線BL、XBLは、個別に選択される。
図8は、第2の実施形態の初期化動作を示している。第1の実施形態(図4)と同じ動作については、詳細な説明を省略する。
【0052】
初期化動作は、図6に示した動作制御回路22Aが光学センサ36から光検出信号ODTを受けたときに実行される。すなわち、初期化動作は、強誘電体メモリチップが外面に露出した状態で電源電圧VDDが供給されたときに実行される。
動作制御回路22Aは、光検出信号ODT(高レベルのパルス)を受けたとき、第1の実施形態と同様に、ステップ信号VSTEPを所定間隔をおいて順次出力する。内部電源制御回路24は、ステップ信号VSTEPに応答して、電源電圧VDDから内部電源電圧VDDIを順次生成する。
【0053】
全ワード線選択信号WLALL、全ビット線選択信号BLALLおよび全プレート線選択信号PLALLは、光検出信号ODTの立ち上がりエッジに応答して高レベルに活性化される。そして、第1の実施形態と同様に、強誘電体キャパシタFC1、FC2は、初期化がされ、残留分極値は、ほぼゼロに設定される。
この実施形態においても、上述した第1の実施形態と同様の効果を得ることができる。さらに、この実施形態では、光学センサ36が所定の明るさ以上の光を受けたときに、初期化動作を開始する。このため、強誘電体メモリのパッケージ(封止材)が故意に開封され、強誘電体メモリに保持されているデータを読みとるために、電源電圧VDDが供給されたときに、強誘電体キャパシタFC1、FC2に保持されているデータを初期化できる。この結果、強誘電体キャパシタFC1、FC2に保持されているデータが解析されることを防止できる。
【0054】
図9は、本発明の第3の実施形態を示している。この実施形態は、請求項1、請求項2および請求項5に対応する。第1の実施形態と同じ要素には、同じ符号を付し、詳細な説明を省略する。この実施形態の強誘電体記憶装置は、シリコン基板上にCMOSプロセスを使用して、例えば、ICカードに搭載される強誘電体メモリチップとして形成されている。
【0055】
この実施形態では、第1の実施形態の動作制御回路22、ワードドライバ26、プレートドライバ28、コラム制御回路30およびメモリアレイ34の代わりに、動作制御回路22B、ワードドライバ26B、プレートドライバ28B、コラム制御回路30Bおよびメモリアレイ34Bが形成されている。また、第1の実施形態のカウンタ16が削除され、動作制御回路22Bに入力される初期化要求信号IREQを受ける外部端子が新たに形成されている。動作制御回路22B、内部電源制御回路24、ワードドライバ26B、プレートドライバ28Bおよびコラム制御回路30Bは、メモリセルMC内の強誘電体キャパシタの分極状態を初期化する初期化回路として動作する。その他の構成は、第1の実施形態とほぼ同じである。
【0056】
動作制御回路22Bは、初期化要求信号IREQ(正のパルス)を受けたときに、第1の実施形態と同様に初期化動作を開始する。強誘電体メモリをアクセスするためにICカードに搭載されるCPU等のコントローラは、強誘電体メモリに保持されるデータが不正にアクセスされたときに、初期化要求信号IREQを出力する。コントローラは、例えば、強誘電体メモリ内のセキュリティデータ領域が所定回数以上連続してアクセスされたときに、初期化要求信号IREQを出力する。あるいは、コントローラは、誤ったパスワードが所定回数以上連続して入力されたときに初期化要求信号IREQを出力する。
【0057】
メモリアレイ34Bは、マトリックス状に配置された複数のメモリセルMCと、メモリセルMCに接続された複数のワード線WLおよび複数のビット線BL、XBLを有している。メモリセルMCは、不揮発性のSRAM型メモリセルである。
ワードドライバ26B、プレートドライバ28Bおよびコラム制御回路30Bは、メモリアレイ34Bの構造(SRAM型)に対応して形成されており、その機能は、第1の実施形態のワードドライバ26、プレートドライバ28およびコラム制御回路30とほぼ同じである。
【0058】
図10は、図9に示したワードドライバ26B、プレートドライバ28B、コラム制御回路30Bおよびメモリアレイ34Bの詳細を示している。
ワードドライバ26Bは、各ワード線WL(WL1、WL2、...)に対応するワードドライバ回路を有している。ワードドライバ回路は、初期化要求信号IREQが入力されず、全ワード線選択信号WLALLが低レベルのときに、デコード信号RDECから生成されるワード線選択信号WLS1、WLS2、...に対応して個別に動作する。ワードドライバ回路は、初期化要求信号IREQの活性化に応答して、全ワード線選択信号WLALLが高レベルに変化したときに、同時に動作する。すなわち、初期化要求信号IREQが供給されたとき、全てのワード線WLは、同時に電源電圧VDDに設定され、全てのメモリセルMCと全てのビット線BL(BL1、BL2、...)、XBL(XBL1、XBL2、...)とが互いに接続される。
【0059】
プレートドライバ28Bは、各プレート線PL1(PL11、PL12、...)、PL2(PL21、PL22、...)に対応するプレートドライバ回路を有している。プレートドライバ28Bは、初期化要求信号IREQが出力されたとき、全プレート線選択信号PL2ALLの高レベルへの変化に応答して全てのプレート線PL2を内部電源電圧VDDIに設定する。また、され、プレートドライバ28Bは、初期化要求信号IREQが出力されたとき、全プレート線選択信号PL1ALLの高レベルへの変化に応答して全てのプレート線PL1を内部電源電圧VDDIに設定する。初期化要求信号IREQが出力されないとき、プレート線PL1、PL2は個別に選択される。
【0060】
コラム制御回路30Bのライトアンプの機能は、第1の実施形態のコラム制御回路30とほぼ同じである。すなわち、初期化要求信号IREQが供給されたとき、全てのビット線BL、XBLは、同時に内部電源電圧VDDIまたは接地電圧に設定され、初期化要求信号IREQが供給されないとき、ビット線BL、XBLは、個別に選択される。
【0061】
メモリセルMCは、6つのトランジスタにより構成されるSRAMセルに4つ強誘電体キャパシタを付加して構成されている。入力と出力とが互いに接続されたインバータからなるラッチ回路は、そのうち4つのトランジスタにより形成されている。インバータの電源端子および接地端子は、第1および第2電源線PWR1、PWR2に接続されている。第1電源線PWR1には、データを保持するためにラッチ回路を活性化するときのみ内部電源電圧VDDIが供給される。第2電源線PWR2には、データを保持するためにラッチ回路を活性化するときのみ接地電圧が供給される。
【0062】
残りの2つのトランジスタTR1、TR2は、両インバータの入力を、ビット線BL、XBLにそれぞれ接続するための転送トランジスタとして動作する。図の横方向に並ぶメモリセルMCの転送トランジスタTR1、TR2のゲートは、共通のワード線WLに接続されている。
一対の強誘電体キャパシタFC1、FC3は、プレート線PL1、PL2の間に一方のインバータの入力(記憶ノード)を介して直列に接続されている。別の一対の強誘電体キャパシタFC2、FC4は、プレート線PL1、PL2の間に他方のインバータの入力(記憶ノード)を介して直列に接続されている。なお、SRAM型のメモリセルMCは、公知であるため、その動作は、説明を省略する。
【0063】
図11は、第3実施形態の初期化動作を示している。第1の実施形態(図4)と同じ動作については、詳細な説明を省略する。
初期化動作は、図6に示した動作制御回路22Bがコントローラから初期化要求信号IREQを受けたときに実行される。
動作制御回路22Bは、初期化要求信号IREQ(高レベルのパルス)を受けたとき、メモリセルMCへの第1および第2電源電圧PWR1、PWR2の供給を停止する(図11(a)に示したONからOFF)。このため、メモリセルMC内のラッチ回路は非活性化される。
【0064】
初期化動作における第1の実施形態との違いは、プレート線PL1、PL2が、ステップ0中およびステップ1中に交互に高レベルに変化することである。プレート線PL1、PL2を交互に変化させることで、直列に接続された一対の強誘電体キャパシタFC1、FC3(またはFC2、FC4)が互いに干渉し合うことが防止される。その他の動作は、第1の実施形態と同じである。すなわち、初期化動作により、強誘電体キャパシタFC1、FC2、FC3、FC4の誘電分極値は、ほぼゼロに設定される。
【0065】
この実施形態においても、上述した第1の実施形態と同様の効果を得ることができる。さらに、この実施形態では、強誘電体メモリをアクセスするシステムが、必要に応じて初期化要求信号IREQを発生し、強誘電体メモリを初期化できる。このため、強誘電体メモリを搭載するシステムのセキュリティを向上できる。
また、強誘電体キャパシタを含むSRAM型の不揮発性メモリセルMCを有する強誘電体メモリにおいても、1T1C型メモリセルあるいは2T2C型メモリセルを有する強誘電体メモリと同様の回路を構成することで、初期化動作を容易に実行できる。
【0066】
図12は、本発明の第4の実施形態を示している。この実施形態は、請求項1、請求項2および請求項5に対応する。第1および第2の実施形態と同じ要素には、同じ符号を付し、詳細な説明を省略する。この実施形態の強誘電体記憶装置は、シリコン基板上にCMOSプロセスを使用して、例えば、ICカードに搭載される強誘電体メモリチップとして形成されている。
【0067】
この実施形態では、第2の実施形態の光学センサ36および動作制御回路22Aの代わりに、電源電圧検出回路38および動作制御回路22Cが形成されている。また、電源線VDDに接続される容量C1が、新たに形成され、第2の実施形態の内部電源制御回路24は削除されている。初期化動作中、プレート線PLおよびビット線BL、XBLには、内部電源電圧VDDIでなく電源電圧VDDが供給される。動作制御回路22C、ワードドライバ26A、プレートドライバ28Aおよびコラム制御回路30Aは、強誘電体キャパシタFC1、FC2の分極状態を初期化する初期化回路として動作する。その他の構成は、第2の実施形態とほぼ同じである。
【0068】
電源電圧検出回路38は、電源電圧VDDが所定の電圧値以下に下がったときに、強誘電体メモリのパワーオフを検出し、低電圧検出信号LDT(正のパルス)を出力する。動作制御回路22Cは、低電圧検出信号LDTを受けたときに、第2の実施形態と同様に、強誘電体キャパシタFC(FC1、FC2)の初期化動作を開始する。初期化動作は、容量C1に充電されている電荷により実行される。初期化動作時に、電源端子への電源電圧VDDの供給は停止している。このため、初期化動作とともに、容量C1に蓄積された電荷が消費され、電源電圧VDDは徐々に低下する。
【0069】
図13は、第4の実施形態の初期化動作を示している。第2の実施形態(図8)と同じ動作については、詳細な説明を省略する。
初期化動作は、図12に示した動作制御回路22Cが電源電圧検出回路38から低電圧検出信号LDTを受けたときに実行される。すなわち、初期化動作は、強誘電体メモリのパワーオフ毎に実行される。このため、不揮発性の強誘電体メモリを揮発性のSRAMとして動作できる。
【0070】
動作制御回路22Cは、低電圧検出信号LDT(高レベルのパルス)を受けたとき、ステップ0〜ステップ3を実行するための制御信号を順次出力する。初期化動作に伴い、電源電圧VDDはV1、V2、V3、V4と徐々に低下する。そして、絶対値が電源電圧VDDに等しい電圧V0、−V1、V2、−V3が、強誘電体キャパシタFC1、FC2にそれぞれ印加される。
【0071】
電源電圧VDDの低下により、ワード線WLの電圧も低下していく。初期化動作は、強誘電体メモリが動作できない電源電圧VDDに下がるまで繰り返し実行される。そして、強誘電体キャパシタFC1、FC2の誘電分極値は、ほぼゼロに設定される。
この実施形態においても、上述した第1の実施形態と同様の効果を得ることができる。さらに、この実施形態では、強誘電体メモリのパワーオフを検出したときに、初期化動作を実行するため、強誘電体メモリを揮発性のSRAMとして動作させることができる。
【0072】
パワーオフ時に徐々に低下する電源電圧VDDを利用して、強誘電体キャパシタFC1、FC2の両端に電圧を印加する。このため、初期化動作中に強誘電体キャパシタの両端に掛かる電圧値を特別に制御する必要はない。すなわち、第1の実施形態のステップ信号VSTEPの生成および内部電源制御回路24は不要になる。この結果、強誘電体メモリの回路規模を削減でき、チップサイズが増加することを防止できる。
【0073】
図14は、本発明の第5の実施形態を示している。第1の実施形態と同じ要素には、同じ符号を付し、詳細な説明を省略する。この実施形態の強誘電体記憶装置は、シリコン基板上にCMOSプロセスを使用して、例えば、ICカードに搭載される強誘電体メモリチップとして形成されている。
この実施形態では、第1の実施形態のカウンタ16、ワードドライバ26およびプレートドライバ28の代わりに、ワードドライバ26Dおよびプレートドライバ28Dが形成されている。また、レジスタ40が新たに形成されている。動作制御回路22、内部電源制御回路24、ワードドライバ26D、プレートドライバ28Dおよびコラム制御回路30は、強誘電体キャパシタFCの分極状態を初期化する初期化回路として動作する。その他の構成は、第1の実施形態とほぼ同じである。
【0074】
レジスタ40は、外部からデータ端子I/Oを介して供給されるレジスタ情報に応じて書き換えられる。レジスタ40は、強誘電体キャパシタを有するメモリセルを利用して形成されており、書き換えられたレジスタ情報は電源がオフされても消えない。強誘電体メモリは、レジスタ情報を、コマンド信号CMDとして供給されるレジスタ設定コマンドに同期して受信する。レジスタ40は、設定された値を、2ビットの初期化領域信号IR0−IR1として、ワードドライバ26Dおよびプレートドライバ28Dに出力する。ワードドライバ26Dは、初期化動作時に、初期化領域信号IR0−IR1に対応するワード線WLE、WLOのみを選択する。プレートドライバ28Dは、初期化領域信号IR0−IR1に対応するプレート線PLのみに内部電源電圧VDDIを印加する。
【0075】
図15は、レジスタ40の設定値とメモリアレイ34の初期化領域INRとの関係を示している。
レジスタ40に2進数で論理”00”が書き込まれたとき、初期化領域信号IR0−IR1の論理レベルは、”00”になる。このとき、メモリアレイ34の全てのメモリ領域が、初期化領域INRに設定される。同様に、レジスタ40に論理”01”、”10”、”11”がそれぞれ書き込まれたとき、設定される初期化領域INRは、それぞれメモリ領域の2分の1、4分の1、8分の1になる。
【0076】
この実施形態においても、上述した第1の実施形態と同様の効果を得ることができる。さらに、この実施形態では、メモリアレイ34の初期化領域INRをレジスタ40の設定値に応じて変更できる。初期化が必要な領域のみ、初期化動作を実行することで、強誘電体メモリの使い勝手を向上できる。レジスタ40は、外部から設定可能なため、システム毎に最適な初期化領域INRを設定できる。
【0077】
図16は、本発明の第6の実施形態を示している。この実施形態は、請求項3および請求項5に対応する。第2の実施形態と同じ要素には、同じ符号を付し、詳細な説明を省略する。
この実施形態の強誘電体記憶装置は、シリコン基板上にCMOSプロセスを使用して、例えば、ICカードに搭載されるシステムLSIとして形成されている。システムLSIは、コントローラCPU(CPUコア)と強誘電体メモリコアFeRAMを有している。
【0078】
コントローラCPUは、クロック信号CLKに同期して動作し、強誘電体メモリコアFeRAMをアクセスためのコマンド信号CMDおよびアドレス信号ADを出力する。強誘電体メモリコアFeRAMは、第2の実施形態の強誘電体メモリの光学センサ36および動作制御回路22Aの代わりに、周波数検出回路42および動作制御回路22Eが形成されている。動作制御回路22E、内部電源制御回路24、ワードドライバ26A、プレートドライバ28Aおよびコラム制御回路30Aは、メモリセルMC内の強誘電体キャパシタの分極状態を初期化する初期化回路として動作する。強誘電体メモリコアFeRAMのその他の構成は、第2の実施形態の強誘電体メモリとほぼ同じである。
【0079】
周波数検出回路42は、外部端子を介してクロック信号CLKを受信する。周波数検出回路42は、クロック信号の周波数が所定値以下になったときに、周波数検出信号FDT(正のパルス)を出力する。動作制御回路22Eは、周波数検出信号FDTを受けたときに、第2の実施形態と同様に、強誘電体キャパシタFC1、FC2の初期化動作を開始する。
【0080】
この実施形態においても、上述した第1の実施形態と同様の効果を得ることができる。さらに、この実施形態では、コントローラCPUに供給されるクロック信号CLK信号の周波数が低いときに、初期化動作を実行する。このため、マニュアル解析装置等を使用して、低いクロック周波数でシステムLSI内の強誘電体メモリコアFeRAMが不正に解析されるときに、強誘電体キャパシタFC1、FC2を強制的に初期化できる。この結果、ICカードのセキュリティを向上できる。
【0081】
図17は、本発明の第7の実施形態を示している。この実施形態は、請求項4に対応する。第1および第3の実施形態と同じ要素には、同じ符号を付し、詳細な説明を省略する。この実施形態の強誘電体記憶装置は、シリコン基板上にCMOSプロセスを使用して、例えば、ICカードに搭載される強誘電体メモリチップとして形成されている。
【0082】
この実施形態では、第3の実施形態の動作制御回路22B、ワードドライバ26B、プレートドライバ28B、メモリアレイ34Bおよびコラム制御回路30Bの代わりに、動作制御回路22F、ワードドライバ26F、プレートドライバ28F、メモリアレイ34Fおよびコラム制御回路30Fが形成されている。また、第3の実施形態の初期化要求端子IREQ、内部電源制御回路24は削除され、新たにラッチ制御回路44および第1の実施形態と同じカウンタ16が形成されている。動作制御回路22F、プレートドライバ28Fおよびラッチ制御回路44は、メモリセルMC内の強誘電体キャパシタの分極状態を初期化する初期化回路として動作する。その他の構成は、第3の実施形態とほぼ同じである。
【0083】
動作制御回路22Fは、メモリアレイ34Fがアクセスされたことを示すアクセス信号ACSをカウンタ16に出力する。また、動作制御回路22Fは、カウンタ16からのオーバーフロー信号OVFを受けたときに、初期化動作を実行する。この実施形態は、メモリセルMCは、第3の実施形態と同じSRAM型セルである。全てのメモリセルMCは、初期化動作により”論理0”または”論理1”に初期化される。
【0084】
ラッチ制御回路44は、動作制御回路22Fからの初期化動作の指示を受けて、接地線VSS0、VSS1をそれぞれ高レベル電圧、低レベル電圧(”0”初期化モード)、あるいは低レベル電圧、高レベル電圧(”1”初期化モード)に設定する。高レベル電圧は、電源電圧VDD(3.3V)であり、低レベル電圧は、接地電圧(0V)である。”0”初期化モードでは、全てのメモリセルMCは、同時に論理”0”に初期化される。”1”初期化モードでは、全てのメモリセルMCは、同時に論理”1”に初期化される。”0”初期化モードおよび”1”初期化モードは、コマンド端子CMDを介して供給される初期化モード設定コマンドおよびこのコマンドに同期してデータ端子I/Oに供給されるデータ信号の論理レベルに応じて設定される。
【0085】
図18は、図17に示したワードドライバ26F、プレートドライバ28F、コラム制御回路30Fおよびメモリアレイ34Fの詳細を示している。
ワードドライバ26Fのワードドライバ回路は、デコード信号RDECから生成されるワード線選択信号WLS1、WLS1、...に対応して個別に動作する。また、初期化動作中、全てのワードドライバ回路は、非活性化される。このため、全てのワード線WLは、選択されず低レベルに保持される。
【0086】
プレートドライバ28Fは、第3の実施形態のプレートドライバ28Bとほぼ同じ回路である。プレートドライバ28Fは、初期化動作中、全プレート選択信号PL2ALLが高レベルときにプレート線PL2(PL21、PL22、...)を高レベルに設定し、全プレート選択信号PL1ALLが高レベルときにプレート線PL1(PL11、PL12、...)を高レベルに設定する。
【0087】
メモリセルMCは、第3の実施形態と同じ不揮発性のSRAM型メモリセルである。すなわち、メモリセルMCは、入力と出力とが互いに接続された一対のインバータからなるラッチ回路と、一方のインバータの入力とプレート線PL1、PL2との間にそれぞれ接続された強誘電体キャパシタFC1、FC3と、他方のインバータの入力とプレート線PL1、PL2との間にそれぞれ接続された強誘電体キャパシタFC2、FC4と、インバータの入力をそれぞれビット線BL、XBLに接続する転送トランジスタTR1、TR2とを有している。
【0088】
インバータの電源端子は、第1電源線PWR1に接続されている。第1電源線PWR1には、データを保持するためにラッチ回路を活性化するとき、および初期化動作時に内部電源電圧VDDIが供給される。インバータ対の接地端子は、接地線VSS0、VSS1にそれぞれ接続されている。接地線VSS0、VSS1には、データを保持するためにラッチ回路を活性化するときに接地電圧が供給される。また、接地線VSS0、VSS1には、初期化動作時に高レベル電圧あるいは低レベル電圧が供給される。
【0089】
この実施形態では、初期化動作において、ラッチ制御回路44は、初期化モードに従い、接地線VSS0、VSS1を高レベル電圧あるいは低レベル電圧に設定する。あるいは、接地線VSS0、VSS1の電圧は両方とも接地電圧に戻される。この後、プレートドライバ28Fは、PL2ALL信号およびPL1ALL信号(どちらも高レベルパルス)を順次出力する。この結果、接地線VSS0、VSS1がそれぞれ電源電圧VDD、接地電圧のとき、全てのメモリセルMCの強誘電体キャパシタFC1−FC3の誘電分極値は、”論理0”を保持しているときの状態になる。接地線VSS0、VSS1がそれぞれ接地電圧、電源電圧VDDのとき、全てのメモリセルMCの強誘電体キャパシタFC1−FC3の誘電分極値は、”論理1”を保持しているときの状態になる。このとき、ワード線WLは非選択であり、ライトアンプは非動作状態である。すなわち、簡易な機構で、メモリセルMCを初期化できる。
【0090】
この実施形態においても、上述した第1の実施形態と同様の効果を得ることができる。さらに、この実施形態では、SRAM型の不揮発性メモリセルMCを有する強誘電体メモリにおいて、メモリセルMCのラッチ回路を構成する一対のnMOSトランジスタのソースに、電源電圧VDDおよび接地電圧をそれぞれ供給することで、全てのメモリセルMCの強誘電体キャパシタFC1−FC4を初期化する。このため、初期化動作におて、ワードドライバ24Bおよびライトアンプを駆動する必要はない。したがって、トランジスタのソース電圧を制御するだけで容易に強誘電体キャパシタFC1−FC4を初期化できる。
【0091】
なお、上述した第1〜第5、第7の実施形態では、本発明を強誘電体メモリチップに適用した例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、本発明をシステムLSIに搭載される強誘電体メモリコアに適用してもよい。
上述した第4実施形態では、電源のパワーオフ毎に強誘電体キャパシタを初期化し、揮発性のSRAMとして動作させる例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、強誘電体メモリに不揮発性のレジスタを形成し、レジスタに書き込まれた値に応じて、強誘電体メモリを揮発性メモリとして動作させるか、不揮発性メモリとして動作させるかを選択可能にしてもよい。
【0092】
上述した第7実施形態では、初期化動作時に、ラッチ回路を構成する一対のnMOSトランジスタのソースに、電源電圧VDDおよび接地電圧をそれぞれ供給する例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、初期化動作時に、ラッチ回路を構成する一対のpMOSトランジスタのソースに、電源電圧VDDおよび接地電圧をそれぞれ供給してもよい。
【0093】
以上の実施形態において説明した発明を整理して、付記として開示する。
(付記1) 複数の強誘電体キャパシタと、
前記強誘電体キャパシタの分極状態を”0状態”と”1状態”の中間となるように初期化する初期化回路とを備えていることを特徴とする強誘電体記憶装置。
(付記2) 付記1記載の強誘電体記憶装置において、
前記強誘電体キャパシタの一端にそれぞれ接続される複数のビット線と、
前記強誘電体キャパシタに他端にそれぞれ接続される複数のプレート線とを備え、
前記初期化回路は、前記ビット線の電圧に対する前記プレート線の電圧を、正および負に交互に切り替えながら徐々に下げていくことで、初期化動作を実行することを特徴とする強誘電体記憶装置。
【0094】
(付記3) 付記2記載の強誘電体記憶システムにおいて、
前記初期化回路の初期化動作中に前記複数のビット線に同時に第1電圧を供給し、前記複数のプレート線に同時に第2電圧を供給する多重選択回路を備えていることを特徴とする強誘電体記憶システム。
(付記4) 付記3記載の強誘電体記憶システムにおいて、
前記強誘電体キャパシタの一端を、前記ビット線にそれぞれ接続する複数の転送トランジスタと、
前記転送トランジスタのゲートにそれぞれ接続される複数のワード線とを備え、
前記多重選択回路は、初期化動作中に、さらに、前記複数のワード線に同時に第3電圧を供給することを特徴とする強誘電体記憶装置。
【0095】
(付記5) 付記1記載の強誘電体記憶装置において、
前記強誘電体キャパシタのアクセス回数をカウントするカウンタを備え、
前記初期化回路は、前記カウンタのカウンタ値が所定値を超えたときに、初期化動作を開始することを特徴とする強誘電体記憶装置。
(付記6) 付記1記載の強誘電体記憶装置において、
所定の明るさ以上の光を受けたときに光検出信号を出力する光学センサを備え、
前記初期化回路は、前記光検出信号を受けたときに、初期化動作を開始することを特徴とする強誘電体記憶装置。
【0096】
(付記7) 付記1記載の強誘電体記憶装置において、
前記初期化回路は、強誘電体記憶装置をアクセスするシステムからの初期化要求信号を受けたときに、初期化動作を開始することを特徴とする強誘電体記憶装置。
(付記8) 付記1記載の強誘電体記憶装置において、
電源線に供給される電源電圧が所定値以下に下がったときにパワーオフを検出する電源電圧検出回路と、
前記電源線に接続されたキャパシタとを備え、
前記初期化回路は、前記電源電圧検出回路によりパワーオフが検出されたときに、キャパシタに蓄えられた電力で初期化動作を実行することを特徴とする強誘電体記憶装置。
【0097】
(付記9) 付記1記載の強誘電体記憶装置において、
前記強誘電体キャパシタで構成されるメモリアレイを備え、
前記初期化回路は、前記メモリアレイの一部の強誘電体キャパシタを初期化することを特徴とする強誘電体記憶装置。
(付記10) 付記9記載の強誘電体記憶装置において、
前記メモリアレイにおけるデータの初期化領域を設定する書き換え可能なレジスタを備えていることを特徴とする強誘電体記憶装置。
【0098】
(付記11) 情報を保持する複数の強誘電体キャパシタを有するメモリアレイと、
前記メモリアレイをアクセスするコントローラと、
前記コントローラに供給されるクロックの周波数が所定値以下になったとき周波数検出信号を出力する周波数検出回路と、
前記周波数検出信号を受けたときに、前記強誘電体キャパシタの分極状態を”0状態”と”1状態”の中間となるように初期化する初期化回路とを備えていることを特徴とする強誘電体記憶装置。
【0099】
(付記12) 付記11記載の強誘電体記憶装置において、
前記メモリアレイは、
前記強誘電体キャパシタの一端にそれぞれ接続される複数のビット線と、
前記強誘電体キャパシタに他端にそれぞれ接続される複数のプレート線とを備え、
前記初期化回路は、前記ビット線の電圧に対する前記プレート線の電圧を、正および負に交互に切り替えながら徐々に下げていくことで、初期化動作を実行することを特徴とする強誘電体記憶装置。
【0100】
(付記13) 付記12記載の強誘電体記憶システムにおいて、
前記初期化回路の初期化動作中に前記複数のビット線に同時に第1電圧を供給し、前記複数のプレート線に同時に第2電圧を供給する多重選択回路を備えていることを特徴とする強誘電体記憶システム。
(付記14) 付記13記載の強誘電体記憶システムにおいて、
前記強誘電体キャパシタの一端を、前記ビット線にそれぞれ接続する複数の転送トランジスタと、
前記転送トランジスタのゲートにそれぞれ接続される複数のワード線とを備え、
前記多重選択回路は、初期化動作中に、さらに、前記複数のワード線に同時に第3電圧を供給することを特徴とする強誘電体記憶装置。
【0101】
(付記15) 入力と出力とが互いに接続された一対のインバータで構成されるラッチ回路と、前記インバータの入力とプレート線との間にそれぞれ接続される強誘電体キャパシタとを有する複数のメモリセルと、
強誘電体キャパシタの誘電分極値を初期化する初期化動作において、前記各メモリセルの前記インバータを構成するトランジスタのソースに高レベル電圧および低レベル電圧をそれぞれ与え、前記プレート線にパルス電圧を与える初期化回路とを備えていることを特徴とする強誘電体記憶装置。
【0102】
(付記16) 情報を保持する強誘電体キャパシタの一端および他端にそれぞれ接続されるビット線およびプレート線の電圧差を、書き込み動作毎に正および負に切り替えながら徐々に下げることで、前記強誘電体キャパシタの分極状態を”0状態”と”1状態”の中間となるように初期化することを特徴とする強誘電体記憶装置のデータ初期化方法。
【0103】
付記3の強誘電体記憶装置では、多重選択回路は、初期化回路の初期化動作中に複数のビット線に同時に第1電圧を供給し、複数のプレート線に同時に第2電圧を供給する。このため、多数の強誘電体キャパシタを一度に高速に初期化できる。
付記4および付記14の強誘電体記憶装置では、各強誘電体キャパシタの一端は、転送トランジスタを介してビット線に接続されている。各転送トランジスタのゲートは、ワード線に接続されている。多重選択回路は、初期化動作中に複数のワード線に同時に第3電圧を供給する。このため、各強誘電体キャパシタの一端に、ビット線の第1電圧を確実に伝達でき、多数の強誘電体キャパシタを一度に高速に初期化できる。
【0104】
付記5の強誘電体記憶装置では、カウンタは、強誘電体キャパシタのアクセス回数をカウントする。初期化回路は、カウンタのカウンタ値が所定値を超えたときに、初期化動作を開始する。強誘電体キャパシタは、書き換え回数の増加に依存して劣化していく。アクセス回数が所定値を超えた強誘電体キャパシタを初期化することで、強誘電体記憶装置が信頼度の低い状態で利用されることを防止できる。
【0105】
付記6の強誘電体記憶装置では、光学センサは、所定の明るさ以上の光を受けたときに光検出信号を出力する。初期化回路は、例えば、強誘電体記憶装置のパッケージ(封止材)が開封され、強誘電体記憶装置に電源電圧が供給されたときに、光検出信号を受けて初期化動作を開始する。このため、チップ内に保持されているデータは、破壊される。この結果、データが解析されることを防止できる。
【0106】
付記7の強誘電体記憶装置では、初期化回路は、強誘電体記憶装置をアクセスするシステムからの初期化要求信号を受けたときに、初期化動作を開始する。例えば、システムは、強誘電体記憶装置のアクセス回数が上限値を超えたときに初期化要求信号を出力する。あるいは、システムは、外部から不正なアクセスを検出したときに初期化要求信号を出力する。このため、強誘電体記憶装置のセキュリティを向上できる。
【0107】
付記8の強誘電体記憶装置では、電源電圧検出回路は、電源線に供給される電源電圧が所定値以下に下がったときにパワーオフを検出する。キャパシタは、電源線に接続されている。初期化回路は、電源電圧検出回路によりパワーオフが検出されたときに、キャパシタに蓄えられた電力で初期化動作を実行する。初期化動作は、電源電圧が所定値以下になるまで実行される。このため、パワーオフ時に強誘電体キャパシタの両端に掛かる電圧値を特別に制御することなく、強誘電体キャパシタに保持されているデータを自動的に初期化できる。
【0108】
付記9の強誘電体記憶装置では、初期化回路は、メモリアレイの一部の強誘電体キャパシタを初期化し、残りの強誘電体キャパシタを初期化しない。例えば、データ領域のみが初期化される。強誘電体記憶装置の強誘電体キャパシタを選択的に初期化することで、使い勝手を向上できる。
付記10の強誘電体記憶装置では、レジスタは、メモリアレイにおけるデータの初期化領域を設定する。レジスタは、強誘電体記憶装置をアクセスするシステムにより書き換え可能である。このため、初期化領域の容量をシステムに応じて最適に設定できる。
【0109】
以上、本発明について詳細に説明してきたが、上記の実施形態およびその変形例は発明の一例に過ぎず、本発明はこれに限定されるものではない。本発明を逸脱しない範囲で変形可能であることは明らかである。
【0110】
【発明の効果】
請求項1の強誘電体記憶装置では、分極状態を”0状態”でも”1状態”でもない状態に初期化することで、強誘電体記憶装置のセキュリティを向上できる。強誘電体キャパシタに計算途中のデータを記憶できるため、システムコストが増加することを防止できる。
請求項2の強誘電体記憶装置および請求項5の強誘電体記憶装置のデータ初期化方法では、初期化動作により、誘電分極値を徐々にゼロに近づけることができる。このため、初期化後、強誘電体キャパシタから読み出されるデータをランダムにできる。
【0111】
請求項3の強誘電体記憶装置では、コントローラに供給されるクロックの周波数が所定値以下になったとき、初期化動作を開始することで、強誘電体記憶装置のセキュリティを向上できる。
請求項4の強誘電体記憶装置では、多数の強誘電体キャパシタを一度に初期化できる。
【図面の簡単な説明】
【図1】本発明の基本原理を示すブロック図である。
【図2】本発明の第1の実施形態を示すブロック図である。
【図3】図2に示したワードドライバ、プレートドライバ、コラム制御回路およびメモリアレイの詳細を示す回路図である。
【図4】第1の実施形態の初期化動作を示すタイミング図である。
【図5】図4に示したステップ0からステップ3における強誘電体キャパシタの誘電分極値の変化を示す説明図である。
【図6】本発明の第2の実施形態を示すブロック図である。
【図7】図6に示したワードドライバ、プレートドライバ、コラム制御回路およびメモリアレイの詳細を示す回路図である。
【図8】第2の実施形態の初期化動作を示すタイミング図である。
【図9】本発明の第3の実施形態を示すブロック図である。
【図10】図9に示したワードドライバ、プレートドライバ、コラム制御回路およびメモリアレイの詳細を示す回路図である。
【図11】第3の実施形態の初期化動作を示すタイミング図である。
【図12】本発明の第4の実施形態を示すブロック図である。
【図13】第4の実施形態の初期化動作を示すタイミング図である。
【図14】本発明の第5の実施形態を示すブロック図である。
【図15】第5の実施形態におけるレジスタの設定値とメモリアレイの初期化領域との関係を示す説明図である。
【図16】本発明の第6の実施形態を示すブロック図である。
【図17】本発明の第7の実施形態を示すブロック図である。
【図18】図17に示したワードドライバ、プレートドライバ、コラム制御回路およびメモリアレイの詳細を示す回路図である。
【符号の説明】
10 コマンドバッファ
12 コマンドデコーダ
14 アドレスバッファ
16 カウンタ
18 ロウデコーダ
20 コラムデコーダ
22、22A、22B、22C、22E、22F 動作制御回路
24 内部電源制御回路
26、26A、26B、26D、26F ワードドライバ
28、28A、28B、28D、28F プレートドライバ
30、30A、30B、30F コラム制御回路
32、32B データ入出力回路
34、34A、34B、34F メモリアレイ
36 光学センサ
38 電源電圧検出回路
40 レジスタ
42 周波数検出回路
44 ラッチ制御回路
BLE、BLO、BL、XBL ビット線
CLK クロック信号
CPU コントローラ
FC、FC1、FC2、FC3、FC4 強誘電体キャパシタ
FDT 周波数検出信号
INR 初期化領域
IR0−IR1 初期化領域信号
IREQ 初期化要求信号
LDT 低電圧検出信号
MC メモリセル
ODT 光検出信号
OVF オーバーフロー信号
PL プレート線
VDD 電源電圧
VDDI 内部電源電圧
VSS0、VSS1 接地線
VSTEP ステップ信号
WL、WLE、WLO ワード線

Claims (5)

  1. 複数の強誘電体キャパシタと、
    前記強誘電体キャパシタの分極状態を”0状態”と”1状態”の中間となるように初期化する初期化回路とを備えていることを特徴とする強誘電体記憶装置。
  2. 請求項1記載の強誘電体記憶装置において、
    前記強誘電体キャパシタの一端にそれぞれ接続される複数のビット線と、
    前記強誘電体キャパシタに他端にそれぞれ接続される複数のプレート線とを備え、
    前記初期化回路は、前記ビット線の電圧に対する前記プレート線の電圧を、正および負に交互に切り替えながら徐々に下げていくことで、初期化動作を実行することを特徴とする強誘電体記憶装置。
  3. 情報を保持する複数の強誘電体キャパシタを有するメモリアレイと、
    前記メモリアレイをアクセスするコントローラと、
    前記コントローラに供給されるクロックの周波数が所定値以下になったとき周波数検出信号を出力する周波数検出回路と、
    前記周波数検出信号を受けたときに、前記強誘電体キャパシタの分極状態を”0状態”と”1状態”の中間となるように初期化する初期化回路とを備えていることを特徴とする強誘電体記憶装置。
  4. 入力と出力とが互いに接続された一対のインバータで構成されるラッチ回路、および前記インバータの入力とプレート線との間にそれぞれ接続される強誘電体キャパシタを有する複数のメモリセルと、
    前記強誘電体キャパシタの誘電分極値を初期化する初期化動作において、前記各メモリセルの前記インバータを構成するトランジスタのソースに高レベル電圧および低レベル電圧をそれぞれ与え、前記プレート線にパルス電圧を与える初期化回路とを備えていることを特徴とする強誘電体記憶装置。
  5. 情報を保持する強誘電体キャパシタの一端および他端にそれぞれ接続されるビット線およびプレート線の電圧差を、書き込み動作毎に正および負に切り替えながら徐々に下げることで、前記強誘電体キャパシタの分極状態を”0状態”と”1状態”の中間となるように初期化することを特徴とする強誘電体記憶装置のデータ初期化方法。
JP2003134983A 2003-05-13 2003-05-13 強誘電体記憶装置および強誘電体記憶装置のデータ初期化方法 Pending JP2004342170A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003134983A JP2004342170A (ja) 2003-05-13 2003-05-13 強誘電体記憶装置および強誘電体記憶装置のデータ初期化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134983A JP2004342170A (ja) 2003-05-13 2003-05-13 強誘電体記憶装置および強誘電体記憶装置のデータ初期化方法

Publications (1)

Publication Number Publication Date
JP2004342170A true JP2004342170A (ja) 2004-12-02

Family

ID=33525392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134983A Pending JP2004342170A (ja) 2003-05-13 2003-05-13 強誘電体記憶装置および強誘電体記憶装置のデータ初期化方法

Country Status (1)

Country Link
JP (1) JP2004342170A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1788577A2 (en) * 2005-11-22 2007-05-23 Matsushita Electric Industrial Co., Ltd. Data carrier system and data saving/restoring method thereof
CN109791783A (zh) * 2016-09-16 2019-05-21 美光科技公司 在非易失性子阵列中存储存储器阵列操作信息
JP2021520021A (ja) * 2018-04-23 2021-08-12 マイクロン テクノロジー,インク. 不揮発性メモリデバイス及び不揮発性メモリ機構を有するシステム並びにそれらを動作するための方法
US11769561B2 (en) 2018-04-23 2023-09-26 Micron Technology, Inc. Non-volatile memory devices and systems with read-only memory features and methods for operating the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1788577A2 (en) * 2005-11-22 2007-05-23 Matsushita Electric Industrial Co., Ltd. Data carrier system and data saving/restoring method thereof
EP1788577A3 (en) * 2005-11-22 2007-07-11 Matsushita Electric Industrial Co., Ltd. Data carrier system and data saving/restoring method thereof
US7417885B2 (en) 2005-11-22 2008-08-26 Matsushita Electric Industrial Co., Ltd. Data carrier system and data saving/restoring method thereof
CN109791783A (zh) * 2016-09-16 2019-05-21 美光科技公司 在非易失性子阵列中存储存储器阵列操作信息
JP2021520021A (ja) * 2018-04-23 2021-08-12 マイクロン テクノロジー,インク. 不揮発性メモリデバイス及び不揮発性メモリ機構を有するシステム並びにそれらを動作するための方法
US11495299B2 (en) 2018-04-23 2022-11-08 Micron Technology, Inc. Non-volatile memory devices and systems with volatile memory features and methods for operating the same
US11769561B2 (en) 2018-04-23 2023-09-26 Micron Technology, Inc. Non-volatile memory devices and systems with read-only memory features and methods for operating the same

Similar Documents

Publication Publication Date Title
US6370058B1 (en) Non-volatile semiconductor memory device and system LSI including the same
US7577059B2 (en) Decoding control with address transition detection in page erase function
JP2004355671A (ja) 演算機能付き記憶装置および演算記憶方法
US7643325B2 (en) Ferroelectric memory and operating method of same
US6924999B2 (en) Ferroelectric memory
US7307894B2 (en) Semiconductor device and control method of the same
JP3720983B2 (ja) 強誘電体メモリ
JP3970846B2 (ja) 強誘電体メモリにおける読み取り信号の増強
JP3717097B2 (ja) 強誘電体メモリ
JP4110481B2 (ja) 記憶装置及び半導体装置
JP4577967B2 (ja) 不揮発性強誘電体メモリ装置並びにその駆動回路
JP2004342170A (ja) 強誘電体記憶装置および強誘電体記憶装置のデータ初期化方法
US6781863B2 (en) Nonvolatile ferroelectric memory control device
US6700812B2 (en) Nonvolatile ferroelectric memory device and method for driving the same
JP2008217937A (ja) 強誘電体記憶装置及びその制御方法
US6947310B1 (en) Ferroelectric latch
US6795330B2 (en) Method of reading and restoring data stored in a ferroelectric memory cell
JP2004079124A (ja) 半導体記憶装置
JP2004288351A (ja) 非揮発性強誘電体メモリ装置
KR100447790B1 (ko) 비파괴 판독형 비휘발성 강유전체 메모리의 쓰기 신호오류 방지 회로 및 방지 방법
JP2024006885A (ja) 半導体記憶装置および半導体記憶装置の読み出し方法
JP2005310197A (ja) 半導体集積回路装置及びそのデータ書き込み方法
JP2005050505A (ja) メモリセル及び半導体記憶装置
KR20010046254A (ko) 강유전체 랜덤 액세스 메모리 장치에 데이터를 기입하는방법
JP2003297094A (ja) 強誘電体メモリ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331