JP2004296980A - Film carrier and its manufacturing method - Google Patents

Film carrier and its manufacturing method Download PDF

Info

Publication number
JP2004296980A
JP2004296980A JP2003090208A JP2003090208A JP2004296980A JP 2004296980 A JP2004296980 A JP 2004296980A JP 2003090208 A JP2003090208 A JP 2003090208A JP 2003090208 A JP2003090208 A JP 2003090208A JP 2004296980 A JP2004296980 A JP 2004296980A
Authority
JP
Japan
Prior art keywords
connection electrode
copper foil
film carrier
electrode
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003090208A
Other languages
Japanese (ja)
Other versions
JP4103656B2 (en
Inventor
Koji Imayoshi
孝二 今吉
Nobumi Takemura
信美 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003090208A priority Critical patent/JP4103656B2/en
Publication of JP2004296980A publication Critical patent/JP2004296980A/en
Application granted granted Critical
Publication of JP4103656B2 publication Critical patent/JP4103656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film carrier whose connection electrode can be formed at low cost by simple technique and to provide its manufacturing method. <P>SOLUTION: In the film carrier 100, a pad electrode 52 is formed on one side of an insulating substrate 11 and a connection electrode 41b is formed on the other side with a conductor which is driven into an opening 31. A plated layer 53 composed of a gold/nickel layer is formed on a part of the pad electrode 52 and on the connection electrode 41b, and the open edge of the connection electrode 41b is lower than the other side(outer mounting surface). The connection electrode 41b is formed of one kind of metal which is selected among gold, silver, copper, lead, and tin, or, of an alloy whose main component is these metals. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子を外部基板等に接続する際の接続媒体として用いられるフィルムキャリア及びその製造方法に関する。
【0002】
【従来の技術】
近年、電子機器の小型化、高密度化、高性能化に対応できるように、LSIの小型、軽量化の要求が高まっている。なかでも携帯電話、デジタルビデオやデジタルカメラ等に対応可能なCSPとして、100ピン以下のメモリ品種及び100〜300ピンクラスのロジック品種のFBGA(Fine pitch Ball Grid Array)パッケージが量産されている。更に、超小型化を目指して0.5mmボールピッチFBGAが採用されるようになってきている。ところが、微細半田ボールを用いる二次実装時の接合挙動が、通常の二次実装の挙動とは異なり、半田くびれや半田ボール落ちといった欠陥が発生して信頼性の確保に問題を生じている。
【0003】
FBGA用に使用している従来のフィルムキャリアの構成と半田ボールの挙動について説明する。
先ず、FBGA用に一般的に使用されている三層フィルムキャリアを簡単に説明する。
図5(a)〜(e)は従来の0.8mmボールピッチFBGAのフィルムキャリアの製造工程及び実装工程を示す模式構成断面図である。
まず、絶縁フィルム111上に接着剤層121が形成された接着剤層付フィルム基材に金型を用いて、開口部131を形成する(図5(a)参照)。
通常、絶縁フィルム111としてはポリイミドフィルムが用いられ、膜厚は50μmかそれ以上の厚みを有する場合が一般的であり、接着剤層121の膜厚は12μmを使用するのが通例となっている。
【0004】
次に、所望の膜厚の銅箔を張り合わせ、導体層141を形成する(図5(b)参照)。
導体層141の厚みとしては、12μmから18μmがよく使われる。
次に、導体層141をフォトリソグラフィーとエッチング技術を使ってパターニング処理して所望のパッド電極141aを形成したフィルムキャリア300を作製する(図5(c)参照)。
【0005】
さらに、上記フィルムキャリア300上に半導体素子161を実装し、半田バンプ151を形成し、一次実装半導体パッケージ(インターポーザ)を得る(図5(d)参照)。その際、アンダーフィル191材や封止材171等を併用して接続強度や絶縁性確保などの向上を図っている。
さらに、一次実装半導体パッケージの半田バンプ151とプリント配線板のランド181とを半田接合して二次実装を行う(図5(e)参照)。
ここで、従来の0.8mmボールピッチFBGA実装では、半田ボール実装後の半田ボール落ちや半田くびれ等の不良は殆ど発生していない。
【0006】
ところが、軽薄短小に対応する構成として半田ボールピッチを0.5mmにする必要が出てきた。半田ボールピッチの短小化により、絶縁性フィルム基材厚はそのままに保ち、開口部径と半田ボール径はを小さくする必要がある。
図6(a)及び(b)は、絶縁フィルム厚と開口部孔径との関係を示す説明図である。
絶縁フィルム111厚tを変えないで、開口部131の孔径λをλ’と小径化することで、開口部131aのアスペクト比(t/λ’)が高くなり、半田ボール搭載後プリント配線板のランド181へ半田接続する際フィルムキャリアのパッド電極141a裏面への半田接触面積が減少し、半田ボール落ち現象(図7(a)参照)や半田くびれ現象(図7(b)参照)が発生して、オープン不良となる問題が発生する。図7(c)は、半田接続が正常に行われた場合の半田形状を示す。
FBGAの半田ボール落ちや半田くびれの発生は、プリント基板のランド面積に比べ、開口部孔内電極の面積が小さいために、基板実装後にFBGA側の半田ボール部の半田が、プリント基板側のランドに吸われることが原因である。
【0007】
上記半田ボール落ちや半田くびれの欠陥を回避する技術として、開口部131を形成後開口部131内に銅めっき等により接続電極132を形成し、半田ボールの接触面を嵩上げする工法(例えば、特許文献1参照)が提案されており(図8(a)参照)、また、半田ボール落ち現象に対する技術的考察(例えば、非特許文献1参照)がなされている。
上記嵩上げした接続電極132に半田バンプ152を形成し、半導体素子161を実装し、2次実装した半導体パッケージを図8(b)に示す。
この方法により半田の接触不良は減少するが、通常、めっき処理による接続電極132の嵩上げは数十μmが必要であり、かなりのめっき処理時間を要し、フィルムキャリアに占める接続電極132の作製費用も無視できない。また、めっき条件の設定が難しく、接続電極132にめっき厚のばらつきが生じ、嵩上げが不足したビア用孔では、半田ボール落ちや半田くびれの不良が発生するという問題を有している。
【0008】
【特許文献1】
特開平10−41356号公報
【非特許文献1】
エレクトロニクス実装学会誌、Vol.4、No.1、2001年、P63〜67
【0009】
【発明が解決しようとする課題】
本発明は上記問題点に鑑みなされたもので、技術的容易に且つ安価に接続電極形成が可能なフィルムキャリア及びその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明において上記の問題を解決するために、まず、請求項1においては、絶縁基材11の一方の面にパッド電極52が、他方の面に接続電極41bが形成されており、前記パッド電極52と前記接続電極41bとは電気的に接続されてなるフィルムキャリアにおいて、前記接続電極41bが金属箔41のパンチングプレスによる打ち込み導体41aにより形成されていることを特徴とするフィルムキャリアとしたものである。
【0011】
また、前記接続電極41bの表面位置は前記絶縁基材11の他方の面(外装面)より低くなっていることを特徴とする請求項1に記載のフィルムキャリアとしたものである。
【0012】
また、請求項3においては、前記接続電極41bが銅、鉛、錫及びこれらの金属を主成分とする合金で形成されていることを特徴とする請求項1または2に記載のフィルムキャリアとしたものである。
【0013】
また、請求項4においては、前記パッド電極52が銅箔21と2μm以上の補強導体層51とから形成されていることを特徴とする請求項1乃至3のいずれか一項に記載のフィルムキャリアとしたものである。
【0014】
さらにまた、請求項5においては、少なくとも以下の工程を備えていることを特徴とする請求項1乃至4のいずれか一項に記載のフィルムキャリアの製造方法としたものである。
(a)絶縁基材11の片面に銅箔21が積層された片面銅張積層シート10を準備する工程。
(b)プレス金型71及び72を用いて、片面銅貼り積層シート10所定位置に開口部31を形成する工程。
(c)所定厚の金属箔41を開口部31が形成された積層シートの銅箔21側に載置し、プレス金型73及び74を用いて、開口部31内に打ち込み導体41aを形成する工程。
(d)プレス金型75及び76を用いて、打ち込み導体41aを銅箔21の上層面まで押し戻し、打ち込み導体41aの上端と銅箔21の上層面とが同一面の接続電極41bを形成する工程。
(e)接続電極41bを覆い隠すように保護レジスト61を形成し、電解銅めっき等により、銅箔21及び接続電極41b上に補強導体層51を形成する工程。
(f)銅箔21及び補強導体層51をパターンニング処理して、パッド電極52を形成する工程。
(g)ソルダーレジスト62を形成し、接続電極41b上及びパッド電極52の一部にニッケル、金めっきからなるめっき層53を形成する工程。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態につき説明する。
図1は本発明のフィルムキャリアの一実施例を示す模式構成部分断面図である。
請求項1に係る本発明のフィルムキャリア100は、絶縁基材11の一方の面にパッド電極52が、他方の面に開口部31内に形成された打ち込み導体にて接続電極41bが形成されたもので、パッド電極52と接続電極41bとは電気的に接続されている。
ここで、絶縁基材11はポリイミドフィルムに代表される有機樹脂フィルムが用いられ、フィルム厚は50μmかそれ以上が一般的である。
また、パッド電極52の一部及び接続電極41b上にはニッケル、金めっき層からなるめっき層53が形成されている。
【0016】
接続電極41bの開放端部は、絶縁基材11の他方の面(外装面)より低くなっており、半田ボールのセットがやり易くなっており、フィルムキャリアとプリント配線回路基板との半田接合を容易にし、接合強度の向上を図っている。
また、接続電極41bの高さは、打ち込む金属箔の厚みで制御する。
【0017】
接続電極41bは、銅、鉛、錫、金、銀などから選ばれる1種の金属か、これらの金属の主成分とする合金で形成されている。合金としては、例えば、Sn−Cn、Sn−Bi、Sn−Ag−Cu、Ni−Pd−Au、Sn−Ag−Bi−Cu、Sn−Lu、Pb−Zn−Al、Sn−Ag−Cu−Biなどを挙げることができる。
【0018】
絶縁基材11の一方の面に形成されているパッド電極52は、銅箔21と2μm以上の補強導体層51をパターニング処理して形成されており、パッド電極52の物理強度を向上させることと、接続電極41bとの電気的接続を完全なものにするためである。
【0019】
以下、本発明のフィルムキャリアの製造方法について説明する。
図3(a)〜(e)及び図4(f)〜(j)に本発明のフィルムキャリアの製造方法の工程を示す模式構成部分断面図を示す。
まず、長尺のポリイミドフィルム等からなる絶縁基材11の片面に銅箔21が積層された片面銅箔積層シート10を準備する(図3(a)参照)。
【0020】
次に、片面銅箔積層シート10の両端に長手方向に沿って、アライメントマークホール及びスプロケットホール(特に、図示せず)をパンチングプレスにより形成する。次に、片面銅箔積層シート10のアライメントマークホールを基点とし、開口用ポンチ71aを有する金型71及び受け金型72からなるパンチングプレス金型を用いて(図3(b)参照)、片面銅箔積層シート10の所定位置に開口部31を形成する(図3(c)参照)。
【0021】
次に、所定厚の金属箔41を開口部31が形成された積層シートの銅箔21側に載置し、金型73の押し込み用ポンチ73aと開口部31を位置合わせして受け金型74をセットし(図3(d)参照)、所定荷重で金型73の押し込み用ポンチ73aを開口部31に押し込み、開口部31内に打ち込み導体41aを形成する(図3(e)参照)。
ここで、打ち込み導体41aの高さは、金属箔41の厚みで制御する方法と、打ち込み導体41aを形成した後エッチング処理により制御する方法とがあるが、金属箔41の厚みで制御する方法が好ましい。
【0022】
次に、金型75の押し込み用ポンチ75aと打ち抜き導体41aとを位置合わせして平金型76をセットし(図4(f)参照)、所定荷重で金型75の押し込み用ポンチ75aを打ち込み導体41aに押し込むと、打ち込み導体41aは銅箔21の上層面まで押し戻され、打ち込み導体41aの上端と銅箔21の上層面とが同一面のリベット形状の接続電極41bが形成される(図4(g)参照)。
【0023】
次に、絶縁基材11の接続電極41b側にドライフィルムをラミネートする等の方法で、保護レジスト層61を形成し、銅箔21及び接続電極41b上に電解銅めっき等を行って、2μm以上の補強導体層51を形成する(図4(h)参照)。
この補強導体層51は、上記したように、パッド電極52の物理強度を向上させることと、接続電極41bとの電気的接続を完全なものにするためのものである。
【0024】
次に、銅箔21及び補強導体層51上にレジストパターンを形成し、エッチング等の一連のパターニング処理を行って、接続電極41b間が電気的に縁絶されたパッド電極52を形成する(図4(i)参照)。
【0025】
次に、保護レジスト層61を剥離処理し、パッド電極52上にソルダーレジストパターン62を形成し、パッド電極52の一部及び接続電極41b上に、電解ニッケルめっき、金めっきを施して、めっき層53を形成して、本発明のフィルムキャリア100を得る(図4(j)参照)。
【0026】
本発明のフィルムキャリア100を用いて、半導体素子81を実装して、接続電極41b上に半田バンプを形成して一次半導体パッケージ(インターポーザ)を形成し、さらに、プリント配線回路板200に半田接合して得られた半導体パッケージの一例を図2に示す。
【0027】
本発明のフィルムキャリア100は、パンチングプレスにより接続電極を形成するので、従来のめっき方式に比べると大幅なコスト削減ができ、プリント配線回路板との半田接合の信頼性が向上する。
【0028】
【実施例】
以下、実施例により本発明を詳細に説明する。
まず、長尺状の50μm厚の耐熱性ポリイミドフィルムからなる絶縁基材11の片面に12μm厚の電解銅箔21を積層して片面銅張積層シート10(図3(a)参照)にスーパーワイド用スプロケットホールと100μmφのアライメントマークを打抜き形成した。
【0029】
次に、片面銅箔積層シート10のアライメントマークホールを基点とし、開口用ポンチ71aを有する金型71及び受け金型72からなるパンチングプレス金型を用いて(図3(b)参照)、片面銅箔積層シート10の所定位置に開口部31を形成した(図3(c)参照)。
【0030】
次に、60μm厚の圧延銅箔からなる金属箔41を開口部31が形成された積層シートの銅箔21側に載置し、金型73の押し込み用ポンチ73aと開口部31を位置合わせして受け金型74をセットし(図3(d)参照)、所定荷重で金型73の押し込み用ポンチ73aを開口部31に押し込み、開口部31内に打ち込み導体41aを形成した(図3(e)参照)。
【0031】
次に、金型75の押し込み用ポンチ75aと打ち込み導体41aとを位置合わせして平金型76をセットし(図4(f)参照)、所定荷重で金型75の押し込み用ポンチ75aを押し込むと、打ち込み導体41aは銅箔21の上面まで押し戻され、打ち込み導体41aの上端と銅箔21の上層面とが同一面のリベット形状の52μm長さの接続電極41bを形成した(図4(g)参照)。
接続電極41bの表面位置は絶縁基材11の他方の面(外装面)より10μm低くなるようにした。
【0032】
次に、絶縁基材11の接続電極41b側にドライフィルムをラミネートし、全面露光を行って、保護レジスト層61を形成し、銅箔21及び接続電極41b上に電解銅めっきを行って、5μmの補強導体層51を形成した(図4(h)参照)。
【0033】
次に、銅箔21及び補強導体層51上にレジストパターンを形成し、エッチング等の一連のパターニング処理を行って、接続電極41b間が電気的に縁絶されたパッド電極52を形成した(図4(i)参照)。
【0034】
次に、保護レジスト層61を専用の剥離液で剥離処理し、パッド電極52上にソルダーレジストパターン62を形成し、パッド電極52の一部及び接続電極41b上に、電解ニッケルめっき、電解金めっきを施して、めっき層53を形成して、本発明のフィルムキャリア100を得た(図4(j)参照)。
【0035】
次に、フィルムキャリア100に、フラックス処理を施し、更に、300μmφのはんだボールを接続電極41b上の開口部31に載せ、加熱して半田バンプを形成した。この際、接続電極41bとの間には半田くびれ、ボイド等の欠陥は発生せず、良好な電気的導通が得られた。また、開口部上31の半田バンプはほぼ均一な球形状となった。この半田バンプ付フィルムキャリアをプリント基板200に2次実装したが、はんだボール落ちやはんだくびれの欠陥は発生しなかった。また、デェージーチェーンによる信頼性試験の評価でも良好な結果を得た。
【0036】
【発明の効果】
上記したように、本発明のフィルムキャリアの接続電極は、金属箔をパンチングプレス等の打ち込みにより形成するため、技術的にも容易にかつ安価に作製でき、さらに、接続電極の高さを高精度に制御できるため、半田接合性に優れた高信頼の半導体パッケージを得ることができる。
【図面の簡単な説明】
【図1】本発明のフィルムキャリアの一実施例を示す模式構成部分断面図である。
【図2】本発明のフィルムキャリアを用いて半導体素子を実装し、プリント配線回路板に半田接合した状態を示す説明図である。
【図3】(a)〜(e)は、本発明のフィルムキャリアの製造方法における工程の一部を示す模式構成部分断面図である。
【図4】(f)〜(j)は、本発明のフィルムキャリアの製造方法における工程の一部を示す模式構成部分断面図である。
【図5】(a)〜(c)は、従来のフィルムキャリアの製造工程の一例を示す模式構成断面図である。
(d)及び(e)は、従来のフィルムキャリアを用いて半導体素子及びプリント配線回路板へ実装した半導体パッケージの一例を示す説明図である。
【図6】(a)及び(b)は、絶縁フィルム基材厚と開口部の孔径との関係を示す説明図である。
【図7】(a)〜(c)は、開口部上に半田ボールを搭載し、熱フローにより半田バンプを形成する際の形成状態を示す説明図である。
【図8】(a)は、従来のフィルムキャリアの構成の一例を示す模式構成断面図である。
(b)は、従来のフィルムキャリアを用いて半導体チップ及びプリント配線板のランドに実装したパッケージの一例を示す模式構成断面図である。
【符号の説明】
10……片面銅張積層シート
11……絶縁基材
21……銅箔
31、131、131a……開口部
41……金属箔
41a……打ち込み導体
41b、132……接続電極
51……補強導体層
52、141a……パッド電極
61……保護レジスト
62……ソルダーレジストパターン
71、73、75……金型
71a……開口用ポンチ
72、74……受け金型
73a……打ち込み用ポンチ
75a……押し込み用ポンチ
76……平金型
81、161……半導体素子
91、92、151、152……半田バンプ
100、300……フィルムキャリア
101、181……ランド
111……絶縁フィルム
121……接着剤層
122、123、124……実装後の半田形状
141……導体層
162……パッド電極
171……封止材
191、192……アンダーフィル
t……絶縁フィルム厚み
λ、λ’……開口部孔径
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a film carrier used as a connection medium when connecting a semiconductor element to an external substrate or the like, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, there has been an increasing demand for smaller and lighter LSIs so as to be able to respond to miniaturization, higher density, and higher performance of electronic devices. Above all, FBGA (Fine Pitch Ball Grid Array) packages of a memory type of 100 pins or less and a logic type of 100 to 300 pin class are mass-produced as CSPs compatible with mobile phones, digital videos, digital cameras, and the like. Furthermore, a 0.5 mm ball pitch FBGA has been adopted for the purpose of miniaturization. However, the bonding behavior at the time of secondary mounting using fine solder balls is different from the behavior of normal secondary mounting, and defects such as solder constriction and solder ball drop occur, thus causing a problem in securing reliability.
[0003]
The structure of a conventional film carrier used for FBGA and the behavior of solder balls will be described.
First, a three-layer film carrier generally used for FBGA will be briefly described.
5 (a) to 5 (e) are schematic sectional views showing a manufacturing process and a mounting process of a conventional 0.8 mm ball pitch FBGA film carrier.
First, an opening 131 is formed using a mold on a film substrate with an adhesive layer having an adhesive layer 121 formed on an insulating film 111 (see FIG. 5A).
Usually, a polyimide film is used as the insulating film 111, and the thickness thereof is generally 50 μm or more, and the thickness of the adhesive layer 121 is generally 12 μm. .
[0004]
Next, a copper foil having a desired film thickness is bonded to form a conductor layer 141 (see FIG. 5B).
As the thickness of the conductor layer 141, 12 μm to 18 μm is often used.
Next, the film layer 300 on which the desired pad electrode 141a is formed by patterning the conductor layer 141 using photolithography and etching techniques is produced (see FIG. 5C).
[0005]
Further, the semiconductor element 161 is mounted on the film carrier 300, the solder bump 151 is formed, and a primary mounting semiconductor package (interposer) is obtained (see FIG. 5D). At this time, the use of an underfill 191 material, a sealing material 171 and the like are used to improve the connection strength and the insulation.
Further, the secondary mounting is performed by soldering the solder bumps 151 of the primary mounting semiconductor package and the lands 181 of the printed wiring board (see FIG. 5E).
Here, in the conventional 0.8 mm ball pitch FBGA mounting, defects such as solder ball drop and solder constriction after solder ball mounting hardly occur.
[0006]
However, it has become necessary to set the solder ball pitch to 0.5 mm as a configuration corresponding to lightness and shortness. Due to the reduction in the solder ball pitch, it is necessary to keep the thickness of the insulating film base as it is and to reduce the diameter of the opening and the diameter of the solder ball.
FIGS. 6A and 6B are explanatory diagrams showing the relationship between the thickness of the insulating film and the opening hole diameter.
By reducing the hole diameter λ of the opening 131 to λ ′ without changing the thickness t of the insulating film 111, the aspect ratio (t / λ ′) of the opening 131a is increased, and the printed wiring board after the solder balls are mounted is mounted. When the solder is connected to the land 181, the area of solder contact with the back surface of the pad electrode 141 a of the film carrier decreases, and a solder ball drop phenomenon (see FIG. 7A) and a solder constriction phenomenon (see FIG. 7B) occur. As a result, a problem of an open defect occurs. FIG. 7C shows a solder shape when the solder connection is normally performed.
Since the area of the electrode in the opening hole is smaller than the land area of the printed board, the solder of the solder ball part on the FBGA side may be replaced with the land on the printed board side because the solder ball drop or the solder constriction of the FBGA is smaller than the land area of the printed board. It is caused by being sucked.
[0007]
As a technique for avoiding the above-described solder ball drop or solder constriction defect, a method of forming a connection electrode 132 by copper plating or the like in the opening 131 after forming an opening 131 to raise the contact surface of the solder ball (for example, see Patent Reference 1) has been proposed (see FIG. 8A), and technical considerations have been made on the solder ball drop phenomenon (for example, see Non-Patent Document 1).
FIG. 8B shows a semiconductor package in which the solder bump 152 is formed on the raised connection electrode 132, the semiconductor element 161 is mounted, and the secondary mounting is performed.
This method reduces solder contact failure, but usually requires a few tens of μm to raise the connection electrode 132 by plating, requires considerable plating time, and costs the connection electrode 132 to occupy the film carrier. Cannot be ignored. In addition, it is difficult to set plating conditions, the plating thickness varies in the connection electrode 132, and there is a problem that a via hole with insufficient height raises a problem such as a solder ball drop or a solder constriction.
[0008]
[Patent Document 1]
JP-A-10-41356 [Non-Patent Document 1]
Journal of Japan Institute of Electronics Packaging, Vol. 4, no. 1, 2001, P63-67
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a film carrier on which connection electrodes can be formed technically easily and at low cost, and a method for manufacturing the same.
[0010]
[Means for Solving the Problems]
In order to solve the above problem in the present invention, first, in claim 1, the pad electrode 52 is formed on one surface of the insulating base material 11 and the connection electrode 41b is formed on the other surface. 52 is a film carrier in which the connection electrode 41b is electrically connected to the connection electrode 41b, wherein the connection electrode 41b is formed by a driving conductor 41a formed by punching a metal foil 41. is there.
[0011]
2. The film carrier according to claim 1, wherein the surface position of the connection electrode 41b is lower than the other surface (outer surface) of the insulating base material 11.
[0012]
According to a third aspect of the present invention, in the film carrier according to the first or second aspect, the connection electrode 41b is formed of copper, lead, tin, or an alloy containing these metals as main components. Things.
[0013]
The film carrier according to any one of claims 1 to 3, wherein the pad electrode 52 is formed of the copper foil 21 and the reinforcing conductor layer 51 having a thickness of 2 µm or more. It is what it was.
[0014]
Furthermore, a fifth aspect of the present invention is the method for producing a film carrier according to any one of the first to fourth aspects, wherein at least the following steps are provided.
(A) a step of preparing a single-sided copper-clad laminate sheet 10 in which a copper foil 21 is laminated on one side of an insulating base material 11;
(B) A step of forming an opening 31 at a predetermined position of the single-sided copper-clad laminated sheet 10 using the press dies 71 and 72.
(C) The metal foil 41 having a predetermined thickness is placed on the copper foil 21 side of the laminated sheet in which the opening 31 is formed, and the conductors 41 a are formed in the opening 31 using the press dies 73 and 74. Process.
(D) A step of pushing back the implanted conductor 41a to the upper surface of the copper foil 21 using the press dies 75 and 76 to form the connection electrode 41b in which the upper end of the implanted conductor 41a and the upper surface of the copper foil 21 are on the same plane. .
(E) A step of forming a protective resist 61 so as to cover the connection electrode 41b and forming a reinforcing conductor layer 51 on the copper foil 21 and the connection electrode 41b by electrolytic copper plating or the like.
(F) forming a pad electrode 52 by patterning the copper foil 21 and the reinforcing conductor layer 51;
(G) A step of forming a solder resist 62 and forming a plating layer 53 made of nickel or gold plating on the connection electrode 41b and a part of the pad electrode 52.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a schematic partial cross-sectional view showing one embodiment of the film carrier of the present invention.
In the film carrier 100 according to the first aspect of the present invention, the pad electrode 52 is formed on one surface of the insulating base material 11, and the connection electrode 41 b is formed on the other surface by the implanted conductor formed in the opening 31. The pad electrode 52 and the connection electrode 41b are electrically connected.
Here, an organic resin film typified by a polyimide film is used as the insulating base material 11, and the film thickness is generally 50 μm or more.
Further, a plating layer 53 made of a nickel or gold plating layer is formed on a part of the pad electrode 52 and the connection electrode 41b.
[0016]
The open end of the connection electrode 41b is lower than the other surface (exterior surface) of the insulating base material 11, so that the solder balls can be easily set, and the solder bonding between the film carrier and the printed wiring circuit board can be performed. It facilitates and improves the bonding strength.
The height of the connection electrode 41b is controlled by the thickness of the metal foil to be driven.
[0017]
The connection electrode 41b is formed of one kind of metal selected from copper, lead, tin, gold, silver and the like, or an alloy containing these metals as main components. As the alloy, for example, Sn-Cn, Sn-Bi, Sn-Ag-Cu, Ni-Pd-Au, Sn-Ag-Bi-Cu, Sn-Lu, Pb-Zn-Al, Sn-Ag-Cu- Bi and the like can be mentioned.
[0018]
The pad electrode 52 formed on one surface of the insulating base material 11 is formed by patterning the copper foil 21 and the reinforcing conductor layer 51 of 2 μm or more to improve the physical strength of the pad electrode 52. This is to complete the electrical connection with the connection electrode 41b.
[0019]
Hereinafter, the method for producing the film carrier of the present invention will be described.
3 (a) to 3 (e) and 4 (f) to 4 (j) are schematic partial cross-sectional views showing the steps of the method for producing a film carrier of the present invention.
First, a single-sided copper foil laminated sheet 10 in which a copper foil 21 is laminated on one side of an insulating base material 11 made of a long polyimide film or the like is prepared (see FIG. 3A).
[0020]
Next, alignment mark holes and sprocket holes (especially not shown) are formed at both ends of the single-sided copper foil laminated sheet 10 along the longitudinal direction by a punching press. Next, using a punching press die including a die 71 having an opening punch 71a and a receiving die 72 with the alignment mark hole of the single-sided copper foil laminated sheet 10 as a base point (see FIG. 3B), An opening 31 is formed at a predetermined position of the copper foil laminated sheet 10 (see FIG. 3C).
[0021]
Next, the metal foil 41 having a predetermined thickness is placed on the copper foil 21 side of the laminated sheet in which the opening 31 is formed, and the punch 73 a of the mold 73 and the opening 31 are aligned with each other to receive the mold 74. Is set (see FIG. 3D), the punch 73a for pushing the mold 73 is pushed into the opening 31 with a predetermined load, and the driving conductor 41a is formed in the opening 31 (see FIG. 3E).
Here, there are a method of controlling the height of the implanted conductor 41a by the thickness of the metal foil 41 and a method of controlling the height by the etching process after forming the implanted conductor 41a. preferable.
[0022]
Next, the press punch 75a of the mold 75 and the punching conductor 41a are aligned with each other, and the flat mold 76 is set (see FIG. 4 (f)), and the press punch 75a of the mold 75 is driven with a predetermined load. When pushed into the conductor 41a, the implanted conductor 41a is pushed back to the upper surface of the copper foil 21 to form a rivet-shaped connection electrode 41b in which the upper end of the implanted conductor 41a and the upper surface of the copper foil 21 are on the same plane (FIG. 4). (G)).
[0023]
Next, a protective resist layer 61 is formed by a method such as laminating a dry film on the connection electrode 41b side of the insulating base material 11, and electrolytic copper plating or the like is performed on the copper foil 21 and the connection electrode 41b, and the thickness is 2 μm or more. (See FIG. 4H).
As described above, the reinforcing conductor layer 51 serves to improve the physical strength of the pad electrode 52 and complete the electrical connection with the connection electrode 41b.
[0024]
Next, a resist pattern is formed on the copper foil 21 and the reinforcing conductor layer 51, and a series of patterning processes such as etching are performed to form a pad electrode 52 in which the connection electrodes 41b are electrically disconnected (FIG. 4 (i)).
[0025]
Next, the protective resist layer 61 is peeled off, a solder resist pattern 62 is formed on the pad electrode 52, and electrolytic nickel plating and gold plating are performed on a part of the pad electrode 52 and the connection electrode 41b. 53 are formed to obtain the film carrier 100 of the present invention (see FIG. 4 (j)).
[0026]
Using the film carrier 100 of the present invention, the semiconductor element 81 is mounted, a solder bump is formed on the connection electrode 41b to form a primary semiconductor package (interposer), and further, it is soldered to the printed circuit board 200. FIG. 2 shows an example of the semiconductor package obtained as described above.
[0027]
In the film carrier 100 of the present invention, since the connection electrodes are formed by a punching press, the cost can be significantly reduced as compared with the conventional plating method, and the reliability of the solder joint with the printed circuit board is improved.
[0028]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
First, a 12 μm-thick electrolytic copper foil 21 is laminated on one surface of a long insulating base material 11 made of a heat-resistant polyimide film having a thickness of 50 μm to form a super-wide copper-clad laminate sheet 10 (see FIG. 3A). A sprocket hole for use and an alignment mark of 100 μmφ were punched and formed.
[0029]
Next, using a punching press die including a die 71 having an opening punch 71a and a receiving die 72 with the alignment mark hole of the single-sided copper foil laminated sheet 10 as a base point (see FIG. 3B), An opening 31 was formed at a predetermined position of the copper foil laminated sheet 10 (see FIG. 3C).
[0030]
Next, a metal foil 41 made of a rolled copper foil having a thickness of 60 μm is placed on the copper foil 21 side of the laminated sheet in which the opening 31 is formed, and the punch 73a for pressing the mold 73 and the opening 31 are aligned. The receiving mold 74 is set (see FIG. 3D), and a punch 73a for pushing the mold 73 is pushed into the opening 31 with a predetermined load, thereby forming a driving conductor 41a in the opening 31 (FIG. e)).
[0031]
Next, the pressing punch 75a of the mold 75 and the driving conductor 41a are aligned with each other, the flat mold 76 is set (see FIG. 4F), and the pressing punch 75a of the mold 75 is pressed with a predetermined load. Then, the implanted conductor 41a is pushed back to the upper surface of the copper foil 21 to form a rivet-shaped 52 μm-long connection electrode 41b in which the upper end of the implanted conductor 41a and the upper surface of the copper foil 21 are flush (FIG. 4 (g)). )reference).
The surface position of the connection electrode 41b was set to be 10 μm lower than the other surface (outer surface) of the insulating base material 11.
[0032]
Next, a dry film is laminated on the side of the connection electrode 41b of the insulating base material 11 and the entire surface is exposed to form a protective resist layer 61. Electrolytic copper plating is performed on the copper foil 21 and the connection electrode 41b to form a 5 μm Was formed (see FIG. 4H).
[0033]
Next, a resist pattern is formed on the copper foil 21 and the reinforcing conductor layer 51, and a series of patterning processes such as etching are performed to form a pad electrode 52 in which the connection electrodes 41b are electrically disconnected. 4 (i)).
[0034]
Next, the protective resist layer 61 is stripped with a dedicated stripping solution, a solder resist pattern 62 is formed on the pad electrode 52, and electrolytic nickel plating and electrolytic gold plating are formed on a part of the pad electrode 52 and the connection electrode 41b. Then, a plating layer 53 was formed to obtain a film carrier 100 of the present invention (see FIG. 4 (j)).
[0035]
Next, a flux treatment was applied to the film carrier 100, and a solder ball having a diameter of 300 μm was placed on the opening 31 on the connection electrode 41b and heated to form a solder bump. At this time, there was no defect such as solder constriction or void between the connection electrode 41b and good electrical continuity was obtained. Further, the solder bumps on the opening 31 had a substantially uniform spherical shape. The film carrier with the solder bumps was secondarily mounted on the printed circuit board 200, but no solder ball drop or solder necking defect was found. In addition, good results were obtained in the reliability test evaluation using the DAZ chain.
[0036]
【The invention's effect】
As described above, since the connection electrode of the film carrier of the present invention is formed by punching a metal foil by a punching press or the like, it can be manufactured easily and inexpensively technically, and furthermore, the height of the connection electrode can be adjusted with high precision. Therefore, a highly reliable semiconductor package having excellent solder jointability can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic partial cross-sectional view showing one embodiment of a film carrier of the present invention.
FIG. 2 is an explanatory view showing a state in which a semiconductor element is mounted using the film carrier of the present invention and soldered to a printed circuit board.
3 (a) to 3 (e) are schematic structural partial cross-sectional views showing a part of the steps in the method for producing a film carrier of the present invention.
FIGS. 4 (f) to (j) are schematic structural partial sectional views showing a part of the steps in the method for producing a film carrier of the present invention.
FIGS. 5A to 5C are schematic sectional views showing an example of a conventional film carrier manufacturing process.
(D) and (e) are explanatory views showing an example of a semiconductor package mounted on a semiconductor element and a printed circuit board using a conventional film carrier.
FIGS. 6A and 6B are explanatory diagrams showing the relationship between the thickness of an insulating film substrate and the hole diameter of an opening.
FIGS. 7A to 7C are explanatory views showing a formation state when a solder ball is mounted on an opening and a solder bump is formed by a heat flow.
FIG. 8A is a schematic sectional view showing an example of the structure of a conventional film carrier.
(B) is a schematic cross-sectional view showing an example of a package mounted on a land of a semiconductor chip and a printed wiring board using a conventional film carrier.
[Explanation of symbols]
10 Single-sided copper-clad laminate sheet 11 Insulating base material 21 Copper foil 31, 131, 131a Opening 41 Metal foil 41a Driving conductor 41b, 132 Connection electrode 51 Reinforcing conductor Layers 52, 141a Pad electrode 61 Protective resist 62 Solder resist patterns 71, 73, 75 Mold 71a Opening punches 72, 74 Receiving mold 73a Driving punch 75a ... Pressing punches 76. Flat molds 81, 161. Semiconductor elements 91, 92, 151, 152 .. Solder bumps 100, 300 .. Film carriers 101, 181. Lands 111. Insulating films 121. Agent layers 122, 123, 124 Solder shape 141 after mounting Conductor layer 162 Pad electrode 171 Sealants 191 and 192 Underflow Le t ...... insulating film thickness λ, λ '...... opening hole diameter

Claims (5)

絶縁基材(11)の一方の面にパッド電極(52)が、他方の面に接続電極(41b)が形成されており、前記パッド電極(52)と前記接続電極(41b)とは電気的に接続されてなるフィルムキャリアにおいて、前記接続電極(41b)が金属箔(41)のパンチングプレスによる打ち込み導体(41a)により形成されていることを特徴とするフィルムキャリア。A pad electrode (52) is formed on one surface of the insulating base material (11), and a connection electrode (41b) is formed on the other surface. The pad electrode (52) and the connection electrode (41b) are electrically connected to each other. Wherein the connection electrode (41b) is formed by a conductor (41a) driven by a punching press of a metal foil (41). 前記接続電極(41b)の表面位置は前記絶縁基材(11)の他方の面(外装面)より低くなっていることを特徴とする請求項1に記載のフィルムキャリア。The film carrier according to claim 1, wherein the surface position of the connection electrode (41b) is lower than the other surface (outer surface) of the insulating base material (11). 前記接続電極(41b)が銅、鉛、錫及びこれらの金属を主成分とする合金で形成されていることを特徴とする請求項1または2に記載のフィルムキャリア。The film carrier according to claim 1, wherein the connection electrode is formed of copper, lead, tin, or an alloy containing these metals as main components. 前記パッド電極(52)が銅箔(21)と2μm以上の補強導体層(51)とから形成されていることを特徴とする請求項1乃至3のいずれか一項に記載のフィルムキャリア。The film carrier according to any one of claims 1 to 3, wherein the pad electrode (52) is formed of a copper foil (21) and a reinforcing conductor layer (51) having a thickness of 2 µm or more. 少なくとも以下の工程を備えていることを特徴とする請求項1乃至4のいずれか一項に記載のフィルムキャリアの製造方法。
(a)絶縁基材(11)の片面に銅箔(21)が積層された片面銅張積層シート(10)を準備する工程。
(b)プレス金型(71及び72)を用いて、片面銅貼り積層シート(10)の所定位置に開口部(31)を形成する工程。
(c)所定厚の金属箔(41)を開口部(31)が形成された積層シートの銅箔(21)側に載置し、プレス金型(73及び74)を用いて、開口部(31)内に打ち込み導体(41a)を形成する工程。
(d)プレス金型(75及び76)を用いて、打ち込み導体(41a)を銅箔(21)の上層面まで押し戻し、打ち込み導体(41a)の上端と銅箔(21)の上層面とが同一面の接続電極(41b)を形成する工程。
(e)接続電極(41b)を覆い隠すように保護レジスト(61)を形成し、電解銅めっき等により、銅箔(21)及び接続電極(41b)上に補強導体層(51)を形成する工程。
(f)銅箔(21)及び補強導体層(51)をパターンニング処理して、パッド電極(52)を形成する工程。
(g)ソルダーレジスト(62)を形成し、接続電極(41b)上及びパッド電極(52)の一部にニッケル、金めっきからなるめっき層(53)を形成する工程。
The method for producing a film carrier according to any one of claims 1 to 4, comprising at least the following steps.
(A) A step of preparing a single-sided copper-clad laminate sheet (10) in which a copper foil (21) is laminated on one side of an insulating base material (11).
(B) A step of forming an opening (31) at a predetermined position of the single-sided copper-clad laminated sheet (10) using a press die (71 and 72).
(C) A metal foil (41) having a predetermined thickness is placed on the copper foil (21) side of the laminated sheet in which the opening (31) is formed, and the opening ( 31) forming the implanted conductor (41a) in the inside;
(D) Using the press dies (75 and 76), the implanted conductor (41a) is pushed back to the upper surface of the copper foil (21), so that the upper end of the implanted conductor (41a) and the upper surface of the copper foil (21) are in contact with each other. Forming a connection electrode (41b) on the same surface;
(E) A protective resist (61) is formed so as to cover the connection electrode (41b), and a reinforcing conductor layer (51) is formed on the copper foil (21) and the connection electrode (41b) by electrolytic copper plating or the like. Process.
(F) forming a pad electrode (52) by patterning the copper foil (21) and the reinforcing conductor layer (51);
(G) forming a solder resist (62) and forming a plating layer (53) made of nickel and gold plating on the connection electrode (41b) and on a part of the pad electrode (52);
JP2003090208A 2003-03-28 2003-03-28 Film carrier and manufacturing method thereof Expired - Fee Related JP4103656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090208A JP4103656B2 (en) 2003-03-28 2003-03-28 Film carrier and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090208A JP4103656B2 (en) 2003-03-28 2003-03-28 Film carrier and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004296980A true JP2004296980A (en) 2004-10-21
JP4103656B2 JP4103656B2 (en) 2008-06-18

Family

ID=33403889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090208A Expired - Fee Related JP4103656B2 (en) 2003-03-28 2003-03-28 Film carrier and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4103656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317715A (en) * 2006-05-23 2007-12-06 Nec Corp Interposer substrate and its manufacturing method, and electronic device package using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317715A (en) * 2006-05-23 2007-12-06 Nec Corp Interposer substrate and its manufacturing method, and electronic device package using the same

Also Published As

Publication number Publication date
JP4103656B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
US8146243B2 (en) Method of manufacturing a device incorporated substrate and method of manufacturing a printed circuit board
EP2172089B1 (en) Method for manufacturing a multilayer wiring element having pin interface
TWI471956B (en) Semiconductor package and fabrication method
EP2822369A1 (en) Multilayer circuit board and production method thereof and communication device
US7968803B2 (en) Wiring substrate, wiring material, copper-clad laminate, and method of manufacturing the wiring substrate
JP2009158593A (en) Bump structure and method of manufacturing the same
KR100990576B1 (en) A printed circuit board comprising a high density external circuit pattern and method for manufacturing the same
US10080295B2 (en) Circuit board structure
JP4597631B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2017084997A (en) Printed wiring board and method of manufacturing the same
US6708398B2 (en) Substrate for use in package of semiconductor device, semiconductor package using the substrate, and methods for manufacturing the substrate and the semiconductor package
US20090288293A1 (en) Metal core package substrate and method for manufacturing the same
JP2008182039A (en) Multilayer wiring board and its manufacturing method
JP4825784B2 (en) Package for semiconductor device and method for manufacturing the same
US20140146504A1 (en) Circuit board, package structure and method for manufacturing same
JP2004311786A (en) Wiring board, multilayer wiring board, process for producing wiring board, and process for producing multilayer wiring board
JP2002151853A (en) Multilayer printed wiring board and manufacturing method thereof
JP4389756B2 (en) Manufacturing method of multilayer flexible printed wiring board
JP2004296980A (en) Film carrier and its manufacturing method
TW200948239A (en) A printed circuit board having an embedded component and a method thereof
JP2004006572A (en) Method for manufacturing element built-in substrate and element built-in substrate, and method for manufacturing printed wiring board and the printed wiring board
JP3112885B2 (en) Semiconductor component mounting module
JP2002043745A (en) Wiring board and semiconductor device using it
JP3975887B2 (en) Film carrier and manufacturing method thereof
TW201201633A (en) Printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees