【0001】
【発明の属する技術分野】
この発明は放電管に係り、特に、プロジェクターや自動車のメタルハライドランプ等の高圧放電ランプや、ガス調理器等の着火プラグに、点灯用又は着火用の定電圧を供給するためのスイッチングスパークギャップとして、或いは、サージ電圧を吸収するためのガスアレスタ(避雷管)として好適に使用できる放電管に関する。
【0002】
【従来の技術】
この種の放電管として、本出願人は、先に特開2003−7420号を提案した。この放電管60は、図2に示すように、両端が開口した絶縁材よりなる円筒状のケース部材62の両端開口部を、放電電極を兼ねた一対の蓋部材64,64で気密に閉塞することによって気密外囲器66を形成し、該気密外囲器66内に、所定の放電ガスを封入してなる。
【0003】
上記蓋部材64は、気密外囲器66の中心に向けて大きく突き出た平面状の放電電極部68と、ケース部材62の端面に接する接合部70を備えており、両蓋部材64,64の放電電極部68,68間には、所定の放電間隙72が形成されている。
また、上記ケース部材62の内壁面74には、微小放電間隙76を隔てて対向配置された一対のトリガ放電膜78,78が、複数組形成されている。一対のトリガ放電膜78,78の内、一方のトリガ放電膜78は、一方の放電電極部68と電気的に接続され、他方のトリガ放電膜78は、他方の放電電極部68と電気的に接続されている。
上記放電電極部68の表面には、放電開始電圧の安定に効果的なアルカリヨウ化物が含有された絶縁性の被膜80が形成されている。
上記気密外囲器66内に封入する放電ガスとしては、例えば、アルゴン、ネオン、ヘリウム、キセノン等の希ガスあるいは窒素ガス等の不活性ガスの単体又は混合ガスが該当する。また、希ガスあるいは不活性ガスの単体又は混合ガスと、H2等の負極性ガスとの混合ガスが該当する。
【0004】
上記構成を備えた放電管60の放電電極部68,68間に、当該放電管60の放電開始電圧以上の電圧が印加されると、トリガ放電膜78,78間の微小放電間隙76に電界が集中し、これにより微小放電間隙76に電子が放出されてトリガ放電としての沿面コロナ放電が発生する。次いで、この沿面コロナ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電が放電電極部68,68間の放電間隙72へと転移し、主放電としてのアーク放電に移行するのである。
【0005】
尚、この種従来の放電管60においては、放電電極部68の構成材料として無酸素銅が広く用いられている。その理由は、無酸素銅で構成された放電電極部68が、放電生成時に酸素等の不純ガスを放出することがなく、気密外囲器66内の放電ガス組成に悪影響を与えることがないためである。
【特許文献1】
特開2003−7420号
【0006】
【発明が解決しようとする課題】
ところで、無酸素銅の軟化温度(融点)は約200℃であり、上記の如く放電電極部68を無酸素銅で構成した場合、放電生成時に放電電極部68が高温の熱エネルギを受けることにより、無酸素銅より成る放電電極部68が溶融して飛散するスパッタが発生し、このスパッタの発生が放電管60の寿命を短くする主因となっていた。
【0007】
この発明は、従来の上記問題に鑑みてなされたものであり、その目的とするところは、放電電極のスパッタを抑制し、放電管の寿命特性を向上させることある。
【0008】
【課題を解決するための手段】
本発明者は、放電電極の構成材料について種々検討を試みた結果、無酸素銅にジルコニウムを含有させたジルコニウム銅が放電電極のスパッタを抑制し、放電管の寿命特性の向上に極めて効果的であることを見出し、本発明を完成するに至ったものである。
すなわち、本発明に係る放電管は、複数の放電電極を放電間隙を隔てて配置すると共に、これを放電ガスと共に気密外囲器内に封入してなる放電管において、上記放電電極を、無酸素銅にジルコニウムを含有させたジルコニウム銅で構成したことを特徴とする。
【0009】
本発明に係る放電管にあっては、放電電極を、無酸素銅にジルコニウムを含有させたジルコニウム銅で構成することにより、無酸素銅で放電電極を構成した従来の放電管60に比べて、放電管の寿命特性を向上させることができる。これは、以下の理由による。
すなわち、陰極側の放電電極は、放電生成時に常に陽イオンの衝撃及び高温の熱エネルギを受けることにより、放電電極の電極材料が溶融して飛散するスパッタが発生し、その結果、陰極側の放電電極の電極材料が放電電極や気密外囲器の内壁に付着して黒化させ、これが、表面漏れ電流や気密外囲器の内壁電位を変化させて、放電管の寿命を短くしているのである。
