JP2004304363A - Ofdm復調回路 - Google Patents

Ofdm復調回路 Download PDF

Info

Publication number
JP2004304363A
JP2004304363A JP2003092837A JP2003092837A JP2004304363A JP 2004304363 A JP2004304363 A JP 2004304363A JP 2003092837 A JP2003092837 A JP 2003092837A JP 2003092837 A JP2003092837 A JP 2003092837A JP 2004304363 A JP2004304363 A JP 2004304363A
Authority
JP
Japan
Prior art keywords
phase angle
pilot signal
angle
synchronous detection
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003092837A
Other languages
English (en)
Inventor
昌弘 ▲吉▼田
Masahiro Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003092837A priority Critical patent/JP2004304363A/ja
Publication of JP2004304363A publication Critical patent/JP2004304363A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】OFDM復調回路において、フィードバックループを構成することなく、残留キャリア周波数誤差の補正をおこなうこと。
【解決手段】アークタンジェント演算部302により、受信したデータシンボル内に多重されたパイロット信号の位相角を求める。そして、複素乗算部331により、同期検波に用いる基準信号を、その位相角と同じ方向に同じ大きさの角度だけ回転させる。この回転させた基準信号を用いて、同期検波部301において同期検波をおこなう。あるいは、受信したデータシンボル内に多重されたパイロット信号の位相角を求め、受信したデータシンボルをその位相角と逆方向に同じ大きさの角度だけ回転させた後に、同期検波をおこなう。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、OFDM復調回路に関し、特にOFDM復調回路の同期検波、残留キャリア周波数誤差補正回路に関する。
【0002】
近年、無線LAN(ローカルエリアネットワーク)が普及してきている。この無線LANの規格には、IEEE802.11a、IEEE802.11bおよびIEEE802.11gなどがある。IEEE802.11bは、比較的低速ではあるが、他の規格よりも早く普及した規格である。IEEE802.11aは、直交周波数分割多重(OFDM)方式を採用しており、IEEE802.11bよりも伝送容量が大きく、画像データなどの大容量データの送受信に適している。
【0003】
【従来の技術】
IEEE802.11a規格の無線LANに用いられる従来の復調回路について説明する。まず、IEEE802.11a規格の物理層のパケットフォーマットについて簡単に説明する。図11は、IEEE802.11a規格の物理層のパケットフォーマットを示す図である。図11に示すように、パケットの先頭には、PLCPプリアンブル1と呼ばれるヘッダーが存在する。PLCPプリアンブル1は、ショートトレーニング期間2とロングトレーニング期間3から構成されており、同期処理に用いられる。
【0004】
ショートトレーニング期間2では、0.8μs周期の波形が10回繰り返し送られる(t1〜t10)。ショートトレーニング期間2の前半部分では、ダイバシチアンテナの切り替えやAGC(自動利得制御)処理がおこなわれる。ショートトレーニング期間2の後半部分では、シンボル同期位置の検出とキャリア周波数誤差の粗調整がおこなわれる。
【0005】
ロングトレーニング期間3では、ガードインターバル(GI2)につづいて3.2μs周期の波形(ロングトレーニングシンボル)が2回繰り返し送られる。ガードインターバル(GI2)は、3.2μs周期の波形の後半の1.6μs分の波形と同じである。ロングトレーニング期間3では、キャリア周波数誤差の細かい補正がおこなわれる。
【0006】
キャリア周波数誤差を補正した後のロングトレーニング信号をFFT(高速フーリエ変換)処理することにより、伝送路の状態を示す情報(伝送路推定情報)が得られる。この伝送路推定情報に基づいて、後に送られてくるシグナルフィールド4やデータフィールド5の信号を同期検波することにより、伝送路等化処理がおこなわれる。
【0007】
つぎに、復調回路の同期部の構成について説明する。図12は、同期部の構成の一例を示すブロック図である。図12に示すように、同期部100は、ショートトレーニング処理部110と、これの後段につづくロングトレーニング処理部130により構成されている。
【0008】
同期部100には、AGC等の処理がおこなわれたI信号およびQ信号(以下、両信号を合わせてI/Q信号と表す)が入力される。入力されたI/Q信号は、ショートトレーニング処理部110に送られ、メモリ等で構成される第1の遅延部(遅延部1)111、第1の複素乗算部(複素乗算部1)112および第1のメモリ(メモリ1)116に供給される。第1の遅延部111は、供給されたI/Q信号を、ショートトレーニング期間2の10回の繰り返しデータのうちの1回分(0.8μs、20MHzサンプルで16サンプル)だけ遅延させる。この遅延したI/Q信号は、第1の複素乗算部112に供給される。
【0009】
第1の複素乗算部112は、第1の遅延部111により遅延したI/Q信号と、遅延前のI/Q信号との複素乗算処理をおこなう。この複素乗算処理により、図13(a)および同図(b)に示すようなI/Q信号の相関情報が得られる。この相関情報は、第1の移動平均部(移動平均部1)113に供給される。
【0010】
第1の移動平均部113は、I/Q信号の相関情報に対して移動平均処理をおこなう。この移動平均処理により、I/Q信号のそれぞれについて図13(c)および同図(d)に示すような波形の移動平均値が得られる。得られたI/Q信号の移動平均値は、第1の電力計算部(電力計算部1)114および第1のキャリア周波数誤差検出部(キャリア周波数誤差検出部1)115に供給される。
【0011】
第1の電力計算部114は、I/Q信号の移動平均値に基づいて、電力計算処理をおこなう。この電力計算処理により、図13(e)に示すように、ショートトレーニング期間2とロングトレーニング期間3との境界で最大となるピークを有する波形の移動平均電力値が得られる。得られた移動平均電力値のピーク位置は、ピーク検出部118により検出される。この検出されたピーク位置がシンボル同期位置となる。
