JP2004308917A - Manufacturing method for hydrodynamic porous oil impregnated bearing - Google Patents

Manufacturing method for hydrodynamic porous oil impregnated bearing Download PDF

Info

Publication number
JP2004308917A
JP2004308917A JP2004213354A JP2004213354A JP2004308917A JP 2004308917 A JP2004308917 A JP 2004308917A JP 2004213354 A JP2004213354 A JP 2004213354A JP 2004213354 A JP2004213354 A JP 2004213354A JP 2004308917 A JP2004308917 A JP 2004308917A
Authority
JP
Japan
Prior art keywords
bearing
oil
dynamic pressure
density ratio
sintered metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004213354A
Other languages
Japanese (ja)
Other versions
JP4188288B2 (en
Inventor
Tsuguto Nakaseki
嗣人 中関
Natsuhiko Mori
夏比古 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004213354A priority Critical patent/JP4188288B2/en
Publication of JP2004308917A publication Critical patent/JP2004308917A/en
Application granted granted Critical
Publication of JP4188288B2 publication Critical patent/JP4188288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately and simply form a hydrodynamic groove on a surface of a bearing. <P>SOLUTION: A cylindrical sintered metal material with a density ratio α(%) of 75≤α<85 is manufactured. A core rod formed to be a protrusion/recess-shaped mold corresponding to shapes of for the surface of a bearing is inserted onto an inner periphery of the sintered metal material, and a pressure is applied to the sintered metal material. Thus, the inner periphery of the sintered metal material is pressurized onto the mold of the core rod, and the hydrodynamic groove on the surface of the bearing is formed by means of plastic work. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、焼結金属からなる多孔質体に潤滑油あるいは潤滑グリースを含浸させて自己潤滑機能を持たせると共に、軸受隙間に介在する油の動圧油膜によって軸の摺動面を浮上支持する動圧型多孔質含油軸受の製造方法に関する。本発明の製造方法によって製造された動圧型多孔質含油軸受は、例えば、レーザビームプリンタ(LBP)のポリゴンミラー用や磁気ディスクドライブ(HDD等)用のスピンドルモータなど、高速下で高回転精度が要求される機器や、DVD−ROM用のスピンドルモータのように、ディスクが載ることによって大きなアンバランス荷重が作用し高速で駆動する機器などに好適である。   The present invention impregnates a porous body made of a sintered metal with lubricating oil or lubricating grease to have a self-lubricating function, and floats and supports a sliding surface of a shaft by a hydrodynamic oil film of oil interposed in a bearing gap. The present invention relates to a method for manufacturing a hydrodynamic porous oil-impregnated bearing. The hydrodynamic porous oil-impregnated bearing manufactured by the manufacturing method of the present invention has high rotational accuracy at high speeds, such as a spindle motor for a polygon mirror of a laser beam printer (LBP) or a magnetic disk drive (HDD). It is suitable for a required device or a device such as a spindle motor for a DVD-ROM, which drives at a high speed due to a large unbalanced load acting on the disk.

上記のような情報機器関連の小型スピンドルモータでは、回転性能のより一層の向上と低コスト化が求められており、そのための手段として、スピンドルの軸受部を転がり軸受から多孔質含油軸受に置き換えることが検討されている。しかし、多孔質含油軸受は、真円軸受の一種であるため、軸の偏心が小さいところでは、不安定振動が発生しやすく、回転速度の1/2の速度で振れ回るいわゆるホワールが発生しやすい欠点がある。そこで、軸受面にヘリングボーン形やスパイラル形などの動圧溝を設け、軸の回転に伴う動圧溝の作用によって軸受隙間に動圧油膜を発生させて軸を浮上支持することが従来より試みられている(動圧型多孔質含油軸受)。   In such small spindle motors related to information equipment, further improvement in rotational performance and cost reduction are required, and as a means for this, replacing the bearing part of the spindle from a rolling bearing to a porous oil-impregnated bearing. Is being considered. However, since the porous oil-impregnated bearing is a kind of a perfect circular bearing, unstable vibration is easily generated in a place where the eccentricity of the shaft is small, and so-called whirling which oscillates at half the rotation speed is easily generated. There are drawbacks. Therefore, it has been attempted to provide a dynamic pressure groove, such as a herringbone type or spiral type, on the bearing surface, and to generate a dynamic pressure oil film in the bearing gap by the action of the dynamic pressure groove due to the rotation of the shaft to float and support the shaft. (Dynamic pressure type porous oil-impregnated bearing).

一方、この種の動圧型多孔質含油軸受は、軸振れの抑制に高い効果を有する反面、軸受隙間内の油が軸受面の表面開孔を介して軸受内部に逃げてしまうことによる、動圧作用の低減現象(動圧抜け)があり、期待する動圧効果が得られにくいという問題がある。従来、この動圧抜けの問題を解消する手段として、軸受面における動圧溝に表面目つぶし加工を施して、動圧溝の形成領域を封孔した構成が知られている(特許文献1)。
実開昭63−19627号公報
On the other hand, this type of hydrodynamic porous oil-impregnated bearing has a high effect on suppressing shaft runout, but has a high dynamic pressure due to oil in the bearing gap escaping into the bearing through surface openings in the bearing surface. There is a problem that the effect is reduced (dynamic pressure loss), and it is difficult to obtain the expected dynamic pressure effect. Conventionally, as a means for solving the problem of the dynamic pressure drop, there is known a configuration in which a dynamic pressure groove on a bearing surface is subjected to surface blanking processing to seal a region where the dynamic pressure groove is formed (Patent Document 1).
JP-A-63-19627

特許文献1の構成では以下の問題点が生じる。    The configuration of Patent Document 1 has the following problems.

(1)動圧溝の形成領域が完全に封孔されているので、その領域では多孔質含油軸受の最大の特徴である油の循環が阻害される。従って、一旦軸受隙間に滲み出した油は動圧溝の作用によって溝の屈曲部に押し込まれ、そこにとどまることになる。軸受隙間内では大きな剪断作用が働いているので、その剪断力と摩擦熱によって溝部にとどまった油は変性しやすく、また、温度上昇によって酸化劣化が早まる傾向にある。従って、軸受寿命が短くなる。   (1) Since the formation region of the dynamic pressure groove is completely sealed, the circulation of oil, which is the greatest feature of the porous oil-impregnated bearing, is inhibited in that region. Therefore, the oil once seeping into the bearing gap is pushed into the bent portion of the groove by the action of the dynamic pressure groove and stays there. Since a large shearing action is exerted in the bearing gap, the oil remaining in the groove tends to be denatured by the shearing force and the frictional heat, and the oxidative deterioration tends to be accelerated by the temperature rise. Therefore, the bearing life is shortened.

(2)動圧溝の形成領域を完全に封孔処理することは極めて困難である。上記公報では塑性加工により封孔できるとしているが、通常、動圧溝の溝深さはμmオーダーのものであり、この程度の塑性加工で表面開孔が完全に封孔されることはない。   (2) It is extremely difficult to completely seal the area where the dynamic pressure groove is formed. Although the above publication discloses that the sealing can be performed by plastic working, the groove depth of the dynamic pressure groove is usually on the order of μm, and the surface opening is not completely sealed by such plastic working.

(3)表面目つぶし加工を施す他の手段としてコーティング等を挙げているが、コーティング被膜の厚さは溝深さよりも薄くする必要があり、数μmのコーティング被膜を動圧溝の形成領域にのみ施すのは極めて困難である。   (3) Coating etc. is mentioned as another means for performing surface blanking, but the thickness of the coating film needs to be thinner than the groove depth, and a coating film of several μm is applied only to the area where the dynamic pressure groove is formed. It is extremely difficult to apply.

尚、動圧溝の形成領域を完全に封孔しなくても、表面開孔の面積比(表面開孔率)を調整することにより、軸受隙間から軸受内部への油の戻り量が減少するので、それなりの効果は期待できる。しかし、表面開孔率の調整では、油の流れに対する抵抗が小さいため、油の戻り量の調整に限界があり、近時のスピンドルモータの一層の高速回転化、高性能化の傾向を考えると、充分な動圧効果を得ることができない場合が多い。   Even if the formation region of the dynamic pressure groove is not completely sealed, the amount of oil returned from the bearing gap to the inside of the bearing is reduced by adjusting the area ratio of the surface openings (surface opening ratio). Therefore, a reasonable effect can be expected. However, in the adjustment of the surface opening ratio, the resistance to the oil flow is small, so the adjustment of the oil return amount is limited, and considering the recent trend of higher speed rotation and higher performance of spindle motors. In many cases, a sufficient dynamic pressure effect cannot be obtained.

そこで、本発明は、この種の動圧型多孔質含油軸受において、軸受本体の内部と軸受隙間との間の油の循環を確保しつつ、軸受隙間内における動圧抜けの問題を解消し、動圧溝による動圧効果を高めることにより、軸受機能、特に軸受剛性(軸受負荷容量)および軸受寿命のより一層の向上を図ることを目的とする。   Accordingly, the present invention provides a dynamic pressure-type porous oil-impregnated bearing of this type which solves the problem of dynamic pressure drop in the bearing gap while securing oil circulation between the inside of the bearing body and the bearing gap. An object of the present invention is to further improve the bearing function, particularly the bearing rigidity (bearing load capacity) and the service life of the bearing, by increasing the dynamic pressure effect by the pressure grooves.

また、本発明は、軸受面における動圧溝を簡易にかつ精度良く形成することができる製造方法を提供することを目的とする。   Another object of the present invention is to provide a manufacturing method capable of easily and accurately forming a dynamic pressure groove on a bearing surface.

上記課題を解決するため、本発明は、焼結金属からなる多孔質の軸受本体の内周面に、動圧溝を有する軸受面が形成された動圧型多孔質含油軸受の製造方法であって、密度比α(%)が75≦α<85である円筒状の焼結金属素材を製作し、軸受面の形状に対応した凹凸状の成形型を形成したコアロッドを焼結金属素材の内周面に挿入し、焼結金属素材に圧迫力を加えてコアロッドの成形型に加圧することにより、軸受面の動圧溝を塑性加工により成形する工程を含む構成を提供する。ここで、密度比α(%)は下記式で表されるものである。   In order to solve the above problems, the present invention is a method for producing a hydrodynamic porous oil-impregnated bearing in which a bearing surface having a hydrodynamic groove is formed on an inner peripheral surface of a porous bearing body made of a sintered metal. A core rod in which a cylindrical sintered metal material having a density ratio α (%) of 75 ≦ α <85 is manufactured, and a concave / convex forming die corresponding to the shape of the bearing surface is formed, and the inner periphery of the sintered metal material is formed. The present invention provides a configuration including a step of forming a dynamic pressure groove on a bearing surface by plastic working by inserting the bearing into a surface and applying a pressing force to a sintered metal material to press the core rod forming die. Here, the density ratio α (%) is represented by the following equation.

密度比α(%)=(ρ1/ρ0)×100
ρ1:多孔質体の密度
ρ0:その多孔質体に細孔が無いと仮定した場合の密度
Density ratio α (%) = (ρ1 / ρ0) × 100
ρ1: Density of the porous body ρ0: Density assuming that the porous body has no pores

図4は、多孔質体における密度比α(%)と細孔率(単位体積内に占める細孔の体積割合)(%)との関係を示している。細孔率は密度比αに線形比例し、密度比αが大きくなるに従って細孔率は低下する。例えば、密度比α=75%で細孔率は約25%、密度比α=80%で細孔率は約20%、密度比α=85%で細孔率は約15%、密度比α=90%で細孔率は約10%、密度比α=95%で細孔率は約5%になる。細孔率は、外表面においては、表面開孔率(外表面の単位面積内に占める表面開孔の面積割合)とほぼ同じになる(表面処理を施さない場合)。   FIG. 4 shows the relationship between the density ratio α (%) and the porosity (volume ratio of pores in a unit volume) (%) in the porous body. The porosity is linearly proportional to the density ratio α, and decreases as the density ratio α increases. For example, when the density ratio α = 75%, the porosity is about 25%, when the density ratio α = 80%, the porosity is about 20%, when the density ratio α = 85%, the porosity is about 15%, and the density ratio α = 90%, the porosity is about 10%, and the density ratio α = 95%, the porosity is about 5%. The porosity on the outer surface is substantially the same as the surface porosity (area ratio of the surface porosity occupying a unit area of the outer surface) (when no surface treatment is performed).

焼結金属素材の密度比α(%)を75≦α<85の範囲内に設定した理由は次のとおりである。すなわち、焼結金属素材の密度比αが75%未満であると、細孔率が大きくなりすぎ、軸受面を成形する際、動圧溝の形状を精度良く仕上げることができない。逆に、焼結金属素材の密度比αが85%以上であると、細孔率が小さくなりすぎ、油の保有量が減少する。従って、動圧溝の成形精度を確保すると同時に、軸受本体の油保有量を確保する観点から、焼結金属素材の密度比α(%)を75≦α<85の範囲内とするのが良い。   The reason why the density ratio α (%) of the sintered metal material is set in the range of 75 ≦ α <85 is as follows. That is, if the density ratio α of the sintered metal material is less than 75%, the porosity becomes too large, and the shape of the dynamic pressure groove cannot be finished with high accuracy when the bearing surface is formed. Conversely, if the density ratio α of the sintered metal material is 85% or more, the porosity becomes too small, and the amount of retained oil decreases. Therefore, from the viewpoint of securing the forming accuracy of the dynamic pressure grooves and securing the oil holding amount of the bearing body, it is preferable to set the density ratio α (%) of the sintered metal material within the range of 75 ≦ α <85. .

また、焼結金属素材の内周面がコアロッドの成形型に加圧されることにより、製造後の動圧型多孔質含油軸受の少なくとも軸受面には、密度比αが上記の焼結金属素材の密度比αよりも高い表層部分が形成される。   In addition, the inner peripheral surface of the sintered metal material is pressed against the core rod forming die, so that at least the bearing surface of the manufactured hydrodynamic porous oil-impregnated bearing has a density ratio α of the above sintered metal material. A surface portion higher than the density ratio α is formed.

動圧型多孔質含油軸受は、軸受本体の内部の細孔内に保有した油を軸受本体と軸受隙間との間で循環させながら、動圧溝の動圧作用によって軸受隙間内に動圧油膜を形成し、その動圧油膜によって軸を継続して浮上支持する点に特徴を有するものであり、そのような安定した軸受機能を発揮させるためには、油の適切な循環と、軸支持に必要な動圧油膜の形成を確保する必要がある。特に、油の循環は、油の劣化を抑制して軸受寿命を高める働きをもつ他、動圧油膜の形成に対して相互補完的に働き、また相反的にも働くので、油の循環を如何に適切ならしめるかは、この種の動圧型多孔質含油軸受における極めて重要な課題である。すなわち、軸受隙間内に充分な動圧力と油膜厚さをもった動圧油膜を常時形成するためには、新鮮な適量の油が軸受本体から軸受隙間へ常時滲み出して、動圧油膜を形成し、さらに軸受隙間から軸受本体へ戻るという油の循環サイクルが適切に働くことが不可欠である。油の循環量が過小であると、軸受隙間への油の滲み出しが不足して、動圧油膜の形成が不充分になると同時に、軸受隙間内に油が滞留し、温度上昇により酸化劣化をきたす。一方、油の循環量が過大であると、軸受隙間から軸受本体への油の戻りが過度となり、前述したような動圧抜けの問題が起こる。   The dynamic pressure type porous oil-impregnated bearing circulates the oil held in the pores inside the bearing body between the bearing body and the bearing gap, and creates a dynamic pressure oil film in the bearing gap by the dynamic pressure action of the dynamic pressure groove. It is characterized by the fact that the shaft is continuously lifted and supported by the dynamic pressure oil film.In order to achieve such a stable bearing function, it is necessary for proper oil circulation and shaft support. It is necessary to ensure the formation of a dynamic oil film. In particular, the circulation of oil has the function of suppressing deterioration of the oil and extending the life of the bearing, and also complements and reciprocates with the formation of the hydrodynamic oil film. Is an extremely important issue in this type of hydrodynamic porous oil-impregnated bearing. In other words, in order to always form a dynamic pressure oil film with sufficient dynamic pressure and oil film thickness in the bearing gap, a proper amount of fresh oil always oozes out of the bearing body into the bearing gap to form a dynamic pressure oil film. In addition, it is essential that the oil circulation cycle of returning to the bearing body from the bearing gap works properly. If the amount of oil circulation is too small, the oil will not sufficiently seep into the bearing gap, resulting in insufficient formation of the hydrodynamic oil film.At the same time, the oil will stay in the bearing gap, causing oxidation deterioration due to temperature rise. Come. On the other hand, if the circulation amount of the oil is excessive, the oil returns from the bearing gap to the bearing body excessively, and the above-described problem of the dynamic pressure drop occurs.

油の循環量を制御するための手段として、表面開孔率の調整、油の動粘度の調整が挙げられる。しかし、表面開孔率の調整では油の流れに対する抵抗が小さいため、循環量調整に限界がある。また、油の動粘度の調整を過度に行うと、トルク上昇の要因となる。従って、これらの手段では不充分となる場合がある。   Means for controlling the amount of oil circulation include adjustment of the surface porosity and adjustment of the kinematic viscosity of the oil. However, since the resistance to the oil flow is small in the adjustment of the surface porosity, there is a limit in adjusting the circulation amount. Excessive adjustment of the kinematic viscosity of the oil causes an increase in torque. Therefore, these measures may be insufficient.

上述のように、本発明によれば、動圧型多孔質含油軸受の少なくとも軸受面に密度比αの高い表層部分が形成されるため、油が上記表層部分の細孔を通過する際の抵抗が適度に大きくなり、軸受本体から軸受隙間への油の滲み出し、軸受隙間から軸受本体への油の戻りが適切量に調整される。そのため、動圧溝による動圧油膜の形成作用が高められ、軸受剛性(軸受負荷容量)が向上すると同時に、油の適切な循環が確保され、軸受寿命が向上する。   As described above, according to the present invention, since a surface portion having a high density ratio α is formed on at least the bearing surface of the hydrodynamic porous oil-impregnated bearing, resistance when oil passes through the pores of the surface portion is reduced. It becomes moderately large, and oil seepage from the bearing body into the bearing gap and return of oil from the bearing gap to the bearing body are adjusted to an appropriate amount. Therefore, the action of forming the dynamic pressure oil film by the dynamic pressure grooves is enhanced, and the bearing rigidity (bearing load capacity) is improved, and at the same time, appropriate circulation of oil is ensured, and the bearing life is improved.

上記の表層部分の密度比α(%)は85≦α≦95の範囲内であることが好ましい。表層部分の密度比αが85%未満であると、油の流れに対する抵抗が小さくなりすぎて、動圧抜けが起こり、充分な動圧効果が期待できない。逆に、表層部分の密度比αが95%を超えると、油の流れに対する抵抗が大きくなりすぎて、油の適切な循環が阻害される。本発明によって製造される動圧型多孔質含油軸受では、軸受面の表面から所定深さまでの表層部分の細孔によって油の流れに抵抗を与えるので、表面開孔率を調整する構成に比べて、油の滲み出し・戻り量の調整効果が高い。   It is preferable that the density ratio α (%) of the surface layer portion is in the range of 85 ≦ α ≦ 95. If the density ratio α of the surface layer portion is less than 85%, the resistance to the flow of the oil becomes too small, and a dynamic pressure drop occurs, and a sufficient dynamic pressure effect cannot be expected. Conversely, if the density ratio α of the surface layer portion exceeds 95%, the resistance to the flow of the oil becomes too large, and appropriate circulation of the oil is hindered. In the hydrodynamic porous oil-impregnated bearing manufactured according to the present invention, the flow of oil is given resistance to the flow of oil by the pores in the surface layer from the surface of the bearing surface to a predetermined depth. The effect of adjusting the amount of oil seeping out and returning is high.

上記表層部分の深さの平均値(t)(以下「平均深さt」とする。)と軸受面の内径寸法(D1)との比(t/D1)は1/60≦t/D1≦1/15の範囲内とすることが好ましい。t/D1が1/60未満であると、油の流れに対する抵抗が小さくなりすぎ、逆に、t/D1が1/15を超えると、油の流れに対する抵抗が大きくなりすぎ、上記と同様の現象が起こる。   The ratio (t / D1) of the average value (t) of the depth of the surface portion (hereinafter referred to as “average depth t”) to the inner diameter (D1) of the bearing surface is 1/60 ≦ t / D1 ≦. It is preferable to be within the range of 1/15. When t / D1 is less than 1/60, the resistance to the oil flow becomes too small. Conversely, when t / D1 exceeds 1/15, the resistance to the oil flow becomes too large, and the same as above. A phenomenon occurs.

油の循環量を制御するパラメータの一つに、油の動粘度がある。油の動粘度が高くなれば油は動きにくくなり、逆に、油の動粘度が低くなれば油は動きやすくなる。以上説明した構成に油の動粘度調整を付加すると、より良い効果が得られる。ただ、軸受面における表層部分の密度比α(%)と油の動粘度との間には、油の適切な循環と動圧油膜の形成を確保し得る最適範囲が存在すると考えられるので、その最適範囲において油の動粘度を選定すべきである。例えば、油の動粘度は、40°Cにおいて、5cSt〜60cSt、望ましくは、8cSt〜40cStにするのが良い。この範囲で油の動粘度を選定することにより、軸を浮上支持するために充分な動圧油膜が形成されると同時に、油の適切な循環が確保されるので、高回転精度、長寿命を達成することができる。   One of the parameters for controlling the amount of oil circulation is the kinematic viscosity of the oil. When the kinematic viscosity of the oil increases, the oil becomes difficult to move. Conversely, when the kinematic viscosity of the oil decreases, the oil moves easily. If the kinematic viscosity adjustment of the oil is added to the configuration described above, a better effect can be obtained. However, between the density ratio α (%) of the surface layer on the bearing surface and the kinematic viscosity of the oil, it is considered that there is an optimum range that can ensure proper circulation of the oil and formation of the hydrodynamic oil film. The kinematic viscosity of the oil should be selected in the optimal range. For example, the kinematic viscosity of the oil at 40 ° C. is preferably 5 cSt to 60 cSt, and more preferably 8 cSt to 40 cSt. By selecting the kinematic viscosity of the oil within this range, a sufficient dynamic pressure oil film is formed to support and float the shaft, and at the same time, appropriate circulation of the oil is ensured. Can be achieved.

尚、軸受面における表層部分の密度比αを85%〜95%の範囲内にした場合、軸受面における表面開孔率(面積率)は略5%〜15%になるが、表面処理加工を追加して、表面開孔率をさらに小さく、例えば2%〜5%程度にしても良い。   When the density ratio α of the surface layer on the bearing surface is in the range of 85% to 95%, the surface porosity (area ratio) on the bearing surface is approximately 5% to 15%. In addition, the surface porosity may be further reduced, for example, to about 2% to 5%.

本発明は以下の効果を有する。   The present invention has the following effects.

(1)本発明の製造方法によって製造された動圧型多孔質含油軸受は、軸受面の表層部分の細孔を介して、保有した油を軸受本体の内部と軸受隙間との間で循環させる構成になるので、軸受本体から軸受隙間への油の滲み出し、軸受隙間から軸受本体への油の戻りが適切量に調整される。そのため、動圧溝による動圧油膜の形成作用が高められ、軸受剛性(軸受負荷容量)が向上すると同時に、油の適切な循環が確保され、軸受寿命が向上する。   (1) The hydrodynamic porous oil-impregnated bearing manufactured by the manufacturing method of the present invention is configured such that the retained oil is circulated between the inside of the bearing main body and the bearing gap through pores in the surface layer of the bearing surface. Therefore, the seepage of oil from the bearing body into the bearing gap and the return of oil from the bearing gap to the bearing body are adjusted to an appropriate amount. Therefore, the action of forming the dynamic pressure oil film by the dynamic pressure grooves is enhanced, and the bearing rigidity (bearing load capacity) is improved, and at the same time, appropriate circulation of oil is ensured, and the bearing life is improved.

(2)焼結金属素材の密度比α(%)を75≦α<85の範囲内に設定することにより、軸受面(特に動圧溝)を簡易にかつ精度良く成形することができると同時に、軸受本体の適切な油保有量を確保することができる。   (2) By setting the density ratio α (%) of the sintered metal material in the range of 75 ≦ α <85, the bearing surface (especially, the dynamic pressure groove) can be formed easily and accurately. Accordingly, it is possible to secure an appropriate oil holding amount of the bearing body.

図5は、レーザビームプリンタ(LBP)のスピンドルモータの一構成例を概念的に示している。このスピンドルモータは、軸2と、軸2に設けられたロータ(ロータハブ)8と、軸2及びロータ8の回転を支持する動圧型多孔質含油軸受1とを備えている。この実施形態において、動圧型多孔質含油軸受1はハウジング7の内部に固定される。また、軸2は動圧型多孔質含油軸受1の内周に挿通され、その軸端をスラスト受け9によってスラスト方向に支持される。ロータ側に設けられたマグネット(ロータマグネット)とステータコイルとの間に発生する電磁力によって軸2及びロータ8が高速回転し、その回転が動圧型多孔質含油軸受1によって浮上支持(非接触支持)される。   FIG. 5 conceptually shows a configuration example of a spindle motor of a laser beam printer (LBP). The spindle motor includes a shaft 2, a rotor (rotor hub) 8 provided on the shaft 2, and a hydrodynamic porous oil-impregnated bearing 1 that supports rotation of the shaft 2 and the rotor 8. In this embodiment, the hydrodynamic porous oil-impregnated bearing 1 is fixed inside a housing 7. The shaft 2 is inserted into the inner periphery of the hydrodynamic porous oil-impregnated bearing 1, and its shaft end is supported by a thrust receiver 9 in the thrust direction. The shaft 2 and the rotor 8 rotate at high speed by electromagnetic force generated between a magnet (rotor magnet) provided on the rotor side and the stator coil, and the rotation is supported by the dynamic pressure type porous oil-impregnated bearing 1 in a floating manner (non-contact support). ) Is done.

図1は、上記の動圧型多孔質含油軸受1の一構成例を示している。この多孔質含油軸受1は、多孔質体例えば銅又は鉄、あるいはその両者を主成分とする焼結合金からなる軸受本体1aと、潤滑油又は潤滑グリースの含浸によって軸受本体1aの細孔内に保有された油(潤滑油又は潤滑グリースの基油)とで構成される。   FIG. 1 shows a configuration example of the above-described dynamic pressure type porous oil-impregnated bearing 1. The porous oil-impregnated bearing 1 has a bearing body 1a made of a porous body such as copper or iron, or a sintered alloy containing both of them as a main component, and impregnation of lubricating oil or lubricating grease into pores of the bearing body 1a. It is composed of retained oil (base oil of lubricating oil or lubricating grease).

軸受本体1aの内周には、支持すべき軸の外周面と軸受隙間を介して対向する軸受面1bが形成され、その軸受面1bに傾斜状の動圧溝1cが形成されている。この実施形態における軸受面1bは、軸方向に対して一方に傾斜した複数の動圧溝1cを円周方向に配列形成した第1領域m1と、第1領域m1から軸方向に離隔し、軸方向に対して他方に傾斜した複数の動圧溝1cを円周方向に配列形成した第2領域m2と、第1領域m1と第2領域m2との間に位置する環状の平滑領域nとで構成される。第1領域m1の背(動圧溝1c間の領域)1dと第2領域m2の背(動圧溝1c間の領域)1dは、それぞれ平滑領域nに連続している。軸受面1bには、動圧溝1cの形成領域を含む全領域にわたって表面開孔がほぼ均一に分布している。軸受本体1aと軸との間に相対回転が生じると、第1領域m1と第2領域m2にそれぞれ逆向きに傾斜形成された動圧溝1cによって、軸受隙間内の油が平滑領域nに向けて引き込まれ、油が平滑領域nに集められるため、平滑領域nにおける油膜圧力が高められる。そのため、動圧油膜の形成効果が高い。   A bearing surface 1b is formed on the inner periphery of the bearing body 1a so as to face an outer peripheral surface of a shaft to be supported via a bearing gap, and an inclined dynamic pressure groove 1c is formed on the bearing surface 1b. The bearing surface 1b in this embodiment is provided with a first region m1 in which a plurality of hydrodynamic grooves 1c inclined in one direction with respect to the axial direction are formed in the circumferential direction, and is separated from the first region m1 in the axial direction. A second region m2 in which a plurality of dynamic pressure grooves 1c inclined in the other direction with respect to the direction are formed in the circumferential direction, and an annular smooth region n located between the first region m1 and the second region m2. Be composed. The spine 1d of the first area m1 (the area between the dynamic pressure grooves 1c) and the spine 1d of the second area m2 (the area between the dynamic pressure grooves 1c) are respectively continuous with the smooth area n. On the bearing surface 1b, surface openings are substantially uniformly distributed over the entire region including the region where the dynamic pressure groove 1c is formed. When the relative rotation occurs between the bearing main body 1a and the shaft, the oil in the bearing gap is directed to the smooth area n by the hydrodynamic grooves 1c which are formed in the first area m1 and the second area m2 in the opposite directions. And the oil is collected in the smooth region n, the oil film pressure in the smooth region n is increased. Therefore, the effect of forming the dynamic pressure oil film is high.

尚、軸受面1bの形状は同図に示すものに限定されず、例えば、軸方向に対して一方に傾斜した動圧溝と他方に傾斜した動圧溝とを対にしてV字状に連続させても良い(この場合、環状の平滑領域nは存在しない。)。また、1つの軸受本体の内周面に複数例えば2つの軸受面を軸方向に離間させて形成しても良い。これにより、軸受面相互間の同軸度を精度良く確保することができる。   The shape of the bearing surface 1b is not limited to the shape shown in the figure. For example, a dynamic pressure groove inclined to one side with respect to the axial direction and a dynamic pressure groove inclined to the other side are continuously formed in a V-shape. (In this case, there is no annular smooth region n). Further, a plurality of, for example, two bearing surfaces may be formed on the inner peripheral surface of one bearing body so as to be separated in the axial direction. Thereby, the coaxiality between the bearing surfaces can be ensured with high accuracy.

図2は、傾斜状の動圧溝が形成された軸受面1bを有する動圧型多孔質含油軸受1で軸2を支持する際における、軸方向断面での油の流れを示している。軸2の回転に伴い、軸受本体1aの内部の細孔内に保有された油が軸受面1bの軸方向両側(及びチャンファー部)から軸受隙間4に滲み出し、さらに動圧溝によって軸受隙間4の軸方向中央に向けて引き込まれる。その油の引き込み作用(動圧作用)によって軸受隙間4に介在する油膜の圧力が高められ、動圧油膜が形成される。この軸受隙間4に形成される動圧油膜によって、軸2はホワール等の不安定振動を生じることなく、軸受面1bに対して浮上支持(非接触支持)される。軸受隙間4に滲み出した油は、軸2の回転に伴う発生圧力により、軸受面1bの表面開孔(「表面開孔」とは、多孔質体組織の細孔が外表面に開口した部分をいう。)から軸受本体1aの内部に戻り、軸受本体1aの内部を循環して、再び軸受面1b(及びチャンファー部)から軸受隙間4に滲み出す。   FIG. 2 shows the flow of oil in the axial cross section when the shaft 2 is supported by the hydrodynamic porous oil-impregnated bearing 1 having the bearing surface 1b on which the inclined hydrodynamic grooves are formed. With the rotation of the shaft 2, oil retained in the pores inside the bearing body 1a oozes out from both sides (and the chamfer portion) of the bearing surface 1b in the axial direction into the bearing gap 4, and furthermore, the bearing gap is formed by the dynamic pressure groove. 4 is drawn toward the center in the axial direction. Due to the oil drawing action (dynamic pressure action), the pressure of the oil film interposed in the bearing gap 4 is increased, and a dynamic pressure oil film is formed. The dynamic pressure oil film formed in the bearing gap 4 allows the shaft 2 to float (non-contact support) on the bearing surface 1b without generating unstable vibration such as whirl. The oil that seeps into the bearing gap 4 is caused by the pressure generated by the rotation of the shaft 2, resulting in the surface opening of the bearing surface 1 b (“surface opening” refers to the portion where the pores of the porous body structure are open to the outer surface). ), Returns to the inside of the bearing body 1a, circulates through the inside of the bearing body 1a, and again seeps from the bearing surface 1b (and the chamfer portion) into the bearing gap 4.

図3は、軸受本体1aの縦断面における密度分布を模式的に示している。軸受本体1aは、その外表面から平均深さtまでの表層部分1a1の密度が高く、表層部分1a1より内部側の内部側部分1a2の密度が低くなっている。表層部分1a1の密度は密度比α(%)に換算して85≦α≦95の範囲内であり、内部側部分1a2の密度は密度比α(%)に換算して75≦α<85の範囲内である。軸受本体1aの軸受面1bの内径寸法D1(動圧溝1cの形成領域以外の領域を基準とする。)はφ3mm、外径寸法D2はφ6mm、動圧溝1cの深さhは2〜4μmである。軸受面1bにおける表層部分1a1の平均深さtは、軸受面1bの内径寸法D1に対して1/60≦t/D1≦1/15の範囲内であり、この実施形態では内径寸法D1の1/60で50μmである。軸受本体1aの外周面、両端面における表層部分1a1の平均深さtも概ね軸受面1bのそれと同程度であり、この実施形態では50μm程度である。図面では、動圧溝1cの深さh、表層部分1a1の平均深さtがかなり誇張して図示されている。また、深さhと平均深さtの寸法比も実際とは異なる比率で図示されている。尚、軸受本体1aの外周面や両端面の表層部分1a1は軸受本体1aの内部に保有された油が外周面や端面から外部に流失することを防止するために形成されるものであり、その密度(密度比α)や平均深さtは軸受面1bの表層部分1a1に比べて多少ラフに管理しても良い。例えば、密度比αは100%近く(細孔が殆ど無い状態)にしても良いし、平均深さtは軸受面1bの表層部分1a1よりも大きくても良いし小さくても良い。また、外周面や両端面の表層部分1a1はなくても良い。   FIG. 3 schematically shows a density distribution in a longitudinal section of the bearing main body 1a. In the bearing body 1a, the density of the surface layer portion 1a1 from the outer surface to the average depth t is high, and the density of the inner side portion 1a2 on the inner side of the surface layer portion 1a1 is lower. The density of the surface layer portion 1a1 is in the range of 85 ≦ α ≦ 95 in terms of the density ratio α (%), and the density of the inner side portion 1a2 is in the range of 75 ≦ α <85 in terms of the density ratio α (%). Within range. The inner diameter D1 of the bearing surface 1b of the bearing body 1a (based on the area other than the area where the dynamic pressure groove 1c is formed) is φ3 mm, the outer diameter D2 is φ6 mm, and the depth h of the dynamic pressure groove 1c is 2 to 4 μm. It is. The average depth t of the surface layer portion 1a1 in the bearing surface 1b is within the range of 1/60 ≦ t / D1 ≦ 1/15 with respect to the inner diameter D1 of the bearing surface 1b. / 60 is 50 μm. The average depth t of the surface layer portion 1a1 on the outer peripheral surface and both end surfaces of the bearing main body 1a is also substantially the same as that of the bearing surface 1b, and is approximately 50 μm in this embodiment. In the drawing, the depth h of the dynamic pressure groove 1c and the average depth t of the surface portion 1a1 are considerably exaggerated. Also, the dimensional ratio between the depth h and the average depth t is shown in a different ratio from the actual one. The surface layer portions 1a1 on the outer peripheral surface and both end surfaces of the bearing main body 1a are formed in order to prevent oil held inside the bearing main body 1a from flowing out from the outer peripheral surface and the end surface to the outside. The density (density ratio α) and the average depth t may be managed somewhat rougher than the surface layer portion 1a1 of the bearing surface 1b. For example, the density ratio α may be close to 100% (there is almost no pores), and the average depth t may be larger or smaller than the surface portion 1a1 of the bearing surface 1b. Further, the surface layer portion 1a1 on the outer peripheral surface or both end surfaces may not be provided.

上記のような軸受本体1aは、銅又は鉄、あるいはその両者を主成分とする金属粉を圧粉成形し、さらに焼成して得られた図6に示すような円筒形状の焼結合金素材1’に対して、例えばサイジング→回転サイジング→軸受面成形加工を施して製造することができる。焼結合金素材1’の密度比α(%)は75≦α<85の範囲内に設定される。   As shown in FIG. 6, a cylindrical sintered alloy material 1 as shown in FIG. 6 is obtained by compacting a metal powder containing copper or iron or both of them as a main component and then firing the metal powder. Can be manufactured by performing, for example, sizing → rotational sizing → bearing surface forming processing. The density ratio α (%) of the sintered alloy material 1 ′ is set in the range of 75 ≦ α <85.

サイジング工程は、焼結合金素材1’の外周面と内周面のサイジングを行う工程で、焼結合金素材1’の外周面を円筒状のダイに圧入すると共に、内周面にサイジングピンを圧入する。サイジング代は、例えば、外周面について20μm以下(半径量10μm以下)、内周面について10μm以下(半径量5μm以下)で行われる。   The sizing step is a step of sizing the outer peripheral surface and the inner peripheral surface of the sintered alloy material 1 ′. The outer peripheral surface of the sintered alloy material 1 ′ is pressed into a cylindrical die, and a sizing pin is inserted into the inner peripheral surface. Press in. The sizing margin is performed, for example, at an outer peripheral surface of 20 μm or less (radius amount of 10 μm or less) and at an inner peripheral surface of 10 μm or less (radius amount of 5 μm or less).

回転サイジング工程は、多角形のサイジングピンを焼結合金素材1’の内周面に圧入し、これを回転させながら内周面のサイジングを行う工程である。サイジング代は5μm程度(半径量2.5μm程度)で行われる。   The rotation sizing step is a step of pressing a polygonal sizing pin into the inner peripheral surface of the sintered alloy material 1 ′ and sizing the inner peripheral surface while rotating it. The sizing margin is set to about 5 μm (radius amount: about 2.5 μm).

軸受面成形工程は、上記のようなサイジング加工を施した焼結合金素材1’の内周面に、完成品1aの軸受面1bに対応した形状の成形型を加圧することによって、軸受面1bの動圧溝1cの形成領域とそれ以外の領域(背1d、平滑領域n)とを同時成形する工程である。この工程は、例えば以下のようなものである。   In the bearing surface forming step, a molding die having a shape corresponding to the bearing surface 1b of the finished product 1a is pressed onto the inner peripheral surface of the sintered alloy material 1 'subjected to the sizing processing as described above, thereby forming the bearing surface 1b. This is a step of simultaneously forming the formation area of the dynamic pressure groove 1c and the other area (back 1d, smooth area n). This step is, for example, as follows.

図8は、軸受面成形工程で使用する成形装置の概略構造を例示している。この装置は、焼結合金素材1’の外周面を圧入する円筒状のダイ20、焼結合金素材1’の内周面を成形するコアロッド21、焼結合金素材1’の両端面を上下方向から押さえる上下のパンチ22、23を主要な要素として構成される。同図(b)に示すように、コアロッド21の外周面には、完成品の軸受面1bの形状に対応した凹凸状の成形型21aが設けられている。成形型21aの凸部分21a1は軸受面1bにおける動圧溝1cの領域を成形し、凹部分21a2は動圧溝1c以外の領域(背1d、環状の平滑領域n)を成形するものである。成形型21aにおける凸部分21a1と凹部分21a2との段差(深さH)は、軸受面1bにおける動圧溝1cの深さhと同じ2〜4μmであるが、図面ではかなり誇張して図示されている。   FIG. 8 illustrates a schematic structure of a forming apparatus used in the bearing surface forming step. This apparatus includes a cylindrical die 20 for press-fitting an outer peripheral surface of a sintered alloy material 1 ′, a core rod 21 for molding an inner peripheral surface of the sintered alloy material 1 ′, and a vertical direction of both end surfaces of the sintered alloy material 1 ′. The upper and lower punches 22 and 23 pressed from above are configured as main elements. As shown in FIG. 2B, an outer peripheral surface of the core rod 21 is provided with a concave-convex mold 21a corresponding to the shape of the bearing surface 1b of the finished product. The convex portion 21a1 of the molding die 21a forms a region of the dynamic pressure groove 1c in the bearing surface 1b, and the concave portion 21a2 forms a region other than the dynamic pressure groove 1c (back 1d, annular smooth region n). The step (depth H) between the convex portion 21a1 and the concave portion 21a2 in the molding die 21a is 2 to 4 μm, which is the same as the depth h of the dynamic pressure groove 1c in the bearing surface 1b. ing.

ダイ20への圧入前の状態において、焼結合金素材1’の内周面とコアロッド21の成形型21a(凸部分21a1を基準)との間には内径すきまTがある。内径すきまTの大きさは25μm(半径すきま)である。焼結合金素材1’の外周面のダイ20に対する圧入代(外径しめしろS)は75μm(半径代)である。   Before press-fitting into the die 20, there is an inner diameter clearance T between the inner peripheral surface of the sintered alloy material 1 'and the forming die 21a (based on the convex portion 21a1) of the core rod 21. The size of the inner diameter clearance T is 25 μm (radius clearance). The press-fit allowance (outer diameter interference S) of the outer peripheral surface of the sintered alloy material 1 ′ into the die 20 is 75 μm (radius allowance).

焼結合金素材1’をダイ20の上面に位置合わせして配置した後、図9に示すように、上パンチ22およびコアロッド21を降下させ、焼結合金素材1’をダイ20に圧入し、さらに下パンチ23に押し付けて上下方向から加圧する。   After the sintered alloy material 1 ′ is positioned and arranged on the upper surface of the die 20, as shown in FIG. 9, the upper punch 22 and the core rod 21 are lowered, and the sintered alloy material 1 ′ is pressed into the die 20, Further, it is pressed against the lower punch 23 to apply pressure from above and below.

焼結合金素材1’はダイ20と上下パンチ22・23から圧迫力を受けて変形を起こし、内周面がコアロッド21の成形型21aに加圧される。内周面の加圧量は、外径しめしろS(半径量75μm)と内径すきまT(半径量25μm)との差50μm(半径量)に略等しく、内周面から深さ50μmまでの表層部分がコアロッド21の成形型21aに加圧され、塑性流動を起こして成形型21aに食い付く。これにより、成形型21aの形状が焼結合金素材1’の内周面に転写され、軸受面1bが図1に示す形状に成形される。成形時、焼結合金素材1’の外周面はダイ20によって、両端面は上下パンチ22・23によってそれぞれ加圧される。外周面の加圧量は50μm、両端面の加圧量は片側50μm程度である。   The sintered alloy material 1 ′ is deformed by receiving a pressing force from the die 20 and the upper and lower punches 22 and 23, and the inner peripheral surface is pressed against the forming die 21 a of the core rod 21. The amount of pressure applied to the inner peripheral surface is substantially equal to the difference 50 μm (radius amount) between the outer diameter interference S (radius amount 75 μm) and the inner diameter clearance T (radius amount 25 μm), and the surface layer from the inner peripheral surface to a depth of 50 μm. The portion is pressed against the molding die 21a of the core rod 21 and causes plastic flow to bite into the molding die 21a. Thereby, the shape of the mold 21a is transferred to the inner peripheral surface of the sintered alloy material 1 ', and the bearing surface 1b is formed into the shape shown in FIG. During molding, the outer peripheral surface of the sintered alloy material 1 ′ is pressed by the die 20, and both end surfaces are pressed by the upper and lower punches 22 and 23, respectively. The amount of pressure on the outer peripheral surface is 50 μm, and the amount of pressure on both end surfaces is about 50 μm on one side.

軸受面1bの成形が完了した後、図11に示すように、焼結合金素材1’にコアロッド21を挿入したままの状態で下パンチ23とコアロッド21を連動して上昇させ(2の状態)、焼結合金素材1’をダイ20から抜く(3の状態)。焼結合金素材1’をダイ20から抜くと、焼結合金素材1’にスプリングバックが生じ、その内径寸法が拡大するので(図10参照)、動圧溝1cを崩すことなく、焼結合金素材1’の内周面からコアロッド21を抜き取ることができる(4の状態)。これにより、軸受本体1aが完成する。   After the molding of the bearing surface 1b is completed, as shown in FIG. 11, the lower punch 23 and the core rod 21 are raised in conjunction with the core rod 21 inserted in the sintered alloy material 1 '(state 2). Then, the sintered alloy material 1 'is pulled out of the die 20 (state 3). When the sintered alloy material 1 ′ is pulled out of the die 20, springback occurs in the sintered alloy material 1 ′ and the inner diameter thereof increases (see FIG. 10). The core rod 21 can be removed from the inner peripheral surface of the material 1 '(state 4). Thereby, the bearing main body 1a is completed.

上述した軸受面1bの成形工程において、密度比α(%)が75≦α<85の範囲内に設定された焼結合金素材1’の内周面が50μmの加圧量でコアロッド21の成形型21aに加圧されることにより、その表層部分の密度が高められ、軸受本体1aとして完成された状態で、図3に示すように、軸受面1bの表面から平均深さ50μmまでの領域に密度比α(%)が85≦α≦95の表層部分1a1ができる。同時に、焼結合金素材1’の外周面および両端面がそれぞれ50μmの加圧量でダイ20、上下パンチ22・23に加圧されることにより、それらの表面から平均深さ50μmまでの領域に密度比α(%)が85≦α≦95の表層部分1a1ができる。軸受本体1aの内部側部分1a2は成形時の影響を殆ど受けないので、その密度比α(%)は焼結合金素材1’の密度比α(%)である75≦α<85の範囲内に維持される。   In the above-described forming step of the bearing surface 1b, the inner peripheral surface of the sintered alloy material 1 'in which the density ratio α (%) is set within the range of 75 ≦ α <85 is formed with a pressing amount of 50 μm. By pressing the mold 21a, the density of the surface layer portion is increased, and in a state where the bearing body 1a is completed, as shown in FIG. The surface portion 1a1 having a density ratio α (%) of 85 ≦ α ≦ 95 is formed. At the same time, the outer peripheral surface and both end surfaces of the sintered alloy material 1 ′ are pressed by the die 20 and the upper and lower punches 22 and 23 with a pressing amount of 50 μm, respectively, so that the surface reaches an average depth of 50 μm from those surfaces. The surface portion 1a1 having a density ratio α (%) of 85 ≦ α ≦ 95 is formed. Since the inner side portion 1a2 of the bearing main body 1a is hardly affected by molding, the density ratio α (%) is within the range of 75 ≦ α <85 which is the density ratio α (%) of the sintered alloy material 1 ′. Is maintained.

焼結合金素材1’の密度比α(%)は、上記のような軸受面成形工程において、コアロッド21を抜き取る際の素材1’のスプリングバック量と密接な関係を有する。   The density ratio α (%) of the sintered alloy material 1 ′ has a close relationship with the springback amount of the material 1 ′ when the core rod 21 is extracted in the above-described bearing surface forming step.

図7は、焼結合金素材1’の密度比α(%)とスプリングバック量(μm:直径量)との関係を実験的に求めた結果を示している。素材1’の密度比αが高くなるに従って,スプリングバック量は減少している。軸受面1bにおける動圧溝1cの深さhが2〜4μmの場合、焼結合金素材1’の密度比αが85%を超えると、スプリングバック量が3μm未満(直径量)となり、コアロッド21を抜き取る際に軸受面1bの動圧溝1cを崩してしまう可能性が有る。一方、焼結合金素材1’の密度比αが75%未満であると、スプリングバック量は5μm(直径量)より大きくなるが、動圧溝1cの成形精度が低下する。したがって、動圧溝1cを崩すことなくコアロッド21の抜き取りを可能にし、かつ、動圧溝1cの成形精度を確保し得る観点から、焼結合金素材1’の密度比α(%)は75≦α<85の範囲内に設定する必要がある。尚、素材1’のスプリングバック量の半径量が動圧溝1cの深さよりも大きい場合は、成形型21aを素材1’の内周面に干渉させることなく離型することができるが、素材1’のスプリングバック量の半径量が動圧溝1cの深さよりも小さく、成形型21aが素材1’の内周面に多少干渉する場合であっても、素材1’の材料弾性による拡径量(半径量)を付加して、動圧溝1cを崩すことなく成形型21aを素材1’の内周面から離型できれば良い。   FIG. 7 shows the result of experimentally determining the relationship between the density ratio α (%) of the sintered alloy material 1 ′ and the amount of springback (μm: diameter). The springback amount decreases as the density ratio α of the material 1 'increases. When the depth h of the dynamic pressure groove 1c in the bearing surface 1b is 2 to 4 μm, and when the density ratio α of the sintered alloy material 1 ′ exceeds 85%, the springback amount becomes less than 3 μm (diameter amount) and the core rod 21 There is a possibility that the dynamic pressure groove 1c of the bearing surface 1b will be broken when removing the bearing. On the other hand, if the density ratio α of the sintered alloy material 1 ′ is less than 75%, the springback amount becomes larger than 5 μm (diameter amount), but the forming accuracy of the dynamic pressure groove 1 c decreases. Therefore, from the viewpoint that the core rod 21 can be extracted without breaking the dynamic pressure groove 1c and the forming accuracy of the dynamic pressure groove 1c can be ensured, the density ratio α (%) of the sintered alloy material 1 ′ is 75 ≦ It must be set within the range of α <85. When the radius of the springback amount of the material 1 'is larger than the depth of the dynamic pressure groove 1c, the mold 21a can be released without interfering with the inner peripheral surface of the material 1'. Even if the radius of the springback amount of 1 'is smaller than the depth of the dynamic pressure groove 1c and the molding die 21a slightly interferes with the inner peripheral surface of the material 1', the diameter expansion due to the material elasticity of the material 1 '. It suffices if an amount (radial amount) is added so that the mold 21a can be released from the inner peripheral surface of the material 1 'without breaking the dynamic pressure groove 1c.

以上のような工程を経て軸受本体1aを製造し、これに潤滑油又は潤滑グリースを含浸させて油を保有させると、図1、図3に示すこの実施形態の動圧型多孔質含油軸受1が完成する。   When the bearing body 1a is manufactured through the above-described steps and is impregnated with lubricating oil or lubricating grease to retain the oil, the hydrodynamic porous oil-impregnated bearing 1 of this embodiment shown in FIGS. Complete.

本発明にかかる動圧型多孔質含油軸受の一実施形態を示す縦断面図である。It is a longitudinal section showing one embodiment of a dynamic pressure type porous oil-impregnated bearing concerning the present invention. 動圧型多孔質含油軸受で軸を浮上支持する際の、軸方向断面での油の流れを模式的に示す図である。It is a figure which shows typically the flow of oil in the axial direction cross section at the time of supporting a shaft by a dynamic pressure type porous oil-impregnated bearing. 動圧型多孔質含油軸受における軸受本体の密度分布を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the density distribution of a bearing main body in a dynamic pressure type porous oil-impregnated bearing. 多孔質体の密度比αと細孔率との関係を示す図である。It is a figure which shows the relationship between the density ratio (alpha) of a porous body, and a porosity. LBPスピンドルモータの構成を概念的に示す断面図である。FIG. 2 is a cross-sectional view conceptually showing a configuration of an LBP spindle motor. 軸受本体の素材となる焼結合金素材を示す断面図である。It is sectional drawing which shows the sintered alloy raw material used as the raw material of a bearing main body. 焼結合金素材の密度比αとスプリングバック量との関係を示す図である。FIG. 4 is a diagram illustrating a relationship between a density ratio α of a sintered alloy material and a springback amount. 軸受面の成形加工に使用する成形装置の概略を示す図(図a)、軸受面を成形するコアロッドを示す図(図b)である。It is a figure (Drawing a) showing an outline of a forming device used for forming processing of a bearing surface, and a figure (Drawing b) which shows a core rod which forms a bearing surface. 軸受面の成形工程を示す図である。It is a figure which shows the shaping process of a bearing surface. 軸受面の成形工程を示す図である。It is a figure which shows the shaping process of a bearing surface. 軸受面の成形工程を示す図である。It is a figure which shows the shaping process of a bearing surface.

符号の説明Explanation of reference numerals

1 動圧型多孔質含油軸受
1a 軸受本来
1a1 表層部分
1a2 内部側部分
1b 軸受面
1c 動圧溝
DESCRIPTION OF SYMBOLS 1 Hydrodynamic porous oil-impregnated bearing 1a Bearing original 1a1 Surface part 1a2 Inner part 1b Bearing surface 1c Dynamic pressure groove

Claims (2)

焼結金属からなる多孔質の軸受本体の内周面に、動圧溝を有する軸受面が形成された動圧型多孔質含油軸受の製造方法であって、
下記式で表される密度比α(%)が75≦α<85である円筒状の焼結金属素材を製作し、
前記軸受面の形状に対応した凹凸状の成形型を形成したコアロッドを前記焼結金属素材の内周面に挿入し、前記焼結金属素材に圧迫力を加えて前記コアロッドの成形型に加圧することにより、前記軸受面の動圧溝を塑性加工により成形する工程を含むことを特徴とする動圧型多孔質含油軸受の製造方法。
密度比α(%)=(ρ1/ρ0)×100
ρ1:多孔質体の密度
ρ0:その多孔質体に細孔が無いと仮定した場合の密度
A method for producing a hydrodynamic porous oil-impregnated bearing in which a bearing surface having a hydrodynamic groove is formed on an inner peripheral surface of a porous bearing main body made of a sintered metal,
A cylindrical sintered metal material having a density ratio α (%) represented by the following formula of 75 ≦ α <85 is manufactured,
A core rod formed with an uneven mold corresponding to the shape of the bearing surface is inserted into the inner peripheral surface of the sintered metal material, and a pressing force is applied to the sintered metal material to apply pressure to the core rod mold. Forming a dynamic pressure groove on the bearing surface by plastic working.
Density ratio α (%) = (ρ1 / ρ0) × 100
ρ1: Density of the porous body ρ0: Density assuming that the porous body has no pores
前記動圧溝を成形する工程の前に、前記焼結金属素材の内周面にサイジングを施す工程を有することを特徴とする請求項1に記載の動圧型多孔質含油軸受の製造方法。   The method for manufacturing a hydrodynamic porous oil-impregnated bearing according to claim 1, further comprising a step of sizing the inner peripheral surface of the sintered metal material before the step of forming the dynamic pressure groove.
JP2004213354A 2004-07-21 2004-07-21 Manufacturing method of dynamic pressure type porous oil-impregnated bearing Expired - Lifetime JP4188288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004213354A JP4188288B2 (en) 2004-07-21 2004-07-21 Manufacturing method of dynamic pressure type porous oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004213354A JP4188288B2 (en) 2004-07-21 2004-07-21 Manufacturing method of dynamic pressure type porous oil-impregnated bearing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP34962897A Division JP3607478B2 (en) 1997-12-18 1997-12-18 Dynamic pressure type porous oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JP2004308917A true JP2004308917A (en) 2004-11-04
JP4188288B2 JP4188288B2 (en) 2008-11-26

Family

ID=33475809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004213354A Expired - Lifetime JP4188288B2 (en) 2004-07-21 2004-07-21 Manufacturing method of dynamic pressure type porous oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP4188288B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070383A1 (en) * 2010-11-25 2012-05-31 Ntn株式会社 Race ring for rolling bearing, and rolling bearing
AT517488B1 (en) * 2015-07-20 2017-09-15 Miba Sinter Austria Gmbh Method for producing an annular sintered component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5538812B2 (en) 2009-10-23 2014-07-02 キヤノン株式会社 Image processing apparatus, image processing method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070383A1 (en) * 2010-11-25 2012-05-31 Ntn株式会社 Race ring for rolling bearing, and rolling bearing
JP2012127492A (en) * 2010-11-25 2012-07-05 Ntn Corp Race ring for rolling bearing, and rolling bearing
AT517488B1 (en) * 2015-07-20 2017-09-15 Miba Sinter Austria Gmbh Method for producing an annular sintered component

Also Published As

Publication number Publication date
JP4188288B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP4573349B2 (en) Manufacturing method of hydrodynamic bearing
JP3607478B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP4327038B2 (en) Spindle motor
US7789565B2 (en) Fluid dynamic bearing apparatus
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP3602318B2 (en) Manufacturing method of hydrodynamic porous oil-impregnated bearing
JP2017166575A (en) Dynamic pressure bearing and process of manufacture thereof
JP3602320B2 (en) Manufacturing method of hydrodynamic sintered oil-impregnated bearing
WO2024048202A1 (en) Sintered oil-impregnated bearing
JP2004340385A (en) Dynamic pressure type bearing unit
JP2005180707A (en) Dynamic pressure type sintered oil-impregnated bearing unit
JP2004316924A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP4509922B2 (en) Hydrodynamic sintered oil-impregnated bearing for information equipment spindle motor
JP2007218379A (en) Shaft member for hydrodynamic bearing device and its manufacturing method
JP2005265180A (en) Dynamic pressure bearing device
JP2004360863A (en) Dynamic-pressure bearing manufacturing method
JP2020051546A (en) Sintered bearing, fluid dynamic pressure bearing device and motor
JP2004316925A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP4451409B2 (en) Method for producing hydrodynamic sintered oil-impregnated bearing unit
JP2007100803A (en) Method for manufacturing oil impregnated sintered bearing, and sizing pin to be used for the method
JP2023144590A (en) Sintered oil-containing bearing, and fluid dynamic bearing device comprising the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term