しかしながら、無酸素銅にジルコニウムを含有させたジルコニウム銅は、軟化温度(融点)が約500℃であり、無酸素銅の軟化温度(融点)約200℃に比べて約2.5倍も高いことから、放電電極をジルコニウム銅で構成することにより、放電電極の熱エネルギ耐性が向上し、放電電極のスパッタによる消耗が抑制され、放電管の寿命特性が向上するのである。
【0010】
【発明の実施の形態】
本発明に係る放電管10は、図1に示すように、両端が開口した絶縁材としてのセラミックよりなる円筒状のケース部材12の両端開口部を、放電電極を兼ねた一対の蓋部材14,14で気密に閉塞することによって気密外囲器16を形成してなる。
【0011】
上記蓋部材14は、気密外囲器16の中心に向けて大きく突き出た平面状の放電電極部18と、ケース部材12の端面に接する接合部20を備えており、両蓋部材14,14の放電電極部18,18間には、所定の放電間隙22が形成されている。尚、ケース部材12の端面と蓋部材14の接合部20とは、銀ろう等のシール材(図示せず)を介して気密封止されている。
【0012】
また、上記ケース部材12の内壁面24には、その両端が、放電電極を兼ねた上記蓋部材14,14と微小放電間隙26を隔てて対向配置された線状のトリガ放電膜28が複数形成されている。該トリガ放電膜28は、カーボン系材料等の導電性材料で構成されている。
【0013】
放電電極部18と接合部20を備えた上記蓋部材14は、無酸素銅にジルコニウム(Zr)を含有させたジルコニウム銅で構成されている。
このように、放電電極部18を、無酸素銅にジルコニウムを含有させたジルコニウム銅で構成することにより、無酸素銅で放電電極部68を構成した従来の放電管60に比べて、放電管10の寿命特性を向上させることができる。これは、以下の理由による。
すなわち、陰極側の放電電極部18は、放電生成時に常に陽イオンの衝撃及び高温の熱エネルギを受けることにより、放電電極部18の電極材料が溶融して飛散するスパッタが発生し、その結果、陰極側の放電電極部18の電極材料が放電電極部18や気密外囲器16の内壁に付着して黒化させ、これが、表面漏れ電流や気密外囲器16の内壁電位を変化させて、放電管の寿命を短くしているのである。
しかしながら、無酸素銅にジルコニウムを含有させたジルコニウム銅は、軟化温度(融点)が約500℃であり、無酸素銅の軟化温度(融点)約200℃に比べて約2.5倍も高いことから、放電電極部18をジルコニウム銅で構成することにより、放電電極部18の熱エネルギ耐性が向上し、放電電極部18のスパッタによる消耗が抑制され、放電管10の寿命特性が向上するのである。尚、ジルコニウムにはゲッター作用があるため、このゲッター作用による放電特性の向上効果も得られる。
放電電極部18を、無酸素銅にジルコニウムを含有させたジルコニウム銅で構成した場合においても、従来の無酸素銅で放電電極部68を構成した場合と同様に、放電生成時に酸素等の不純ガスを放出することがなく、気密外囲器16内の放電ガス組成に悪影響を与えることはない。
また、ジルコニウム銅の熱膨張係数は、無酸素銅の熱膨張係数と略等しいことから、蓋部材14をジルコニウム銅で構成した場合においても、セラミックよりなるケース部材12との接合に支障を生じることはない。
【0014】
上記放電電極部18の表面には、アルカリヨウ化物が含有された絶縁性の被膜30が形成されている。この被膜30は、ヨウ化カリウム(KI)、ヨウ化ナトリウム(NaI)、ヨウ化セシウム(CsI)、ヨウ化ルビジウム(RbI)等のアルカリヨウ化物の単体又は混合物を、珪酸ナトリウム溶液と純水よりなるバインダーに添加したものを、放電電極部18表面に塗布することによって形成することができる。
この場合、アルカリヨウ化物の単体又は混合物が0.01〜70重量%、バインダーが99.99〜30重量%の配合割合で混合される。また、バインダー中の珪酸ナトリウム溶液と純水との配合割合は、珪酸ナトリウム溶液が0.01〜70重量%、純水が99.99〜30重量%となされる。
【0015】
また、上記被膜30中に、臭化セシウム(CsBr)、臭化ルビジウム(RbBr)、臭化ニッケル(NiBr2)、臭化インジウム(InBr3)、臭化コバルト(CoBr2)、臭化鉄(FeBr2、FeBr3)等の臭化物の1種類以上を添加すると、より一層、放電管10の放電開始電圧の安定化を図ることができる。
尚、塩化バリウム(BaCl)、フッ化バリウム(BaF)、酸化イットリウム(Y2O3)、塩化イットリウム(YCl2)、フッ化イットリウム(YF3)、モリブデン酸カリウム(K2MoO4)、タングステン酸カリウム(K2WO4)、クロム酸セシウム(Cs2CrO4)、酸化プラセオジウム(Pr6O11)、チタン酸カリウム(K2Ti4O9)の1種類以上を、上記臭化物と共に、或いは上記臭化物以外に、上記被膜30中に添加しても、放電管10の放電開始電圧の安定化に寄与する。
これら物質は、上記アルカリヨウ化物の単体又は混合物とバインダーとの混合物中に、0.01〜10重量%の配合割合で添加される。
【0016】
上記気密外囲器16内には、所定の放電ガスが封入されている。この放電ガスとしては、例えば、アルゴン、ネオン、ヘリウム、キセノン等の希ガスあるいは窒素ガス等の不活性ガスの単体又は混合ガスが該当する。また、希ガスあるいは不活性ガスの単体又は混合ガスと、H2等の負極性ガスとの混合ガスが該当する。
【0017】
尚、上記気密外囲器16内に、原子量が大きく、且つ、熱伝導率の小さいKr(クリプトン)を含有した放電ガスを封入することにより、放電管10の寿命特性を向上させることができる。これは、以下の理由等によるものと考えられる。
すなわち、陰極側の放電電極部18は、放電生成時に常に陽イオンの衝撃を受けることによりスパッタされ、その結果、陰極側の放電電極部18の電極材料が原子状態で飛散して、放電電極部18や気密外囲器16の内壁に付着して黒化させ、これが、表面漏れ電流や気密外囲器16の内壁電位を変化させて、放電管の寿命を短くするのである。
しかしながら、Krは原子量が大きいため、放電生成時に電離したKrイオンが陰極側の放電電極部18に向かう際の加速度が小さく、Krイオンの移動速度が遅いことから、移動中にKrイオンが基底状態に戻ったり、他の分子と衝突して熱エネルギーに変換される等するため、陰極側の放電電極部18に与える衝撃が小さくなり、放電電極部18のスパッタによる消耗が抑制されると考えられる。
また、Krは熱伝導率が小さいことから、Krイオンが放電電極部18に衝突した際に、熱が放電電極部18に伝導しにくいため、放電電極部18の熱による溶融が生じにくいものである。従って、放電ガスにKrを含有すれば、放電生成時に、Krイオンが放電電極部18に衝突しても、放電電極部18が溶融して飛散するスパッタが抑制されると考えられるのである。
【0018】
尚、放電ガスを原子量の大きいKr単体で構成した場合には、長寿命となる反面、Krの移動速度が遅いことに起因する放電遅れの発生等、放電特性の低下をもたらすため、他のガスと混合して用いるのが望ましい。
例えば、放電ガスを、KrとH2の混合ガスで構成すれば、原子量が小さく、負極性ガスであるH2により、放電遅れの防止や、放電が持続する続流現象防止に効果がある。
また、放電ガスを、KrとArの混合ガスで構成すれば、原子量の小さいArにより、放電遅れの防止に効果がある。尚、KrとArの混合ガスに、さらに、H2を混合しても良く、この場合、H2により、より一層、応答性能を向上させることができると共に、続流現象防止に効果的である。
さらに、放電ガスを、KrとNeの混合ガスで構成すれば、放電開始電圧の低下作用を有するNeにより、放電生成が容易になる。
放電ガスを、上記KrとH2の混合ガス、KrとNeの混合ガス、KrとArの混合ガス、KrとArとH2の3種類の混合ガスで構成する場合、Krは、3〜95体積%の割合で混合するのが好ましい。
すなわち、Krの混合割合が3体積%未満の場合には、寿命特性の向上効果があまり得られず、一方、Krの混合割合が95体積%を越えると放電特性の低下が大きくなるためである。
【0019】
上記構成を備えた本発明の放電管10にあっては、放電電極を兼ねた上記一対の蓋部材14,14間に、当該放電管10の放電開始電圧以上の電圧が印加されると、トリガ放電膜28の両端と蓋部材14,14間の微小放電間隙26に電界が集中し、これにより微小放電間隙26に電子が放出されてトリガ放電としての沿面コロナ放電が発生する。次いで、この沿面コロナ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電が放電電極部18,18間の放電間隙22へと転移し、主放電としてのアーク放電に移行するのである。本発明の放電管10においては、微小放電間隙26に生ずる元来応答速度の速い沿面コロナ放電をトリガ放電として利用するものであるため、高い応答性を実現できるものである。
【0020】
尚、本発明の放電管10のトリガ放電膜28,28は、放電電極を兼ねた蓋部材14,14と電気的に接続されていないため、微小放電間隙26における過度な電界集中が抑制され、その結果、安定した放電開始電圧を得ることができる。
すなわち、従来の放電管60のように、トリガ放電膜78,78が、放電電極を兼ねた蓋部材64,64と電気的に接続されていると、微小放電間隙76における電界集中の度合が強いため電子が大量に放出され易いものの、放電毎の電子放出量が不安定となり易く、その結果、放電開始電圧の不安定化をもたらすことがあった。
これに対し、本発明の放電管10にあっては、トリガ放電膜28,28が、放電電極を兼ねた蓋部材14,14と電気的に接続されていないため、微小放電間隙26における電界集中の度合が弱く、電子の放出量は抑制されるものの、放電毎の電子放出量が安定し、その結果、安定した放電開始電圧を得ることができるのである。
【0021】
上記した通り、本発明の放電管10にあっては、放電電極部18を、無酸素銅にジルコニウムを含有させたジルコニウム銅で構成しており、該ジルコニウム銅は無酸素銅より融点が約2.5倍も高いことから、無酸素銅で放電電極部68を構成した従来の放電管60に比べて、放電電極部18の熱エネルギ耐性が向上し、その結果、放電生成時における放電電極部18のスパッタによる消耗が抑制され、放電管10の寿命特性を向上させることができる。
【0022】
また、本発明の放電管10にあっては、放電電極部18の表面に、放電開始電圧の安定に効果的なアルカリヨウ化物の含有された被膜30を形成したので、当該放電管10をスイッチングスパークギャップとして使用した場合、図示しないコンデンサからの高電圧パルス(数百Hz以上)を受けて、数msという短い間隔で常に一定の放電開始電圧で安定的に動作することが可能になる。
【0023】
さらに、本発明の放電管10をガスアレスタとして使用した場合、立ち上がり時間の早いサージ電圧が印加された場合であっても、その放電開始電圧に変動を生じる、いわゆる放電開始電圧の「ゆらぎ」を生じにくく、一定の放電開始電圧で安定的に動作することが可能である。
すなわち、放電開始電圧の「ゆらぎ」現象は、サージ電圧が放電管10に印加された際に、放電の種火としての初期電子やイオンが、放電ガス分子に衝突してこれをイオンと電子に電離させるα効果、電離されたイオンが放電電極部18表面の被膜30に衝突して二次電子を放出させる二次電子放出作用(γ効果)が安定的に行われないことから生じる現象である。
しかしながら、本発明にあっては、上記被膜30に含有されたアルカリヨウ化物が放電ガス分子をイオン化させ易い性質を有しているため、気密外囲器16内には多量のイオンが存在し、この結果、安定したα効果及び二次電子放出作用(γ効果)を示すことから、放電開始電圧の「ゆらぎ」を生じにくいものとなっているのである。
【0024】
【発明の効果】
本発明に係る放電管にあっては、放電電極を、無酸素銅にジルコニウムを含有させたジルコニウム銅で構成しており、該ジルコニウム銅は無酸素銅より融点が約2.5倍も高いことから、無酸素銅で放電電極を構成した従来の放電管60に比べて、放電電極の熱エネルギ耐性が向上し、その結果、放電生成時における放電電極のスパッタによる消耗が抑制され、放電管の寿命特性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る放電管を示す断面図である。
【図2】従来の放電管を示す断面図である。
【符号の説明】
10 放電管
12 ケース部材
14 蓋部材
16 気密外囲器
18 放電電極部
22 放電間隙
26 微小放電間隙
28 トリガ放電膜
30 被膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a discharge tube, in particular, as a switching spark gap for supplying a constant voltage for lighting or ignition to a high-pressure discharge lamp such as a metal halide lamp of a projector or an automobile, or an ignition plug of a gas cooker or the like. Alternatively, the present invention relates to a discharge tube that can be suitably used as a gas arrester (lightning arrester) for absorbing a surge voltage.
[0002]
[Prior art]
As a discharge tube of this kind, the present applicant has previously proposed JP-A-2003-7420. As shown in FIG. 2, the discharge tube 60 hermetically closes both ends of a cylindrical case member 62 made of an insulating material having both ends opened by a pair of lid members 64, 64 also serving as discharge electrodes. Thus, the hermetic envelope 66 is formed, and a predetermined discharge gas is sealed in the hermetic envelope 66.
[0003]
The lid member 64 includes a flat discharge electrode portion 68 protruding largely toward the center of the hermetic envelope 66 and a joining portion 70 in contact with the end surface of the case member 62. A predetermined discharge gap 72 is formed between the discharge electrode portions 68.
On the inner wall surface 74 of the case member 62, a plurality of pairs of a pair of trigger discharge films 78, 78 which are opposed to each other with a minute discharge gap 76 therebetween, are formed. Of the pair of trigger discharge films 78, 78, one trigger discharge film 78 is electrically connected to one discharge electrode unit 68, and the other trigger discharge film 78 is electrically connected to the other discharge electrode unit 68. It is connected.
On the surface of the discharge electrode section 68, an insulating film 80 containing an alkali iodide effective for stabilizing the discharge starting voltage is formed.
As the discharge gas sealed in the hermetic envelope 66, for example, a single gas or a mixed gas of a rare gas such as argon, neon, helium, xenon, or an inert gas such as nitrogen gas corresponds. In addition, a mixed gas of a single or mixed gas of a rare gas or an inert gas and a negative gas such as H 2 is applicable.
[0004]
When a voltage equal to or higher than the discharge starting voltage of the discharge tube 60 is applied between the discharge electrode portions 68 of the discharge tube 60 having the above configuration, an electric field is generated in the minute discharge gap 76 between the trigger discharge films 78. As a result, electrons are emitted to the minute discharge gap 76, and a creeping corona discharge as a trigger discharge is generated. Next, the creeping corona discharge shifts to a glow discharge due to a priming effect of electrons. Then, the glow discharge transfers to the discharge gap 72 between the discharge electrode portions 68, 68, and shifts to arc discharge as main discharge.
[0005]
In this type of conventional discharge tube 60, oxygen-free copper is widely used as a constituent material of the discharge electrode portion 68. The reason is that the discharge electrode portion 68 made of oxygen-free copper does not emit an impurity gas such as oxygen when a discharge is generated, and does not adversely affect the discharge gas composition in the hermetic envelope 66. It is.
[Patent Document 1]
JP-A-2003-7420
[Problems to be solved by the invention]
Incidentally, the softening temperature (melting point) of oxygen-free copper is about 200 ° C., and when the discharge electrode section 68 is made of oxygen-free copper as described above, the discharge electrode section 68 receives high-temperature thermal energy during discharge generation. In addition, spattering occurs in which the discharge electrode portion 68 made of oxygen-free copper melts and scatters.
[0007]
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to suppress spatter of a discharge electrode and improve the life characteristics of a discharge tube.
[0008]
[Means for Solving the Problems]
The present inventor has made various studies on the constituent materials of the discharge electrode, and as a result, zirconium copper containing zirconium in oxygen-free copper suppresses spattering of the discharge electrode, and is extremely effective in improving the life characteristics of the discharge tube. The inventor has found that the present invention has been completed.
That is, in the discharge tube according to the present invention, a plurality of discharge electrodes are arranged with a discharge gap therebetween, and the discharge electrodes are sealed together with a discharge gas in an airtight envelope. It is characterized by comprising zirconium copper containing zirconium in copper.
[0009]
In the discharge tube according to the present invention, by forming the discharge electrode with zirconium copper containing zirconium in oxygen-free copper, compared with the conventional discharge tube 60 in which the discharge electrode is formed with oxygen-free copper, The life characteristics of the discharge tube can be improved. This is for the following reason.
In other words, the discharge electrode on the cathode side always receives the bombardment of cations and high-temperature thermal energy during the generation of discharge, so that the electrode material of the discharge electrode is melted and scattered, and as a result, the discharge on the cathode side is caused. The electrode material of the electrode adheres to the inner wall of the discharge electrode or the hermetic envelope and turns black, which changes the surface leakage current and the inner wall potential of the hermetic envelope, shortening the life of the discharge tube. is there.
However, zirconium copper containing zirconium in oxygen-free copper has a softening temperature (melting point) of about 500 ° C., which is about 2.5 times higher than the softening temperature (melting point) of oxygen-free copper of about 200 ° C. Therefore, when the discharge electrode is made of zirconium copper, the thermal energy resistance of the discharge electrode is improved, the consumption of the discharge electrode by sputtering is suppressed, and the life characteristics of the discharge tube are improved.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, the discharge tube 10 according to the present invention includes a pair of lid members 14, which also serve as discharge electrodes, formed by opening both ends of a cylindrical case member 12 made of ceramic as an insulating material having both ends opened. The hermetic enclosure 16 is formed by hermetically closing at 14.
[0011]
The lid member 14 includes a flat discharge electrode portion 18 that protrudes largely toward the center of the hermetic envelope 16 and a joint portion 20 that contacts the end surface of the case member 12. A predetermined discharge gap 22 is formed between the discharge electrode portions 18. Note that the end face of the case member 12 and the joint 20 of the lid member 14 are hermetically sealed via a sealing material (not shown) such as silver solder.
[0012]
Further, on the inner wall surface 24 of the case member 12, a plurality of linear trigger discharge films 28 whose both ends are opposed to the lid members 14 serving also as discharge electrodes with a minute discharge gap 26 therebetween are formed. Have been. The trigger discharge film 28 is made of a conductive material such as a carbon-based material.
[0013]
The lid member 14 having the discharge electrode part 18 and the joint part 20 is made of zirconium copper obtained by adding zirconium (Zr) to oxygen-free copper.
As described above, the discharge electrode portion 18 is made of zirconium copper containing zirconium in oxygen-free copper, so that the discharge tube 10 is made smaller than the conventional discharge tube 60 in which the discharge electrode portion 68 is made of oxygen-free copper. Can improve the life characteristics. This is for the following reason.
In other words, the discharge electrode portion 18 on the cathode side always receives the bombardment of cations and high-temperature thermal energy at the time of discharge generation, so that the electrode material of the discharge electrode portion 18 melts and spatters, and as a result, The electrode material of the discharge electrode portion 18 on the cathode side adheres to the discharge electrode portion 18 and the inner wall of the hermetic envelope 16 to blacken, and this changes the surface leakage current and the inner wall potential of the hermetic envelope 16, The life of the discharge tube is shortened.
However, zirconium copper containing zirconium in oxygen-free copper has a softening temperature (melting point) of about 500 ° C., which is about 2.5 times higher than the softening temperature (melting point) of oxygen-free copper of about 200 ° C. Therefore, by forming the discharge electrode portion 18 of zirconium copper, the heat energy resistance of the discharge electrode portion 18 is improved, the consumption of the discharge electrode portion 18 due to sputtering is suppressed, and the life characteristics of the discharge tube 10 are improved. . Since zirconium has a getter function, the getter function also has an effect of improving the discharge characteristics.
Even when the discharge electrode portion 18 is made of zirconium copper containing zirconium in oxygen-free copper, an impurity gas such as oxygen is generated when a discharge is generated, similarly to the case where the discharge electrode portion 68 is made of conventional oxygen-free copper. Is not released, and the discharge gas composition in the hermetic envelope 16 is not adversely affected.
In addition, since the thermal expansion coefficient of zirconium copper is substantially equal to the thermal expansion coefficient of oxygen-free copper, even when the lid member 14 is made of zirconium copper, there is no problem in joining the case member 12 made of ceramic. There is no.
[0014]
On the surface of the discharge electrode section 18, an insulating film 30 containing an alkali iodide is formed. The coating 30 is made of a single or mixture of alkali iodides such as potassium iodide (KI), sodium iodide (NaI), cesium iodide (CsI), and rubidium iodide (RbI) prepared from a sodium silicate solution and pure water. It can be formed by applying a material added to the binder to the surface of the discharge electrode portion 18.
In this case, the alkali iodide alone or as a mixture is mixed at 0.01 to 70% by weight, and the binder is mixed at 99.99 to 30% by weight. The mixing ratio of the sodium silicate solution and pure water in the binder is 0.01 to 70% by weight for the sodium silicate solution and 99.99 to 30% by weight for pure water.
[0015]
Further, in the coating 30, cesium bromide (CsBr), rubidium bromide (RbBr), nickel bromide (NiBr 2), indium bromide (InBr 3), cobalt bromide (CoBr 2), ferric bromide ( When one or more kinds of bromides such as FeBr 2 and FeBr 3 ) are added, the discharge starting voltage of the discharge tube 10 can be further stabilized.
In addition, barium chloride (BaCl), barium fluoride (BaF), yttrium oxide (Y 2 O 3 ), yttrium chloride (YCl 2 ), yttrium fluoride (YF 3 ), potassium molybdate (K 2 MoO 4 ), tungsten One or more of potassium silicate (K 2 WO 4 ), cesium chromate (Cs 2 CrO 4 ), praseodymium oxide (Pr 6 O 11 ), and potassium titanate (K 2 Ti 4 O 9 ), together with the bromide or In addition to the bromide, addition to the coating 30 contributes to stabilization of the discharge starting voltage of the discharge tube 10.
These substances are added in a mixing ratio of 0.01 to 10% by weight to a mixture of the above-mentioned alkali iodide alone or a mixture thereof with a binder.
[0016]
A predetermined discharge gas is sealed in the hermetic envelope 16. As the discharge gas, for example, a single gas or a mixed gas of a rare gas such as argon, neon, helium, xenon, or an inert gas such as nitrogen gas corresponds. In addition, a mixed gas of a single or mixed gas of a rare gas or an inert gas and a negative gas such as H 2 is applicable.
[0017]
The life characteristics of the discharge tube 10 can be improved by filling a discharge gas containing Kr (krypton) having a large atomic weight and a small thermal conductivity in the hermetic envelope 16. This is considered to be due to the following reasons.
That is, the discharge electrode portion 18 on the cathode side is sputtered by being constantly bombarded by cations when a discharge is generated. As a result, the electrode material of the discharge electrode portion 18 on the cathode side scatters in an atomic state, and It adheres to the inner wall 18 and the inner wall of the hermetic envelope 16 and turns black, which changes the surface leakage current and the inner wall potential of the hermetic envelope 16 and shortens the life of the discharge tube.
However, since Kr has a large atomic weight, the acceleration of the ionized Kr ions at the time of discharge generation toward the discharge electrode portion 18 on the cathode side is small, and the moving speed of the Kr ions is low. It is thought that the impact on the discharge electrode section 18 on the cathode side is reduced, and the consumption of the discharge electrode section 18 due to sputtering is suppressed because it returns to the surface or collides with other molecules to be converted into thermal energy. .
In addition, since Kr has a low thermal conductivity, when Kr ions collide with the discharge electrode 18, heat is difficult to be conducted to the discharge electrode 18, so that the discharge electrode 18 is unlikely to be melted by heat. is there. Therefore, if Kr is contained in the discharge gas, even if Kr ions collide with the discharge electrode section 18 during discharge generation, it is considered that the spatter that causes the discharge electrode section 18 to melt and scatter is suppressed.
[0018]
If the discharge gas is composed of Kr alone having a large atomic weight, the life is prolonged, but the discharge characteristics are deteriorated, such as the occurrence of discharge delay caused by the slow moving speed of Kr. It is desirable to use them in a mixture.
For example, if the discharge gas is composed of a mixed gas of Kr and H 2 , the atomic weight is small, and H 2 , which is a negative gas, is effective in preventing a discharge delay and a subsequent flow phenomenon in which the discharge continues.
If the discharge gas is composed of a mixed gas of Kr and Ar, Ar having a small atomic weight is effective in preventing discharge delay. In addition, H 2 may be further mixed with the mixed gas of Kr and Ar. In this case, H 2 can further improve the response performance and is effective in preventing the wake phenomenon. .
Further, if the discharge gas is composed of a mixed gas of Kr and Ne, discharge generation becomes easy by Ne having a function of lowering the discharge starting voltage.
When the discharge gas is composed of the above-mentioned mixed gas of Kr and H 2, a mixed gas of Kr and Ne, a mixed gas of Kr and Ar, or a mixed gas of three types of Kr, Ar and H 2 , Kr is 3-95. It is preferred to mix at a volume percentage.
That is, when the mixing ratio of Kr is less than 3% by volume, the effect of improving the life characteristics is not so much obtained. On the other hand, when the mixing ratio of Kr exceeds 95% by volume, the deterioration of the discharge characteristics becomes large. .
[0019]
In the discharge tube 10 of the present invention having the above configuration, when a voltage equal to or higher than the discharge starting voltage of the discharge tube 10 is applied between the pair of lid members 14 serving also as discharge electrodes, a trigger is generated. An electric field concentrates in the minute discharge gap 26 between both ends of the discharge film 28 and the lid members 14, whereby electrons are emitted to the minute discharge gap 26 to generate a creeping corona discharge as a trigger discharge. Next, the creeping corona discharge shifts to a glow discharge due to a priming effect of electrons. Then, the glow discharge shifts to the discharge gap 22 between the discharge electrode portions 18 and 18 and shifts to arc discharge as main discharge. In the discharge tube 10 according to the present invention, since the creeping corona discharge having a high response speed originally generated in the minute discharge gap 26 is used as the trigger discharge, high responsiveness can be realized.
[0020]
Since the trigger discharge films 28 of the discharge tube 10 of the present invention are not electrically connected to the lid members 14 serving also as discharge electrodes, excessive electric field concentration in the minute discharge gap 26 is suppressed. As a result, a stable discharge starting voltage can be obtained.
That is, when the trigger discharge films 78, 78 are electrically connected to the lid members 64, 64 also serving as discharge electrodes as in the conventional discharge tube 60, the degree of electric field concentration in the minute discharge gap 76 is high. Therefore, although a large amount of electrons are easily emitted, the amount of electron emission for each discharge is likely to be unstable, and as a result, the firing voltage may be unstable.
On the other hand, in the discharge tube 10 of the present invention, since the trigger discharge films 28, 28 are not electrically connected to the lid members 14, 14, which also serve as discharge electrodes, the electric field concentration in the minute discharge gap 26 is prevented. Is small and the amount of emitted electrons is suppressed, but the amount of emitted electrons is stable for each discharge, and as a result, a stable discharge starting voltage can be obtained.
[0021]
As described above, in the discharge tube 10 of the present invention, the discharge electrode portion 18 is made of zirconium copper containing zirconium in oxygen-free copper, and the melting point of the zirconium copper is about 2 times that of oxygen-free copper. .5 times higher, the heat resistance of the discharge electrode portion 18 is improved as compared with the conventional discharge tube 60 in which the discharge electrode portion 68 is made of oxygen-free copper. 18 is suppressed by spattering, and the life characteristics of the discharge tube 10 can be improved.
[0022]
Further, in the discharge tube 10 of the present invention, since the coating 30 containing alkali iodide effective for stabilizing the discharge starting voltage is formed on the surface of the discharge electrode portion 18, the discharge tube 10 is switched. When used as a spark gap, a high-voltage pulse (several hundred Hz or more) from a capacitor (not shown) can be received and a stable operation can always be performed at a constant firing voltage at short intervals of several ms.
[0023]
Furthermore, when the discharge tube 10 of the present invention is used as a gas arrester, even when a surge voltage with a fast rise time is applied, the so-called "fluctuation" of the discharge start voltage that causes a fluctuation in the discharge start voltage is generated. It is unlikely to occur, and it is possible to operate stably at a constant discharge start voltage.
That is, the "fluctuation" phenomenon of the discharge starting voltage is that when a surge voltage is applied to the discharge tube 10, initial electrons or ions as a seed for discharge collide with the discharge gas molecules and turn them into ions and electrons. This is a phenomenon that occurs because the secondary electron emission action (γ effect) in which ionized ions collide with the coating 30 on the surface of the discharge electrode portion 18 to emit secondary electrons is not performed stably. .
However, in the present invention, since the alkali iodide contained in the coating 30 has a property of easily ionizing the discharge gas molecules, a large amount of ions are present in the hermetic envelope 16, As a result, since a stable α effect and a secondary electron emission effect (γ effect) are exhibited, “fluctuation” in the discharge starting voltage is less likely to occur.
[0024]
【The invention's effect】
In the discharge tube according to the present invention, the discharge electrode is made of zirconium copper containing zirconium in oxygen-free copper, and the zirconium copper has a melting point about 2.5 times higher than that of oxygen-free copper. Therefore, as compared with the conventional discharge tube 60 in which the discharge electrode is formed of oxygen-free copper, the heat resistance of the discharge electrode is improved, and as a result, the consumption of the discharge electrode by spattering at the time of generating a discharge is suppressed, and the discharge tube is The life characteristics can be improved.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a discharge tube according to the present invention.
FIG. 2 is a sectional view showing a conventional discharge tube.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Discharge tube 12 Case member 14 Cover member 16 Hermetic envelope 18 Discharge electrode part 22 Discharge gap 26 Micro discharge gap 28 Trigger discharge film 30 Coating