JP2004292901A - 亜鉛精鉱の浸出処理法 - Google Patents

亜鉛精鉱の浸出処理法 Download PDF

Info

Publication number
JP2004292901A
JP2004292901A JP2003087855A JP2003087855A JP2004292901A JP 2004292901 A JP2004292901 A JP 2004292901A JP 2003087855 A JP2003087855 A JP 2003087855A JP 2003087855 A JP2003087855 A JP 2003087855A JP 2004292901 A JP2004292901 A JP 2004292901A
Authority
JP
Japan
Prior art keywords
leaching
reaction
zinc concentrate
zinc
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003087855A
Other languages
English (en)
Other versions
JP4365124B2 (ja
Inventor
Kaoru Saruta
薫 猿田
Manabu Kanno
学 管野
Akira Narumi
明 鳴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2003087855A priority Critical patent/JP4365124B2/ja
Publication of JP2004292901A publication Critical patent/JP2004292901A/ja
Application granted granted Critical
Publication of JP4365124B2 publication Critical patent/JP4365124B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】亜鉛精鉱から亜鉛、鉛、銀等の有価金属および単体硫黄を回収するための浸出処理法において、既存の亜鉛製錬系統への組み込みが容易で、原料の浸出に長時間を要することなく浸出率が高く、設備費や操業コストの節減ができる浸出処理法を提供する。
【解決手段】オートクレーブ中で亜鉛精鉱と硫酸と鉄イオンからなるスラリーを酸素加圧雰囲気下で浸出反応させると共に前記酸素の一部を繰り返しオートクレーブ内の浸出液に供給して浸出反応を継続させる。また、浸出後のスラリーについて複数のサイクロンによる連係的な粒径分級を行ない、粗大単体硫黄と鉛銀等微細金属粒とを回収すると共に、中間粒度帯の未浸出鉱と微細硫黄を浸出液に繰り返す。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、亜鉛製錬の処理対象物である亜鉛硫化物原料(亜鉛精鉱という。)から亜鉛、さらには金、銀、銅、カドミウムおよび鉛等の有価金属元素ならびに副生する単体硫黄を分離、回収する湿式亜鉛製錬における亜鉛精鉱の浸出処理法に関するものである。
【0002】
【従来の技術】
亜鉛精鉱の浸出等に関する従来の技術としては、特公平6−43619号公報(特許文献1という。)および特許第2856933号公報(特許文献2という。)に記載された方法がある。
【0003】
まず、特許文献1に記載の亜鉛精鉱の浸出方法は、亜鉛精鉱を少なくとも2段階以上にわたって浸出する方法であり、鉱石を粉砕して微粒化した後、第1段階浸出では、温度125〜160℃、最終遊離硫酸濃度20〜60g/L、第二鉄濃度1〜5g/Lとなるように酸素圧をかけた状態で加圧浸出を行い、亜鉛を不完全溶解する。その後の第2段階浸出では、大気圧下において、電解処理工程で発生する戻り酸を過剰に用い、遊離硫酸濃度60〜160g/L、第二鉄濃度2〜3g/Lとなるように酸素を供給した状態で浸出を行い、硫酸亜鉛溶液と浸出残渣を形成させる。この際に形成される浸出残渣には残留亜鉛ならびに銅、鉄、大部分の鉛および貴金属が含まれているので、浮選によりこれらの分離、回収を実施するものである。
【0004】
一方、特許文献2に記載の亜鉛精鉱の処理方法は、亜鉛精鉱の浸出が2段階で行われるものであって、亜鉛精鉱を焙焼して亜鉛カ焼物を生成後、中性浸出を行い、浸出液は電解処理工程に供給し、中性浸出残渣については、電解処理工程において得られた戻し酸を用いて強酸浸出を行い、未浸出亜鉛精鉱および焙焼により生成した難溶性のジンクフェライトを分解する。この亜鉛の浸出に必要な三価の鉄イオンはジンクフェライト分解によって生じる鉄量だけでは不十分のため、浸出後液中の二価の鉄イオンを酸化することで再利用するという方法により浸出を行っている。この結果、90〜95℃において6〜10時間かけて99%の亜鉛回収率が達成されたとしている。また、浸出時に生成する残渣は、溶鉱炉を用いて乾式冶金処理して有価金属を回収するか、または浮選により有価金属を濃縮し回収するものである。
【0005】
【特許文献1】
特公平6−43619号公報
【特許文献2】
特許第2856933号公報
【0006】
【発明が解決しようとする課題】
上記の従来方法は、既存の焙焼−浸出−電解工程への組み込みが可能であり、かつ既存設備の増強が少なくてよいという利点があり、また、装入する亜鉛精鉱についての亜鉛の回収率も高く、さらに銅、鉛、および貴金属の回収も同時に行うことが可能であるという優れた点がある。しかし、特許文献1に開示された方法ではその浸出温度条件から鉄、銅が沈殿してしまい、浸出後の残渣中に残るという点、特許文献2に開示された方法では亜鉛を溶液中へ完全に溶解するのに要する時間が長く設備費が高いという点に問題があった。
したがって、亜鉛精鉱から亜鉛を得るために亜鉛の溶け残りが少ない浸出、すなわち浸出率の向上が望まれていた。
また、浸出残渣から硫黄の分離を図るため浮選分離工程を備えているが、選鉱分離コストが高い等の問題もあった。
【0007】
以上のような従来技術の問題点に鑑み、本発明は、亜鉛精鉱から有価金属及び硫黄を回収する浸出方法において、既存の亜鉛製錬操業への組み込みが容易で、亜鉛精鉱の浸出に長時間を必要とせず浸出率が高く、銅および鉄の分離効率がよく、硫黄の回収が容易で、設備費および操業コストも節減できる亜鉛精鉱浸出処理法の提供を目的とするものである。
【0008】
【課題を解決するための手段】
前記の目的を達成するため、本発明者らは種々の検討を重ねた結果、亜鉛精鉱の浸出において、浸出液に酸素ガスまたは酸素含有ガスを吹き込み、さらに強制的にこの酸素ガスまたは酸素含有ガスを循環させることにより亜鉛精鉱の浸出速度および浸出率が飛躍的に向上することを見出した。
また、90℃以上〜硫黄の融点(すなわち120℃。)未満の温度範囲で反応圧力容器であるオートクレーブを使用し、酸素加圧下で強制的に酸素ガスまたは酸素含有ガスを循環させることにより、Fe(II)をFe(III)とする酸化反応速度を向上させ、かつ、浸出残渣を繰り返し浸出させ、浸出反応時間を長くできることで浸出率も向上し、反応容器の規模を縮小することに成功した。なお、上記温度範囲では、鉄、銅の再沈殿が起こることはなく、これらの金属回収率が向上する。
さらに、浸出反応で発生した残渣や微細な硫黄を浸出工程に繰り返して浸出することにより、硫黄結晶が成長して工業的にサイクロンで分級することができ、高純度の硫黄を回収することができる。浸出の完了した残渣は微細な金、銀、鉛等の不溶解金属からなるものであって、分別回収される。
このように、浸出残渣の分級に構造、製作共に簡単で、運転も容易なサイクロンを採用することで浸出残渣の分級処理が効率よく行なわれ、設備費および操業コストが節減できることを見出した。
【0009】
すなわち本発明は、第1に、亜鉛精鉱、硫酸および鉄イオンを含有する反応容器内の浸出液に酸化剤を供給して浸出反応させると共に、前記浸出反応に用いた酸化剤の一部を繰り返し前記反応容器内の浸出液に供給することを特徴とする亜鉛精鉱の浸出処理法;第2に、前記酸化剤が酸素ガスまたは酸素含有ガスである第1記載の亜鉛精鉱の浸出処理法;第3に、亜鉛精鉱、硫酸および鉄イオンを含有する反応容器内の浸出液に酸素ガスまたは酸素含有ガスを供給して酸素加圧雰囲気中で浸出反応させると共に、前記浸出反応に用いた酸素ガスまたは酸素含有ガスの一部を繰り返し前記反応容器内の浸出液に供給することを特徴とする亜鉛精鉱の浸出処理法;第4に、亜鉛精鉱、硫酸および鉄イオンを含有する反応容器内の浸出液に酸化剤を供給して浸出反応させ、次いで得られたスラリーを粒径サイズによって反応生成物と繰り返し物とに分別し、該繰り返し物を前記反応容器内の浸出液に供給することを特徴とする亜鉛精鉱の浸出処理法;第5に、前記処理法によって得られたスラリーを粒径サイズによって反応生成物と繰り返し物とに分別し、該繰り返し物を前記反応容器内の浸出液に供給する第1〜3のいずれかに記載の亜鉛精鉱の浸出処理法;第6に、前記分別がサイクロンによる分級である第4または5に記載の亜鉛精鉱の浸出処理法;第7に、前記浸出反応が90℃以上〜硫黄の融点未満の温度で行われる第1〜6のいずれかに記載の亜鉛精鉱の浸出処理法;第8に、亜鉛精鉱の浸出処理に用いる密閉圧力容器であって、該容器内において、液を撹拌する撹拌部を備え、さらに該容器内の該液の上方に形成した気相部にガスを導入する導入口を、該撹拌部の下方に排出口をそれぞれ配置したガス導入管を備えたことを特徴とする密閉圧力容器を提供するものである。
【0010】
【発明の実施の形態】
本発明を、本発明法の工程図を示す図1を参照して説明する。
亜鉛精鉱を遊離硫酸濃度が150〜200g/Lの電解工程の戻り酸(硫酸溶液)と鉄を除去した後に発生する后液(三価の鉄塩溶液)と混合してスラリー化し、密閉式圧力容器(オートクレーブ)からなる浸出反応槽に添加して撹拌し、90℃以上〜硫黄の融点(120℃)未満の液温範囲で反応終了時の遊離硫酸濃度が10〜50g/Lになるように浸出反応を行なわせると同時に、浸出反応槽を酸素分圧0.8〜1.0MPaの加圧雰囲気に保持しながら、浸出液中に酸素ガスまたは酸素含有ガス等の酸化剤を強制的に循環させることにより、亜鉛精鉱を浸出して硫酸亜鉛液と二価の硫酸鉄と単体硫黄を生成させると共に、反応生成物中の二価の硫酸鉄を三価の硫酸鉄に酸化させ、前記の浸出反応を継続させることができる。
【0011】
さらに、前記浸出反応槽からの浸出後スラリーを、まず第1段のサイクロン分級により、結晶成長した純度の高い単体硫黄からなる硫黄残渣を分別し、残部を第2段のサイクロン分級により、未浸出鉱及び未成長硫黄と、金、銀、鉛等の有価金属からなる浸出残渣とに分別することができる。未浸出鉱と未成長硫黄を含むスラリーは前記の浸出工程に繰り返し加圧浸出工程に戻すことにより、亜鉛の浸出率を高め、単体硫黄を成長させることができる。その後濾過工程により、金、銀、鉛等の有価金属からなる浸出残渣を含む浸出液スラリーから金、銀、鉛等の有価金属からなる固形分(鉛/銀残渣)を分離することができる。
【0012】
加圧浸出工程からの硫酸亜鉛液は、電気亜鉛を得るべく、脱銅処理と脱鉄処理を含む浄液工程を経由して電解工程に供する。また、第1段のサイクロン分級からの硫黄残渣はさらに溶融、濾過して精製硫黄とし、濾過分離された鉛/銀残渣は、有価金属回収工程に供給して成分金属の分離回収を行なう。
本発明の亜鉛精鉱の浸出処理法は、亜鉛精鉱を焙焼して得られた亜鉛焼鉱を出発原料とする既存の亜鉛製錬系統にも好適に組み合わせることができ、その場合、前記の浸出反応槽からの浸出液(硫酸亜鉛液)を主系統の中性浸出槽に供給し、前記の浸出反応槽への硫酸として主系統の電解工程からの亜鉛電解尾液を利用でき、また第2鉄イオン液として主系統の脱鉄処理工程からの脱鉄液を利用することができる。
【0013】
以下、本発明をさらに具体的に説明する。
亜鉛精鉱を亜鉛電解尾液である遊離硫酸濃度150〜200g/Lの硫酸溶液と浸出残渣処理の脱鉄工程からの硫酸第2鉄を含有する脱鉄液に混合した原料スラリーを90℃〜硫黄の融点(120℃)未満の温度範囲まで昇温させて亜鉛の浸出反応を行なわせる。この浸出反応は以下の通りである。
ZnS+Fe(SO→ ZnSO+2FeSO+S … A式
すなわち、このA式の反応を促進するために三価の鉄イオンが必要であって、その鉄イオンとしては処理する亜鉛精鉱中の鉄が利用されるが、浸出時の三価の鉄イオン濃度は5〜60g/Lの範囲、好ましくは5〜15g/Lに設定する。
【0014】
この浸出反応により浸出残渣が発生するが、浸出条件によっては、反応時に鉛ジャロサイトが生成する。この鉛ジャロサイトが存在すると、生成する浸出残渣量が増大するために、残渣処理にかかるコストの増大に繋がる。従って、浸出反応時にはジャロサイト生成を抑制するために浸出終了時点の遊離硫酸濃度を10〜50g/Lにする必要があり、好ましくは40〜50g/Lとする。
【0015】
次に、前記A式の反応を見れば明らかなように、亜鉛精鉱の浸出反応が進行するに伴い、浸出に必要な三価の鉄イオンが消費され減少してくる。三価の鉄イオンがなくなればA式の浸出反応は進行せず、浸出反応が停止する。これを防ぐための方法として、亜鉛精鉱中の亜鉛量に相当する量の三価の鉄を繰り返すか、反応により発生した二価の鉄を酸化することで三価の鉄を再生させ、再利用する方法がある。この酸化反応はB式に示す通りである。
2FeSO+1/2O+HSO→ Fe(SO+HO … B式
この鉄の酸化反応は、大気圧下で行なうと非常に速度が遅い。そのため、オートクレーブなどの圧力容器を使用して酸素分圧を上昇させて加圧状態とし、酸化反応速度を速めるのが望ましい。酸化剤としては過マンガン酸塩、過酸化水素水などでもよいが、好ましくは酸素ガスまたは酸素含有ガスを使用し、さらに好ましくは酸素濃度が99.5%以上のものを使用する。酸化剤の未反応残剤または未溶解の酸素ガスまたは酸素含有ガスを繰り返し浸出液に投入することにより高い浸出率を得ることができる。なお、酸化剤として酸素ガスまたは酸素含有ガスを用いることにより、より安価に、簡易に高い浸出率を得ることができる。
【0016】
酸素の供給量は酸素分圧が0.8〜1.0MPaの一定圧力の加圧雰囲気となるよう圧力計によって制御し、また、この酸素供給量を調整することにより浸出速度を制御することもできる。すなわち、雰囲気の酸素分圧を上昇させることで浸出液中の酸素溶解度を上げ浸出反応を促進すると、酸素ガスまたは酸素含有ガスがさらに浸出液中に供給しやすくなる。すなわち酸素ガスまたは酸素含有ガスを強制的に循環して亜鉛精鉱中の亜鉛の浸出速度を上昇することができる。酸素分圧が0.8MPa未満では必要とする酸化速度が得られず、1.0MPaを超える場合はオートクレーブの耐圧性を上げる必要があり、設備費が上昇する。
【0017】
本発明を実施するための好適な装置の例を図2の浸出反応槽Aで示す。この浸出反応槽Aは圧力容器(オートクレーブ)であって、酸素による劣化を防ぎ耐酸性を持たせる必要があり、内壁等の接触面をチタンでライニングしたものや耐酸レンガを張ったものを使用する。浸出反応槽Aは仕切り板1により複数の反応部屋に区分し、反応の進捗に応じてポンプ手段等により、液が流動するようにするのが望ましい。チタン製の撹拌機2は、仕切られた反応部屋毎に取り付ける。
【0018】
酸素ガスの供給はガス供給配管3による各反応部屋の上部への供給によって行なわれ酸素ガス雰囲気を生成する。浸出液中への酸素ガス導入は各部屋に配置するガス導入管4を用いて行なわれる。ガス導入管4のガス供給口は液面から上方に突出させ、ガス排出口は撹拌羽2aの下方に配置する。撹拌羽2aの下方にガス排出口を配置することにより、撹拌羽2aにより発生する液流によりガス排出口近傍に負圧が発生し、ガス導入管4を通じて浸出液上部の雰囲気酸素ガスを浸出液中に導入する。このガス導入管4は、パイプなどを適宜曲げ加工を行うなどで製作できる。ガス導入管4の径は、供給量に応じるが気泡が細かくなるようにガス供給口が細い方が好ましい。撹拌機2の撹拌羽2aはタービン式のものが好ましい。タービン式の方がガス供給口から送られる酸素ガスが、液中で気泡となりその気泡をタービンの半径方向に拡散されるため酸素ガスのガス溜まりを生ぜず、浸出液の2価鉄との反応性が向上する。また固液誘導のために浸出反応槽Aの壁面に邪魔板を設置してもよい。
【0019】
装入原料スラリーは原料供給管5により仕切られた一端の反応部屋に供給される。各反応部屋において、図示しないポンプ手段等により、浸出液を最初に導入する部屋からの次の部屋に液を移送する際は、最初に導入された部屋の下方から該液を抜き出し、次の部屋に移送するのが好ましい。最初に浸出を行った液は、浸出が完全でない部分の液は、未反応の亜鉛精鉱を含むため比重が高く下方から抜き出す方がより次の浸出部屋で浸出が効率的に行われる。また、酸素ガス導入により液面に泡が多数あるため液面から抜き出すのは効率的ではない。浸出済みの浸出液は他端の反応部屋から、液排出管6により排出される。
【0020】
ガス導入管4により浸出液中に供給された酸素ガスは、浸出液に溶解する。溶解できなかった酸素ガスは、浸出液の液面より上方に流出する。この流出した酸素ガスは、ガス排出管7を経由して再供給缶8に吸引され、その供給口からガス供給配管3を経由して新たな酸素ガスと混合した状態で浸出反応槽Aに導入され、繰り返し浸出液中に供給される。溶解されなかった酸素ガスは圧力調整弁などを介して反応槽外に放出されることもある。
【0021】
前記のように浸出反応槽A内にガス導入管4を配設することにより、浸出速度が向上する。本発明者等が行なった酸化試験、すなわち密閉反応容器に30Lの亜硫酸ソーダを添加し、大気圧、常温下800rpmの撹拌条件で、酸化速度を計測した試験では、液相の酸化速度は時間に対して線形、すなわち正の相関関係を有するものであり、ガス導入管4を使用する場合は、使用しない場合に比べ、その酸化速度は7.7倍であった。このガス導入管4の設置効果は、撹拌羽2aが回転することより下部に負圧が生じ、密閉反応容器内で液相部の上方に形成した気相部中のガスが液中に巻き込まれ、その後ガスが撹拌羽2aによって細かく分散されて気泡となるので、気泡の比表面積の向上と分散性の向上とにより溶解速度が向上するためと思われる。また、明らかではないが、気相部におけるガスは、一度反応に使用されたガスがあるため、酸素以外にも液の成分が蒸発してなるものも含まれ雑多な組成を形成してなり、液への溶解性を向上させている可能性もある。
浸出速度向上の度合いは、酸素分圧、温度、撹拌速度、羽根形状、バッフルの有無など様々な要因により変化し、また、浸出反応においては酸化速度だけでなく、亜鉛精鉱粒子の表面性状によっても全体の反応速度が影響を受けるが、各要件を一定とした場合のガス導入管の設置効果は大きい。
【0022】
以上に述べたように、本方法では90℃〜硫黄の融点(120℃)未満の温度範囲で圧力容器(オートクレーブ)を使用し、酸素加圧下で前記浸出反応と酸化反応を同時に行なうものである。すなわち、酸素加圧下で強制的に酸素ガスまたは酸素含有ガスを循環させ、浸出反応を行なうことで二価の鉄から三価の鉄への酸化反応の速度を向上させ、かつ、一度浸出作用を加えた亜鉛精鉱に繰り返し浸出作用を加え、亜鉛精鉱自体の反応時間を長くすることができるので、浸出率も向上し、このため、圧力容器の規模も縮小することができる。
また、90℃〜硫黄の融点(120℃)未満の温度範囲内ではFe、Cuの再沈殿が起こることはなく、これらの金属回収率は向上する。
以上のような浸出、鉄の酸化を連係的に実施することにより約90分で亜鉛精鉱中の亜鉛分の約95%を浸出させることが可能となり、従来の方法での反応時間を大幅に短縮することが可能となった。
【0023】
浸出残渣は、未浸出鉱と単体硫黄微粒子等からなるが、未浸出鉱には、亜鉛、鉄、銅、カドミウム、鉛、珪素、金、銀などの成分が含まれている。未浸出鉱は、酸に溶解しきれなかったものであるため、浸出初期では粒径が大きい。この未浸出残渣を繰返し浸出工程に戻すことにより、徐々に浸出液に溶解されその粒径は小さくなっていく。したがって、徐々に粒径が小さくなることを利用して、浸出後のスラリーについて粒径の分級を行なえば、硫黄分や他の金属元素を除去できるほか、高純度の硫黄が回収できる。例えば、粒径を100μm以上で分級すれば、100μmより大きい粒径側に硫黄が含まれ、単体硫黄の分離回収が可能になる。その後に分級基準を50μmとして分級すれば50μmより大きい粒径側に未浸出鉱が含まれ、亜鉛などが分離でき、さらにその後に5μmで分級すれば5μmより大きい側に鉛/銀残渣が含まれ、鉛、金、銀が分離回収できる。この粒径の差異は、それぞれの成分の酸に対する溶解性や液中、液外での凝集性が異なるためと思われる。
【0024】
本発明では、特に浸出後のスラリーの分級処理を液体サイクロンによって連係的に行うものであり、運転も容易で工業的に有利に行なえるものである。
前記したように、浸出残渣は、サイクロンにより粒度別で大きく分けて、最も粗大(500μm)な純度の高い硫黄、中間粒度の未浸出亜鉛精鉱と成長過程の硫黄、および微細な金、銀、鉛の混合した鉛または銀残渣に分級される。なお、硫黄の粒子は、浸出直後では微粒子であり1μmに満たないものが殆どであるが、浸出の進行に伴い初期生成の硫黄結晶を核とした成長粒子すなわち造粒粒子として硫黄を成長させることができ、造粒粒子であれば、分級がさらに精度よく行なわれるようになる。
【0025】
粗大硫黄粒は、第1段の液体サイクロンから抜き出されて硫黄回収工程に行き、融点以上の温度で単体硫黄として溶融、濾過されて回収される。第2段の液体サイクロンから抜き出される中粒度の硫黄粒は未浸出鉱と共に浸出工程に繰り返し再度浸出させて粒子を成長させて粗粒硫黄として回収できるようにし、微細径の金、銀、鉛の不溶解金属などを含むものは浸出液(硫酸亜鉛)から濾過分離し、有価金属回収工程において処理される。
【0026】
上記の工程によって固液分離された浸出液(硫酸亜鉛液)は、脱銅処理と脱鉄処理を含む浄液工程を経て電解処理工程へと送液されて液中から亜鉛が電気亜鉛として回収される。亜鉛焼鉱を出発原料とする亜鉛製錬系統と組み合わせている場合は、浸出液はその主系統の中性浸出工程に供給される。
【0027】
【実施例】
以下に本発明をさらに具体的に示した実施例を記載するが、本発明はこれに限定されないことはいうまでもない。
【0028】
〔実施例1〕 亜鉛精鉱の浸出試験を行った。
浸出液として、亜鉛濃度を60g/L、二価の鉄イオン濃度を8g/L、遊離硫酸濃度を100g/Lに調整した水溶液を用意した。
亜鉛精鉱は、表1の組成を有する亜鉛精鉱を使用した。Zn、Fe、Cu、Cd、Pb等の金属元素は、硫化物の形で亜鉛精鉱中に含有されている。亜鉛精鉱の粒度は、メジアン径が20μm、90%粒子径が70μmであった。
【0029】
【表1】
Figure 2004292901
【0030】
浸出液1Lに、上記の亜鉛精鉱60gと共に分散剤としてリグニンスルホン酸カルシウムを亜鉛精鉱1kg当り2.5gの割合で添加して原料スラリーとした。反応容積90Lのオートクレーブに装填し、115℃まで昇温した。昇温後、気相部へ直接酸素ガスを導入して原料スラリーを60L/Hrで供給しながら連続で反応させた。連続的にオートクレーブから抜き出されるスラリーを濾過し、ケーキ(残渣)を十分水洗した後、残渣品位を測定した。その測定結果の残渣品位を表2に示した。浸出時間は90分である。
また、表2において亜鉛精鉱中のPbを基準とし各々の浸出率を表3に示した。二価の鉄イオン濃度が8g/Lであっても高浸出率が得られた。
【0031】
【表2】
Figure 2004292901
【0032】
【表3】
Figure 2004292901
【0033】
〔実施例2〕 次いで分級による残渣処理を行なった。
浸出液として、亜鉛濃度を60g/L、二価の鉄イオン濃度を8g/L、遊離硫酸濃度を100g/Lに調整した水溶液を用意した。
亜鉛精鉱には、Zn、Fe、Cu、Cd、Pbが硫化物形態で含有されている。この亜鉛精鉱を浸出し、生成した細かい硫黄と未浸出亜鉛精鉱を繰り返し浸出することによって、硫黄は徐々に結晶成長し粗粒となった。
また、亜鉛精鉱中のZn、Cu、Cd、Feの可溶性金属は溶出して液中にイオンの形態で存在し、浸出残渣には不溶性金属が微細な結晶として残留した。この浸出後のスラリーをサイクロン分級し、結晶成長した硫黄と不溶性金属の微細な結晶の2種の粒度のものを抜き取り、残りの中間粒度帯に分布する残渣を浸出工程に戻し再度浸出させた。この浸出に供給する亜鉛精鉱と繰り返し浸出する浸出残渣の品位を表4に示した。
【0034】
【表4】
Figure 2004292901
【0035】
この亜鉛精鉱60g、浸出残渣70gを浸出液1Lにてリパルプした。得られたパルプに分散剤としてリグニンスルホン酸カルシウムを亜鉛精鉱1kg当り2.5gの割合で添加し原料スラリーとし、この原料スラリーを反応容積90Lのオートクレーブに装填し115℃まで昇温した。昇温後、気相部へ直接酸素ガスを導入し、原料スラリーを30L/Hrで供給しながら連続で浸出反応を行なった。連続的にオートクレーブから抜き出されるスラリーを濾過し、ケーキ(残渣)を十分水洗した後、残渣品位を測定した。その測定結果の残渣品位を表5に示した。
また、亜鉛精鉱中のPbをベースとした各々金属の浸出率を表6に示した。
【0036】
【表5】
Figure 2004292901
【0037】
【表6】
Figure 2004292901
【0038】
〔実施例3〕 実施例2の表4に示した繰り返し浸出による浸出残渣は、一度浸出された細かい硫黄と未浸出亜鉛精鉱が繰り返し浸出されることで硫黄は、徐々に結晶成長して粗粒となり、可溶性金属は液中に移行し、不溶性金属は微細な結晶で存在する混合残渣である。
この浸出残渣をサイクロサイザーで粒度別にサイクロン分級を行なった。この分級した残渣を光透過式粒度分布計にて測定した結果を図3に示した。試料のサイクロン−1は第1段のサイクロン分級で得られた粒度のものを意味し、以下同様である。また、サイクロン−ofは最終段階におけるオーバーフロー残渣である。なお、サイクロン−1は、粒度が粗く300μm〜700μmになっているため粒度分布では測定できないので図3においては削除してある。また、分級した残渣品位を分析しその品位を表7に示した。
【0039】
【表7】
Figure 2004292901
【0040】
実施例2の表4に示した繰り返し浸出による浸出残渣を湿式サイクロンで分級した場合のサイクロンUF残渣の硫黄品位の推移を図4に示した。また、微細な不溶解性金属からなる残渣をサイクロンで回収した結果の残渣品位を表8に示した。Pbが濃縮されているのがわかる。
【0041】
【表8】
Figure 2004292901
【0042】
以上の結果からサイクロン−1に相当する粒度のものは、極端にS品位が高くなっているので、サイクロンで硫黄を分級回収できることを示している。逆に最も細かい粒度のサイクロン−ofは、Pb品位が高く、未浸出のZn、Fe、Cu、Cdが低くなっている。これは、浸出反応が終了していることを示し、浸出終了残渣はサイクロン−ofとして回収できることを示している。
また、以上のことから、サイクロンの分級度は安定しており、サイクロンで分級し最も粗いものに分布する残渣を抜き出して硫黄回収原料とし、次に、最も細かいものに分布する残渣をサイクロンから抜き出してPb等の有価金属の回収工程原料とすることができる。この硫黄とPb等の有価金属の粒度分布との間に分布する粒度のものは、まだ完全に浸出されていないので浸出工程に戻し繰り返しさらに浸出する。
【0043】
【発明の効果】
本発明では、酸素加圧下における酸素ガスの強制循環により亜鉛精鉱の浸出反応で発生する二価の鉄イオンを三価の鉄イオンとして随時補給し、亜鉛精鉱の浸出が継続して行えるようにしたので、従来法に比べて浸出反応時間を大幅に短縮することができた。さらに、浸出残渣中の未浸出亜鉛精鉱をサイクロン分級により分別し再度浸出するようにしたので、浸出時間、浸出率が改善され、設備費、操業コストの大幅な削減が可能となった。またさらに、浸出残渣をサイクロンのみで硫黄と未浸出亜鉛精鉱と不溶解性有価金属を分級により分別するようにしたので、従来の浮選法による分別法に比べても、設備コスト、操業コストの大幅な削減が可能になった。
また、本発明の方法は、既存の設備への組み込みが可能であり、小規模の建設によって亜鉛生産量の増産を行なうことが可能になるという等の効果を奏するものである。
【図面の簡単な説明】
【図1】本発明方法の工程説明図である。
【図2】本発明方法で使用される浸出反応槽の側断面図である。
【図3】実施例3におけるサイクロン分級の粒径制御による回収浸出残渣の粒度推移を示すグラフである。
【図4】実施例3における繰り返し浸出回数に対応する硫黄品位を示すグラフである。
【符号の説明】
A 浸出反応槽
1 仕切り板
2 撹拌機
2a 撹拌羽
3 ガス供給配管
4 ガス導入管
5 原料供給管
6 液排出管
7 ガス排出管
8 再供給缶

Claims (8)

  1. 亜鉛精鉱、硫酸および鉄イオンを含有する反応容器内の浸出液に酸化剤を供給して浸出反応させると共に、前記浸出反応に用いた酸化剤の一部を繰り返し前記反応容器内の浸出液に供給することを特徴とする亜鉛精鉱の浸出処理法。
  2. 前記酸化剤が酸素ガスまたは酸素含有ガスである請求項1記載の亜鉛精鉱の浸出処理法。
  3. 亜鉛精鉱、硫酸および鉄イオンを含有する反応容器内の浸出液に酸素ガスまたは酸素含有ガスを供給して酸素加圧雰囲気中で浸出反応させると共に、前記浸出反応に用いた酸素ガスまたは酸素含有ガスの一部を繰り返し前記反応容器内の浸出液に供給することを特徴とする亜鉛精鉱の浸出処理法。
  4. 亜鉛精鉱、硫酸および鉄イオンを含有する反応容器内の浸出液に酸化剤を供給して浸出反応させ、次いで得られたスラリーを粒径サイズによって反応生成物と繰り返し物とに分別し、該繰り返し物を前記反応容器内の浸出液に供給することを特徴とする亜鉛精鉱の浸出処理法。
  5. 前記処理法によって得られたスラリーを粒径サイズによって反応生成物と繰り返し物とに分別し、該繰り返し物を前記反応容器内の浸出液に供給する請求項1〜3のいずれかに記載の亜鉛精鉱の浸出処理法。
  6. 前記分別がサイクロンによる分級である請求項4または5に記載の亜鉛精鉱の浸出処理法。
  7. 前記浸出反応が90℃以上〜硫黄の融点未満の温度で行われる請求項1〜6のいずれかに記載の亜鉛精鉱の浸出処理法。
  8. 亜鉛精鉱の浸出処理に用いる密閉圧力容器であって、該容器内において、液を撹拌する撹拌部を備え、さらに該容器内の該液の上方に形成した気相部にガスを導入する導入口を、該撹拌部の下方に排出口をそれぞれ配置したガス導入管を備えたことを特徴とする密閉圧力容器。
JP2003087855A 2003-03-27 2003-03-27 亜鉛精鉱の浸出処理法 Expired - Fee Related JP4365124B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087855A JP4365124B2 (ja) 2003-03-27 2003-03-27 亜鉛精鉱の浸出処理法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087855A JP4365124B2 (ja) 2003-03-27 2003-03-27 亜鉛精鉱の浸出処理法

Publications (2)

Publication Number Publication Date
JP2004292901A true JP2004292901A (ja) 2004-10-21
JP4365124B2 JP4365124B2 (ja) 2009-11-18

Family

ID=33402144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087855A Expired - Fee Related JP4365124B2 (ja) 2003-03-27 2003-03-27 亜鉛精鉱の浸出処理法

Country Status (1)

Country Link
JP (1) JP4365124B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323177C (zh) * 2005-08-25 2007-06-27 株洲冶炼集团有限责任公司 高铁锌焙砂的处理方法
CN103352116A (zh) * 2013-04-07 2013-10-16 昆明理工大学 微波-超声波联合回收高铁、高铅浸出渣中锌的方法
CN104263924A (zh) * 2014-10-14 2015-01-07 中国瑞林工程技术有限公司 一种增加串联并流浸出槽物料浸出率的方法及其装置
JP2018053321A (ja) * 2016-09-29 2018-04-05 住友金属鉱山株式会社 反応容器、及びその反応容器を用いた金属原料の浸出処理方法
WO2018061715A1 (ja) * 2016-09-29 2018-04-05 住友金属鉱山株式会社 酸素吹込配管、及び金属材料の浸出処理方法
JP2018158335A (ja) * 2017-03-22 2018-10-11 住友金属鉱山株式会社 加圧反応装置、及びそれを用いた有価金属の浸出処理方法
CN109279581A (zh) * 2018-10-30 2019-01-29 金川集团股份有限公司 一种从铜渣氯浸渣中回收硫的方法
CN110152583A (zh) * 2019-06-21 2019-08-23 中国恩菲工程技术有限公司 还原釜、控制方法、装置及还原浸出反应系统
CN110964902A (zh) * 2019-12-31 2020-04-07 温州大学 一种氧化矿的连续匀酸浸出装置
CN111638244A (zh) * 2020-06-05 2020-09-08 中南大学 一种锌精矿氧压酸浸高硫渣安全性分析方法
CN113462898A (zh) * 2021-06-19 2021-10-01 西部矿业股份有限公司 一种新型氧压浸出锌冶炼净化除杂工艺
CN115505735A (zh) * 2022-10-28 2022-12-23 昆明冶金研究院有限公司 一种从高锌银精矿中分离银锌的方法
KR102519487B1 (ko) * 2022-11-24 2023-04-10 고려아연 주식회사 탄소 배출량이 저감되는 아연 습식 제련 공정의 부산물 처리 방법
CN116812874A (zh) * 2023-08-30 2023-09-29 昆明理工大学 一种湿法炼锌高硫渣高效回收硫磺和锌银的方法

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323177C (zh) * 2005-08-25 2007-06-27 株洲冶炼集团有限责任公司 高铁锌焙砂的处理方法
CN103352116A (zh) * 2013-04-07 2013-10-16 昆明理工大学 微波-超声波联合回收高铁、高铅浸出渣中锌的方法
CN103352116B (zh) * 2013-04-07 2015-11-18 昆明理工大学 微波-超声波联合回收高铁、高铅浸出渣中锌的方法
CN104263924A (zh) * 2014-10-14 2015-01-07 中国瑞林工程技术有限公司 一种增加串联并流浸出槽物料浸出率的方法及其装置
AU2017335251B2 (en) * 2016-09-29 2019-06-06 Sumitomo Metal Mining Co., Ltd. Oxygen blow pipe, and leaching treatment method for metal material
JP2018053321A (ja) * 2016-09-29 2018-04-05 住友金属鉱山株式会社 反応容器、及びその反応容器を用いた金属原料の浸出処理方法
WO2018061715A1 (ja) * 2016-09-29 2018-04-05 住友金属鉱山株式会社 酸素吹込配管、及び金属材料の浸出処理方法
JP2018053322A (ja) * 2016-09-29 2018-04-05 住友金属鉱山株式会社 酸素吹込配管、及び金属材料の浸出処理方法
WO2018061714A1 (ja) * 2016-09-29 2018-04-05 住友金属鉱山株式会社 反応容器、及びその反応容器を用いた金属原料の浸出処理方法
AU2017335251A9 (en) * 2016-09-29 2019-06-27 Sumitomo Metal Mining Co., Ltd. Oxygen blow pipe, and leaching treatment method for metal material
JP7180088B2 (ja) 2017-03-22 2022-11-30 住友金属鉱山株式会社 加圧反応装置、及びそれを用いた有価金属の浸出処理方法
JP7180085B2 (ja) 2017-03-22 2022-11-30 住友金属鉱山株式会社 加圧反応装置、及びそれを用いた有価金属の浸出処理方法
JP2018158337A (ja) * 2017-03-22 2018-10-11 住友金属鉱山株式会社 加圧反応装置、及びそれを用いた有価金属の浸出処理方法
JP2018158334A (ja) * 2017-03-22 2018-10-11 住友金属鉱山株式会社 加圧反応装置、及びそれを用いた有価金属の浸出処理方法
JP2018158338A (ja) * 2017-03-22 2018-10-11 住友金属鉱山株式会社 加圧反応装置、及びそれを用いた有価金属の浸出処理方法
JP2018158336A (ja) * 2017-03-22 2018-10-11 住友金属鉱山株式会社 加圧反応装置、及びそれを用いた有価金属の浸出処理方法
JP7183501B2 (ja) 2017-03-22 2022-12-06 住友金属鉱山株式会社 加圧反応装置、及びそれを用いた有価金属の浸出処理方法
JP7180087B2 (ja) 2017-03-22 2022-11-30 住友金属鉱山株式会社 加圧反応装置、及びそれを用いた有価金属の浸出処理方法
JP2018158335A (ja) * 2017-03-22 2018-10-11 住友金属鉱山株式会社 加圧反応装置、及びそれを用いた有価金属の浸出処理方法
JP7180086B2 (ja) 2017-03-22 2022-11-30 住友金属鉱山株式会社 加圧反応装置、及びそれを用いた有価金属の浸出処理方法
CN109279581A (zh) * 2018-10-30 2019-01-29 金川集团股份有限公司 一种从铜渣氯浸渣中回收硫的方法
CN110152583A (zh) * 2019-06-21 2019-08-23 中国恩菲工程技术有限公司 还原釜、控制方法、装置及还原浸出反应系统
CN110152583B (zh) * 2019-06-21 2024-05-03 中国恩菲工程技术有限公司 还原釜、控制方法、装置及还原浸出反应系统
CN110964902A (zh) * 2019-12-31 2020-04-07 温州大学 一种氧化矿的连续匀酸浸出装置
CN111638244B (zh) * 2020-06-05 2021-05-11 中南大学 一种锌精矿氧压酸浸高硫渣安全性分析方法
CN111638244A (zh) * 2020-06-05 2020-09-08 中南大学 一种锌精矿氧压酸浸高硫渣安全性分析方法
CN113462898B (zh) * 2021-06-19 2022-09-06 西部矿业股份有限公司 一种氧压浸出锌冶炼净化除杂工艺
CN113462898A (zh) * 2021-06-19 2021-10-01 西部矿业股份有限公司 一种新型氧压浸出锌冶炼净化除杂工艺
CN115505735A (zh) * 2022-10-28 2022-12-23 昆明冶金研究院有限公司 一种从高锌银精矿中分离银锌的方法
KR102519487B1 (ko) * 2022-11-24 2023-04-10 고려아연 주식회사 탄소 배출량이 저감되는 아연 습식 제련 공정의 부산물 처리 방법
WO2023243874A1 (ko) * 2022-11-24 2023-12-21 고려아연 주식회사 탄소 배출량이 저감되는 아연 습식 제련 공정의 부산물 처리 방법
CN116812874A (zh) * 2023-08-30 2023-09-29 昆明理工大学 一种湿法炼锌高硫渣高效回收硫磺和锌银的方法
CN116812874B (zh) * 2023-08-30 2023-11-17 昆明理工大学 一种湿法炼锌高硫渣高效回收硫磺和锌银的方法

Also Published As

Publication number Publication date
JP4365124B2 (ja) 2009-11-18

Similar Documents

Publication Publication Date Title
CN101278064B (zh) 以基于氯化物的浸出方式处理含镍原料的方法
FI123376B (fi) Arvokkaiden nikkeli- ja kobolttiosien talteenotto sulfidimalmin kellutusrikasteesta kloridiavusteisella hapettavalla paineuutolla rikkihapossa
US8052774B2 (en) Method for concentration of gold in copper sulfide minerals
KR100729192B1 (ko) 아연정광의 침출법 및 침출장치
JPH10512926A (ja) 煙じんの湿式製錬処理
JP4365124B2 (ja) 亜鉛精鉱の浸出処理法
US20080173132A1 (en) Integrated hydrometallurgical and pyrometallurgical processing of base-metal sulphides
JPS6247933B2 (ja)
CZ282553B6 (cs) Hydrometalurgické znovuzískávání kovů z komplexních rud
JPH08512092A (ja) 硫化物物質からの金属の回収
JP2008266774A (ja) 亜鉛の回収方法
JP2011021219A (ja) 含銅鉄物からの銅回収方法
CN100366768C (zh) 制备二氧化钛
CN109890988B (zh) 用于处理矿石的集成湿法冶金和高温冶金方法
JPH04238816A (ja) ヒ酸銅の製法
WO2020237312A1 (en) Recovery of titanium products from titanomagnetite ores
CN100374590C (zh) 制备二氧化钛
CN100415904C (zh) 制备二氧化钛
CA1117897A (en) Continuous process for the purification of zinc plant electrolyte
JPH02197533A (ja) 有価金属の分離方法
JPH04311541A (ja) 亜鉛精鉱と亜鉛浸出残渣との同時湿式処理法
US4384940A (en) Chlorine leaching of nickel-cobalt-iron sulphides
JP2006509103A (ja) スラグの処理方法
JP4852716B2 (ja) 亜鉛精鉱浸出法および浸出装置
JPS6352094B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees