JP4651433B2 - Discharge tube - Google Patents

Discharge tube Download PDF

Info

Publication number
JP4651433B2
JP4651433B2 JP2005102267A JP2005102267A JP4651433B2 JP 4651433 B2 JP4651433 B2 JP 4651433B2 JP 2005102267 A JP2005102267 A JP 2005102267A JP 2005102267 A JP2005102267 A JP 2005102267A JP 4651433 B2 JP4651433 B2 JP 4651433B2
Authority
JP
Japan
Prior art keywords
discharge
discharge tube
start voltage
magnesium oxide
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005102267A
Other languages
Japanese (ja)
Other versions
JP2006286293A (en
Inventor
孝一 今井
陽一 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP2005102267A priority Critical patent/JP4651433B2/en
Publication of JP2006286293A publication Critical patent/JP2006286293A/en
Application granted granted Critical
Publication of JP4651433B2 publication Critical patent/JP4651433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

この発明は放電管に係り、特に、プロジェクターや自動車のメタルハライドランプ等の高圧放電ランプやガス調理器等の着火プラグに、点灯用又は着火用の定電圧を供給するためのスイッチングスパークギャップとして、或いは、サージ電圧を吸収するためのガスアレスタ(避雷管)として好適に使用できる放電管に関する。   The present invention relates to a discharge tube, in particular, as a switching spark gap for supplying a constant voltage for lighting or ignition to a high-pressure discharge lamp such as a projector or an automobile metal halide lamp, or an ignition plug of a gas cooker, or The present invention relates to a discharge tube that can be suitably used as a gas arrester for absorbing surge voltage.

この種の放電管として、本出願人は、先に特開2003−7420号を提案した。この放電管60は、図6に示すように、両端が開口した絶縁材よりなる円筒状のケース部材62の両端開口部を、放電電極を兼ねた一対の蓋部材64,64で気密に封止することによって気密外囲器66を形成し、該気密外囲器66内に、所定の放電ガスを封入してなる。   As this type of discharge tube, the present applicant has previously proposed Japanese Patent Application Laid-Open No. 2003-7420. As shown in FIG. 6, the discharge tube 60 is hermetically sealed with a pair of lid members 64, 64 that also serve as discharge electrodes, at both ends of a cylindrical case member 62 made of an insulating material that opens at both ends. Thus, an airtight envelope 66 is formed, and a predetermined discharge gas is sealed in the airtight envelope 66.

上記蓋部材64は、気密外囲器66の中心に向けて大きく突き出た平面状の放電電極部68と、ケース部材62の端面に接する接合部70を備えており、両蓋部材64,64の放電電極部68,68間には、所定の放電間隙72が形成されている。
また、上記ケース部材62の内壁面74の円周方向に、微小放電間隙76を隔てて対向配置された一対のトリガ放電膜78,78が、複数組形成されている。一対のトリガ放電膜78,78の内、一方のトリガ放電膜78は、一方の放電電極部68と電気的に接続され、他方のトリガ放電膜78は、他方の放電電極部68と電気的に接続されている。
The lid member 64 includes a flat discharge electrode portion 68 that protrudes greatly toward the center of the hermetic envelope 66, and a joint portion 70 that contacts the end surface of the case member 62. A predetermined discharge gap 72 is formed between the discharge electrode portions 68 and 68.
A plurality of pairs of trigger discharge films 78 and 78 are formed in the circumferential direction of the inner wall surface 74 of the case member 62 so as to face each other with a minute discharge gap 76 therebetween. Of the pair of trigger discharge films 78, 78, one trigger discharge film 78 is electrically connected to one discharge electrode portion 68, and the other trigger discharge film 78 is electrically connected to the other discharge electrode portion 68. It is connected.

上記放電電極部68の表面には、放電開始電圧の安定に効果的なアルカリヨウ化物が含有された絶縁性の被膜80が形成されている。このアルカリヨウ化物としては、ヨウ化カリウム(KI)、ヨウ化ナトリウム(NaI)、ヨウ化セシウム(CsI)、ヨウ化ルビジウム(RbI)等のアルカリヨウ化物の単体又は混合物が該当する。
上記気密外囲器66内に封入する放電ガスとしては、例えば、アルゴン、ネオン、ヘリウム、キセノン等の希ガスあるいは窒素ガス等の不活性ガスの単体又は混合ガスが該当する。また、希ガスあるいは不活性ガスの単体又は混合ガスと、H等の負極性ガスとの混合ガスが該当する。
On the surface of the discharge electrode portion 68, an insulating film 80 containing an alkali iodide effective for stabilizing the discharge starting voltage is formed. As this alkali iodide, the simple substance or mixture of alkali iodides, such as potassium iodide (KI), sodium iodide (NaI), cesium iodide (CsI), rubidium iodide (RbI), corresponds.
As the discharge gas sealed in the hermetic envelope 66, for example, a rare gas such as argon, neon, helium, xenon, or an inert gas such as nitrogen gas or a mixed gas is applicable. In addition, a single gas or a mixed gas of a rare gas or an inert gas and a mixed gas of a negative gas such as H 2 are applicable.

上記構成を備えた放電管60の放電電極部68,68間に、当該放電管60の放電開始電圧以上の電圧が印加されると、トリガ放電膜78,78間の微小放電間隙76に電界が集中し、これにより微小放電間隙76に電子が放出されてトリガ放電としての沿面コロナ放電が発生する。次いで、この沿面コロナ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電が放電電極部68,68間の放電間隙72へと転移し、主放電としてのアーク放電に移行するのである。
特開2003−7420号
When a voltage equal to or higher than the discharge start voltage of the discharge tube 60 is applied between the discharge electrode portions 68, 68 of the discharge tube 60 having the above-described configuration, an electric field is generated in the minute discharge gap 76 between the trigger discharge films 78, 78. As a result, electrons are emitted into the minute discharge gap 76, and creeping corona discharge as a trigger discharge is generated. Next, this creeping corona discharge shifts to glow discharge due to an electron priming effect. Then, this glow discharge is transferred to the discharge gap 72 between the discharge electrode portions 68 and 68, and is transferred to arc discharge as the main discharge.
JP 2003-7420 A

ところで、上記放電管60の放電回数が増加すると、放電ガス中に含まれていた微量な不純ガスや気密外囲器66の封止工程で混入した不純ガスが、放電電極部68や被膜80の表面に吸着したり、或いは、放電時の衝撃により放電電極部68や被膜80がスパッタすることにより、放電電極部68や被膜80の仕事関数が変化し、その結果、初期放電開始電圧が上昇して、初期放電遅れを生じることがあった。この初期放電遅れは、特に、放電管60が暗中で使用される場合に顕著に発生していた。これは、暗中で放電管60が長時間放置されると、気密外囲器66内の放電の種火としての電子やイオンが減少するためである。
また、上記放電管60がスイッチングスパークギャップとして用いられる場合には、短い周期で繰り返し動作させた場合において、常に安定した放電開始電圧が得られる周波数特性に優れていることが求められる。
さらに、上記放電管60が自動車用HIDランプ(High Intensity Discharged Lamp)等として用いられる場合には、放電管60が半田付けされることがあるため、半田付け時の熱(例えば350℃で5秒間、全浸漬)によって放電開始電圧が変化しない耐熱性に優れていることが要求される。
By the way, when the number of discharges of the discharge tube 60 is increased, a small amount of impure gas contained in the discharge gas or impure gas mixed in the sealing process of the hermetic envelope 66 is caused by the discharge electrode portion 68 or the coating 80. The work function of the discharge electrode portion 68 and the film 80 changes due to the adsorption on the surface or the sputtering of the discharge electrode portion 68 and the film 80 due to the impact during discharge, resulting in an increase in the initial discharge start voltage. As a result, an initial discharge delay may occur. This initial discharge delay is particularly noticeable when the discharge tube 60 is used in the dark. This is because, when the discharge tube 60 is left in the dark for a long time, electrons and ions as a seed of discharge in the hermetic envelope 66 are reduced.
Further, when the discharge tube 60 is used as a switching spark gap, it is required to have excellent frequency characteristics that can always provide a stable discharge start voltage when the discharge tube 60 is repeatedly operated in a short cycle.
Furthermore, when the discharge tube 60 is used as an automotive HID lamp (High Intensity Discharged Lamp) or the like, the discharge tube 60 may be soldered, so heat during soldering (for example, at 350 ° C. for 5 seconds) , All immersion) is required to have excellent heat resistance so that the discharge start voltage does not change.

この発明は、従来の上記問題に鑑みてなされたものであり、その目的とするところは、初期放電遅れを抑制することができると共に、周波数特性及び耐熱性に優れた放電管を実現することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to realize a discharge tube that can suppress an initial discharge delay and is excellent in frequency characteristics and heat resistance. is there.

本発明者らは、放電電極の表面に形成する被膜の構成材料について種々検討を試みた結果、臭化セシウム(CsBr)、酸化マグネシウム(MgO)及びチタン(Ti)の混合物で被膜を構成した場合に、初期放電開始電圧の上昇を効果的に防止できると共に、周波数特性及び耐熱性にも優れた放電管を実現できることを見出し、本発明を完成するに至ったものである。
すなわち、本発明に係る放電型サージ吸収素子は、複数の放電電極を放電間隙を隔てて配置すると共に、これを放電ガスと共に気密外囲器内に封入してなる放電管において、上記放電電極の表面に、臭化セシウム、酸化マグネシウム及びチタンの混合物が含有された被膜を形成したことを特徴とする。
上記臭化セシウム、酸化マグネシウム及びチタンの混合割合は、臭化セシウムが10〜70重量%、酸化マグネシウムが10〜70重量%、チタンが10〜70重量%と成すのが好ましい。
As a result of various studies on the constituent materials of the coating film formed on the surface of the discharge electrode, the present inventors have formed a coating film with a mixture of cesium bromide (CsBr), magnesium oxide (MgO), and titanium (Ti). In addition, the inventors have found that a discharge tube that can effectively prevent an increase in the initial discharge start voltage and that is excellent in frequency characteristics and heat resistance can be realized, and has completed the present invention.
That is, the discharge type surge absorbing element according to the present invention is a discharge tube in which a plurality of discharge electrodes are arranged with a discharge gap and sealed together with a discharge gas in an airtight envelope. A coating film containing a mixture of cesium bromide, magnesium oxide and titanium is formed on the surface.
The mixing ratio of the cesium bromide, magnesium oxide and titanium is preferably 10 to 70% by weight of cesium bromide, 10 to 70% by weight of magnesium oxide and 10 to 70% by weight of titanium.

本発明に係る放電管にあっては、放電電極の表面に、臭化セシウム、酸化マグネシウム及びチタンの混合物が含有された被膜を形成したことにより、初期放電開始電圧の上昇を防止でき、初期放電遅れを抑制することができると共に、周波数特性及び耐熱性に優れた放電管を実現することができる。   In the discharge tube according to the present invention, by forming a film containing a mixture of cesium bromide, magnesium oxide and titanium on the surface of the discharge electrode, it is possible to prevent an increase in the initial discharge start voltage and to prevent the initial discharge. While being able to suppress the delay, it is possible to realize a discharge tube excellent in frequency characteristics and heat resistance.

本発明に係る放電管10は、図1及び図2に示すように、両端が開口した絶縁材としてのセラミックよりなる円筒状のケース部材12の両端開口部を、放電電極を兼ねた一対の蓋部材14,14で気密に封止することによって気密外囲器16を形成してなる。   As shown in FIGS. 1 and 2, a discharge tube 10 according to the present invention has a pair of lids that serve as discharge electrodes at both ends of a cylindrical case member 12 made of ceramic as an insulating material having both ends open. The hermetic envelope 16 is formed by hermetically sealing with the members 14 and 14.

上記蓋部材14は、気密外囲器16の中心に向けて大きく突き出た平面状の放電電極部18と、ケース部材12の端面に接する接合部20を備えており、両蓋部材14,14の放電電極部18,18間には、所定の放電間隙22が形成されている。
放電電極部18と接合部20を備えた上記蓋部材14は、無酸素銅や、無酸素銅にジルコニウム(Zr)を含有させたジルコニウム銅で構成されている。尚、ケース部材12の端面と蓋部材14の接合部20とは、銀ろう等のシール材(図示せず)を介して気密封止されている。
The lid member 14 includes a planar discharge electrode portion 18 projecting greatly toward the center of the hermetic envelope 16, and a joint portion 20 in contact with the end surface of the case member 12. A predetermined discharge gap 22 is formed between the discharge electrode portions 18 and 18.
The lid member 14 provided with the discharge electrode portion 18 and the joint portion 20 is made of oxygen-free copper or zirconium copper containing oxygen-free copper containing zirconium (Zr). Note that the end face of the case member 12 and the joint portion 20 of the lid member 14 are hermetically sealed through a sealing material (not shown) such as silver solder.

また、上記ケース部材12の内壁面24には、その両端が、放電電極を兼ねた上記蓋部材14,14と微小放電間隙26を隔てて配置された線状のトリガ放電膜28が複数形成されている。図1及び図2においては、トリガ放電膜28を、ケース部材12の内壁面24の円周方向に、45度間隔で8本形成した場合が例示されている。
上記トリガ放電膜28は、カーボン系材料等の導電性材料で構成されている。このトリガ放電膜28は、例えば、カーボン系材料より成る芯材を擦り付けることにより形成することができる。
In addition, a plurality of linear trigger discharge films 28 are formed on the inner wall surface 24 of the case member 12 so that both ends of the case member 12 are spaced apart from the lid members 14 and 14 that also serve as discharge electrodes and a minute discharge gap 26. ing. 1 and 2 exemplify a case where eight trigger discharge films 28 are formed at intervals of 45 degrees in the circumferential direction of the inner wall surface 24 of the case member 12.
The trigger discharge film 28 is made of a conductive material such as a carbon-based material. The trigger discharge film 28 can be formed, for example, by rubbing a core material made of a carbon-based material.

上記放電電極部18の表面には、臭化セシウム(CsBr)、酸化マグネシウム(MgO)及びチタン(Ti)の混合物が含有された被膜30が形成されている。
この被膜30は、臭化セシウムの粉末と酸化マグネシウムの粉末とチタンの粉末の混合物を、珪酸ナトリウム溶液と純水よりなるバインダーに添加したものを、放電電極部18表面に塗布することによって形成することができる。また、臭化セシウムの添加された上記バインダー中に、酸化マグネシウム粉末及びチタンの粉末を加えて混合したものを、放電電極部18表面に塗布して形成することもできる。
この場合、臭化セシウム、酸化マグネシウム及びチタンの混合割合は、臭化セシウムが10〜70重量%、酸化マグネシウムが10〜70重量%、チタンが10〜70重量%と成すのが、初期放電開始電圧の上昇を効果的に防止すると共に、周波数特性及び耐熱性の向上を図る上で好ましい。
また、臭化セシウム、酸化マグネシウム及びチタンの混合物と、バインダーとの配合割合は、臭化セシウム、酸化マグネシウム及びチタンの混合物が0.01〜40重量%、バインダーが99.99〜60重量%と成される。
尚、バインダー中の珪酸ナトリウム溶液と純水との配合割合は、珪酸ナトリウム溶液が0.01〜70重量%、純水が99.99〜30重量%の配合割合で混合される。
A film 30 containing a mixture of cesium bromide (CsBr), magnesium oxide (MgO), and titanium (Ti) is formed on the surface of the discharge electrode portion 18.
The coating 30 is formed by applying a mixture of a cesium bromide powder, a magnesium oxide powder and a titanium powder to a binder composed of a sodium silicate solution and pure water on the surface of the discharge electrode portion 18. be able to. Alternatively, the binder to which cesium bromide is added may be formed by applying a mixture of a magnesium oxide powder and a titanium powder to the surface of the discharge electrode portion 18.
In this case, the mixing ratio of cesium bromide, magnesium oxide and titanium is 10 to 70% by weight of cesium bromide, 10 to 70% by weight of magnesium oxide and 10 to 70% by weight of titanium. This is preferable for effectively preventing the voltage from increasing and improving the frequency characteristics and heat resistance.
The blending ratio of the mixture of cesium bromide, magnesium oxide and titanium and the binder is 0.01 to 40% by weight of the mixture of cesium bromide, magnesium oxide and titanium, and 99.99 to 60% by weight of the binder. Made.
The mixing ratio of the sodium silicate solution and pure water in the binder is such that the sodium silicate solution is 0.01 to 70% by weight and the pure water is 99.99 to 30% by weight.

上記気密外囲器16内には、所定の放電ガスが封入されている。この放電ガスとしては、例えば、アルゴン、ネオン、ヘリウム、キセノン等の希ガスあるいは窒素ガス等の不活性ガスの単体又は混合ガスが該当する。また、希ガスあるいは不活性ガスの単体又は混合ガスと、H等の負極性ガスとの混合ガスが該当する。 A predetermined discharge gas is sealed in the hermetic envelope 16. As this discharge gas, for example, a rare gas such as argon, neon, helium, or xenon, or an inert gas such as nitrogen gas or a mixed gas is applicable. In addition, a single gas or a mixed gas of a rare gas or an inert gas and a mixed gas of a negative gas such as H 2 are applicable.

本発明の上記放電管10にあっては、放電電極を兼ねた上記一対の蓋部材14,14間に、当該放電管10の放電開始電圧以上の電圧が印加されると、トリガ放電膜28の両端と蓋部材14,14間の微小放電間隙26に電界が集中し、これにより微小放電間隙26に電子が放出されてトリガ放電としての沿面コロナ放電が発生する。次いで、この沿面コロナ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電が放電電極部18,18間の放電間隙22へと転移し、主放電としてのアーク放電に移行するのである。   In the discharge tube 10 of the present invention, when a voltage equal to or higher than the discharge start voltage of the discharge tube 10 is applied between the pair of lid members 14 and 14 also serving as discharge electrodes, the trigger discharge film 28 The electric field concentrates in the minute discharge gap 26 between the both ends and the lid members 14 and 14, whereby electrons are emitted into the minute discharge gap 26 to generate creeping corona discharge as a trigger discharge. Next, the creeping corona discharge shifts to glow discharge due to an electron priming effect. Then, the glow discharge is transferred to the discharge gap 22 between the discharge electrode portions 18 and 18, and the arc discharge as the main discharge is transferred.

而して、本発明の放電管10にあっては、放電電極部18の表面に、臭化セシウム、酸化マグネシウム及びチタンの混合物が含有された被膜30を形成したことにより、初期放電開始電圧の上昇を防止でき、初期放電遅れを抑制できる長寿命な放電管10を実現することができる。
すなわち、初期放電遅れは、「統計的遅れ」と「放電形成の遅れ」に起因して生じるものであり、上記「統計的遅れ」は、放電の種火となる初期電子が出現するまでの時間(初期電子の発生確率が影響するため統計学的な値となる)をいい、光電効果が得られない暗中で発生する。一方、初期電子が存在しても、放電形成においては多数の電子雪崩現象を繰り返すことによってグロー放電のような大電流の放電に成長するものであり、この成長に必要な時間を「放電形成の遅れ」という。
本発明の放電管10の被膜30中に含有された酸化マグネシウムは、仕事関数が低く電子を放出しやすいことから、気密外囲器16内に放電の種火となる初期電子を素早く大量に供給できるため、上記統計的遅れを防止でき、その結果、初期放電遅れを抑制できるのである。
また、酸化マグネシウムは、耐スパッタ性に優れているため、スパッタされた被膜30の構成材料が、トリガ放電膜28に付着・堆積する量が減少することも、初期放電遅れの抑制に寄与している。
尚、初期放電開始電圧は、放電管を繰り返し動作させた場合における初回の放電開始電圧のことをいい、この初期放電開始電圧に続く2回目以降の放電開始電圧を追随放電開始電圧という。
Thus, in the discharge tube 10 of the present invention, the coating 30 containing a mixture of cesium bromide, magnesium oxide and titanium is formed on the surface of the discharge electrode portion 18, so that the initial discharge start voltage is increased. A long-life discharge tube 10 that can prevent the rise and suppress the initial discharge delay can be realized.
In other words, the initial discharge delay is caused by “statistical delay” and “discharge formation delay”, and the above “statistical delay” is the time until the appearance of the initial electrons that become the seed of discharge. (It becomes a statistical value because the generation probability of initial electrons is affected.) It occurs in the dark where the photoelectric effect cannot be obtained. On the other hand, even in the presence of initial electrons, a large number of electron avalanche phenomena are repeated in the discharge formation to grow into a large current discharge such as a glow discharge. It is called “delay”
Magnesium oxide contained in the coating 30 of the discharge tube 10 of the present invention has a low work function and easily emits electrons, and thus quickly supplies a large amount of initial electrons as a discharge igniter in the hermetic envelope 16. Therefore, the statistical delay can be prevented, and as a result, the initial discharge delay can be suppressed.
In addition, since magnesium oxide is excellent in spatter resistance, the amount of the constituent material of the sputtered coating 30 adhering to and depositing on the trigger discharge film 28 also contributes to the suppression of the initial discharge delay. Yes.
The initial discharge start voltage refers to the first discharge start voltage when the discharge tube is repeatedly operated, and the second and subsequent discharge start voltages subsequent to the initial discharge start voltage are referred to as follow-up discharge start voltages.

図3は、臭化セシウム、酸化マグネシウム及びチタンの混合物が含有された被膜30を放電電極部18の表面に形成して成る本発明の放電管10と、比較例としてヨウ化カリウム(KI)の含有された被膜80を放電電極部68の表面に形成した従来の放電管60、さらに比較例として臭化セシウムのみを含有する被膜を放電電極部の表面に形成した放電管における、暗中での放電回数と初期放電開始電圧との関係を示すグラフである。これら放電管は、何れも放電開始電圧が800Vに設定されているものを用いており、この場合、初期放電開始電圧が1000Vを越えると使用に適さないものとなる。
尚、本発明の放電管10は、臭化セシウムの粉末2g、酸化マグネシウムの粉末1g、チタンの粉末1gの混合物をバインダー20g(珪酸ナトリウム溶液12g+純水8g)に添加したものを、放電電極部18表面に塗布して被膜30を形成した。従って、この場合の臭化セシウム、酸化マグネシウム及びチタンの混合割合は、臭化セシウムが50重量%、酸化マグネシウムが25重量%、チタンが25重量%、すなわち重量比で2:1:1と成されている。
また、臭化セシウム、酸化マグネシウム及びチタンの混合物(4g)と、バインダー(20g)との配合割合は、重量比で1:5と成されている。
図3のグラフに示される通り、従来の放電管60の場合(図3のグラフB)には、放電回数が約10万回程度で初期放電開始電圧が1000Vを越えて使用に適さなくなっている。また、臭化セシウムのみを含有する被膜を放電電極部の表面に形成した放電管の場合(図3のグラフC)は、従来の放電管60よりは初期放電開始電圧の上昇は抑制できるものの、初期放電開始電圧は徐々に上昇し、放電回数が約45万回程度で初期放電開始電圧が1000Vを越えて使用に適さなくなっている。
これに対し、本発明の放電管10の場合(図3のグラフA)には、放電回数が50万回となっても初期放電開始電圧が殆ど一定であり、従って暗中においても放電遅れを生じることがなく長寿命化が実現されている。
FIG. 3 shows a discharge tube 10 of the present invention in which a coating 30 containing a mixture of cesium bromide, magnesium oxide and titanium is formed on the surface of the discharge electrode portion 18, and potassium iodide (KI) as a comparative example. Discharge in the dark in a conventional discharge tube 60 in which the contained coating 80 is formed on the surface of the discharge electrode portion 68, and in a discharge tube in which a coating containing only cesium bromide is formed on the surface of the discharge electrode portion as a comparative example. It is a graph which shows the relationship between a frequency | count and an initial stage discharge start voltage. Any of these discharge tubes is used in which the discharge start voltage is set to 800 V. In this case, if the initial discharge start voltage exceeds 1000 V, it becomes unsuitable for use.
The discharge tube 10 of the present invention is obtained by adding a mixture of 2 g of cesium bromide powder, 1 g of magnesium oxide powder and 1 g of titanium powder to 20 g of binder (12 g of sodium silicate solution + 8 g of pure water). A coating 30 was formed by coating on 18 surfaces. Therefore, the mixing ratio of cesium bromide, magnesium oxide and titanium in this case is 50% by weight of cesium bromide, 25% by weight of magnesium oxide and 25% by weight of titanium, that is, 2: 1: 1 by weight. Has been.
Moreover, the mixture ratio of the mixture (4g) of a cesium bromide, magnesium oxide, and titanium and a binder (20g) is comprised by weight ratio 1: 5.
As shown in the graph of FIG. 3, in the case of the conventional discharge tube 60 (graph B of FIG. 3), the number of discharges is about 100,000 times and the initial discharge start voltage exceeds 1000 V, making it unsuitable for use. . Further, in the case of a discharge tube in which a coating containing only cesium bromide is formed on the surface of the discharge electrode part (graph C in FIG. 3), although an increase in the initial discharge start voltage can be suppressed as compared with the conventional discharge tube 60, The initial discharge start voltage gradually increases, the number of discharges is about 450,000 times, and the initial discharge start voltage exceeds 1000 V, making it unsuitable for use.
On the other hand, in the case of the discharge tube 10 of the present invention (graph A in FIG. 3), the initial discharge start voltage is almost constant even when the number of discharges reaches 500,000, and therefore a discharge delay occurs even in the dark. Long life has been achieved without any problems.

また、本発明の放電管10は、放電電極部18の表面に、臭化セシウム、酸化マグネシウム及びチタンの混合物が含有された被膜30を形成したことにより、周波数特性に優れた放電管10を実現することができる。
すなわち、放電管10がスイッチングスパークギャップとして用いられる場合には、少なくとも周波数200Hz(5ms)間隔で繰り返し動作させた場合でも、安定した放電開始電圧が得られることが求められる。図4は、放電開始電圧が800Vに設定されている本発明の放電管10を、周波数200Hz(5ms)間隔で動作させた場合の放電開始電圧の推移を示すチャートであり、当該チャートに示される通り、本発明の放電管10は、放電開始電圧が常に800Vで安定しており、周波数特性に優れていることがわかる。
本発明の放電10管は、上記被30膜中に絶縁物(酸化物)である酸化マグネシウムを含有させることにより、規定電圧より低い電圧で放電が生成され難くなり、その結果、早期点弧や続流の発生が抑制され、短い周期で繰り返し動作させた場合においても、規定電圧(図4の場合、800V)で安定的に放電生成が可能になると考えられる。
Further, the discharge tube 10 of the present invention realizes the discharge tube 10 having excellent frequency characteristics by forming a coating 30 containing a mixture of cesium bromide, magnesium oxide and titanium on the surface of the discharge electrode portion 18. can do.
That is, when the discharge tube 10 is used as a switching spark gap, it is required to obtain a stable discharge start voltage even when it is repeatedly operated at least at a frequency of 200 Hz (5 ms). FIG. 4 is a chart showing the transition of the discharge start voltage when the discharge tube 10 of the present invention in which the discharge start voltage is set to 800 V is operated at a frequency of 200 Hz (5 ms), and is shown in the chart. As can be seen, the discharge tube 10 of the present invention has a stable discharge start voltage of 800 V and is excellent in frequency characteristics.
The discharge 10 tube of the present invention makes it difficult for a discharge to be generated at a voltage lower than a specified voltage by including magnesium oxide, which is an insulator (oxide), in the 30 film. It is considered that discharge can be stably generated at a specified voltage (800 V in the case of FIG. 4) even when the continuous current is suppressed and the operation is repeated with a short cycle.

さらに、本発明の放電管10は、放電電極部18の表面に、臭化セシウム、酸化マグネシウム及びチタンの混合物が含有された被膜30を形成したことにより、耐熱性に優れた放電管10を実現することができる。
すなわち、放電管10が自動車用HIDランプ等として用いられる場合には、半田付け時の熱(例えば350℃で5秒間、全浸漬)によって放電開始電圧が変化しないことが求められる。本発明の放電管10は、耐熱性に優れたチタンを被膜30中に含有させることにより、被膜30の耐熱性が向上し、その結果、半田付け時の熱による放電開始電圧の変化を抑制できるのである。
図5は、放電開始電圧が800Vに設定されている本発明の放電管10の耐熱性試験を行う前の放電開始電圧と耐熱性試験を行った後の放電開始電圧を示すグラフである。この耐熱性試験は、本発明の放電管10を50個用意し、各放電管10を350℃の半田中に5秒間全浸漬して行い、各放電管10について耐熱性試験前後の放電開始電圧を測定した。図5のグラフ中の「●」は放電開始電圧の平均値、「■」は放電開始電圧の最大値、「▲」は放電開始電圧の最小値を示すものである。図5のグラフに示される通り、本発明の放電管10は、耐熱性試験の前後で放電開始電圧が殆ど変化せず、耐熱性に優れていることがわかる。
Furthermore, the discharge tube 10 of the present invention realizes the discharge tube 10 having excellent heat resistance by forming a coating 30 containing a mixture of cesium bromide, magnesium oxide and titanium on the surface of the discharge electrode portion 18. can do.
That is, when the discharge tube 10 is used as an automotive HID lamp or the like, it is required that the discharge start voltage does not change due to heat during soldering (for example, full immersion at 350 ° C. for 5 seconds). The discharge tube 10 of the present invention improves the heat resistance of the coating 30 by containing titanium having excellent heat resistance in the coating 30, and as a result, can suppress a change in the discharge start voltage due to heat during soldering. It is.
FIG. 5 is a graph showing the discharge start voltage before performing the heat resistance test of the discharge tube 10 of the present invention in which the discharge start voltage is set to 800 V and the discharge start voltage after performing the heat resistance test. This heat resistance test was performed by preparing 50 discharge tubes 10 according to the present invention and immersing each discharge tube 10 in 350 ° C. solder for 5 seconds. The discharge start voltage before and after the heat resistance test for each discharge tube 10 Was measured. In the graph of FIG. 5, “●” indicates the average value of the discharge start voltage, “■” indicates the maximum value of the discharge start voltage, and “▲” indicates the minimum value of the discharge start voltage. As shown in the graph of FIG. 5, it can be seen that the discharge tube 10 of the present invention has excellent heat resistance with almost no change in the discharge start voltage before and after the heat resistance test.

本発明に係る放電管を示す概略断面図である。It is a schematic sectional drawing which shows the discharge tube which concerns on this invention. 図1のA−A概略断面図である。It is an AA schematic sectional drawing of FIG. 本発明に係る放電管と比較例の放電管における、放電回数と初期放電開始電圧との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of discharge and the initial stage discharge start voltage in the discharge tube which concerns on this invention, and the discharge tube of a comparative example. 本発明に係る放電管を、周波数200Hz(5ms)間隔で動作させた場合の放電開始電圧の推移を示すチャートである。It is a chart which shows transition of the discharge start voltage at the time of operating the discharge tube which concerns on this invention at a frequency of 200 Hz (5 ms) space | interval. 本発明の放電管の耐熱性試験を行う前の放電開始電圧と耐熱性試験を行った後の放電開始電圧を示すグラフである。It is a graph which shows the discharge start voltage after performing the discharge start voltage before performing the heat resistance test of the discharge tube of this invention, and a heat resistance test. 従来の放電管を示す断面図である。It is sectional drawing which shows the conventional discharge tube.

符号の説明Explanation of symbols

10 放電管
12 ケース部材
14 蓋部材
16 気密外囲器
18 放電電極部
22 放電間隙
26 微小放電間隙
28 トリガ放電膜
30 被膜
10 discharge tube
12 Case material
14 Lid member
16 Airtight envelope
18 Discharge electrode
22 Discharge gap
26 Micro discharge gap
28 Trigger discharge membrane
30 coating

Claims (2)

複数の放電電極を放電間隙を隔てて配置すると共に、これを放電ガスと共に気密外囲器内に封入してなる放電管において、上記放電電極の表面に、臭化セシウム、酸化マグネシウム及びチタンの混合物が含有された被膜を形成したことを特徴とする放電管。   In a discharge tube in which a plurality of discharge electrodes are arranged with a discharge gap and sealed together with a discharge gas in an airtight envelope, a mixture of cesium bromide, magnesium oxide and titanium is formed on the surface of the discharge electrode. A discharge tube characterized in that a film containing is formed. 上記臭化セシウム、酸化マグネシウム及びチタンの混合割合は、臭化セシウムが10〜70重量%、酸化マグネシウムが10〜70重量%、チタンが10〜70重量%と成されていることを特徴とする請求項1に記載の放電管。 The mixing ratio of the cesium bromide, magnesium oxide and titanium is 10 to 70% by weight of cesium bromide, 10 to 70% by weight of magnesium oxide, and 10 to 70% by weight of titanium. The discharge tube according to claim 1 .
JP2005102267A 2005-03-31 2005-03-31 Discharge tube Active JP4651433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102267A JP4651433B2 (en) 2005-03-31 2005-03-31 Discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102267A JP4651433B2 (en) 2005-03-31 2005-03-31 Discharge tube

Publications (2)

Publication Number Publication Date
JP2006286293A JP2006286293A (en) 2006-10-19
JP4651433B2 true JP4651433B2 (en) 2011-03-16

Family

ID=37408001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102267A Active JP4651433B2 (en) 2005-03-31 2005-03-31 Discharge tube

Country Status (1)

Country Link
JP (1) JP4651433B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029698B2 (en) * 2007-11-27 2012-09-19 パナソニック株式会社 Manufacturing method of anti-static parts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126750U (en) * 1976-03-23 1977-09-27
JPS5497734U (en) * 1977-12-22 1979-07-10
JPS565392U (en) * 1979-06-26 1981-01-17
JPH0684579A (en) * 1991-12-26 1994-03-25 American Teleph & Telegr Co <Att> Protective device of gas tube
JP2003007420A (en) * 2001-06-22 2003-01-10 Okaya Electric Ind Co Ltd Discharge tube
JP2004259459A (en) * 2003-02-24 2004-09-16 Okaya Electric Ind Co Ltd Discharge tube

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412487A (en) * 1987-07-06 1989-01-17 Meguro Denki Seizo Kk Surge absorptive element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126750U (en) * 1976-03-23 1977-09-27
JPS5497734U (en) * 1977-12-22 1979-07-10
JPS565392U (en) * 1979-06-26 1981-01-17
JPH0684579A (en) * 1991-12-26 1994-03-25 American Teleph & Telegr Co <Att> Protective device of gas tube
JP2003007420A (en) * 2001-06-22 2003-01-10 Okaya Electric Ind Co Ltd Discharge tube
JP2004259459A (en) * 2003-02-24 2004-09-16 Okaya Electric Ind Co Ltd Discharge tube

Also Published As

Publication number Publication date
JP2006286293A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4651434B2 (en) Discharge tube
JP4209240B2 (en) Discharge tube
JP4651433B2 (en) Discharge tube
JP3151069U (en) Discharge tube
JP4469255B2 (en) Discharge tube
JP3114203U7 (en)
JP3114203U (en) Discharge tube
JP3125268U (en) Discharge tube
JP4764076B2 (en) Discharge tube
JP4977524B2 (en) Discharge tube and manufacturing method thereof
JP3125264U (en) Discharge tube
JP4594152B2 (en) Discharge tube
JP3144111U (en) Discharge tube
JP3128365U (en) Discharge tube
JP2006244794A (en) Discharge tube
JP3125266U (en) Discharge tube
JP3125267U (en) Discharge tube
JP3125269U (en) Discharge tube
JP3133824U (en) Discharge tube
JP3128032U (en) Discharge tube
JP3125270U (en) Discharge tube
JP3128033U (en) Discharge tube
JP3125265U (en) Discharge tube
JP3125263U (en) Discharge tube
JP4426982B2 (en) Discharge tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101214

R150 Certificate of patent or registration of utility model

Ref document number: 4651433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141224

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250