JP2004297074A - 電気光学装置及び投射型表示装置 - Google Patents

電気光学装置及び投射型表示装置 Download PDF

Info

Publication number
JP2004297074A
JP2004297074A JP2004129875A JP2004129875A JP2004297074A JP 2004297074 A JP2004297074 A JP 2004297074A JP 2004129875 A JP2004129875 A JP 2004129875A JP 2004129875 A JP2004129875 A JP 2004129875A JP 2004297074 A JP2004297074 A JP 2004297074A
Authority
JP
Japan
Prior art keywords
light
electro
optical device
layer
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004129875A
Other languages
English (en)
Other versions
JP3966305B2 (ja
Inventor
Takashi Sato
尚 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004129875A priority Critical patent/JP3966305B2/ja
Publication of JP2004297074A publication Critical patent/JP2004297074A/ja
Application granted granted Critical
Publication of JP3966305B2 publication Critical patent/JP3966305B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】液晶装置等の電気光学装置において、耐光性を高め、高品位の画像を表示する。
【解決手段】電気光学装置は、TFTアレイ基板10上に、画素電極と、これに接続されたTFT30と、このTFTの少なくともチャネル領域を覆う遮光層73、6aと、この遮光層とTFTとの間に配置されておりチャネル領域を形成する主材料を主材とする光吸収層72、71aとを備える。光吸収層は画素毎に島状に分断された容量電極であり、遮光層は容量線である。光吸収層により、遮光層のTFT側に向いた内面における内面反射や多重反射の発生を抑える。
【選択図】図3

Description

本発明は、アクティブマトリクス駆動方式の電気光学装置の技術分野に属し、特に画素スイッチング用の薄膜トランジスタ(Thin Film Transistor:以下適宜、TFTと称す)を、基板上の積層構造中に備えた形式の電気光学装置の技術分野に属する。
TFTアクティブマトリクス駆動形式の電気光学装置では、各画素に設けられた画素スイッチング用TFTのチャネル領域に入射光が照射されると光による励起で電流が発生してTFTの特性が変化する。特に、プロジェクタのライトバルブ用の電気光学装置の場合には、入射光の強度が高いため、TFTのチャネル領域やその周辺領域に対する入射光の遮光を行うことは重要となる。そこで従来は、対向基板に設けられた各画素の開口領域を規定する遮光膜により、或いはTFTの上を通過すると共にAl等の金属膜からなるデータ線により、係るチャネル領域やその周辺領域を遮光するように構成されている。また特開平9−33944号公報には、屈折率が大きいa−Si(アモルファスシリコン)から形成された遮光膜で、チャネル領域に入射する光を減少させる技術が開示されている。更に、TFTアレイ基板上において画素スイッチング用TFTに対向する位置(即ち、TFTの下側)にも、例えば高融点金属からなる遮光膜を設けることがある。このようにTFTの下側にも遮光膜を設ければ、TFTアレイ基板側からの裏面反射や、複数の電気光学装置をプリズム等を介して組み合わせて一つの光学系を構成する場合に他の電気光学装置からプリズム等を突き抜けてくる投射光が、当該電気光学装置のTFTに入射するのを未然に防ぐことができる。
しかしながら、上述した各種遮光技術によれば、以下の問題点がある。
即ち、先ず対向基板上やTFTアレイ基板上に遮光膜を形成する技術によれば、遮光膜とチャネル領域との間は、3次元的に見て例えば液晶層、電極、層間絶縁膜等を介してかなり離間しており、両者間へ斜めに入射する光に対する遮光が十分ではない。特にプロジェクタのライトバルブとして用いられる小型の電気光学装置においては、入射光は光源からの光をレンズで絞った光束であり、斜めに入射する成分を無視し得ない程に含んでいるので、このような斜めの入射光に対する遮光が十分でないことは実践上問題となる。
加えて、遮光膜のない領域から電気光学装置内に侵入した光が、遮光膜やデータ線の内面(即ち、チャネル領域に面する側の面)で反射された後に、係る反射光或いはこれが更に遮光膜やデータ線の内面で反射された多重反射光が最終的にTFTのチャネル領域に到達してしまう場合もある。またデータ線で遮光する技術によれば、データ線は平面的に見て走査線に直交して伸びるストライプ状に形成されており且つデータ線とチャネル領域との容量カップリングの悪影響が無視できる程度に両者間に厚い層間絶縁膜を配置する必要があるため、十分に遮光することは、基本的に困難である。
また特開平9−33944号公報に記載の技術によれば、ゲート線上にa−Si膜を形成するため、ゲート電極とa−Si膜との容量カップリングの悪影響を低減するために両者間に比較的厚い層間絶縁膜を積むことが必要となる。この結果、追加的に形成されるa−Si膜や層間絶縁膜等により積層構造が複雑肥大化すると共にやはり斜めの入射光や内面反射光に対して十分な遮光を行うことは困難である。特に近年の表示画像の高品位化という一般的要請に沿うべく電気光学装置の高精細化或いは画素ピッチの微細化を図るに連れて、上述した従来の各種遮光技術によれば、十分な遮光を施すのがより困難となり、TFTのトランジスタ特性の変化により、フリッカ等が生じて、表示画像の品位が低下してしまうという問題点がある。
尚、このような耐光性を高めるためには、遮光膜の形成領域を広げればよいようにも考えられるが、遮光膜の形成領域を広げてしまったのでは、表示画像の明るさを向上させるべく各画素の開口率を高めることが根本的に困難になるという問題点が生じる。
本発明は上述の問題点に鑑みなされたものであり、耐光性に優れていると共に各画素の開口率が比較的高く、高品位の画像表示が可能な電気光学装置を提供することを課題とする。
(1)本発明の電気光学装置は上記課題を解決するために、一対の基板と、前記一対の
基板間に配置された電気光学物質と、前記一対の基板の一方に形成された画素電極と、前記画素電極に接続された薄膜トランジスタと、前記薄膜トランジスタ上に配置され、少なくともチャネル領域を覆う遮光層と、前記遮光層と前記薄膜トランジスタとの間に配置された光吸収層とを備える。
本発明の電気光学装置によれば、画素電極に接続された薄膜トランジスタの少なくともチャネル領域は、遮光層により遮光される。
また、本発明の電気光学装置によれば、一対の基板と、
前記一対の基板間に配置された電気光学物質と、
前記一対の基板の一方に形成された画素電極と、
前記画素電極に電気的に接続された薄膜トランジスタと、
前記薄膜トランジスタの上方であって前記画素電極の下方に配置されたデータ線と、
前記薄膜トランジスタ上に配置され、少なくともチャネル領域を覆う遮光層と、
前記遮光層と前記薄膜トランジスタとの間に配置された光吸収層と
を備え、
前記光吸収層は、データ線と前記薄膜トランジスタとの間に配置された容量線に誘電体膜を介して対向配置され、且つ画素毎に島状に分断された容量電極であることを特徴とする。
また、本発明の電気光学装置によれば、
一対の基板と、
前記一対の基板間に配置された電気光学物質と、
前記一対の基板の一方に形成された画素電極と、
前記画素電極に電気的に接続され、チャネル領域を有する薄膜トランジスタと、
前記薄膜トランジスタ上に配置され、少なくとも前記チャネル領域を覆う遮光層と、
前記遮光層と前記薄膜トランジスタとの間に配置された光吸収層と
を備え、
前記遮光層は、平面視して前記光吸収層よりわずかに大に形成され、前記光吸収層と誘電体膜を介して対向配置されていることを特徴とする。
また、本発明の電気光学装置によれば、一対の基板と、
前記一対の基板間に配置された電気光学物質と、
前記一対の基板の一方に形成された画素電極と、
前記画素電極に電気的に接続された薄膜トランジスタと、
前記薄膜トランジスタ上に配置され、少なくともチャネル領域を覆う遮光層と、
前記遮光層と前記薄膜トランジスタとの間に配置された光吸収層と
を備え、
前記光吸収層は、蓄積容量の画素毎に島状に分断された容量電極であることを特徴とする。
さらに、本発明の電気光学装置によれば、データ線と前記薄膜トランジスタとの間に配置され、前記容量電極と誘電体膜を介して対向配置された容量線が、前記遮光層の少なくとも一部からなることを特徴とする。
ここで一般に、Al(アルミニウム)膜、Cr(クロム)膜等の遮光性の金属膜等からなる遮光層を用いる場合には、薄膜トランジスタに対して遮光層が設けられた側からの光については、遮光層における薄膜トランジスタに面しない側の表面(即ち、当該電気光学装置における遮光層の外面)により、光を反射することにより、基本的に十分に遮光可能である。即ち、遮光層を薄膜トランジスタに対して入射光(例えば、プロジェクタ用途の場合の投射光など)が入射する側に設ければ、当該入射光を遮光層の外面により遮光可能である。なお、遮光層を薄膜トランジスタに対して入射光が出射する側に設ければ、戻り光(例えば、プロジェクタ用途の場合の裏面反射光や、複板式のプロジェクタ用途のように複数の電気光学装置をライトバルブとして組み合わせて用いる際に他のライトバルブから合成光学系を突き抜けてくる光など)を遮光層の外面により遮光可能である。しかしながら、遮光層が配置されたのと反対側から薄膜トランジスタの脇を抜けてくる基板に対して斜めの戻り光(例えば、遮光層を薄膜トランジスタの入射側に配置した場合)或いは入射光(例えば、遮光層を薄膜トランジスタの出射側に配置した場合)については少なくとも部分的に、遮光層における薄膜トランジスタに面する側の表面(即ち、当該電気光学装置における遮光層の内面)で反射される。すると、遮光層と薄膜トランジスタとの間に、このような斜めの入射光や戻り光が遮光層の内面で反射してなる内面反射光や、更にこの内面反射光が他の膜で反射することによる多重反射を発生させる。従って、薄膜トランジスタに対して単純に遮光層を設けただけでは、遮光層の形成面積の大小や配置によらず、遮光層の内面での反射に起因する内面反射光や多重反射光が、最終的に薄膜トランジスタに入射して、そのトランジスタ特性を劣化させてしまうのである。
しかるに本発明によれば、このような遮光層が設けられたのと反対側から薄膜トランジスタの脇を抜けて斜めに遮光層の内面に至ろうとする光や遮光層の内面で反射された光は、遮光層と薄膜トランジスタとの間に配置された光吸収層により、吸収される。この結果、反射率の高いAl膜やCr膜等の金属膜からなる遮光層を設けることにより、遮光層の外面に入射する光を十分に遮光することで、光リークによるトランジスタ特性の劣化を効果的に防ぐことができる。更に遮光層により、画像表示領域で光抜けが生じてコントラス比が低下するのを効果的に防止できる。他方で、遮光層の内面における反射に起因する内面反射光や多重反射光は、光吸収層により吸収されるので、光リークによるトランジスタ特性の劣化をより一層効果的に防ぐことができる。しかも、このような遮光や光吸収を、例えば伝統的な対向基板に設けられた遮光膜により行う場合と比較して、薄膜トランジスタに比較的近接して行うことが可能となり、これにより不必要に遮光膜の形成領域を広げることを避けつつ(即ち、各画素の非開口領域を不必要に狭めることなく)、遮光性能を向上させることができる。
以上の結果、各画素の開口率が高く、且つ高い耐光性により薄膜トランジスタの光リークによる特性劣化が低減されており、しかもコントラスト比が高く高品位の画像表示が可能な電気光学装置が実現される。
尚、本発明における遮光層と光吸収層との間の層間距離は、両者間に何らの膜も介在させることなく或いは極薄い絶縁膜等を配置することで短くてもよいし、両者間に厚めの層間絶縁膜を配置することで長くしてもよい。以下に説明するように、遮光層及び光吸収層を一対の容量電極として用いて蓄積容量を構築する観点からや、光吸収層で発生する熱を、遮光層を介して逃がす観点からは、これら遮光層と光吸収層との間の層間距離を短くした方が有利である。
(2)本発明の電気光学装置の一の態様では、前記光吸収層は、薄膜トランジスタのチャネル領域を形成する主材料を主材とする。例えば、シリコンを主材とし、シリコンを導体化するためにP、B、Asがドープされたポリシリコン膜からなる。
また、薄膜トランジスタのチャネルはシリコンを主材としたポリシリコンである。このポリシリコンは、薄膜トランジスタの閾値電圧Vthを制御するためにB、P、As等が微量にドープされているか、又はノンドープである。
また、チャネル、光吸収層にはポリシリコンの代わりにアモルファスシリコンや単結晶シリコンを用いても良い。
(3)本発明の電気光学装置の他の態様では、前記光吸収層は、シリコン膜からなる。
この態様によれば、シリコン膜からなる光吸収層により、遮光層の内面に至ろうとする光や該内面で反射された光を吸収できる。従って、内面反射光や多重反射光の発生を効果的に阻止できる。特に、薄膜トランジスタのチャネル領域をなす半導体層としてポリシリコン膜を採用すれば、チャネル領域における光吸収特性(周波数依存性等)と類似或いは同一の光吸収特性を、当該光吸収層が有することになる。従って、チャネル領域で吸収されることにより光リークの原因となる光成分を中心として、光吸収層により吸収除去できるので、大変有利である。
(4)本発明の電気光学装置の他の態様では、前記遮光層は、金属を含む膜からなる。
この態様によれば、金属を含む膜からなる遮光層により、遮光層の外面により入射光や戻り光を十分に遮光可能となる。この際特に、内面反射光や多重反射光については光吸収層で吸収除去できるので、Al膜等の反射率が極めて高い金属を含む膜を採用可能となる。尚、Al膜の他に、金属を含む膜としては例えば、Ti(チタン)、Cr(クロム)、W(タングステン)、Ta(タンタル)、Mo(モリブデン)、Pb(鉛)等の高融点金属のうち少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの等が挙げられる。
(5)本発明の電気光学装置の態様では、前記遮光層は、前記基板上における前記薄膜トランジスタの上側に配置されている。
この態様によれば、薄膜トランジスタの上側に配置された遮光層の外面により、入射光を遮光可能である。そして、遮光層の内面に至ろうとする戻り光や遮光層の内面で反射する光については光吸収層で吸収除去されるので、遮光層の内面における反射に起因する内面反射光や多重反射光による薄膜トランジスタの特性劣化を、これらの遮光層及び光吸収層により阻止できる。
(6)前記遮光層が上側に配置された態様では、前記遮光層は、データ線からなってもよい。
このように構成すれば、Al膜等からなるデータ線に、配線としての機能に加えて、遮光層としての機能を持たせることにより、専用の遮光層を追加形成することによる積層構造の複雑化を招かなくて済む。従って、装置構成及び製造プロセスの簡略化を図る上で大変有利である。
(7)前記遮光層が上側に配置された態様では、前記遮光層は、データ線と前記薄膜トランジスタとの間に配置された容量線からなり、前記光吸収層は、前記容量線に誘電体膜を介して対向配置され且つ画素毎に島状に分断された容量電極からなってもよい。
このように構成すれば、金属膜やポリシリコン膜等からなる容量線に、配線としての機能に加えて、遮光層としての機能を持たせると同時に、ポリシリコン膜等からなる容量電極に、電極としての機能に加えて、光吸収層としての機能を持たせることにより、専用の遮光層や光吸収層を追加形成することによる積層構造の複雑化を招かなくて済む。従って、装置構成及び製造プロセスの簡略化を図る上で大変有利である。
(8)前記遮光層が上側に配置された態様では、前記遮光層は、前記薄膜トランジスタに接続されており第1方向に夫々伸びる複数のデータ線と、前記画素電極に接続されており前記第1方向に交差する第2方向に夫々伸びる複数の容量線とからなってもよい。
このように構成すれば、Al膜等からなるデータ線に、配線としての機能に加えて、遮光層の一部としての機能を持たせると同時に、金属膜やポリシリコン膜等からなる容量線に、配線としての機能に加えて、遮光層の一部としての機能を持たせることにより、専用の遮光層を追加形成することによる積層構造の複雑化を招かなくて済む。特に、データ線に沿った方向については、データ線を遮光層として利用し、容量線或いは走査線に沿った方向については、容量線を遮光層として利用すれば、配線レイアウト上も無駄が少なくて済む。従って、装置構成及び製造プロセスの簡略化を図る上で大変有利である。
(9)或いは、前記遮光層が上側に配置された態様では、前記遮光層は、データ線と前記薄膜トランジスタとの間に配置された多層構造を持つ容量線の一の層からなり、前記光吸収層は、前記容量線のうち前記一の層よりも前記薄膜トランジスタに近い側にある他の層からなってもよい。
このように構成すれば、遮光層及び光吸収層の両者を含む多層構造を有する容量線により、遮光機能及び光吸収機能の両者を持たせることができる。加えて、光吸収層において光吸収に伴って発生する熱を、遮光層を介して逃がすことも可能となる。
(10)更に、上述の如くに容量線を備えた各種の場合に、前記容量線は、画像表示領域内で前記データ線に交差する方向に伸びるストライプ状に形成されており且つ前記画像表示領域の周辺に位置する周辺領域で定電位源に接続されてもよい。
このように構成すれば、容量線を周辺領域において定電位に落とすことができ、当該容量線のうち画像表示領域内において各容量電極に対向配置される定電位部分を、蓄積容量を構成する固定電位側容量電極として良好に機能させることができる。従って、蓄積容量の性能を高めることができる。係る定電位源としては、薄膜トランジスタを駆動するための周辺駆動回路に供給される正電源や負電源の定電位源でもよいし、対向基板の対向電極に供給される定電位でも構わない。
(11)このように容量線を定電位源に接続する場合、前記容量線は、前記周辺領域で相互に接続されており、前記定電位源に対して一又は複数のコンタクトを介して複数まとめて接続されてもよい。
このように構成すれば、画像表示領域で、複数のストライプ状とされている容量線を、周辺領域で、一又は複数のコンタクト(例えば、基板の4隅に設けられたコンタクト)により、まとめて定電位に落とすことが可能となる。
(12)或いはこのように容量線を定電位源に接続する場合、前記容量線は、前記周辺領域で相互に接続されており、前記定電位源に対して複数のコンタクトを介して冗長的に接続されてもよい。
このように構成すれば、画像表示領域で、複数のストライプ状とされている容量線を、周辺領域で、冗長的に設けられた複数のコンタクトにより、安定且つ確実に定電位に落とすことが可能となる。
(13)また、前述した遮光層が上側に配置された態様では、前記基板上における前記薄膜トランジスタの下側に配置されており前記薄膜トランジスタの少なくともチャネル領域を覆う他の遮光層を更に備えてもよい。
このように構成すれば、当該他の遮光膜により、薄膜トランジスタの下側から来る戻り光に対する遮光を行うことができ、薄膜トランジスタの上下から遮光を行うことができる。この際特に、二つの遮光膜間で生じようとする内面反射光や多重反射光については光吸収層により吸収除去できる。尚、他の遮光層は例えば、Ti、Cr、W、Ta、Mo、Pb等の高融点金属のうち少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したものから構成すればよい。
(14)この場合、前記他の遮光層と前記薄膜トランジスタとの間に配置され、薄膜トランジスタのチャネルを形成する主材料(例えば、シリコン或いはポリシリコン)を主材とする他の光吸収層を更に備えてもよい。
このように構成すれば、二つの遮光膜間で生じようとする内面反射光や多重反射光については、二つの光吸収層により、一層強力に吸収除去できる。
(15)本発明の電気光学装置の他の態様では、前記光吸収層は、前記画素電極或いはデータ線と前記薄膜トランジスタとを中継接続する中間導電層からなる部分を含む。
(16)本発明の電気光学装置の他の態様では、前記光吸収層は、前記画素電極或いはデータ線と前記薄膜トランジスタとを中継接続する中間導電層からなる部分を含む。
この態様によれば、ポリシリコン膜等からなる中間導電層に、中継接続する機能に加えて、光吸収層の一部としての機能を持たせることにより、専用の光吸収層を追加形成することによる積層構造の複雑化を低減できる。従って、装置構成及び製造プロセスの簡略化を図る上で有利である。尚、このように中間導電層を利用して中継接続すれば、薄膜トランジスタと画素電極との間や、薄膜トランジスタとデータ線との間が長くても、両者間を一つのコンタクトホールで接続する技術的困難性を回避しつつ比較的小径の二つ以上の直列なコンタクトホールで両者間を良好に接続できる。
(17)本発明の電気光学装置の他の態様では、前記遮光層は、前記光吸収層よりも熱伝導率が高い。
この態様によれば、光吸収層において光吸収に伴って発生する熱を、熱伝導率の高い遮光層を介して逃がすことができる。即ち、光吸収層から薄膜トランジスタに伝わる熱量を低減でき、これにより、薄膜トランジスタで生じる熱リークを低減できる。従って、遮光層及び光吸収層により、光リーク及び熱リークの両者を低減することにより、トランジスタ特性を顕著に向上させ得る。
(18)この態様では、前記薄膜トランジスタと前記光吸収層との層間距離は、前記光吸収層と前記遮光層との層間距離よりも大きくてもよい。
このように構成すれば、光吸収層において光吸収に伴って発生する熱を、当該光吸収層の近く配置された遮光層を介して、一層効率良く逃がすことができる。
即ち、光吸収層の遠くに配置された分だけ、薄膜トランジスタに伝わる熱量を低減できる。尚、これら薄膜トランジスタと光吸収層との層間や、光吸収層と遮光層との層間には、層間絶縁膜等が設けられる。
(19)本発明の電気光学装置の他の態様では、前記遮光層は、前記光吸収層上に絶縁膜を介して積層され且つ前記光吸収層よりも平面的に見て一回り大きく形成される。
この態様によれば、光吸収層よりも一回り大きい遮光層により、遮光層の外面側における遮光を行うと同時に、遮光層よりも一回り小さい光吸収層により、遮光層の内面側における光吸収を行うことができる。
この態様によれば、光吸収層よりも一回り大きい遮光層により、遮光層の外面側における遮光を行うと同時に、遮光層よりも一回り小さい光吸収層により、遮光層の内面側における光吸収を行うことができる。
本発明の電気光学装置は、一対の基板と、前記一対の基板間に配置された電気光学物質と、前記一対の基板の一方に形成された画素電極と、前記画素電極に接続された薄膜トランジスタと、前記薄膜トランジスタと前記一方の基板との間に配置され、少なくとも前記チャネル領域を覆う遮光層と、前記遮光層と前記薄膜トランジスタとの間に配置され、シリコン膜からなる光吸収層とを備えたことを特徴とする。
この態様によれば、薄膜トランジスタの下側に配置された遮光層の外面により、戻り光を遮光可能である。そして、遮光層の内面に至ろうとする入射光や遮光層の内面で反射する光については光吸収層で吸収除去されるので、遮光層の内面における反射に起因する内面反射光や多重反射光による薄膜トランジスタの特性劣化を、これらの遮光層及び光吸収層により阻止できる。尚、このように薄膜トランジスタの下側に配置される遮光層は例えば、Ti、Cr、W、Ta、Mo、Pb等の高融点金属のうち少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したものから構成すればよい。また、シリコン膜からなる光吸収層により、遮光層の内面に至ろうとする光や該内面で反射された光を吸収できる。従って、内面反射光や多重反射光の発生を効果的に阻止できる。前記したように、光吸収層の材料としてのシリコンとしては種々の材料を用い得るが、特に、薄膜トランジスタのチャネル領域をなす半導体層としてポリシリコン膜を採用すれば、チャネル領域における光吸収特性(周波数依存性等)と類似或いは同一の光吸収特性を、当該光吸収層が有することになる。従って、チャネル領域で吸収されることにより光リークの原因となる光成分を中心として、光吸収層により吸収除去できるので、大変有利である。
本発明の態様では、前記遮光層は、金属を含む膜からなる。この態様によれば、金属を含む膜からなる遮光層により、遮光層の外面により入射光や戻り光を十分に遮光可能となる。この際特に、内面反射光や多重反射光については光吸収層で吸収除去できるので、Al膜等の反射率が極めて高い金属を含む膜を採用可能となる。尚、Al膜の他に、金属を含む膜としては例えば、Ti(チタン)、Cr(クロム)、W(タングステン)、Ta(タンタル)、Mo(モリブデン)、Pb(鉛)等の高融点金属のうち少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの等が挙げられる。
(20)本発明の電気光学装置の他の態様では、一対の基板と、前記一対の基板間に形成された電気光学物質と、前記一対の基板の一方に形成された画素電極と、前記画素電極に接続された薄膜トランジスタと、前記薄膜トランジスタの少なくともチャネル領域を覆う第1遮光層と、前記薄膜トランジスタを介して前記第1遮光層と対峙する第1光吸収層とを備えたことを特徴とする。
この態様によれば、第1遮光層で薄膜トランジスタに入射する光を遮光し、第1光吸収層で光を吸収して薄膜トランジスタに光が反射するのを防止する。
(21)また、前記第1遮光層は、前記薄膜トランジスタに対して光入射側に設けられているとよい。
この態様によれば、第1遮光層で直接薄膜トランジスタに光が照射されるのを防ぐことができる。
(22)さらに、前記第1遮光層と前記薄膜トランジスタとの間に第2光吸収層が設けられているとよい。
この態様によれば、内部反射等によって第1遮光層の薄膜トランジスタ側に向けられた光は、第2光吸収層で吸収される。
(23)さらに、前記第1光吸収層の前記薄膜トランジスタと反対側に第2遮光層が設けられているとよい。
この態様によれば、内部反射等によって前記薄膜トランジスタに向けられた光は、第2遮光層で遮光することができる。
(24)また、前記第2遮光層は、前記第1光吸収層の内側の領域に形成されていてもよい。
この態様によれば、第2遮光層から延びている第1光吸収層に、斜めからの強い光が第1光吸収層に照射して、第1光吸収層から漏れても、光をそのまま外へ逃がすことができる。
(25)また、前記第2遮光膜は、前記第1遮光膜の内側の領域に形成されていることを特徴とする。
この態様によれば、第2遮光膜は斜めからの光を避けることができる。
(26)本発明の電気光学装置の他の態様では、一対の基板と、前記一対の基板間に形成された電気光学物質と、前記一対の基板の一方に形成された画素電極と、前記画素電極に接続された薄膜トランジスタと、前記薄膜トランジスタの少なくともチャネル領域を覆う第1光吸収層と、前記薄膜トランジスタを介して前記第1光吸収層と対峙する第2光吸収層とを備えたことを特徴とする。
この態様によれば、特に斜めから入ってきた光を、第1光吸収層と第2光吸収層とで吸収して、薄膜トランジスタに照射される光を減らすことができる。
(27)また、前記画素電極と前記薄膜トランジスタと前記第1光吸収層との間には透光性の絶縁膜が各々介在している。
さらに、前記一対の基板の内、前記薄膜トランジスタが設けられた側の基板とは反対側の基板側が光入射側である。
(28)本発明の投射型表示装置の態様は、光源と、クレーム1から30のいずれか1つの電気光学装置でなるライトバルブと、前記光源から発光した光を前記ライトバルブに導光する導光部材と、前記ライトバルブで変調された光を投射する投射光学部材とを有することを特徴とする。
この態様によれば、電気光学装置内の薄膜トランジスタに光が入りにくいので、高品位の画像を投射することができる。
(29)本発明の電気光学装置用基板の態様は、画素電極と、前記画素電極に接続された薄膜トランジスタと、前記薄膜トランジスタの少なくともチャネル領域を覆う遮光層と、前記遮光層と前記薄膜トランジスタとの間に配置された光吸収層とを備えたことを特徴とする。
(30)また、本発明の電気光学装置用基板の態様は、画素電極と、前記画素電極に接続された薄膜トランジスタと、前記薄膜トランジスタの少なくともチャネル領域を覆う遮光層と、前記薄膜トランジスタを介して前記遮光層と対峙する光吸収層とを備えたことを特徴とする。
(31)また、本発明の電気光学装置用基板の態様は、画素電極と、前記画素電極に接続された薄膜トランジスタと、前記薄膜トランジスタの少なくともチャネル領域を覆う第1光吸収層と、前記薄膜トランジスタを介して前記第1光吸収層と対峙する第2光吸収層とを備えたことを特徴とする。
尚、本発明に係る薄膜トランジスタとしては、走査線の一部からなるゲート電極がチャネル領域の上側に位置する所謂トップゲート型でもよいし、走査線の一部からなるゲート電極がチャネル領域の下側に位置する所謂ボトムゲート型でもよい。また、画素電極の層間位置も、基板上で走査線の上方でも下方でもよい。
本発明のこのような作用及び他の利得は次に説明する実施の形態から明らかにされる。
以下、本発明の実施形態を図面に基づいて説明する。以下の実施形態は、本発明の電気光学装置を液晶装置に適用したものである。
先ず本発明の実施形態における電気光学装置の構成について、図1から図3を参照して説明する。図1は、電気光学装置の画像表示領域を構成するマトリクス状に形成された複数の画素における各種素子、配線等の等価回路である。図2は、データ線、走査線、画素電極等が形成されたTFTアレイ基板の相隣接する複数の画素群の平面図である。図3は、図2のA−A’断面図である。尚、図3においては、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材毎に縮尺を異ならしめてある。
図1において、本実施形態における電気光学装置の画像表示領域を構成するマトリクス状に形成された複数の画素には夫々、画素電極9aと当該画素電極9aをスイッチング制御するためのTFT30とが形成されており、画像信号が供給されるデータ線6aが当該TFT30のソースに電気的に接続されている。データ線6aに書き込む画像信号S1、S2、…、Snは、この順に線順次に供給しても構わないし、相隣接する複数のデータ線6a同士に対して、グループ毎に供給するようにしても良い。また、TFT30のゲートに走査線3aが電気的に接続されており、所定のタイミングで、走査線3aにパルス的に走査信号G1、G2、…、Gmを、この順に線順次で印加するように構成されている。画素電極9aは、TFT30のドレインに電気的に接続されており、スイッチング素子であるTFT30を一定期間だけそのスイッチを閉じることにより、データ線6aから供給される画像信号S1、S2、…、Snを所定のタイミングで書き込む。画素電極9aを介して電気光学物質の一例としての液晶に書き込まれた所定レベルの画像信号S1、S2、…、Snは、対向基板(後述する)に形成された対向電極(後述する)との間で一定期間保持される。液晶は、印加される電圧レベルにより分子集合の配向や秩序が変化することにより、光を変調し、階調表示を可能にする。ノーマリーホワイトモードであれば、各画素の単位で印加された電圧に応じて入射光に対する透過率が減少し、ノーマリーブラックモードであれば、各画素の単位で印加された電圧に応じて入射光に対する透過率が増加され、全体として電気光学装置からは画像信号に応じたコントラストを持つ光が出射する。ここで、保持された画像信号がリークするのを防ぐために、画素電極9aと対向電極との間に形成される液晶容量と並列に蓄積容量70を付加する。
図2において、電気光学装置のTFTアレイ基板上には、マトリクス状に複数の透明な画素電極9a(点線部9a’により輪郭が示されている)が設けられており、画素電極9aの縦横の境界に各々沿ってデータ線6a及び走査線3aが設けられている。
また、半導体層1aのうち図中右上がりの斜線領域で示したチャネル領域1a’に対向するように走査線3aが配置されており、走査線3aはゲート電極として機能する(特に、本実施形態では、走査線3aは、当該ゲート電極となる部分において幅広に形成されている)。このように、走査線3aとデータ線6aとの交差する個所には夫々、チャネル領域1a’に走査線3aがゲート電極として対向配置された画素スイッチング用のTFT30が設けられている。
図2及び図3に示すように、本実施形態では特に、容量線300は、導電性のポリシリコン膜等からなる第1膜72と高融点金属を含む金属シリサイド膜等からなる第2膜73とが積層された多層構造を持つ。このうち第2膜73は、容量線300或いは蓄積容量70の固定電位側容量電極としての機能の他、TFT30の上側において入射光からTFT30を遮光する遮光層としての機能を持つ。
また第1膜72は、容量線300或いは蓄積容量70の固定電位側容量電極としての機能の他、遮光層としての第2膜73とTFT30との間に配置された光吸収層としての機能を持つ。他方、容量線300に対して、誘電体膜75を介して対向配置される中継層71aは、蓄積容量70の画素電位側容量電極としての機能の他、遮光層としての第2膜73とTFT30との間に配置される光吸収層としての機能を持ち、更に、画素電極9aとTFT30の高濃度ドレイン領域1eとを中継接続する中間導電層としての機能を持つ。このような遮光及び光吸収については図4から図7を参照して後に詳述する。尚、これらの光吸収層としての第1膜72及び中継層71aは、ポリシリコン膜等の、遮光層としての第2膜73と比較して光吸収率が高い材質からなる。
本実施形態では、蓄積容量70は、TFT30の高濃度ドレイン領域1e(及び画素電極9a)に接続された画素電位側容量電極としての中継層71aと、固定電位側容量電極としての容量線300の一部とが、誘電体膜75を介して対向配置されることにより形成されている。
容量線300は平面的に見て、走査線3aに沿ってストライプ状に伸びており、TFT30に重なる個所が図2中上下に突出している。そして、図2中縦方向に夫々伸びるデータ線6aと図2中横方向に夫々伸びる容量線300とが相交差して形成されることにより、TFTアレイ基板10上におけるTFT30の上側に、平面的に見て格子状の遮光層が構成されており、各画素の開口領域を規定している。
他方、TFTアレイ基板10上におけるTFT30の下側には、下側遮光膜11aが格子状に設けられている。
本実施形態では特に、格子状の下側遮光膜11aの形成領域は、同じく格子状の上側の遮光層(即ち、容量電極300及びデータ線6a)の形成領域内に位置する(即ち、一回り小さく形成され、下側遮光膜11aは、容量線300及びデータ線6aの幅より狭く形成されている)。そして、TFT30のチャネル領域1aは、その低濃度ソース領域1b及び低濃度ドレイン領域1c(即ち、LDD領域)との接合部を含めて、このような格子状の下側遮光膜11aの交差領域内に(従って、格子状の上側遮光膜の交差領域内に)位置する。
これらの遮光層の一例を構成する第2膜73及び下側遮光膜11aは夫々、例えば、Ti、Cr、W、Ta、Mo、Pb等の高融点金属のうちの少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの等からなる。また、このような第2膜73を含んでなる容量線300は、多層構造を有し、その第1膜72が導電性のポリシリコン膜であるため、係る第2膜73については、導電性材料から形成する必要はないが、第1膜72だけでなく第2膜73をも導電膜から形成すれば、容量線300をより低抵抗化できる。
また図3において、容量電極としての中継層71aと容量線300との間に配置される誘電体膜75は、例えば膜厚5〜200nm程度の比較的薄いHTO膜、LTO膜等の酸化シリコン膜、あるいは窒化シリコン膜等から構成される。蓄積容量70を増大させる観点からは、膜の信頼性が十分に得られる限りにおいて、誘電体膜75は薄い程良い。
光吸収層として機能するのみならず容量線300の一部を構成する第1膜72は、例えば膜厚150nm程度のポリシリコン膜からなる。また、遮光層として機能するのみならず容量線300の他の一部を構成する第2膜73は、例えば膜厚150nm程度のタングステンシリサイド膜からなる。このように誘電体膜75に接する側に配置される第1膜72をポリシリコン膜から構成し、誘電体膜75に接する中継層71aをポリシリコン膜から構成することにより、誘電体膜75の劣化を阻止できる。例えば、仮に金属シリサイド膜を誘電体膜75に接触させる構成を採ると、誘電体膜75に重金属等の金属が入り込んで、誘電体膜75の性能を劣化させてしまう。更に、このような容量線300を誘電体膜75上に形成する際に、誘電体膜75の形成後にフォトレジスト工程を入れることなく、連続で容量線300を形成すれば、誘電体膜75の品質を高められるので、当該誘電体膜75を薄く成膜することが可能となり、最終的に蓄積容量70を増大できる。
図2及び図3に示すように、データ線6aは、コンタクトホール81を介して中継接続用の中継層71bに接続されており、更に中継層71bは、コンタクトホール82を介して、例えばポリシリコン膜からなる半導体層1aのうち高濃度ソース領域1dに電気的に接続されている。尚、中継層71bは、前述した諸機能を持つ中継層71aと同一膜から同時形成される。
また容量線300は、画素電極9aが配置された画像表示領域からその周囲に延設され、定電位源と電気的に接続されて、固定電位とされる。この点については、図8及び図9を参照して後に詳述する。
画素電極9aは、中継層71aを中継することにより、コンタクトホール83及び85を介して半導体層1aのうち高濃度ドレイン領域1eに電気的に接続されている。即ち、本実施形態では、中継層71aは、蓄積容量70の画素電位側容量電極としての機能及び光吸収層としての機能に加えて、画素電極9aをTFT30へ中継接続する機能を果たす。このように中継層71a及び71bを中継層として利用すれば、層間距離が例えば2000nm程度に長くても、両者間を一つのコンタクトホールで接続する技術的困難性を回避しつつ比較的小径の二つ以上の直列なコンタクトホールで両者間を良好に接続でき、画素開口率を高めることが可能となり、コンタクトホール開孔時におけるエッチングの突き抜け防止にも役立つ。
図2及び図3において、電気光学装置は、透明なTFTアレイ基板10と、これに対向配置される透明な対向基板20とを備えている。TFTアレイ基板10は、例えば石英基板、ガラス基板、シリコン基板からなり、対向基板20は、例えばガラス基板や石英基板からなる。
TFTアレイ基板10には、平面的に見て格子状の溝10cvが掘られている(図2中右下がりの斜線領域で示されている)。走査線3a、データ線6a、TFT30等の配線や素子等は、この溝10cv内に埋め込まれている。これにより、配線、素子等が存在する領域と存在しない領域との間における段差が緩和されており、最終的には段差に起因した液晶の配向不良等の画像不良を低減できる。
図3に示すように、TFTアレイ基板10には、画素電極9aが設けられており、その上側には、ラビング処理等の所定の配向処理が施された配向膜16が設けられている。画素電極9aは例えば、ITO(Indium Tin Oxide)膜などの透明導電性膜からなる。また配向膜16は例えば、ポリイミド膜などの有機膜からなる。
他方、対向基板20には、その全面に渡って対向電極21が設けられており、その下側には、ラビング処理等の所定の配向処理が施された配向膜22が設けられている。対向電極21は例えば、ITO膜などの透明導電性膜からなる。また配向膜22は、ポリイミド膜などの有機膜からなる。
対向基板20には、格子状又はストライプ状の遮光膜を設けるようにしてもよい。このような構成を採ることで、前述の如く遮光層を構成する容量線300及びデータ線6aと共に当該対向基板20上の遮光膜により、対向基板20側からの入射光がチャネル領域1a’や低濃度ソース領域1b及び低濃度ドレイン領域1cに侵入するのを、より確実に阻止できる。更に、このような対向基板20上の遮光膜は、少なくとも入射光が照射される面を高反射な膜で形成することにより、電気光学装置の温度上昇を防ぐ働きをする。尚、このように対向基板20上の遮光膜は好ましくは、平面的に見て容量線300とデータ線6aとからなる遮光層の内側に位置するように形成する。これにより、対向基板20上の遮光膜により、各画素の開口率を低めることなく、このような遮光及び温度上昇防止の効果が得られる。
このように構成された、画素電極9aと対向電極21とが対面するように配置されたTFTアレイ基板10と対向基板20との間には、後述のシール材により囲まれた空間に電気光学物質の一例である液晶が封入され、液晶層50が形成される。液晶層50は、画素電極9aからの電界が印加されていない状態で配向膜16及び22により所定の配向状態をとる。液晶層50は、例えば一種又は数種類のネマティック液晶を混合した液晶からなる。シール材は、TFTアレイ基板10及び対向基板20をそれらの周辺で貼り合わせるための、例えば光硬化性樹脂や熱硬化性樹脂からなる接着剤であり、両基板間の距離を所定値とするためのグラスファイバー或いはガラスビーズ等のギャップ材が混入されている。
更に、画素スイッチング用TFT30の下には、下地絶縁膜12が設けられている。下地絶縁膜12は、下側遮光膜11aからTFT30を層間絶縁する機能の他、TFTアレイ基板10の全面に形成されることにより、TFTアレイ基板10の表面の研磨時における荒れや、洗浄後に残る汚れ等で画素スイッチング用TFT30の特性の劣化を防止する機能を有する。
図3において、画素スイッチング用TFT30は、LDD(Lightly Doped Drain)構造を有しており、走査線3a、当該走査線3aからの電界によりチャネルが形成される半導体層1aのチャネル領域1a’、走査線3aと半導体層1aとを絶縁するゲート絶縁膜を含む絶縁薄膜2、半導体層1aの低濃度ソース領域1b及び低濃度ドレイン領域1c、半導体層1aの高濃度ソース領域1d並びに高濃度ドレイン領域1eを備えている。
走査線3a上には、高濃度ソース領域1dへ通じるコンタクトホール82及び高濃度ドレイン領域1eへ通じるコンタクトホール83が各々開孔された第1層間絶縁膜41が形成されている。
第1層間絶縁膜41上には中継層71a及び71b並びに容量線300が形成されており、これらの上には、中継層71a及び71bへ夫々通じるコンタクトホール81及びコンタクトホール85が各々開孔された第2層間絶縁膜42が形成されている。
尚、本実施形態では、第1層間絶縁膜41に対しては、1000℃の焼成を行うことにより、半導体層1aや走査線3aを構成するポリシリコン膜に注入したイオンの活性化を図ってもよい。他方、第2層間絶縁膜42に対しては、このような焼成を行わないことにより、容量線300の界面付近に生じるストレスの緩和を図るようにしてもよい。
第2層間絶縁膜42上にはデータ線6aが形成されており、これらの上には、中継層71aへ通じるコンタクトホール85が形成された第3層間絶縁膜43が形成されている。画素電極9aは、このように構成された第3層間絶縁膜43の上面に設けられている。
光吸収層72,71aは、下地絶縁膜12及び各層間絶縁膜41,42,43より吸収性のある材料で形成されている。
以上のように構成された本実施形態によれば、対向基板20側からTFT30のチャネル領域1a’及びその付近に入射光が入射しようとすると、データ線6a及び容量線300(特に、その第2膜73)からなる格子状の遮光層で遮光を行う。他方、TFTアレイ基板10側から、TFT30のチャネル領域1a’及びその付近に戻り光が入射しようとすると、下側遮光膜11aで遮光を行う(特に、複板式のカラー表示用のプロジェクタ等で複数の電気光学装置をプリズム等を介して組み合わせて一つの光学系を構成する場合には、他の電気光学装置からプリズム等を突き抜けて来る投射光部分からなる戻り光は強力であるので、有効である。)。そして、高反射率のAl膜からなるデータ線6aや、反射率の比較的高い高融点金属膜からなる第2膜73の内面(即ち、TFT30に面する側の表面)に斜めの戻り光が入射することにより発生する内面反射光、多重反射光などは、光吸収層としての第1膜72及び中継層71aにより吸収除去される。これらの結果、TFT30の特性が光リークにより劣化することは殆ど無くなり、当該電気光学装置では、非常に高い耐光性が得られる。
特に本実施形態では、光吸収層としての第1膜72及び中継層71aは、導体化したポリシリコン膜(又はアモルファスシリコン等のシリコン膜)からなり、チャネル領域も閾値電圧Vth制御のためにP、B、As等をドープした又はノンドープのポリシリコン膜(又はアモルファスシリコン等のシリコン膜)からなるので、チャネル領域における光吸収特性(周波数依存性等)と類似或いは同一の光吸収特性を、当該光吸収層が有する。従って、チャネル領域1a’で吸収されることにより光リークの原因となる周波数成分を中心として、第1膜72及び中継層71aにより光を吸収除去できるので好都合である。すなわち、TFTチャネルと光吸収層を同一の主材料で形成することにより光吸収性効果を高めている。
次に、図4から図7を参照して、本実施形態における遮光及び光吸収について更に説明を加える。ここに、図4は、画像表示領域における上側遮光膜及び下側遮光膜を抽出し且つ拡大して示す図式的な平面図であり、図5及び図6は、図4のB−B’断面における、遮光及び光吸収の様子を示す図式的な断面図である。
また、図7は、変形形態における同じく図4のB−B’断面における、遮光及び光吸収の様子を示す図式的な断面図である。
図4に示すように、本実施形態では各画素の非開口領域は、主に容量線300と、(コンタクトホール81及び82の形成用に容量線300が途切れている個所における)データ線6aとからなる遮光層により格子状に規定される。従ってこれらの容量線300及びデータ線6aにより、光抜けが生じてコントラス比が低下するのを効果的に防止できる。ここでTFT30の上側には、これらの容量線300及びデータ線6aが格子状に存在し、TFT30の下側には、格子状に配置された下側遮光膜11aが存在し、下側遮光膜11aの形成領域は、容量線300及びデータ線6aからなる格子状の遮光層の形成領域内に位置している。
従って図5に示すように、当該電気光学装置における上側(即ち、入射光の入射側)から入射する入射光L1に対しては、容量線300の第2膜73及びデータ線6aが、遮光層として機能する。従って、このような入射光L1がTFT30に到達することを防止できる。更に、下側遮光膜11aは、上側にある遮光層(即ち、容量線300の第2膜73及びデータ線6a)よりも一回り小さく形成されているので、入射光L1に含まれる斜めの成分が、上側の遮光層(容量線300及びデータ線6a)の脇を抜けて、下側遮光膜11aの内面で反射することによる内面反射光や多重反射光の発生も低減されている。
他方、図6に示すように、当該電気光学装置における下側(即ち、入射光の出射側)から入射する戻り光L2に対しては、下側遮光膜11aが遮光層として機能する。従って、このような戻り光L2がTFT30に到達することを防止できる。ここで、下側遮光膜11aは、上側にある遮光層(即ち、容量線300の第2膜73及びデータ線6a)よりも一回り小さく形成されているので、戻り光L2に含まれる斜めの成分の一部が、下側遮光層11aの脇を抜けて、上側にある遮光層の内面(特に、容量線300の内面)に向かって進む。しかしながら、上側にある遮光層(即ち、容量線300の第2膜73及びデータ線6a)とTFT30との間には、光吸収層(即ち、容量線300の第1膜72及び中継層71a)が存在するので、このように戻り光L2に含まれる斜めの成分並びに、係る成分が上側の遮光層(即ち、容量線300の第2膜73及びデータ線6a)の内面で反射することによる内面反射光L3及び多重反射光L4は、光吸収層により吸収除去される。
以上の結果、本実施形態により、各画素の開口率を高めつつ耐光性を高めることにより画素スイッチング用TFT30の光リークによる特性劣化を低減でき、最終的にコントラスト比が高く且つ明るく高品位の画像表示が可能となる。
本実施形態では好ましくは、遮光層を構成する第2膜73は、光吸収層を構成する第1膜72及び中継層71aよりも熱伝導率が高い。従って、第1膜72及び中継層71aにおいて光吸収に伴って発生する熱を、熱伝導率の高い第2膜73を介して逃がすことができる。即ち、第1膜72及び中継層71aからTFT30に伝わる熱量を低減でき、これにより、TFT30で生じる熱リークを低減できる。これらの結果、光リーク及び熱リークの両者を低減することにより、TFT30のトランジスタ特性を顕著に向上させ得る。
更にTFT30の熱リークを低減する観点からは、光吸収層としての中継層71aとTFT30との間に介在する第1層間絶縁膜41は、光吸収層としての中継層71aと上述の如く熱を逃がす機能を持つ容量線300との間に介在する誘電体膜75よりも大きく設定することが好ましい。このように設定すれば、光吸収層としての中継層71aにおいて光吸収に伴って発生する熱を、容量線300を介して一層効率良く逃がすことができる。
尚、図4から図6に示した実施形態では、下側遮光膜11aは、上側にある遮光層(即ち、容量線300の第2膜73及びデータ線6a)よりも一回り小さく形成されているので、入射光L1に含まれる斜めの成分は、下側遮光層11aの内面に到達し難い構成とされている。しかしながら、装置仕様(例えば、下側遮光膜11aをどれだけ小さくするか、入射光にどれだけ斜めに角度がついているか等)によっては、下側遮光膜11aの内面で、斜めの入射光L1が反射することによる、内面反射光や多重反射光が問題となる。
このような場合には、図7に示した変形形態のように、下側遮光膜11aの内面にも光吸収層11bを設ければよい。このように構成すれば、下側遮光膜11aの内面に到達する斜めの入射光L1や、これに起因する内面反射光L3或いは多重反射光L4を、光吸収層11bで吸収除去可能となる。光吸収層11bを形成する主材料はチャネル領域を形成する材料と同一材料であることが好ましい。
また、他の変形形態として、図8に示した変形形態でもよい。下側遮光膜11aは、上側遮光膜73,6aより内側に形成され、下側の吸収層11bは下側遮光膜11bより広く形成されている。このように構成すれば、斜めの入射光L1は下側の吸収層11bあるいは、上側の吸収層71a,72で吸収除去可能となる。また、下側の吸収層11bを透過した斜めの入射光L1は、下側遮光膜11aで反射されることなく通過するので、TFT30の半導体層に届くことがない。
図8の変形形態は、下側の吸収層11bは上側の吸収層71a,72とほぼ同じ幅で示したが、上側の吸収層71a,72より内側に形成してもよく、また広くしてもよい。
次に、容量線300を固定電位とする構成について、図9及び図10を参照して説明する。ここに、図9は、容量線300を定電位源に落とす構成の一例を示す平面図であり、図10は、容量線300を定電位源に落とす構成の他の一例を示す平面図である。
図9及び図10に示すように、画像表示領域10a内に概ねストライプ状に形成された容量線300は、好ましくは画像表示領域10aの周辺にある周辺領域にまで延設されて、一まとめにされる。そして図8に示すように、周辺領域で、例えば、TFTアレイ基板10の4隅に設けられたコンタクトホール302により、まとめて定電位配線303に接続してもよいし、図10に示すように、冗長的に設けられた複数のコンタクトホール302’により定電位配線303’に接続してもよい。尚、図9及び図10において、定電位配線303及び303’は、好ましくはデータ線6aと同じく低抵抗のAl膜から形成される。
また、このような定電位配線303及び303’が接続されている定電位位源としては、TFT30を駆動するための走査信号を走査線3aに供給するための走査線駆動回路(後述する)や画像信号をデータ線6aに供給するサンプリング回路を制御するデータ線駆動回路(後述する)に供給される正電源や負電源の定電位源でもよいし、対向基板20の対向電極21に供給される定電位でも構わない。
尚、TFT30の下側に設けられる下側遮光膜11aについても、その電位変動がTFT30に対して悪影響を及ぼすことを避けるために、容量線300と同様に、画像表示領域からその周囲に延設して定電位源に接続するとよい。
以上説明した実施形態では、図3に示したように多数の導電層を積層することにより、画素電極9aの下地面(即ち、第3層間絶縁膜43の表面)におけるデータ線6aや走査線3aに沿った領域に段差が生じるのを、TFTアレイ基板10に溝10cvを掘ることで緩和しているが、これに変えて又は加えて、下地絶縁膜12、第1層間絶縁膜41、第2層間絶縁膜42、第3層間絶縁膜43に溝を掘って、データ線6a等の配線やTFT30等を埋め込むことにより平坦化処理を行ってもよいし、第3層間絶縁膜43や第2層間絶縁膜42の上面の段差をCMP(Chemical Mechanical Polishing)処理等で研磨することにより、或いは有機SOGを用いて平らに形成することにより、当該平坦化処理を行ってもよい。
更に以上説明した実施形態では、画素スイッチング用TFT30は、好ましくは図3に示したようにLDD構造を持つが、低濃度ソース領域1b及び低濃度ドレイン領域1cに不純物の打ち込みを行わないオフセット構造を持ってよいし、走査線3aの一部からなるゲート電極をマスクとして高濃度で不純物を打ち込み、自己整合的に高濃度ソース及びドレイン領域を形成するセルフアライン型のTFTであってもよい。また本実施形態では、画素スイッチング用TFT30のゲート電極を高濃度ソース領域1d及び高濃度ドレイン領域1e間に1個のみ配置したシングルゲート構造としたが、これらの間に2個以上のゲート電極を配置してもよい。このようにデュアルゲート或いはトリプルゲート以上でTFTを構成すれば、チャネルとソース及びドレイン領域との接合部のリーク電流を防止でき、オフ時の電流を低減することができる。
(電気光学装置の全体構成)
以上のように構成された各実施形態における電気光学装置の全体構成を図11及び図12を参照して説明する。尚、図11は、TFTアレイ基板10をその上に形成された各構成要素と共に対向基板20の側から見た平面図であり、図12は、図11のH−H’断面図である。
図12において、TFTアレイ基板10の上には、シール材52がその縁に沿って設けられており、その内側に並行して、画像表示領域10aの周辺を規定する額縁としての遮光膜53が設けられている。シール材52の外側の領域には、データ線6aに画像信号を所定タイミングで供給することによりデータ線6aを駆動するデータ線駆動回路101及び外部回路接続端子102がTFTアレイ基板10の一辺に沿って設けられており、走査線3aに走査信号を所定タイミングで供給することにより走査線3aを駆動する走査線駆動回路104が、この一辺に隣接する2辺に沿って設けられている。走査線3aに供給される走査信号遅延が問題にならないのならば、走査線駆動回路104は片側だけでも良いことは言うまでもない。また、データ線駆動回路101を画像表示領域10aの辺に沿って両側に配列してもよい。更にTFTアレイ基板10の残る一辺には、画像表示領域10aの両側に設けられた走査線駆動回路104間をつなぐための複数の配線105が設けられている。また、対向基板20のコーナー部の少なくとも1箇所においては、TFTアレイ基板10と対向基板20との間で電気的に導通をとるための導通材106が設けられている。そして、図12に示すように、図11に示したシール材52とほぼ同じ輪郭を持つ対向基板20が当該シール材52によりTFTアレイ基板10に固着されている。
尚、TFTアレイ基板10上には、これらのデータ線駆動回路101、走査線駆動回路104等に加えて、複数のデータ線6aに画像信号を所定のタイミングで印加するサンプリング回路、複数のデータ線6aに所定電圧レベルのプリチャージ信号を画像信号に先行して各々供給するプリチャージ回路、製造途中や出荷時の当該電気光学装置の品質、欠陥等を検査するための検査回路等を形成してもよい。
以上図1から図12を参照して説明した実施形態では、データ線駆動回路101及び走査線駆動回路104をTFTアレイ基板10の上に設ける代わりに、例えばTAB(Tape Automated bonding)基板上に実装された駆動用LSIに、TFTアレイ基板10の周辺部に設けられた異方性導電フィルムを介して電気的及び機械的に接続するようにしてもよい。また、対向基板20の投射光が入射する側及びTFTアレイ基板10の出射光が出射する側には各々、例えば、TNモード、VA(Vertically Aligned)モード、PDLC(Polymer Dispersed Liquid Crystal)モード等の動作モードや、ノーマリーホワイトモード/ノーマリーブラックモードの別に応じて、偏光フィルム、位相差フィルム、偏光板などが所定の方向で配置される。
以上説明した実施形態における電気光学装置は、例えば、ライトバルブとしてプロジェクタに適用される。
図13は、このプロジェクタの構成を示す平面図である。この図に示されるように、プロジェクタ2100内部には、ハロゲンランプ等の白色光源からなるランプユニット2102が設けられている。このランプユニット2102から射出された投射光は、内部に配置された3枚のミラー2106および2枚のダイクロイックミラー2108によってRGBの3原色に分離されて、各原色に対応するライトバルブ100R、100Gおよび100Bにそれぞれ導かれる。ここで、ライトバルブ100R、100Gおよび100Bの構成は、上述した実施形態に係る液晶パネル100と同様であり、画像信号を入力する処理回路(図示省略)から供給されるR、G、Bの原色信号でそれぞれ駆動されるものである。また、B色の光は、他のR色やG色と比較すると、光路が長いので、その損失を防ぐために、入射レンズ2122、リレーレンズ2123および出射レンズ2124からなるリレーレンズ系2121を介して導かれる。
さて、ライトバルブ100R、100G、100Bによってそれぞれ変調された光は、ダイクロイックプリズム2112に3方向から入射する。そして、このダイクロイックプリズム2112において、R色およびB色の光は90度に屈折する一方、G色の光は直進する。したがって、各色の画像が合成された後、スクリーン2120には、投射レンズ2114によってカラー画像が投射されることとなる。
なお、ライトバルブ100R、100Gおよび100Bには、ダイクロイックミラー2108によって、R、G、Bの各原色に対応する光が入射するので、上述したようにカラーフィルタを設ける必要はない。また、ライトバルブ100R、100Bの透過像はダイクロイックミラー2112により反射した後に投射されるのに対し、ライトバルブ100Gの透過像はそのまま投射されるので、ライトバルブ100R、100Bによる表示像を、ライトバルブ100Gによる表示像に対して左右反転させる構成となっている。
上述した各実施形態では、対向基板20に、カラーフィルタは設けられていない。しかしながら、画素電極9aに対向する所定領域にRGBのカラーフィルタをその保護膜と共に、対向基板20上に形成してもよい。このようにすれば、プロジェクタ以外の直視型や反射型のカラー電気光学装置について、各実施形態における電気光学装置を適用できる。
また、対向基板20上に1画素1個対応するようにマイクロレンズを形成してもよい。あるいは、TFTアレイ基板10上のRGBに対向する画素電極9a下にカラーレジスト等でカラーフィルタ層を形成することも可能である。このようにすれば、入射光の集光効率を向上することで、明るい電気光学装置が実現できる。更にまた、対向基板20上に、何層もの屈折率の相違する干渉層を堆積することで、光の干渉を利用して、RGB色を作り出すダイクロイックフィルタを形成してもよい。このダイクロイックフィルタ付き対向基板によれば、より明るいカラー電気光学装置が実現できる。
その他の適用例としては、モバイル型のパーソナルコンピュータの表示部や、携帯電話の表示部をはじめ、液晶テレビや、ビューファインダ型・モニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、デジタルスチルカメラ、タッチパネルを備えた電子機器等にも適用できる。
本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴なう電気光学装置及びその製造方法もまた本発明の技術的範囲に含まれるものである。
本発明の実施形態の電気光学装置における画像表示領域を構成するマトリクス状の複数の画素に設けられた各種素子、配線等の等価回路である。 実施形態の電気光学装置におけるデータ線、走査線、画素電極等が形成されたTFTアレイ基板の相隣接する複数の画素群の平面図である。 図2のA−A’断面図である。 実施形態における上層遮光膜及び下層遮光膜を抽出して示すTFTアレイ基板の画素の平面図である。 図4のB−B’断面における遮光及び光吸収の様子を示す図式的な断面図(その1)である。 図4のB−B’断面における遮光及び光吸収の様子を示す図式的な断面図(その2)である。 変形形態における、図4のB−B’断面における遮光及び光吸収の様子を示す図式的な断面図である。 他の変形形態における、図4のB−B’断面における遮光及び光吸収の様子を示す図式的な断面図である。 容量線300を定電位源に落とす構成の一例を示す平面図である。 容量線300を定電位源に落とす構成の他の一例を示す平面図である。 実施形態の電気光学装置におけるTFTアレイ基板をその上に形成された各構成要素と共に対向基板の側から見た平面図である。 図11のH−H’断面図である。 プロジェクタの構成を示す平面図である。
符号の説明
1a…半導体層
1a’…チャネル領域
1b…低濃度ソース領域
1c…低濃度ドレイン領域
1d…高濃度ソース領域
1e…高濃度ドレイン領域
2…絶縁薄膜
3a…走査線
6a…データ線
9a…画素電極
10…TFTアレイ基板
10cv…溝
11a…下側遮光膜
12…下地絶縁膜
16…配向膜
20…対向基板
21…対向電極
22…配向膜
30…TFT
50…液晶層
70…蓄積容量
71a…中継層
71b…中継層
72…容量線の第1膜
73…容量線の第2膜
75…誘電体膜
81、82、83、85…コンタクトホール
300…容量線


Claims (20)

  1. 一対の基板と、
    前記一対の基板間に配置された電気光学物質と、
    前記一対の基板の一方に形成された画素電極と、
    前記画素電極に電気的に接続された薄膜トランジスタと、
    前記薄膜トランジスタ上に配置され、少なくともチャネル領域を覆う遮光層と、
    前記遮光層と前記薄膜トランジスタとの間に配置された光吸収層と
    を備え、
    前記光吸収層は、蓄積容量の画素毎に島状に分断された容量電極であることを特徴とする電気光学装置。
  2. データ線と前記薄膜トランジスタとの間に配置され、前記容量電極と誘電体膜を介して対向配置された容量線が、前記遮光層の少なくとも一部からなることを特徴とする請求項1に記載の電気光学装置。
  3. 前記光吸収層は、前記薄膜トランジスタのチャネル領域を形成する主材料を主材とすることを特徴とする請求項1または2に記載の電気光学装置。
  4. 前記光吸収層は、シリコン膜からなることを特徴とする請求項1から3のいずれか一項に記載の電気光学装置。
  5. 前記遮光層は、金属を含む膜からなることを特徴とする請求項1から4のいずれか一項に記載の電気光学装置。
  6. 前記遮光層は、データ線からなることを特徴とする請求項1に記載の電気光学装置。
  7. 前記容量線は、画像表示領域内で前記データ線に交差する方向に伸びるストライプ状に形成されており且つ前記画像表示領域の周辺に位置する周辺領域で定電位源に接続されていることを特徴とする請求項2に記載の電気光学装置。
  8. 前記容量線は、前記周辺領域で相互に接続されており、前記定電位源に対して一又は複数のコンタクトを介して複数まとめて接続されていることを特徴とする請求項7に記載の電気光学装置。
  9. 前記容量線は、前記周辺領域で相互に接続されており、前記定電位源に対して複数のコンタクトを介して冗長的に接続されていることを特徴とする請求項8に記載の電気光学装置。
  10. 前記基板上における前記薄膜トランジスタの下側に配置されており前記薄膜トランジスタの少なくともチャネル領域を覆う他の遮光層を更に備えたことを特徴とする請求項1から9のいずれか一項に記載の電気光学装置。
  11. 前記他の遮光層と前記薄膜トランジスタとの間に配置された他の光吸収層を更に備えたことを特徴とする請求項10に記載の電気光学装置。
  12. 前記他の遮光層は、金属を含む膜からなることを特徴とする請求項10又は11に記載の電気光学装置。
  13. 前記他の光吸収層が前記薄膜トランジスタのチャネル領域を形成する主材料を主材とすることを特徴とする請求項11又は12に記載の電気光学装置。
  14. 前記光吸収層は、前記画素電極或いはデータ線と前記薄膜トランジスタとを中継接続する中間導電層からなる部分を含むことを特徴とする請求項1から13のいずれか一項に記載の電気光学装置。
  15. 前記遮光層は、前記光吸収層よりも熱伝導率が高いことを特徴とする請求項1から14のいずれか一項に記載の電気光学装置。
  16. 前記薄膜トランジスタと前記光吸収層との層間距離は、前記光吸収層と前記遮光層との層間距離よりも大きいことを特徴とする請求項1から15のいずれか一項に記載の電気光学装置。
  17. データ線と前記薄膜トランジスタとの間に配置された容量線が、前記光吸収層とは他の光吸収層であることを特徴とする請求項1に記載の電気光学装置。
  18. 前記一対の基板の内、前記薄膜トランジスタが設けられた側の基板とは反対側の基板側が光入射側であることを特徴とする請求項1から17のいずれか一項に記載の電気光学装置。
  19. 一対の基板と、
    前記一対の基板間に配置された電気光学物質と、
    前記一対の基板の一方に形成された画素電極と、
    前記画素電極に電気的に接続され、チャネル領域を有する薄膜トランジスタと、
    前記薄膜トランジスタ上に配置され、少なくとも前記チャネル領域を覆う遮光層と、
    前記遮光層と前記薄膜トランジスタとの間に配置された光吸収層と
    を備え、
    前記遮光層は、前記光吸収層と前記画素電極が接続されるコンタクト領域を除き、前記光吸収層を覆うように前記光吸収層より大に形成され、前記光吸収層と誘電体膜を介して対向配置されていることを特徴とする電気光学装置。
  20. 光源と、
    クレーム1から19のいずれか1つの電気光学装置でなるライトバルブと、
    前記光源から発光した光を前記ライトバルブに導光する導光部材と、
    前記ライトバルブで変調された光を投射する投射光学部材と
    を有することを特徴とする投射型表示装置。
JP2004129875A 2000-07-26 2004-04-26 電気光学装置及び投射型表示装置 Expired - Fee Related JP3966305B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004129875A JP3966305B2 (ja) 2000-07-26 2004-04-26 電気光学装置及び投射型表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000225419 2000-07-26
JP2004129875A JP3966305B2 (ja) 2000-07-26 2004-04-26 電気光学装置及び投射型表示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001138816A Division JP2002108248A (ja) 2000-07-26 2001-05-09 電気光学装置、電気光学装置用基板及び投射型表示装置

Publications (2)

Publication Number Publication Date
JP2004297074A true JP2004297074A (ja) 2004-10-21
JP3966305B2 JP3966305B2 (ja) 2007-08-29

Family

ID=33421159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004129875A Expired - Fee Related JP3966305B2 (ja) 2000-07-26 2004-04-26 電気光学装置及び投射型表示装置

Country Status (1)

Country Link
JP (1) JP3966305B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008225445A (ja) * 2007-03-13 2008-09-25 Lg Display Co Ltd 表示装置及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008225445A (ja) * 2007-03-13 2008-09-25 Lg Display Co Ltd 表示装置及びその製造方法
JP4514786B2 (ja) * 2007-03-13 2010-07-28 エルジー ディスプレイ カンパニー リミテッド 表示装置及びその製造方法
US7864286B2 (en) 2007-03-13 2011-01-04 Lg Display Co., Ltd. Display device and method with metal substrate including a pixel array and storage capacitor in combination in which plural storage lines connected thereto are connected to the metal substrate

Also Published As

Publication number Publication date
JP3966305B2 (ja) 2007-08-29

Similar Documents

Publication Publication Date Title
KR100442217B1 (ko) 전기 광학 장치, 전기 광학 장치용 기판 및 투사형 표시장치
KR100626910B1 (ko) 전기 광학 장치 및 전자기기
KR100537250B1 (ko) 전기 광학 장치 및 전자기기
KR100662966B1 (ko) 전기광학 장치 및 전자기기
KR100700794B1 (ko) 전기 광학 장치 및 전자기기
JP3821067B2 (ja) 電気光学装置及び電子機器
JP3743291B2 (ja) 電気光学装置及びプロジェクタ
JP3608531B2 (ja) 電気光学装置及び投射型表示装置
JP3830361B2 (ja) Tftアレイ基板、電気光学装置及び投射型表示装置
JP3965935B2 (ja) 電気光学装置及び投射型表示装置
JP3736330B2 (ja) 電気光学装置
JP3731460B2 (ja) 電気光学装置およびプロジェクタ
JP4063260B2 (ja) 電気光学装置及び投射型表示装置
JP4509463B2 (ja) 電気光学装置及び電子機器
JP3966305B2 (ja) 電気光学装置及び投射型表示装置
JP3966304B2 (ja) 電気光学装置及び投射型表示装置
JP3820921B2 (ja) 電気光学装置及び投射型表示装置
JP3729071B2 (ja) 電気光学装置及びプロジェクタ
JP4154965B2 (ja) 電気光学基板、並びにこれを具備する電気光学装置及び電子機器
JP3800940B2 (ja) アクティブマトリクス基板およびこれを用いた電気光学装置と電子機器
JP2004126557A (ja) 電気光学装置及び電子機器
JP5135667B2 (ja) 電気光学装置及びプロジェクタ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees