JP2004312026A - ウェハ支持部材 - Google Patents

ウェハ支持部材 Download PDF

Info

Publication number
JP2004312026A
JP2004312026A JP2004130399A JP2004130399A JP2004312026A JP 2004312026 A JP2004312026 A JP 2004312026A JP 2004130399 A JP2004130399 A JP 2004130399A JP 2004130399 A JP2004130399 A JP 2004130399A JP 2004312026 A JP2004312026 A JP 2004312026A
Authority
JP
Japan
Prior art keywords
temperature measuring
wafer
plate
temperature
measuring element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004130399A
Other languages
English (en)
Other versions
JP4243216B2 (ja
Inventor
Tsunehiko Nakamura
恒彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004130399A priority Critical patent/JP4243216B2/ja
Publication of JP2004312026A publication Critical patent/JP2004312026A/ja
Application granted granted Critical
Publication of JP4243216B2 publication Critical patent/JP4243216B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Surface Heating Bodies (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Abstract

【課題】ウェハの表面温度を正確にかつ追従性良く測定することが可能なウエハ支持部材を提供する。
【解決手段】板状セラミック体2の一方の主面側を、ウェハWを載せる載置面とし、上記板状セラミック体2の他方の主面又は内部に抵抗発熱体5を備えるとともに、上記板状セラミック体2の他方の主面に凹部9を設け、この凹部9内に、測温素子8aとリード線8とからなる測温体を挿入し、固定部材17にて保持するとともに、上記測温体の測温素子8aからリード線8が固定部材17より露出するまでのリード線の長さを、上記リード線8の線径の2倍より大きく30倍以下とする。
【選択図】図1

Description

本発明は、主にウエハを加熱するのに用いるウエハ支持部材に関するものであり、例えば、半導体ウエハや液晶基板あるいは回路基板等のウエハ上に導体膜や絶縁膜を生成したり、前記ウエハ上に塗布されたレジスト液を乾燥焼き付けしてレジスト膜を形成するのに好適なウエハ支持部材に関するものである。
例えば、半導体製造装置の製造工程における、導体膜や絶縁膜の成膜処理、エッチング処理、レジスト膜の焼き付け処理等の半導体ウェハ(以下ウェハと略す)への加工において、ウエハを加熱するためにウエハ支持部材が用いられている。
従来の半導体製造装置は、まとめて複数のウエハを成膜処理するバッチ式のものが使用されていたが、ウエハの大きさが8インチから12インチと大型化するにつれ、処理精度を高めるために、一枚づつ処理する枚葉式と呼ばれる装置が近年使われている。しかしながら、枚葉式にすると1回当たりの処理数が減少するため、ウエハの加工時間の短縮が必要とされている。このため、ウエハ支持部材に対して、ウエハの加熱時間の短縮、ウエハの吸着・脱着の迅速化と同時に加熱温度の精度の向上が要求されていた。
上記のようなウエハ支持部材の例として、例えば特許文献1に示してあるようなウエハ支持部材21がある。このウエハ支持部材21は、図8に示すように、ケーシング31、板状セラミック体22および板状反射体としてのステンレス板33を主要な構成要素としている。ケーシング31は有底状の金属製部材(ここでは、アルミニウム製部材)であって、断面円形状の開口部34をその上部側に備えている。このケーシング31の中心部には、図示しないウエハ支持ピンを挿通するためのピン挿通孔35が3つ形成されている。ピン挿通孔35に挿通されたウエハ支持ピンを上下させれば、ウエハWを搬送機に受け渡したり、ウエハWを搬送機から受け取ったりすることができる。また、図9に示す抵抗発熱体25の導通端子部には、導通端子27がロウ付けされており、該導通端子27がステンレス板33に形成された穴57を挿通する構造となっている。また、底部31aの外周部にはリード線引出用の孔36がいくつか形成されている。この孔36には、抵抗発熱体に電流を供給するための不図示のリード線が挿通され、該リード線は前記導通端子27に接続されている。
また、板状セラミック体22を構成するセラミック材料としては、窒化物セラミックスまたは炭化物セラミックスが用いられ、抵抗発熱体25は、図9に示すように、同心円状に形成した複数のパターンに通電することにより、板状セラミック体22を加熱するウエハ支持部材21が提案されている。
このようなウエハ支持部材21において、ウエハWの表面全体に均質な膜を形成したり、レジスト膜の加熱反応状態を均質に加工処理するためには、ウエハWの温度を正確に測定するとともにウェハWの温度を一定に温度制御することが重要である。そこで、ウェハWの温度を測定する測温素子が使われ、上記ウエハ支持部材の凹部23に測温素子が取り付けられている。
特許文献2には、図10に示すように、ウエハ支持部材に載せたウェハWの温度を測定し、金属製の板状体40の上面40aの温度を制御する測温抵抗体素子150の配置方法が示されている。前記板状体40の温度の精度やレスポンス等が優れ、温度調節の精度を高める方法として、凹部41に挿入された測温素子150の長手方向の温度差を小さくし、前記測温抵抗体素子150を板状体40の上面に平行に配置する方法が示されている。この測温素子はPtからなる測温素子150が保護管151に挿入され、板状体40の上面40aに対し平行となるように配置されている。
さらに保護管151内の隙間には伝熱セメント52が充填されている。特に、抵抗発熱体を分割制御する場合は、測定の正確さと同時に測定バラツキを管理しないと上記板状体40の正確な温度制御ができなくなるので、このような取付構造とすることが好ましいとされていた。
また、特許文献3には、単一の抵抗発熱体を板状セラミック体に埋設したウェハ加熱装置において、ウェハ加熱面の温度が最適値から外れることを防止するために、測温点をウェハ加熱領域の中心からウェハ加熱領域の半径のほぼ1/√2の位置とすることが示されている。
また、特許文献4には、図9に記載の厚み3mmの板状セラミック体22に深さ2mm、直径1.2mmの凹部23に測温素子として線径0.5mm以下の熱電対を挿入し耐熱性樹脂で封止したウエハ支持部材21が開示されている。
特開平11−283729号公報 特開平9−45752号公報 特開平4−98784号公報 特開2001−85144号公報
しかしながら、近年注目されている枚葉式のウエハ支持部材に使用される板状セラミック体は、ウエハ1枚あたりの加工処理時間を短縮するために、厚みを2〜5mmと薄くし、加熱および冷却のサイクルタイムが短くなるように調整する必要がある。しかしながら、ウエハの表面全体を±0.5℃というレベルに均一に加熱するには、板状セラミック体に測温素子を従来の方法で配設するだけではウェハを均一に加熱するとの目標を達成できないとの課題があった。
上記のようなウエハ支持部材において、特許文献2のように測温素子150を板状体40のウェハWを載せる載置面40aに平行に配置しても、金属からなる板状体40は厚みが30mm以上と厚く板状体40を急速に昇温したり降温したりすることが出来なかった。更に、測温素子150本体や測温素子150への接続部材から熱が板状体40の外に流れ、測温部の温度が低下したり、測温素子150が板状体40の凹部41の底面に熱的に確実に接続できないことから板状体40や前記ウェハWの温度を正確に測定できない虞があるとの課題があった。
また、前記板状体40に備えた抵抗発熱体や前記載置面40aから測温素子150までの距離により設定温度に対しウェハWの温度の追従性が悪く温度が変動し一定の温度に制御するまでの時間が掛かりウェハWの加工処理時間が長くなるとの問題があった。
そこで、上記課題に鑑み、本発明のウエハ支持部材は、板状セラミック体の一方の主面側を、ウェハを載せる載置面とし、上記板状セラミック体の他方の主面又は内部に抵抗発熱体を備えるとともに、上記板状セラミック体の他方の主面に凹部を有し、該凹部内に、測温素子とリード線とからなる測温体を挿入し、固定部材にて保持させ、上記測温体の測温素子からリード線が固定部材より露出するまでのリード線の長さを、上記リード線の線径の2倍より大きく30倍以下としたことを特徴とする。
また、上記測温体のリード線の線径をA、測温素子から抵抗発熱体までの最短距離をL1、測温素子から板状セラミック体の一方の主面へ鉛直に延ばした垂線と、板状セラミック体の一方の主面との交点から抵抗発熱体までの最短距離をL2とした時、次の関係を満足するようにする。
(L2−7×A)<L1<(L2−A)
さらに、上記固定部材の熱伝導率は、板状セラミック体の熱伝導率の60%以上、300%以下とし、さらにはビッカース硬度が50以下の金属により形成することが好ましい。
また、上記測温体の測温素子は、凹部底面に対して平行に配接することが好ましい。
以上のように、本発明のウエハ支持部材によれば、板状セラミック体の一方の主面側を、ウェハを載せる載置面とし、上記板状セラミック体の他方の主面又は内部に抵抗発熱体を備えるとともに、上記板状セラミック体の他方の主面に凹部を有し、該凹部内に、測温素子とリード線とからなる測温体を挿入し、固定部材にて保持させ、上記測温体の測温素子からリード線が固定部材より露出するまでのリード線の長さを、上記リード線の線径の2倍より大きく30倍以下としたことによって、ウェハの表面温度を正確にかつ追従性良く測定することができるため、ウェハを35℃/分以上の速度で急速昇温することができる。
また、上記測温体のリード線の線径をA、測温素子から抵抗発熱体までの最短距離をL1、測温素子から板状セラミック体の一方の主面へ鉛直に延ばした垂線と、板状セラミック体の一方の主面との交点から抵抗発熱体までの最短距離をL2とした時、以下の関係を満足するようにすることで、ウェハ温度の応答時間が短く優れ、しかもウェハの面内温度差を0.7℃以下とすることができる。
(L2−7×A)<L1<(L2−A)
さらに、上記固定部材の熱伝導率は、板状セラミック体の熱伝導率の60%以上、300%以下とし、さらにはビッカース硬度が50以下の金属により形成することで、ウェハ温度の応答時間は30秒以下と短く優れ、しかもウェハの面内温度差を0.4〜0.7℃以下と小さくすることができる。
また、上記測温体の測温素子は、凹部底面に対して平行に配接することで、ウェハの表面温度をさらに正確にかつ追従性良く測定することができる。
以下、本発明の実施の形態について説明する。
図1は本発明に係るウエハ支持部材1の一例を示す断面図であり、炭化珪素、アルミナまたは窒化アルミニウムを主成分とするセラミックスの板状体からなる板状セラミック体2の一方の主面3をウエハWを載せる載置面とするとともに、他方の主面に抵抗発熱体5を形成し、該抵抗発熱体5に電気的に接続する給電部6を具備し、前記抵抗発熱体5による加熱温度を板状セラミック体2の凹部9に固定した測温素子8aで測定してウエハ支持部材1を構成したものである。支持ピン12は板状セラミック体2を貫通する孔を通してウェハWを上下に移動させウェハWを主面3に載せたり降ろしたりすることができる。そして、給電部6に給電端子11が接続し外部から電力が供給され、測温素子8aとリード線8からなる測温体で温度を測定しながらウェハWを加熱することができる。
抵抗発熱体5のパターン形状としては、図2に示したような渦巻き状のパターン、もしくは図3、4に示したように複数のブロックに分割され、個々のブロックが円弧状のパターンと直線状のパターンとからなる渦巻き状やジグザクな折り返し形状をしたものとすることができる。そして、抵抗発熱体5を複数のブロックに分割する場合、それぞれのブロックの温度を独立に測定し制御することにより、主面3上のウェハWを均一に加熱できるように構成している。
また、抵抗発熱体5は、導電性の金属粒子にガラスフリットや金属酸化物を含むペーストを印刷法で板状セラミック体2に印刷したもので、前記金属粒子としてはAu、Ag、Cu、Pd、Pt、Rhの少なくとも一種を含む成分からなる。ガラスフリットはB、Si、Znを含む酸化物からなるものが好ましい。この様なガラスや金属酸化物と金属粒子を混合した抵抗発熱体5とすることで、抵抗発熱体5の熱膨張係数を板状セラミック体2の熱膨張係数に近いものとすることができる。
また、主面3には図5に示すように、板状セラミック体2の一方の主面3から一定の距離にウェハWを保持する様に、前記主面3に複数の支持ピン4から構成されていても良い。
本発明のウエハ支持部材1は、板状セラミック体2の一方の一主面3を、ウェハWを載せる載置面とするか、あるいは、前記主面3から一定の距離にウェハWを保持し、前記主面の反対側から加熱面に向けて凹部9を設けると共に、前記凹部9に測温素子8aを挿入したウエハ支持部材1において、前記凹部9に測温素子8aを固定する固定部材17を備え、前記板状セラミック体2に前記固定部材17に覆われるか或いは挟まれた部分の前記測温素子8aの長さが前記測温素子8aの線径Aの2倍より大きく30倍以下であることを特徴とする。
ウェハWを載せるか或いは一定の距離にウェハWを支持する板状セラミック体2の一方の主面と異なる他方の主面に凹部9を形成し、凹部9に測温素子8aを挿入し、板状セラミック体2の温度を測定する。前記凹部9の大きさは直径2〜5mmで、板状セラミック体2の好ましい厚み2〜5mmの3分の2程の深さに穿孔され、板状セラミック体2の一方の主面3の温度が正確に反映され、測温素子8aと、凹部9の底面9aとの接触界面との熱的抵抗が小さくなるように、凹部9の底面9aに測温素子8aを直接接触させるか、或いは熱的抵抗を小さくするよう凹部9の底面9aに熱伝導率が100W/(m・K)以上と大きく、変形し易い金属箔やペーストからなる熱的接続部材15を介して測温素子8aを接続することが好ましい。
更に、厚みが2〜5mmの板状セラミック体2の主面3の温度を正確に測温するために、板状セラミック体2の主面3の温度を測温素子8aに伝えることが必要であり、測温素子8aとして例えば熱電対であれば、測温点から熱電対の線径の2倍より大きい長さに渡り凹部9と熱的接続部分があると主面3の温度を感度良く正確に測定できる。例えば熱電対からなる、測温素子8aのリード線8の線径の2倍以下であると、測温点の熱が測温素子8aから延びるリード線8自身を介して板状セラミック体2の外部へ流れ、測温点の温度が低下する虞があるからである。好ましくは2倍より大きく、より好ましくは5倍以上で、更に好ましくはリード線8の7倍以上であり、特に測温点からの測温素子8aからリード線8の直線部がリード線8の線径の4倍以上あると好ましく、更にこの直線部は凹部底面9aに平行とすることで主面3の温度を感度良く測温できることから好ましい。そして、前記直線部が板状セラミック体2の一方の主面に平行であるとより好ましい。
尚、前記の凹部9との熱的接続部分とは、凹部9の底面9aに固定部材17としてロウ材や熱導伝性ペーストで測温素子8aを固定する場合には、測温素子8aから延びるリード線8及び又は測温素子8aが凹部9内の前記ロウ材や熱導伝性ペーストで覆われた部分を示す。前記固定部材17として固形物を使用した場合、前記熱的接続部分は凹部9の固定部材17と測温素子8aや測温素子8aから延びるリード線8が接触している部分を指す。また、固形の固定部材17を使用した場合には固定部材17で測温素子8aが埋設されてないことから雰囲気ガスの影響を受けるが、大気中で使われるコータデベロッパ用のウエハ支持部材1では雰囲気ガスの影響はなく、取り扱い上からも好適である。
特に、図5に示す固定部材17が固形の場合、測温素子8aがセラミック製の凹部9と熱的接続が確実になされるように、凹部9の底面9aに熱的接続部材15として軟質の金属箔からなるアルミニウム箔等を置き、このアルミニウム箔等からなる熱的接続部材15を介して、測温素子8aを固定部材17で押し付け、測温素子8aが凹部9と面で接触するように配接することが好ましい。
凹部9がヤング率200GPa以上の剛性の大きな板状セラミック体2からなり、凹部底面9aは加圧による変形が小さいことから、測温素子8aを凹部9と面接触させるには、凹部9の底面9aに熱的接続部材15を介し底面9aと熱的接続部材15を面接触させ、熱的接続部材15と測温素子8aや測温素子8aから延びるリード線8を面で接触させることが好ましい。通常、セラミック製の凹部底面9aの変形が小さいことから直接測温素子と凹部底面9aが面接触し難いので、測温素子8aを加圧することにより、熱的接触部材15として変形が大きく面接触し易いアルミニウム、銀等の金属箔を介して測温素子8aを取り付けることは、凹部9と測温素子8aの界面の熱的な抵抗を小さくする上で効果的であり、主面3の正確な温度を測定する上で有効である。
前記凹部9に前記測温素子8aや測温素子8aから延びるリード線8を固定する固定部材17を備え、前記板状セラミック体2に前記固定部材17に覆われるか或いは挟まれた前記測温素子8aからリード線8の長さが、前記リード線8の線径Aの30倍以下であることが重要である。前記測温素子8aを固定する凹部9を大きくしたり、前記リード線8を渦巻き状に旋回したりして線径Aの30倍を越えると、凹部9内のリード線8の長さが大きくなることから、2〜5mmと薄い板状セラミック体2とリード線8の熱伝導率や熱容量の違いにより板状セラミック体2の主面3の温度分布が変化する虞があるためである。好ましくは、前記固定部材17に覆われるか或いは挟まれた前記測温素子8aからリード線8の長さが前記リード線8の線径Aの20倍以下である。この様に設定することにより測温素子8aの温度は板状セラミック体2の主面の温度と0.3℃以内に抑えることが可能であり、しかも主面3の温度変化に対して追従性を高めることが可能である。
次に、上記ウエハ支持部材1の主面3の温度は上述の様に測温素子8aやリード線8を配設することで正確に測定できるのであるが、ウェハWの温度を一定に制御するには、上述の測温素子8aで板状セラミック体2の主面の温度を測定しながら板状セラミック体2に備えた抵抗発熱体5に電力を供給し発熱させ、前記主面の温度を均一になるよう制御している。そのためには、抵抗発熱体5から板状セラミック体2までの熱の伝導性及び板状セラミック体2の主面から測温素子8aへの熱の伝わり、抵抗発熱体5から測温素子8aへの熱の伝わり方が特に重要である。抵抗発熱体5の熱は前記主面3に伝わり、しかもウェハWの温度分布が均一であることが要求される。
しかし、抵抗発熱体5の熱が前記主面3より遅く測温素子8aを加熱すると前記主面3の温度を測温素子8aで追従性良く正確に測定することが困難となる。この点から、前記測温素子8aから前記抵抗発熱体5までの最短距離L1と、測温素子8aから板状セラミック体2の一方の主面3へ鉛直に延ばした垂線と、板状セラミック体2の一方の主面3との交点Pから前記抵抗発熱体5までの最短距離L2とが同等で、しかも各最短距離の間隔における熱抵抗ができる限り小さいことが好ましい。そこで、本願発明者は、この間隔L1、L2は測温素子の線径と関連し、間隔L1、L2と適切な関係を満足させることが重要であり、適切な関係を満足させることでウェハWの温度分布が均一で、しかも温度変更が迅速・容易なウエハ支持部材1を提供できることを究明した。
前記の適切な関係とは、L1は間隔(L2−7×A)より大きく、(L2−A)より小さいことが好ましい。
(式1)
(L2−7×A)<L1<(L2−A)
L1が(L2−A)より大きいと測温素子8aが主面3に接近し過ぎることから主面3の測温素子に近い部分の温度が低下しウェハWの温度分布が悪くなると共に主面3を代表する温度を測定できなく虞があるからである。また、L1が(L2−7×A)より小さいと主面3の温度より抵抗発熱体5の温度の影響が大きく、主面3の温度を正確且つ迅速に測温素子8aで測定することが困難となり、ウェハWの温度を一定に制御したりウェハを急速に昇温すると、ウェハWの温度を設定温度に制御できないばかりか、ウェハWの温度がオバーシュートしたりする可能性が大きくなるからである。
また、凹部9に測温素子8aやリード線8を固定する熱的接続部材15や固定部材17の熱伝導率は100W/(m・K)以上が好ましく、更に板状セラミック体2の熱伝導率の60%より大きく、板状セラミック体2の熱伝導率の300%以下であることが好ましい。熱的接続部材15や固定部材17の熱伝導率が100W/(m・K)未満であったり、板状セラミック体2の熱伝導率の60%より小さいと、板状セラミック体2の主面3の温度が速やかに測温素子8aに伝わらないことから、ウェハWの温度を精度良くしかも迅速に制御し難くなる虞があり、熱的接続部材15や前記固定部材17の熱伝導率が板状セラミック体2の熱伝導率の300%以上では、板状セラミック体2との熱伝導率の差が大きすぎることから前記凹部9に測温素子8aと熱的接続部材15や固定部材17を装填すると、凹部9直上の主面3にホットスポットやクールスポットが発生しウェハWの温度分布が悪くなる虞があり好ましくない。
更に、前記熱的接続部材15は、1Nの荷重を30秒間加え測定したビッカース硬度Hvが50以下であることが好ましい。ビッカース硬度が50以上では測温素子8aと熱的接触部材51や熱的接触部材51と凹部底面8aとの接触面積が小さく板状セラミック体2の主面3の温度を迅速に測定することが難しく、ウェハWの温度を一定に制御したり、急速にウェハW温度を昇温すると温度がオーバシュートすることがあった。従って熱的接続部材15の硬度Hvは50以下が好ましく、更に好ましくは30以下である。
この様な熱的接続部材15としては銀、アルミニウム、白金や金が好ましく、熱的接続部材15の厚みは10μmから300μmが好ましい。熱的接続部材15の厚みが10μm以下では測温素子8aやリード線8を押し付けても面接触する範囲が小さく厚みが300μm以上では熱の伝達が遅くなり迅速な測温が難しくなる。好ましくは、熱的接続部材15の厚みは50〜200μmである。
また、前記凹部9の底面9aに前記測温素子8aやリード線8の先端部が主面3に平行に配設することが好ましい。測温素子8aやリード線8の先端部が主面3に平行に配設されていないと、測温素子8aの熱がリード線8を伝わり逃げることから測温した温度が低下し、正確なウェハWの温度を測定できないからである。測温素子8aの先端部が主面3と平行な長さは2〜3mmが好ましい。2mm以下では測温部の検知部が短いことから熱の逃げが大きく正確な測温をすることが難しい。また、3mm以上では凹部の内径が大きくなり過ぎて凹部上面にクールスポットを生じる危険性があるからである。
次に、本発明の他の実施形態を示す。