【0012】
第1のメモリ(メモリ1)116には、同期部100に入力されたI/Q信号が記憶されている。この第1のメモリ116に記憶されたデータのうち、ショートトレーニング期間2のデータを除くデータが、先に検出されたシンボル同期位置を基準にして、メモリ制御部117を介して読み出される。つまり、第1のメモリ116からは、ロングトレーニング期間3のデータから後のデータが読み出される。
【0013】
一方、第1のキャリア周波数誤差検出部115および第2のキャリア周波数誤差検出部119は、第1の移動平均部113から供給されたI/Q信号の移動平均値に基づいて、粗調整用キャリア周波数誤差を求める。この粗調整用キャリア周波数誤差は、第1のCOS/SIN波形発生部(COS/SIN波形発生部1)121に供給される。第1のCOS/SIN波形発生部121は、粗調整用キャリア周波数誤差に基づいて、COS(コサイン)、SIN(サイン)波形を発生する。以下、第2の各構成部については、図面側の記載を1,2の符号を附した。
【0014】
そして、第2の複素乗算部120は、第1のCOS/SIN波形発生部121で発生したCOS波形、SIN波形と、第1のメモリ116から読み出された信号との複素乗算処理をおこなう。このようにして、キャリア周波数誤差の粗補正がおこなわれる。キャリア周波数誤差が粗補正されたI/Q信号は、ロングトレーニング処理部130へ送られる。
【0015】
ロングトレーニング処理部130では、キャリア周波数誤差が粗補正されたI/Q信号は、メモリ等で構成される第2の遅延部131、第3の複素乗算部132および第2のメモリ133に供給される。第2の遅延部131は、供給されたI/Q信号を、ロングトレーニング期間3の2回の繰り返しデータのうちの1回分(3.2μs、20MHzサンプルで64サンプル)だけ遅延させる。この遅延したI/Q信号は、第3の複素乗算部132に供給される。
【0016】
第3の複素乗算部132は、第2の遅延部131により遅延したI/Q信号と、遅延前のI/Q信号との複素乗算処理をおこなう。この複素乗算処理により、図14(a)および同図(b)に示すようなI/Q信号の相関情報が得られる。この相関情報は、第2の移動平均部135に供給される。
【0017】
第2の移動平均部135は、I/Q信号の相関情報に対して移動平均処理をおこなう。この移動平均処理により、I/Q信号のそれぞれについて図14(c)および同図(d)に示すような波形の移動平均値が得られる。得られたI/Q信号の移動平均値は、第3のキャリア周波数誤差検出部136に供給される。
【0018】
第3のキャリア周波数誤差検出部136は、第2の移動平均部135から供給されたI/Q信号の移動平均値に基づいて、細調整用キャリア周波数誤差を求める。第2のCOS/SIN波形発生部138は、細調整用キャリア周波数誤差に基づいて、COS波形、SIN波形を発生する。
【0019】
一方、第2のメモリ133に記憶されているI/Q信号は、メモリ制御部134を介して読み出される。そして、第4の複素乗算部137は、第2のCOS/SIN波形発生部138で発生したCOS波形、SIN波形と、第2のメモリ133から読み出された信号との複素乗算処理をおこなう。このようにして、キャリア周波数誤差の細かい補正がおこなわれる。この後、ロングトレーニング信号は、FFT処理され、伝送路推定処理がおこなわれ、同期検波の基準信号として用いられる。
【0020】
しかし、雑音などの影響により、ショートトレーニング期間2およびロングトレーニング期間3においてそれぞれ検出されるキャリア周波数誤差に誤差が生じるため、後段のFFT等に送られるデータには残留キャリア周波数誤差が含まれる。IEEE802.11a規格では、同期検波の基準となるパイロット信号をデータシンボルより先に送り、復調がおこなわれる。このような方式では、残留キャリア周波数誤差があると、受信シンボルの位相が異なってしまう。
【0021】
そのため、図15に示すように、コンスタレーションが本来の点から徐々に回転してしまい、復調データに誤りが発生する。このときのコンスタレーションの回転方向は、残留キャリア周波数誤差の符号によって異なる。図16は、残留キャリア周波数誤差がない場合のコンスタレーションである。
【0022】
この残留キャリア周波数誤差を補正するため、復調回路には、同期検波後のデータシンボルに多重されているパイロット信号を利用して補正をおこなう残留キャリア周波数誤差補正回路が設けられている。図17に示すように、従来の残留キャリア周波数誤差補正回路200は、PLLループ(位相同期ループ)を構成している。
【0023】
図12に示す同期部100から出力されたI/Q信号は、ローター(複素乗算部)204を経て、FFTブロック220においてFFT処理される。FFT処理されたロングトレーニング信号z2(図18(b)参照)は、伝送路推定部205において、理想ロングトレーニングテーブル207から読み出された理想的なロングトレーニング信号z1(図18(a)参照)により複素除算処理される。この除算結果h(図18(c)参照)は、同期検波の基準信号としてメモリ206に蓄えられる。
【0024】
一方、FFT処理されたデータシンボルy(図18(d)参照)は、同期検波部201に供給され、メモリ206から読み出された除算結果hにより複素除算処理されることによって、同期検波される(図18(e)参照)。この処理によって、同期検波時に伝送路等化も同時におこなわれる。
【0025】
残留キャリア周波数誤差の補正をおこなうため、同期検波後のデータシンボルから4つのパイロット信号が抽出される。ここで用いられるパイロット信号は、受信キャリア番号が+7、+21、−7、−21に配置されたパイロット信号である。
【0026】
これら4つのパイロット信号に基づいて、アークタンジェント演算部(ArcTan)202において、現シンボルでの位相角Φ7、Φ21、Φ−7およびΦ−21を求める。なお、Φ7、Φ21、Φ−7およびΦ−21は、それぞれ受信キャリア番号が+7、+21、−7、−21に配置されたパイロット信号の位相角である。
【0027】
そして、残留キャリア周波数誤差検出部203において、4つの位相角Φ7、Φ21、Φ−7およびΦ−21の平均値を求め、これを残留キャリア周波数誤差Δfとする。この残留キャリア周波数誤差Δfに基づいて、ループフィルター211、数値制御オシレータ(NCO)212およびCos/Sinテーブル213よりなる残留キャリア周波数ずれ補正部210は、COS波形およびSIN波形を発生する。
【0028】
このCOS波形およびSIN波形は、ローター204にフィードバックされる。ローター204は、図12に示す同期部100から供給されたI/Q信号と、フィードバックループにより供給されたCOS波形、SIN波形との複素乗算処理をおこなう。ローター204による複素乗算結果は、FFTメモリ221、FFT処理部222およびバッファ223よりなるFFTブロック220においてFFT処理され、同期検波部201に供給される。
【0029】
このように、同期検波後のデータシンボルに多重されているパイロット信号の位相角をFFTブロック220の前にフィードバックすることによって、残留キャリア周波数ずれを補正しながら、つぎのシンボルに対するFFT処理および同期検波をおこなうというPLLループが構成されている。
【0030】
図19は、伝送路等化の原理を示す図である。IEEE802.11a規格では、送信機11は、ロングトレーニング期間3において、定められた信号を送信する。この送信信号の周波数特性をY(w)とし、伝送路12の特性をG(w)とすると、受信機13では、送信信号の周波数特性Y(w)と伝送路特性G(w)との畳み込みX(w)=Y(w)・G(w)が得られる。
【0031】
そこで、受信機13は、受信信号(Y(w)・G(w))を、受信機自体が有するロングトレーニングシンボル(Y(w))で複素除算し、伝送路12の特性G(w)を得る。このG(w)をメモリ14などに蓄えておき、ロングトレーニングシンボル以降のシグナルシンボルやデータシンボルを受信したときに、メモリ14からG(w)を読み出して除算処理をおこなうことにより、受信したX(w)から伝送路12の影響を取り除いたY(w)のみを得る。
【0032】
ところで、OFDM同期復調装置において、FFT回路の後段にAFCループ(周波数制御ループ)とPLLループを設け、これらAFCループおよびPLLループにより検出した周波数誤差信号を直交検波回路のAFCループに帰還させることにより、キャリア同期後に生じた周波数ずれを除去するようにした装置が公知である(特許文献1参照。)。また、OFDM復調装置において、周波数誤差推定回路により、伝搬路歪み補償をおこなった信号を用いて残存搬送波周波数誤差を推定し、この周波数誤差情報により、伝搬路歪み補償係数を修正し、あるいは同期回路における搬送波周波数同期動作後の残存搬送波周波数誤差を補償するようにした装置が公知である(特許文献2参照。)。
【0033】
【特許文献1】
特開平8−102771号公報
【特許文献2】
特開2000−286820号公報
【0034】
【発明が解決しようとする課題】
しかしながら、上述した従来の残留キャリア周波数誤差補正回路では、PLLループ内にFFTや同期検波などの処理遅延の大きな回路が含まれており、これらの回路での処理遅延が大きいため、制御が不安定となり、PLLの引き込み特性やジッタ特性が劣化するという問題点がある。たとえばIEEE802.11a規格では64ポイントのFFT処理をおこなうので、1シンボル程度(4.0μs)の遅延が生じる。
【0035】
本発明は、上記問題点に鑑みてなされたものであって、フィードバックループを構成することなく、残留キャリア周波数誤差の補正をおこなうことができる残留キャリア周波数誤差補正回路を備えたOFDM復調回路を提供することを目的とする。
【0036】
【課題を解決するための手段】
上記目的を達成するため、本発明は、受信したデータシンボル内に多重されたパイロット信号の位相角を求め、同期検波に用いる基準信号をその位相角と同じ方向に同じ大きさの角度だけ回転させた後に、同期検波をおこなうことを特徴とする。
【0037】
この発明によれば、同期検波に用いる基準信号を、残留キャリア周波数誤差に応じた位相角分だけ、その位相角と同じ方向に回転させることにより、残留キャリア周波数誤差の影響を軽減させるための処理を同一シンボル内で完結させることができる。
【0038】
また、上記目的を達成するため、本発明は、受信したデータシンボル内に多重されたパイロット信号の位相角を求め、受信したデータシンボルをその位相角と逆方向に同じ大きさの角度だけ回転させた後に、同期検波をおこなうことを特徴とする。
【0039】
この発明によれば、受信したデータシンボルを、残留キャリア周波数誤差に応じた位相角分だけ、その位相角と逆方向に回転させることにより、残留キャリア周波数誤差の影響を軽減させるための処理を同一シンボル内で完結させることができる。
【0040】
【発明の実施の形態】
以下に、本発明の実施の形態にかかるOFDM復調回路について図面を参照しつつ詳細に説明する。
【0041】
(実施の形態1)
図1は、本発明の実施の形態1にかかるOFDM復調回路の残留キャリア周波数誤差補正回路のブロック構成を示す図である。図1に示すように、残留キャリア周波数誤差補正回路300は、同期検波手段である同期検波部301、演算手段であるアークタンジェント演算部(ArcTan)302、伝送路推定部305、メモリ306、理想ロングトレーニングテーブル307、数値制御オシレータ(NCO)312、Cos/Sinテーブル313、FFTメモリ321とFFT処理部322とバッファ323よりなるFFTブロック320、回転手段である複素乗算部331、理想パイロットテーブル332、および位相角平均手段である平均部333を備えている。
【0042】
残留キャリア周波数誤差補正回路300には、図示しない同期部から出力されたI/Q信号が入力される。このI/Q信号は、同期部においてキャリア周波数誤差補正されたロングトレーニング期間以降の信号である。同期部として、特に限定しないが、たとえば図12に示す同期部100を用いることができる。
【0043】
残留キャリア周波数誤差補正回路300に入力したI/Q信号は、FFTブロック320においてFFT処理される。FFT処理されたロングトレーニング信号z2(図18(b)参照)は、伝送路推定部305において、理想ロングトレーニングテーブル307から読み出された理想的なロングトレーニング信号z1(図18(a)参照)により複素除算処理される。この除算結果h(図18(c)参照)は、メモリ306に蓄えられる。
【0044】
一方、FFT処理されたデータシンボルy(図18(d)参照)は、同期検波部301に供給され、メモリ306から読み出された除算結果hにより複素除算処理されることによって、同期検波される(図18(e)参照)。この処理によって、同期検波時に伝送路等化も同時におこなわれる。
【0045】
残留キャリア周波数誤差の補正をおこなうため、同期検波後のデータシンボルから、受信キャリア番号が+7、+21、−7、−21に配置されたパイロット信号(以下、受信パイロット信号とする)が抽出される。IEEE802.11a規格では、パイロット信号はBPSKで変調されているため、複素平面上での理想的な信号点は、図9に示すように実数軸上の+1または−1の点に位置する。しかし、実際には、キャリア周波数誤差の発生により、受信パイロット信号の信号点は、ある回転位相角Φで回転した点に位置する。この角度Φは、つぎの式より求められる。
【0046】
Φ=atan(受信パイロット信号虚数値/受信パイロット信号実数値)
【0047】
そこで、あらかじめ理想パイロットテーブル332に、理想的なパイロット信号の位置等の情報を格納しておく。そして、理想パイロットテーブル332から理想的なパイロット信号の位置を読み出し、アークタンジェント演算部(ArcTan)302においてシンボル毎に上記式の計算をおこなうことによって、理想的なパイロット信号の信号点から各受信パイロット信号の信号点までの回転位相角Φ7、Φ21、Φ−7およびΦ−21が求められる。
【0048】
そして、平均部333において、4つの回転位相角Φ7、Φ21、Φ−7およびΦ−21の平均値が求められる。この平均値に基づいて、数値制御オシレータ312およびCos/Sinテーブル313により、COS波形およびSIN波形を発生させる。このCOS波形およびSIN波形は、複素乗算部331において、同期検波時にメモリ306から読み出された伝送路推定情報(除算結果h)と複素乗算処理される。
【0049】
これによって、伝送路推定情報のコンスタレーションが回転位相角方向に回転する。すなわち、同期検波に用いる基準信号が、残留キャリア周波数誤差に応じた回転位相角分だけ、その回転位相角と同じ方向に回転する。その後、同期検波部301において、同期検波をおこなうことにより、シグナルフィールドおよびデータフィールドのコンスタレーションの回転を停止させ、残留キャリア周波数誤差の影響を取り除くことができる。
【0050】
上述した実施の形態1によれば、残留キャリア周波数誤差の影響を軽減させるための処理が同一シンボル内で完結するので、フィードバックループを構成することなく、残留キャリア周波数誤差の補正をおこなうことができる。したがって、フィードバックループの処理遅延のために、制御が不安定となり、引き込み特性、引き込み後のジッタ特性の劣化が生じるようなことがなく、特性の向上をはかることができる。
【0051】
(実施の形態2)
図2は、本発明の実施の形態2にかかるOFDM復調回路の残留キャリア周波数誤差補正回路のブロック構成を示す図である。図2に示すように、残留キャリア周波数誤差補正回路400は、同期検波手段である同期検波部401、演算手段であるアークタンジェント演算部402、伝送路推定部405、メモリ406、理想ロングトレーニングテーブル407、数値制御オシレータ412、Cos/Sinテーブル413、FFTメモリ421とFFT処理部422とバッファ423よりなるFFTブロック420、回転手段である複素乗算部431、理想パイロットテーブル432、および位相角平均手段である平均部433を備えている。
【0052】
残留キャリア周波数誤差補正回路400には、図示しない同期部から出力されたI/Q信号が入力される。このI/Q信号は、同期部においてキャリア周波数誤差補正されたロングトレーニング期間以降の信号である。同期部として、特に限定しないが、たとえば図12に示す同期部100を用いることができる。
【0053】
残留キャリア周波数誤差補正回路400に入力したI/Q信号は、FFTブロック420においてFFT処理される。FFT処理されたロングトレーニング信号z2(図18(b)参照)は、伝送路推定部405において、理想ロングトレーニングテーブル407から読み出された理想的なロングトレーニング信号z1(図18(a)参照)により複素除算処理される。この除算結果h(図18(c)参照)は、メモリ406に蓄えられる。
【0054】
一方、FFT処理されたデータシンボルy(図18(d)参照)は、同期検波部401に供給され、メモリ406から読み出された除算結果hにより複素除算処理されることによって、同期検波される(図18(e)参照)。この処理によって、同期検波時に伝送路等化も同時におこなわれる。
【0055】
残留キャリア周波数誤差の補正をおこなうため、同期検波後のデータシンボルから、受信キャリア番号が+7、+21、−7、−21に配置された受信パイロット信号が抽出される。抽出された各受信パイロット信号について、理想パイロットテーブル432およびアークタンジェント演算部(ArcTan)402により、実施の形態1と同様にして回転位相角Φ7、Φ21、Φ−7およびΦ−21が求められる。
【0056】
そして、平均部433において、4つの回転位相角Φ7、Φ21、Φ−7およびΦ−21の平均値が求められる。この平均値に基づいて、数値制御オシレータ412およびCos/Sinテーブル413により、COS波形およびSIN波形を発生させる。このCOS波形およびSIN波形は、複素乗算部431において、FFT処理されたデータシンボルと複素乗算処理される。
【0057】
これによって、同期検波に供されるデータが、残留キャリア周波数誤差に応じた位相角分だけ、その位相角と逆方向に回転する。その後、同期検波部401において、同期検波をおこなうことにより、シグナルフィールドおよびデータフィールドのコンスタレーションの回転を停止させ、残留キャリア周波数誤差の影響を取り除くことができる。
【0058】
上述した実施の形態2によれば、残留キャリア周波数誤差の影響を軽減させるための処理が同一シンボル内で完結するので、フィードバックループを構成することなく、残留キャリア周波数誤差の補正をおこなうことができる。したがって、フィードバックループの処理遅延のために、制御が不安定となり、引き込み特性、引き込み後のジッタ特性の劣化が生じるようなことがなく、特性の向上をはかることができる。
【0059】
(実施の形態3)
実施の形態3は、実施の形態1または実施の形態2において、回転位相角演算結果から、雑音の影響を軽減させるものである。受信信号に雑音が混入すると、図10に示すように、受信信号のコンスタレーションが広がってしまう。その結果、求めた回転位相角に誤差が生じてしまう。そこで、実施の形態3では、雑音の影響により広がったパイロット信号から求めた回転位相角が、インパルス的に突出するのを防止する。
【0060】
図3は、本発明の実施の形態3にかかるOFDM復調回路の残留キャリア周波数誤差補正回路の要部のブロック構成を示す図である。図3に示すように、アークタンジェント演算部(ArcTan)501、3つのセレクタ(SEL)502,507,512、3個のシンボル遅延部(フリップフロップ;FF)503,506,508、3つの加算器504,505,509、減算器510および比較器511が設けられている。
【0061】
アークタンジェント演算部501には、受信パイロット信号の実数および虚数の振幅と、その受信パイロット信号の本来あるべき点の値(+1または−1)が入力される。アークタンジェント演算部501では、受信パイロット信号の回転位相角を求める。アークタンジェント演算部501の出力Φ0(t)は、第1のセレクタ502、第1の加算器504および第2のセレクタ512に供給される。第1のセレクタ502には、第2のセレクタ512の出力Φ(t)も供給される。第1のセレクタ502は、比較器511の比較結果が後述するようにΔΦ3(t)>保護値の場合にΦ(t)を選択し、そうでない場合にΦ0(t)を選択して、Φ0’(t)として出力する。
【0062】
第1のセレクタ502から出力されたΦ0’(t)は、第1のシンボル遅延部503において、1シンボル遅延される。したがって、第1のシンボル遅延部503の出力は、1シンボル前のΦ0(t−1)である。このΦ0(t−1)は、第1の加算器504と第2の加算器505に供給される。第1の加算器504では、アークタンジェント演算部501から出力されたΦ0(t)と、1シンボル前のΦ0(t−1)との差分ΔΦ0(t)を求める。
【0063】
このΔΦ0(t)は、第2のシンボル遅延部506および減算器510に供給される。第2のシンボル遅延部506では、1シンボル遅延されるので、第2のシンボル遅延部506の出力は、1シンボル前の差分ΔΦ0(t−1)である。このΔΦ0(t−1)は、第3のセレクタ507に供給される。第3のセレクタ507の出力ΔΦ1(t−1)は、第3のシンボル遅延部508および第3の加算器509に供給される。第3のシンボル遅延部508では、1シンボル遅延されるので、第3のシンボル遅延部508の出力は、1シンボル前の差分ΔΦ1(t−2)である。このΔΦ1(t−2)は、第3の加算器509においてΔΦ1(t−1)に加算される。
【0064】
第3の加算器509の出力ΔΦ2(t)は、ΔΦ1(t−1)とΔΦ1(t−2)の加算平均値であり、減算器510および第2の加算器505に供給されるとともに、第3のセレクタ507に供給される。つまり、第3のセレクタ507は、比較器511の比較結果が後述するようにΔΦ3(t)>保護値の場合にΔΦ0(t−1)を選択し、そうでない場合にΔΦ2(t)を選択して、ΔΦ1(t−1)として出力する。
【0065】
第2の加算器505は、Φ0(t−1)とΔΦ2(t)とを加算し、その結果をΦ3(t)として第2のセレクタ512に供給する。減算器510は、ΔΦ0(t)からΔΦ2(t)を減算し、その結果をΔΦ3(t)として比較器511に供給する。比較器511は、比較開始指示が発行されている場合に、ΔΦ3(t)と保護値とを比較する。第2のセレクタ512は、比較器511の比較結果がΔΦ3(t)>保護値の場合にΦ3(t)を選択し、そうでない場合にΦ0(t)を選択して、Φ(t)として出力する。
【0066】
第2のシンボル遅延部506、第3のセレクタ507、第3のシンボル遅延部508および第3の加算器509は、位相差平均値算出回路を構成している。位相差平均値算出回路は、時間tよりも以前に入力されたパイロット信号の位相差を時間方向に加算平均することにより、パイロット信号の位相差から雑音の影響を取り除いた推定値ΔΦ2(t)を求める回路である。
【0067】
図4は、図3に示す構成の動作を説明するためのフローチャートである。まず、受信パイロット信号の実数および虚数の振幅と、その受信パイロット信号の本来あるべき点の値(+1または−1)とに基づいて、受信パイロット信号の回転位相角Φ0(t)を求める。Φ0(t)=atan(Q/I)である(ステップS301)。
【0068】
つぎに、Φ0(t)と1シンボル前の回転位相角Φ0(t−1)との差分ΔΦ0(t)を求める(ステップS302)。ΔΦ0(t)=Φ0(t)−Φ0(t−1)である。また、位相差平均値算出回路においてΔΦ2(t)を求める。ΔΦ2(t)=(ΔΦ1(t−1)+ΔΦ1(t−2))/2である(ステップS303)。
【0069】
つぎに、ΔΦ3(t)を求める。ΔΦ3(t)=ΔΦ0(t)−ΔΦ2(t)である(ステップS304)。比較器511で比較開始指示が発行されていない場合には(ステップS305:No)、Φ1(t)=Φ0(t)とする(ステップS310)。そして、ステップS301へ戻る。比較器511で比較開始指示が発行されている場合には(ステップS305:Yes)、ΔΦ3(t)と保護値とを比較し(ステップS306)、ΔΦ3(t)が保護値よりも小さい場合には(ステップS306:Yes)、Φ0(t)は確からしいと判断して、Φ(t)=Φ0(t)として出力する(ステップS311)。
【0070】
一方、ΔΦ3(t)が保護値よりも大きい場合には(ステップS306:No)、Φ0(t)は雑音などの影響により不確かなデータである可能性が高い。そこで、位相差平均値算出回路からの出力ΔΦ2(t)と1シンボル前の角度Φ0(t−1)とからΦ3(t)を求める。Φ3(t)=Φ0(t−1)+ΔΦ2(t)である(ステップS307)。このΦ3(t)をΦ(t)として出力する(ステップS308)。そして、Φ0’(t)=Φ(t)とする(ステップS309)。
【0071】
以上の処理を1シンボルのデータに含まれる4つのパイロットキャリアに対しておこなうことにより、雑音の影響を受けにくい角度算出処理をおこなうことができる。なお、この例では、数シンボルにわたって差分値の平均値をとる必要がある。このシンボル数等については任意とし、外部CPUなどを経由して設定することができるものとする。差分値の比較をおこなう保護値についても同様である。
【0072】
(実施の形態4)
図5は、本発明の実施の形態4にかかるOFDM復調回路の残留キャリア周波数誤差補正回路の要部のブロック構成を示す図である。図5に示すように、アークタンジェント演算部(ArcTan)601には、受信キャリア番号が+7、+21、−7、−21に配置された各受信パイロット信号の実数および虚数の振幅と、その受信パイロット信号の本来あるべき点の値(+1または−1)が入力される。アークタンジェント演算部601では、各受信パイロット信号の回転位相角を求める。
【0073】
アークタンジェント演算部601の出力Φ(7,t)は、第1のシンボル遅延部602a、第1の減算器603aおよびマスク回路609aに供給される。第1のシンボル遅延部602aの出力は、1シンボル前のΦ(7,t−1)である。なお、実施の形態4では、Φ(n,t)のnはキャリア番号を表している。
【0074】
第1の減算器603aは、Φ(7,t)からΦ(7,t−1)を減算し、その結果をΔΦ(7,t)として第2のシンボル遅延部604aおよび第2の減算器606aに供給する。第2のシンボル遅延部604aの出力は、1シンボル前のΔΦ(7,t−1)であり、第1の加算器605aに供給される。第1の加算器605aにおいて、ΔΦ(7,t−1)と、第3のシンボル遅延部607aより出力された、第1の加算器605aの1シンボル前の出力ΔΦ’(7,t−1)とを加算する。
【0075】
そして、第1の加算器605aは、ΔΦ(7,t−1)とΔΦ’(7,t−1)との加算値の平均値をΔΦ’(7,t)として出力する。このΔΦ’(7,t)は第2の減算器606aに供給される。第2の減算器606aは、ΔΦ(7,t)からΔΦ’(7,t)を減算し、その結果をΔΦ’’(7,t)として比較器608aに供給する。比較器608aは、比較開始指示が発行されている場合に、ΔΦ’’(7,t)と保護値とを比較する。比較の結果、ΔΦ’’(7,t)>保護値であれば、比較器608aはEN(7,t)として0を出力する。一方、ΔΦ’’(7,t)が保護値を超えていなければ、比較器608aはEN(7,t)として1を出力する。
【0076】
EN(7,t)の値は第3の加算器611に送られる。また、EN(7,t)の値が0のときには、マスク回路609aからΦ’(7,t)として0が出力される。EN(7,t)の値が1のときには、マスク回路609aからΦ’(7,t)としてΦ(7,t)が出力される。Φ’(7,t)の値は第2の加算器610に送られる。
【0077】
受信キャリア番号が+21、−7、−21に配置された各受信パイロット信号については、説明を省略するが、上述した受信キャリア番号が+7に配置された受信パイロット信号と同様である。
【0078】
したがって、第2の加算器610では、Φ’(7,t)、Φ’(21,t)、Φ’(−7,t)およびΦ’(−21,t)の加算処理がおこなわれる。その結果得られた値Φ’(t)は除算器612に送られる。また、第3の加算器611では、EN(7,t)、EN(21,t)、EN(−7,t)およびEN(−21,t)の加算処理がおこなわれる。その結果得られた値EN(t)は除算器612に送られる。除算器612では、Φ’(t)がEN(t)により除算される。
【0079】
図6は、図5に示す構成の動作を説明するためのフローチャートである。まず、受信パイロット信号の実数および虚数の振幅と、その受信パイロット信号の本来あるべき点の値(+1または−1)とに基づいて、受信パイロット信号の回転位相角Φ(7,t)を求める。Φ(7,t)=atan(Q/I)である(ステップS401)。
【0080】
つぎに、Φ(7,t)と1シンボル前の回転位相角Φ(7,t−1)との差分ΔΦ(7,t)を求める。ΔΦ(7,t)=Φ(7,t)−Φ(7,t−1)である(ステップS402、S403)。つぎに、ΔΦ(7,t)の1シンボル前の差分ΔΦ(7,t−1)とΔΦ’(7,t−1)との加算平均値ΔΦ’(7,t)を求める。ΔΦ’(7,t)=(ΔΦ(7,t−1)+ΔΦ’(7,t−1))/2である(ステップS404、S405、S406)。ΔΦ’(7,t−1)は、ΔΦ’(7,t)の1シンボル前の値である。
【0081】
つぎに、ステップS403で得たΔΦ(7,t)から、ステップS405で得たΔΦ’(7,t)を減算し、ΔΦ’’(7,t)を求める。ΔΦ’’(7,t)=ΔΦ(7,t)−ΔΦ’(7,t)である(ステップS407)。比較器608aで比較開始指示が発行されていない場合には(ステップS408:No)、EN(7,t)=1とし(ステップS412)、Φ’(7,t)=Φ(7,t)とする(ステップS413)。
【0082】
比較開始指示が発行されている場合には(ステップS408:Yes)、ΔΦ’’(7,t)と保護値とを比較し(ステップS409)、Φ’’(7,t)が保護値よりも小さい場合には(ステップS409:No)、Φ(7,t)は確からしいと判断して、EN(7,t)=1とし(ステップS412)、Φ’(7,t)=Φ(7,t)とする(ステップS413)。一方、Φ’’(7,t)が保護値よりも大きい場合には(ステップS409:Yes)、Φ(7,t)は雑音などの影響により不確かなデータである可能性が高い。そこで、EN(7,t)=0とし(ステップS410)、Φ’(7,t)=0とする(ステップS411)。これによって、不確かな角度情報がマスクされる。
【0083】
受信キャリア番号が+21、−7、−21に配置された各受信パイロット信号についても同様にして、Φ’(21,t)とEN(21,t)、Φ’(−7,t)とEN(−7,t)、Φ’(−21,t)とEN(−21,t)を求める。つぎに、Φ’(t)=Φ’(7,t)+Φ’(21,t)+Φ’(−7,t)+Φ’(−21,t)を計算するとともに(ステップS414)、EN(t)=EN(7,t)+EN(21,t)+EN(−7,t)+EN(−21,t)を計算する(ステップS415)。そして、Φ(t)=Φ’(t)/EN(t)を計算してΦ(t)を求める(ステップS416)。
【0084】
以上の処理をおこなうことによって、雑音などの影響を受けたパイロット信号の角度を除外することができる。したがって、単純に4つのパイロット信号の角度の平均値を求める構成の場合には、4つのパイロット信号のうち、どれかひとつでも雑音などの影響を受けると、その平均値が乱れてしまうが、本実施の形態では、それを防止することができる。
【0085】
(実施の形態5)
図7は、本発明の実施の形態5にかかるOFDM復調回路の残留キャリア周波数誤差補正回路の要部のブロック構成を示す図である。図7に示すように、アークタンジェント演算部701には、受信キャリア番号が+7、+21、−7、−21に配置された各受信パイロット信号の実数および虚数の振幅と、その受信パイロット信号の本来あるべき点の値(+1または−1)が入力される。アークタンジェント演算部701では、各受信パイロット信号の回転位相角を求める。
【0086】
アークタンジェント演算部701の出力Φ(7,t)は、第1のシンボル遅延部702a、第1の加算器703a、比較器709および第1のセレクタ708aに供給される。第1のシンボル遅延部702aの出力は、1シンボル前のΦ(7,t−1)であり、第1の加算器703aおよび第2の加算器704aに供給される。なお、実施の形態5では、Φ(n,t)のnはキャリア番号を表している。
【0087】
第1の加算器703aは、Φ(7,t)と−Φ(7,t−1)を加算し、その結果をΔΦ(7,t)として第2のセレクタ705aに供給する。第2のセレクタ705aの出力ΔΦ’(7,t)は、第2のシンボル遅延部706aおよび第3の加算器707aに供給される。第2のシンボル遅延部706aの出力は、1シンボル前のΔΦ’(7,t−1)である。第3の加算器707aでは、第2のシンボル遅延部706aの出力ΔΦ’(7,t−1)と、第2のセレクタ705aの出力ΔΦ’(7,t)とを加算する。
【0088】
第3の加算器707aの出力Φ’(7,t)は、第2のセレクタ705aおよび第2の加算器704aに供給される。第2の加算器704aは、Φ(7,t−1)とΦ’(7,t)とを加算し、その結果を第1のセレクタ708aに供給する。
【0089】
受信キャリア番号が+21、−7、−21に配置された各受信パイロット信号については、説明を省略するが、上述した受信キャリア番号が+7に配置された受信パイロット信号と同様である。
【0090】
そして、比較器709は、受信キャリア番号が+21、−7、−21に配置された各受信パイロット信号の角度ΔΦ(7,t)、ΔΦ(21,t)、ΔΦ(−7,t)およびΔΦ(−21,t)の比較をおこなう。比較の結果、Φ(7,t)が他の3つの角度よりも極端に大きい場合、第1のセレクタ708aは、1シンボル前の角度から求めた位相角、すなわちΦ(7,t−1)+Φ’(7,t)を選択し、Φ’’(7,t)として出力する。一方、Φ(7,t)が他の3つの角度と同じ程度である場合には、第1のセレクタ708aは、現シンボル角度であるΦ(7,t)を選択して出力する。受信キャリア番号が+21、−7、−21に配置された各受信パイロット信号の角度についても同様である。
【0091】
図8は、図7に示す構成の動作を説明するためのフローチャートである。まず、受信パイロット信号の実数および虚数の振幅と、その受信パイロット信号の本来あるべき点の値(+1または−1)とに基づいて、受信パイロット信号の回転位相角Φ(7,t)を求める。Φ(7,t)=atan(Q(7,t)/I(7,t))である(ステップS501)。同様にして、他の受信パイロット信号の回転位相角Φ(21,t)、Φ(−7,t)およびΦ(−21,t)も求め、比較する(ステップS502)。
【0092】
つぎに、比較結果に基づいて、ΔΦ(7,t)かΔΦ’’(7,t)を選択する(ステップS505)。ΔΦ(7,t)は、ΔΦ(7,t)からその1シンボル前のΔΦ(7,t−1)wp減算たものである(ステップS503、S504)。また、ΔΦ’’(7,t)は、ΔΦ’(7,t)とその1シンボル前のΔΦ’(7,t−1)とを加算したものである(ステップS506、S507)。ΔΦ’(7,t)は、Φ(7,t−1)とΔΦ’’(7,t)とを加算したものである(ステップS503、ステップS508)。そして、ステップS502での比較の結果、Φ(7,t)がΦ(21,t)、Φ(−7,t)およびΦ(−21,t)よりも極端に大きい場合、Φ’(7,t)を選択し、そうでない場合には、Φ(7,t)を選択して、Φ’’(7,t)として出力する(ステップS509)。
【0093】
以上の処理をおこなうことによって、雑音などの影響を受けたパイロット信号の角度を除外することができる。したがって、単純に4つのパイロット信号の角度の平均値を求める構成の場合には、4つのパイロット信号のうち、どれかひとつでも雑音などの影響を受けると、その平均値が乱れてしまうが、本実施の形態では、それを防止することができる。なお、実施の形態5においても、実施の形態4と同様に、突出したパイロット信号の角度をマスクするようにしてもよい。
【0094】
以上において本発明は、上述した各実施の形態に限らず、種々変更可能である。
【0095】
(付記1)同期検波の基準となるパイロット信号をデータシンボルより前に受信して復調するOFDM復調回路であって、
データシンボルに多重されたパイロット信号から回転位相角を求める演算手段と、
同期検波の基準となるパイロット信号を、前記演算手段により求められた回転位相角と同じ方向に同じ角度だけ回転させる回転手段と、
前記回転手段により回転させられた同期検波の基準信号でもって、同期検波をおこなう同期検波手段と、
を具備することを特徴とするOFDM復調回路。
【0096】
(付記2)同期検波の基準となるパイロット信号をデータシンボルより前に受信して復調するOFDM復調回路であって、
データシンボルに多重されたパイロット信号から回転位相角を求める演算手段と、
前記データシンボルを、前記演算手段により求められた回転位相角と逆方向に同じ角度だけ回転させる回転手段と、
前記回転手段により回転させられたデータシンボルに対して同期検波をおこなう同期検波手段と、
を具備することを特徴とするOFDM復調回路。
【0097】
(付記3)データシンボルに多重された複数のパイロット信号から複数の回転位相角を求め、複数の回転位相角の平均値を求める位相角平均手段をさらに具備することを特徴とする付記1または2に記載のOFDM復調回路。
【0098】
(付記4)前記位相角平均手段は、シンボル間の差分値を求め、差分値が過去に受信した差分値よりも突出した値を示すときに、突出した値を示すパイロット信号の角度として、前シンボルで求めた角度と差分値から求められる角度を用いることにより、回転位相角の平均値を求めることを特徴とする付記3に記載のOFDM復調回路。
【0099】
(付記5)前記位相角平均手段は、突出したパイロット信号から求めた角度を示すパイロット信号の情報を除外して、回転位相角の平均値を求めることを特徴とする付記4に記載のOFDM復調回路。
【0100】
(付記6)前記位相角平均手段は、複数のパイロット信号から求められた角度を比較し、突出した値を示すパイロット信号の角度として、前シンボルで求めた角度と差分値から求められる角度を用いて推定することにより、回転位相角の平均値を求めることを特徴とする付記3に記載のOFDM復調回路。
【0101】
【発明の効果】
本発明によれば、残留キャリア周波数誤差の影響を軽減させるための処理が同一シンボル内で完結するので、フィードバックループを構成することなく、残留キャリア周波数誤差の補正をおこなうことができる残留キャリア周波数誤差補正回路を備えたOFDM復調回路が得られる。
【図面の簡単な説明】
【図1】実施の形態1のブロック構成を示す図である。
【図2】実施の形態2のブロック構成を示す図である。
【図3】実施の形態3のブロック構成を示す図である。
【図4】実施の形態3の動作を示すフローチャートである。
【図5】実施の形態4のブロック構成を示す図である。
【図6】実施の形態4の動作を示すフローチャートである。
【図7】実施の形態5のブロック構成を示す図である。
【図8】実施の形態5の動作を示すフローチャートである。
【図9】受信パイロット信号の位相角を説明する図である。
【図10】雑音の影響がある場合のコンスタレーションを示す図である。
【図11】IEEE802.11a規格の物理層のパケットフォーマットを示す図である。
【図12】復調回路の同期部の構成の一例を示すブロック図である。
【図13】ショートトレーニング期間における処理を説明する図である。
【図14】ロングトレーニング期間における処理を説明する図である。
【図15】残留キャリア周波数誤差がある場合のコンスタレーションを示す図である。
【図16】残留キャリア周波数誤差がない場合のコンスタレーションを示す図である。
【図17】従来の残留キャリア周波数誤差補正回路のブロック構成を示す図である。
【図18】同期検波の原理について説明する図である。
【図19】伝送路等化の原理について説明する図である。
【符号の説明】
301,401 同期検波手段(同期検波部)
302,402 演算手段(アークタンジェント演算部)
331,431 回転手段(複素乗算部)
333,433 位相角平均手段(平均部)

Claims (5)

  1. 同期検波の基準となるパイロット信号をデータシンボルより前に受信して復調するOFDM復調回路であって、
    データシンボルに多重されたパイロット信号から回転位相角を求める演算手段と、
    同期検波の基準となるパイロット信号を、前記演算手段により求められた回転位相角と同じ方向に同じ角度だけ回転させる回転手段と、
    前記回転手段により回転させられた同期検波の基準信号でもって、同期検波をおこなう同期検波手段と、
    を具備することを特徴とするOFDM復調回路。
  2. 同期検波の基準となるパイロット信号をデータシンボルより前に受信して復調するOFDM復調回路であって、
    データシンボルに多重されたパイロット信号から回転位相角を求める演算手段と、
    前記データシンボルを、前記演算手段により求められた回転位相角と逆方向に同じ角度だけ回転させる回転手段と、
    前記回転手段により回転させられたデータシンボルに対して同期検波をおこなう同期検波手段と、
    を具備することを特徴とするOFDM復調回路。
  3. データシンボルに多重された複数のパイロット信号から複数の回転位相角を求め、複数の回転位相角の平均値を求める位相角平均手段をさらに具備することを特徴とする請求項1または2に記載のOFDM復調回路。
  4. 前記位相角平均手段は、シンボル間の差分値を求め、差分値が過去に受信した差分値よりも突出した値を示すときに、突出した値を示すパイロット信号の角度として、前シンボルで求めた角度と差分値から求められる角度を用いることにより、回転位相角の平均値を求めることを特徴とする請求項3に記載のOFDM復調回路。
  5. 前記位相角平均手段は、突出したパイロット信号から求めた角度を示すパイロット信号の情報を除外して、回転位相角の平均値を求めることを特徴とする請求項4に記載のOFDM復調回路。
JP2003092837A 2003-03-28 2003-03-28 Ofdm復調回路 Withdrawn JP2004304363A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092837A JP2004304363A (ja) 2003-03-28 2003-03-28 Ofdm復調回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092837A JP2004304363A (ja) 2003-03-28 2003-03-28 Ofdm復調回路

Publications (1)

Publication Number Publication Date
JP2004304363A true JP2004304363A (ja) 2004-10-28

Family

ID=33405768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092837A Withdrawn JP2004304363A (ja) 2003-03-28 2003-03-28 Ofdm復調回路

Country Status (1)

Country Link
JP (1) JP2004304363A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124303A (ja) * 2005-10-28 2007-05-17 Icom Inc 周波数制御装置、周波数制御方法及びプログラム
JP2010098383A (ja) * 2008-10-14 2010-04-30 Sharp Corp 復調装置、復調方法、復調制御プログラム、および記録媒体
JP2010200319A (ja) * 2009-02-23 2010-09-09 Commissariat A L'energie Atomique 特にモバイル装置の通信信号受信機の搬送波周波数シフトを推定するための方法
WO2014068873A1 (ja) * 2012-10-30 2014-05-08 パナソニック株式会社 送信装置、受信装置、送信方法及び受信方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124303A (ja) * 2005-10-28 2007-05-17 Icom Inc 周波数制御装置、周波数制御方法及びプログラム
JP4703368B2 (ja) * 2005-10-28 2011-06-15 アイコム株式会社 周波数制御装置、周波数制御方法及びプログラム
JP2010098383A (ja) * 2008-10-14 2010-04-30 Sharp Corp 復調装置、復調方法、復調制御プログラム、および記録媒体
JP2010200319A (ja) * 2009-02-23 2010-09-09 Commissariat A L'energie Atomique 特にモバイル装置の通信信号受信機の搬送波周波数シフトを推定するための方法
WO2014068873A1 (ja) * 2012-10-30 2014-05-08 パナソニック株式会社 送信装置、受信装置、送信方法及び受信方法
JPWO2014068873A1 (ja) * 2012-10-30 2016-09-08 パナソニック株式会社 送信装置、受信装置、送信方法及び受信方法
US9722847B2 (en) 2012-10-30 2017-08-01 Panasonic Corporation Transmitter, receiver, transmission method, and reception method

Similar Documents

Publication Publication Date Title
US6633616B2 (en) OFDM pilot tone tracking for wireless LAN
JP4419969B2 (ja) Ofdm復調装置及び方法
JP4356203B2 (ja) 復調装置及び復調方法
JP2004214963A (ja) Ofdm復調装置
JP2002511711A (ja) 多重搬送波復調システムにおいて精細な周波数同期を行うための方法および装置
JP4488605B2 (ja) Ofdm信号の伝送方法、送信装置及び受信装置
JP2004247945A (ja) Ofdm受信装置、半導体集積回路及びofdm受信方法
JP4293798B2 (ja) マルチキャリア信号を搬送するチャネルの伝達関数を推定する方法及びマルチキャリア受信機
JP4279027B2 (ja) Ofdm復調方法及び半導体集積回路
JP2907804B1 (ja) Ofdm受信装置
JP5090444B2 (ja) Ofdm復調装置、ofdm復調方法、ofdm復調プログラム、及び、記録媒体
US7792202B2 (en) Apparatus and method for estimating timing offset of OFDM symbol, and method of recovering symbol timing of OFDM symbol
JPH03245628A (ja) 時分割多重アクセス装置の端末装置
JP2004304363A (ja) Ofdm復調回路
JP2010050834A (ja) Ofdmデジタル信号等化装置、等化方法及び中継装置
US8229042B2 (en) Orthogonal frequency division multiplexing demodulator
JP3335933B2 (ja) Ofdm復調装置
JP2007208748A (ja) Ofdm復調装置、ofdm復調方法、プログラム及びコンピュータ読み取り可能な記録媒体
JP2004214960A (ja) Ofdm復調装置
JP2004007439A (ja) 無線伝送装置
JP2002290371A (ja) 直交周波数分割多重伝送信号受信装置
JP2001156745A (ja) 復調装置及び復調方法
JP2004254192A (ja) Ofdm受信装置
JP2003046476A (ja) 広帯域afc回路及びofdm復調装置
JP2008098840A (ja) パイロット信号受信機

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606