図6は、抵抗発熱体5により加熱が容易で加熱による変形が小さな2から5mmの板厚の板状セラミック体2に測温素子8aを取り付けた本発明の他の実施形態を示す図である。凹部の深さは板厚の2/3程で、凹部の直径は3mmであり、測温素子8aやリード線8として0.3から0.8mmで表面を絶縁処理した熱電対を使い、熱電対の先端2〜3mmを折り曲げ凹部9にロウ付けしたもので、例えば金錫ロウや銀銅ロウが使用できる。ロウ付けの他、硬化収縮の非常に小さな例えば銀・エポキシ樹脂を混合した熱伝導性ペーストで接着しても良い。そして、これらのロウ材や熱伝導性ペーストは測温素子8aや測温素子8aに近いリード線8を固定する前記固定部材17の熱的特性や機械的特性を有していると、ウェハWの温度を正確に精度良くしかも感度良く測定することができることを究明できた。
図7は、図6と同様の板状セラミック体2に同様の凹部9を形成し、熱的接続部材15を凹部底面9aに備え、測温素子8aとリード線8を固定部材17で押圧したもので、固定部材17を押圧する加圧ピン16を有しており、加圧ピン16と固定部材17の間には断熱層として熱伝導率が5W/(m・K)以下のアルミナ・ジルコニア複合セラミックやテフロン(登録商標)等の耐熱樹脂からなる断熱部材20が用いられる。そして加圧ピン16は外部に備えたスプリングバネ18で断熱部材20を押圧する構造としている。
一方、ウエハ支持部材1を構成する板状セラミック体2の材質としては、耐摩耗性、耐熱性に優れるアルミナ、窒化珪素、サイアロン、窒化アルミニウム、炭化珪素を用いることができ、この中でも特に窒化アルミニウムや炭化珪素は熱伝導率が50W/(m・K)以上、さらには100W/(m・K)以上の高い熱伝導率を有するとともに、ヤング率が300GPa、400GPaと大きく、加熱による板状セラミック体2の変形が小さく好ましい。更に、フッ素系や塩素系等の腐食性ガスに対する耐蝕性や耐プレズマ性にも優れることから、板状セラミック体2の材質として好適である。
このようなウエハ支持部材1を製造する方法として、まず、板状セラミック体2をなすAlN粉末に炭酸カルシウム等の焼結助剤を加え、アクリル系のバインダを添加し板状に成形し、カーボン残さを残した成形体を2000℃程で加圧焼結させる。または、窒化アルミニウム粉末に0.1質量%のカルシアを添加しバインダを添加し造粒した粉末を板状に成形し窒素雰囲気中で2000℃以上で焼成する。焼結した板状セラミック体2の表裏面を研削加工し、円板状に加工する。そして他方の主面に前記抵抗発熱体5を印刷し抵抗発熱体5を設ける。抵抗発熱体5の存在領域が略円形をした図2に示す中央から外周へ向かう渦巻き状の抵抗発熱体5や図3、4に示す抵抗発熱体5を配設した板状セラミック体2を形成する。
しかるのち、板状セラミック体2の上面に研摩加工を施してウェハWを載置するかあるいは主面3から一定の距離にウェハWを支持する主面3を形成するとともに、下面に給電端子11と板状セラミック体2を固定する有底筒状体19に取り付け固定している。
なお、図1では板状セラミック体2の他方の主面3に抵抗発熱体5のみを備えたウエハ支持部材1について示したが、本発明は、主面3と抵抗発熱体5との間に静電吸着用やプラズマ発生用としての電極を埋設したものであっても良いことは言うまでもない。更に抵抗発熱体5を板状セラミック体2の他方の主面に設けたヒータについて述べたが、抵抗発熱体5を板状セラミック体2の載置面3と異なる主面に形成しガラス等で埋設しても同様の効果が得られる。
また、抵抗発熱体5が板状セラミクス体2の主面3に設けられた例を示したが、板状セラミックス体2の載置面と異なる主面側に抵抗発熱体5を埋設したウエハ支持部材でも同様の効果が得られる。
(実施例1)
ここで、板状セラミック体2として平均粒径1.2μmの窒化アルミニウム粉末に平均粒径1μmのカルシアを0.1質量%添加し混合粉砕しアクリルバインダを添加しφ400mmの板状に成形し、空気中と窒素雰囲気中の400℃で1時間脱バインダ処理した後、2000℃の窒素雰囲気中で焼結した。焼結体の表裏面を研削加工しφ320mmで厚み3mmの円板状の板状セラミック体2を得た。そして、この板状セラミック体2の他方の主面3に金属銀50質量%含み、B・SiO・ZnOガラス(熱膨張係数4.4×10−6/℃)を50質量%含む粉体に溶剤を添加しペーストを作製した。
そして、板状セラミック体2の他方の主面に抵抗発熱体5として上記ペーストを20μmの厚みにスクリーン印刷法で印刷した。そして、個々の各抵抗発熱体5に対応して直径3mmで深さ2mmの凹部9を作製した。そして、凹部9の底面9aに熱的接続部材15として100μmの厚みのアルミニウム箔を置き、測温素子8aやリード線8として線径0.5mmと0.3mmの熱電対を先端から数ミリの位置で渦巻き状に巻き先端部をアルミ箔の上に置き、アルミニウム製のφ2.9mm、厚み2mmで測温素子が通過する溝を取り付けた固定部材17で測温素子を押さえた。固定部材17は外径2.5mmで厚み500μmのジルコニアセラミックからなる断熱部材20を介して加圧ピン16で測温素子8aやリード線8を加圧し凹部9の底面9aと熱的に接続させた。尚、熱的接続をする上で、固定部材17に覆われるか或いは挟まれた測温素子8aからリード線8の長さはリード線8を渦巻き状に巻いた長さで調整した。
また、試料No.7は、銀―銅ロウからなる固定部材を350℃に加熱後圧入して作製した。
そして、固定部材に覆われるか或いは挟まれた測温素子8aからリード線8の長さを変えたウエハ支持部材を作製し、夫々のウエハ支持部材に電源を取り付け25℃から200℃まで5分間でウェハWを昇温し、ウェハWの温度を200℃に設定してからウェハWの平均温度が200℃±0.5℃の範囲で一定となるまでの時間を応答時間として測定した。また200℃に設定し30分後のウェハ温度の最大値と最小値の差をウェハWの温度差として測定した。そして、表1の結果を得た。
Figure 2004312026
試料No.1は固定部材に挟まれた測温素子8aからリード線8の長さがリード線8の外形の2倍と小さ過ぎることから応答時間が64秒と大きく、しかもウェハの温度差も1.5℃と大きく本願発明の範囲外であることが分る。また、試料No.10は逆に固定部材に挟まれた測温素子8aからリード線8の長さが測温素子の外形の33倍と大き過ぎることから応答時間が65秒と大きく、しかもウェハの温度差1.2℃と大きく好ましくないことが判明した。
一方、試料No.2〜9は固定部材に挟まれた測温素子8aからリード線8の長さが測温素子の外形の2倍より大きく30倍以下で、何れも応答時間が60秒以下と小さくしかもウェハの温度差は1℃以下と小さくウエハ支持部材として優れた特性を示すことが分る。試料No.3は応答時間が50秒以下で且つウェハの温度差は0.9℃以下と小さく、更に試料No.4〜6、8は応答時間が40秒以下で且つウェハの温度差は0.8℃以下と小さく更に好ましい事が判明した。
従って、板状セラミック体の凹部に備えた固定部材に覆われるか或いは挟まれた測温素子8aからリード線8の長さが測温素子の線径Aの2倍より大きく30倍以下であると優れた特性を示すことが分った。
(実施例2)
実施例1と同様の工程でウエハ支持部材を作製し凹部の位置と深さを変えて凹部に測温素子8aやリード線8として直径(A)0.5mmの熱電対を挿入し、図7の構造となるように測温素子8aやリード線8を固定した。そして、凹部の測温素子8から抵抗発熱体5までの距離L1と、測温素子8aと主面上の点の距離が最低距離となる点Pから抵抗発熱体までの距離L2を変えたウエハ支持部材を作製し、実施例1と同様にウエハ支持部材の特性を評価した。
また、試料No.25は抵抗発熱体を印刷した後、更に同種のALNシートを印刷面に重ね抵抗発熱体をALNで埋設したウエハ支持部材を作製した。
そしてこれらウエハ支持部材の特性を表2に示す。
Figure 2004312026
(L2−7×A)<L1<(L2−A)が成立している試料No.22から24は応答時間が35秒以下と小さく、ウェハの温度差も0.7℃以下と小さく好ましい事が分った。
一方、試料No.21はL1<(L2−A)が成立せず、応答時間は59秒と大きく、ウェハの温度差も0.9℃と大きかった。
また、試料No.25はL1>(L2−7×A)が成立せず、応答時間も58秒と大きく、ウェハの温度差も0.9℃と大きかった。
(実施例3)
ここで、板状セラミック体2として平均粒径1.2μmの窒化アルミニウム粉末に平均粒径1μmのカルシアを0.1質量%と平均粒径1.1μmのイットリヤを所定の量添加して混合粉砕しアクリルバインダを添加し直径400mmの板状に成形し、空気中と窒素雰囲気中の400℃で1時間脱バインダ処理した後、2000℃の窒素雰囲気中で焼結した。同時に直径10mm厚み3mmの熱伝導率測定用のテストピースを切り出すと共に、焼結体の表裏面を研削加工し直径320mmで厚み3mmの円板状の板状セラミック体2を得た。そして、この板状セラミック体2の他方の主面3に金属銀50質量%含み、B・SiO・ZnOガラス(熱膨張係数4.4×10−6/℃)を40質量%含む粉体に溶剤を添加しペーストを作製した。
そして、板状セラミック体2の他方の主面に抵抗発熱体5の形状で上記ペーストを20μmの厚みにスクリーン印刷法で印刷した。そして、個々の各抵抗発熱体5に対応して直径3mmで深さを変えて凹部9を作製した。そして、凹部9の底面9aに熱的接続部材15として100μmの厚みのアルミニウム箔を置き、測温素子8aやリード線8として線径0.5mmと0.3mmの熱電対を先端から3ミリの位置で直角に折り曲げ、その先端部をアルミ箔の上に置き、金属製のφ2.9mm、厚み2mmで測温素子が通過する溝を取り付けた固定部材17で測温素子を押さえた。固定部材17は外径2.5mmで厚み500μmのジルコニアセラミックからなる断熱部材20を介して、加圧ピン16で測温素子8aやリード線8を加圧し凹部9の底面9aと熱的に接続させた。そして、夫々のウエハ支持部材に電源を取り付け25℃から200℃まで5分間でウェハWを昇温し、ウェハWの温度を200℃に設定してからウェハWの平均温度が200℃±0.5℃の範囲で一定となるまでの時間を応答時間として測定した。また200℃に設定し30分後のウェハ温度の最大値と最小値の差をウェハWの温度差として測定した。そして、表3の結果を得た。
Figure 2004312026
固定部材の熱伝導率が100W/(m・K)以上で板状セラミック体の熱伝導率の60%以上、300%以下の熱伝導率を有する試料No.33、34、36、37は応答時間が28秒以下と優れていた。また、ウェハの温度差も0.7℃以下と好ましいものであった。
それに対し、固定部材の熱伝導率が板状セラミックの熱伝導率の341%や502%の試料No.31、32はウェハの温度差が夫々0.9℃と大きかった。
また、試料No.35のように固定部材の熱伝導率が板状セラミック体の熱伝導率の57%と60%以上でないものは応答時間が35秒とやや大きかった。
従って、上記結果より凹部に測温素子を備え、板状セラミック体の熱伝導率に対して60%以上、300%以下である熱伝導率を有する固定部材で測温素子8aからリード線8を固定することで更に応答時間が小さく、ウェハの温度差の小さなウエハ支持部材を得る事ができる。
(実施例4)
実施例1と同様に板状セラミック体2を作製し、抵抗発熱体5となるペーストとして種種の金属とガラス成分や金属酸化物を混合しペースト状に作製したのちスクリーン印刷しウエハ支持部材を作製した。
そして、ウエハ支持部材の板状セラミック体の凹部に測温素子を固定する固定部材を硬度の異なる金属やAg−Ni系合金で作製し、夫々同じ形状の板状セラミック体に取り付けた。
作製した夫々のウエハ支持部材に電源を取り付け25℃から200℃まで5分間でウェハWを昇温し、ウェハWの温度を200℃に設定してからウェハWの平均温度が200℃±0.5℃の範囲で一定となるまでの時間を応答時間として測定した。また200℃に設定し30分後のウェハ温度の最大値と最小値の差をウェハWの温度差として測定した。
また試料No.44は測温素子を凹部に挿入した後、ロウ材を載せ、ロウ材をレーザビームで局部加熱して凹部にロウ材を圧入した。
その結果を表4に示す。
Figure 2004312026
固定部材のビッカース硬度が50以下の試料No.41から44は応答時間が19秒以下でしかもウェハの温度差が0.5℃以下と最も優れた特性を示す事が判明した。
更に、固定部材のビッカース硬度が30以下の試料No.41から42は応答時間が16秒以下でしかもウェハの温度差が0.4℃以下と更に優れた特性を示す事が判明した。
従って、測温素子を固定する固定部材はビッカース硬度が50以下の材料で固定することが優れたウエハ支持部材を作製する上で重要である事を究明できた。
本発明のウエハ支持部材の一例を示す断面図である。 本発明の抵抗発熱体の形状を示す概略図である。 本発明の他の抵抗発熱体の形状を示す概略図である。 本発明のさらに他の抵抗発熱体の形状を示す概略図である。 本発明の測温素子を取り付け部を示す概略図である。 本発明の他の測温素子を取り付け部を示す概略図である。 本発明の他の測温素子を取り付け部を示す概略図である。 従来のウエハ支持部材を示す、部品展開図である。 従来のウエハ支持部材の抵抗発熱体の概略図である。 (a)(b)従来の測温素子を取り付け部を示す概略図である。
符号の説明
1・・・ウエハ支持部材
2・・・板状セラミック体
3・・・一方の主面
4・・・支持ピン
5・・・抵抗発熱体
6・・・給電部
8・・・リード線
8a・・・測温素子
9・・・凹部
9a・・・底部
11・・・給電端子
12・・・ウェハ突き上げピン
15・・・熱的接続部材
P・・・測温素子から板状セラミック体の一方の主面へ鉛直に引いた垂線と板状セラミック体の一方の主面との交点
16・・・加圧ピン
17・・・固定部材
18・・・スプリングバネ
19・・・有底筒状体
20・・・断熱部材
22・・・板状セラミック体
23・・・凹部
25・・・抵抗発熱体
27・・・導通端子
31・・・ケーシング
31a・・・ケーシングの底部
33・・・ステンレス板
34・・・開口部
35・・・ピン挿通孔
36・・・リード線取り出し用の孔
40・・・板状体
41・・・凹部
57・・・穴
150・・・測温素子
151・・・保護菅
W・・・半導体ウェハ

Claims (5)

  1. 板状セラミック体の一方の主面側を、ウェハを載せる載置面とし、上記板状セラミック体の他方の主面又は内部に抵抗発熱体を備えるとともに、上記板状セラミック体の他方の主面に凹部を有し、該凹部内に、測温素子とリード線とからなる測温体を挿入し、固定部材にて保持するようにしたウエハ支持部材であって、上記測温体の測温素子からリード線が固定部材より露出するまでのリード線の長さを上記リード線の線径の2倍より大きく30倍以下とし、上記測温体のリード線の線径をA、測温素子から抵抗発熱体までの最短距離をL1、測温素子から板状セラミック体の一方の主面へ鉛直に延ばした垂線と板状セラミック体の一方の主面との交点から抵抗発熱体までの最短距離をL2とした時、次の関係を満足することを特徴とするウエハ支持部材。
    (L2−7×A)<L1<(L2−A)
  2. 上記固定部材の熱伝導率が、板状セラミック体の熱伝導率の60%以上、300%以下であることを特徴とする請求項1に記載のウエハ支持部材。
  3. 上記固定部材のビッカース硬度が50以下の金属からなることを特徴とする請求項2に記載のウエハ支持部材。
  4. 上記測温体の測温素子を凹部底面に対して平行に配接してあることを特徴とする請求項1〜3のいずれかに記載のウエハ支持部材。
  5. 半導体製造工程で用いることを特徴とする請求項1〜4のいずれかに記載のウェハ支持部材。
JP2004130399A 2004-04-26 2004-04-26 ウェハ支持部材 Expired - Fee Related JP4243216B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130399A JP4243216B2 (ja) 2004-04-26 2004-04-26 ウェハ支持部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130399A JP4243216B2 (ja) 2004-04-26 2004-04-26 ウェハ支持部材

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002092548A Division JP3563726B2 (ja) 2002-03-28 2002-03-28 ウエハ支持部材

Publications (2)

Publication Number Publication Date
JP2004312026A true JP2004312026A (ja) 2004-11-04
JP4243216B2 JP4243216B2 (ja) 2009-03-25

Family

ID=33475638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130399A Expired - Fee Related JP4243216B2 (ja) 2004-04-26 2004-04-26 ウェハ支持部材

Country Status (1)

Country Link
JP (1) JP4243216B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009795A (ja) * 2007-06-27 2009-01-15 Taiheiyo Cement Corp セラミックスヒーター

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049650A (ja) 2004-08-05 2006-02-16 Hamamatsu Photonics Kk 半導体レーザ素子及び半導体レーザ素子アレイ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009795A (ja) * 2007-06-27 2009-01-15 Taiheiyo Cement Corp セラミックスヒーター

Also Published As

Publication number Publication date
JP4243216B2 (ja) 2009-03-25

Similar Documents

Publication Publication Date Title
KR101246753B1 (ko) 웨이퍼 지지부재
WO2001091166A1 (fr) Dispositif de fabrication et de controle d'un semi-conducteur
JPWO2003015157A1 (ja) セラミック接合体
US10837839B2 (en) Method for manufacturing a temperature sensor
JP7278035B2 (ja) 静電チャック、基板固定装置
JP2002184558A (ja) ヒータ
JP2005085657A (ja) セラミックヒータ
JP2001135715A (ja) 測温素子および半導体製造装置用セラミック基材
JP2007142441A (ja) ウェハ支持部材
JP3563726B2 (ja) ウエハ支持部材
JP4081396B2 (ja) セラミックヒータの熱電対取り付け構造
JP4243216B2 (ja) ウェハ支持部材
JP4009138B2 (ja) ウエハ支持部材
JP2000286331A (ja) ウエハ支持部材
JP2002184557A (ja) 半導体製造・検査装置用ヒータ
JP3694607B2 (ja) 接触加熱用ヒータ及びこれを用いた接触加熱装置
JP2005026585A (ja) セラミック接合体
JP2003077781A (ja) 半導体製造・検査装置用セラミックヒータ
JP6856334B2 (ja) ヒータ
JP2007013175A (ja) ウエハ支持部材およびこれを用いたウエハの加熱方法
JP2003257593A (ja) ウエハ支持部材
JP2004177412A (ja) 測温素子および半導体製造装置用セラミック基材
JP2001319758A (ja) ホットプレートユニット
JP2004296445A (ja) セラミックヒータ、セラミックヒータの製造方法およびセラミックヒータの製造システム
JP2010278461A (ja) ウエハ加熱装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4243216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees