JP2004289749A - 周波数イコライザ - Google Patents
周波数イコライザ Download PDFInfo
- Publication number
- JP2004289749A JP2004289749A JP2003082331A JP2003082331A JP2004289749A JP 2004289749 A JP2004289749 A JP 2004289749A JP 2003082331 A JP2003082331 A JP 2003082331A JP 2003082331 A JP2003082331 A JP 2003082331A JP 2004289749 A JP2004289749 A JP 2004289749A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- line
- equalizer
- amplifier
- transmission line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Waveguide Connection Structure (AREA)
- Amplifiers (AREA)
Abstract
【解決手段】マイクロ波信号が伝搬する主線路6と接地間に、抵抗7と伝送線路11とインダクタ12との直列回路を設け、この直列回路の伝送線路11とインダクタ12との間に先端開放線路13を接続するとともに、伝送線路11と先端開放線路13の電気長を所望の周波数帯で1/4波長よりも短く選ぶことにより、凹形の損失の周波数特性も兼ね備えるようにした。
【選択図】 図2
Description
【発明の属する技術分野】
この発明はマイクロ波帯のレーダあるいは通信装置に使用され、増幅器、ミクサ等の振幅周波数特性を改善するための周波数イコライザに関するものである。
【0002】
【従来の技術】
従来の衛星放送用のマイクロ波増幅器整合回路においては、ミキサー部のバイアス回路とIF増幅部の利得周波数補償回路が必要だが、この方法では基板占有面積が大きく、又、部品点数の削減も行えず、コスト削減が容易ではなかったので、ミキサー部とIF増幅部の段間に、IF信号の利得周波数特性を補償する吸収型フィルタを設置し、バイアス回路と利得周波数補償回路の機能を、単一の回路で共有する構造とすることにより解決したことは開示されている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2000−183773号公報(段落番号(0006)、第1図)
【0004】
【発明が解決しようとする課題】
従来の周波数イコライザでは損失の周波数特性が右上がり、凸形およ右下がりの特性を有するため、増幅器、ミクサ等の振幅周波数特性として右下がり、凹形および右上がりのものについて補償ができる。
しかし、一般の増幅器、ミクサ等では凸形の振幅周波数特性を持つものが多く、この場合、従来の周波数イコライザでは補償できない課題があった。
【0005】
この発明は上記のような課題を解消するためになされたもので、従来の周波数イコライザの損失の周波数特性の他に、凹形の特性も兼ね備えた周波数イコライザを得ることを目的としている。
【0006】
【課題を解決するための手段】
この発明による周波数イコライザは、増幅器、ミクサ等の振幅周波数特性を改善するための周波数イコライザにおいて、マイクロ波信号が伝搬する主線路と接地間に設け、抵抗と伝送線路とインダクタとが直列に順次接続した直列回路と、伝送線路とインダクタとの間に接続された先端開放線路とを具備し、伝送線路と先端開放線路の電気長が所望の周波数帯で1/4波長よりも短く設定したものである。
【0007】
【発明の実施の形態】
図1は一般的な増幅器の利得の周波数特性および周波数イコライザの応用例を示す図であり、1は増幅器、2は周波数イコライザ、3はイコライザの入力端子、4はイコライザの入力端子、5はイコライザの出力端子である。
【0008】
図1(a)は一般的な増幅器の利得の周波数特性の一例を示す図である。
通常、増幅器は周波数に対して平坦な利得特性が得られるように設計されるが、出力電力、歪、雑音指数等の利得以外を優先して設計する場合がある。また、MMIC増幅器においては半導体、整合素子等の製造バラツキにより、利得の周波数特性にバラツキが生じてしまう。このような場合、必ずしも平坦な利得特性が得られず、この図に示すように右下がりの利得特性になってしまう場合がある。
【0009】
図1(b)はこのような特性を補償するために用いる周波数イコライザの応用例を示す図である。
増幅器1の出力段に、振幅周波数特性を改善するための周波数イコライザ2がしばしば用いられる。この場合、増幅器の入力端子から入射したマイクロ波信号は順次増幅器入力端子3、増幅器1、イコライザの入力端子3、周波数イコライザ2を通り、イコライザの出力端子5から出力される。
従って、周波数イコライザ2の損失の周波数特性として、増幅器1の利得の周波数特性を補償するようなものであれば、全体として平坦な利得特性を得ることができる。
【0010】
実施の形態1.
図2は実施の形態1の周波数イコライザの構成および斜視図を示す図であり、6は主線路、7は抵抗、11は伝送線路、12はインダクタ、13は先端開放線路であり、4、5は図1と同じものである。
【0011】
図2(a)は実施の形態1の周波数イコライザの構成を示す図である。
この周波数イコライザは主線路6と接地間に抵抗7と伝送線路11とインダクタ12との直列回路を設け、この直列回路の伝送線路11とインダクタ12との間に先端開放線路13を接続したものである。
【0012】
図2(b)は実施の形態1の周波数イコライザの斜視図を示す図である。
アルミナ基板などの誘電体基板14上に主線路6、抵抗7、伝送線路11および先端開放線路13がマイクロ波集積回路技術を用いて一体形成されている。また、インダクタ12は伝送線路11の一端を側面メタライズあるいは金リボン等で接地することにより実現している。
【0013】
これらの伝送線路11および先端開放線路13の電気長は所望の周波数f0で1/4波長よりもやや短く選ばれており、また、インダクタ12はf0で伝送線路11および先端開放線路13を含む回路として直列共振するような値に選ばれている。
【0014】
図3はこの発明の周波数イコライザの損失の周波数特性を示す図である。
f0よりも低い周波数f1ではインダクタ12と先端開放線路13との並列回路は等価的にインダクタとなるため、伝送線路13の先端はこのインダクタを介して接地されたことになる。
【0015】
従って、伝送線路11の電気長が等価的にf1で1/4波長線路と見なすことができ、主線路6から抵抗7側を見たインピーダンスは非常に高くなるため損失は小さくなる。
【0016】
また、f0ではインダクタ12と先端開放線路13との並列回路は等価的にキャパシタと見なすことができ、このキャパシタと伝送線路11に起因するインダクタとが直列共振するため、主線路6から抵抗7側を見たインピーダンスは抵抗7の値に等しくなる。このため、インピーダンスは低くなり、損失は増加する。
【0017】
さらに、f0よりも高い周波数f2では先端開放線路13により伝送線路11の先端が高周波的に接地され、また、伝送線路11の電気長がf2で1/4波長に近づくため、主線路6から抵抗7側をみたインピーダンスは非常に高くなる。このため損失は小さくなる。
【0018】
このようにこの発明の周波数イコライザでは損失が右上がりするA部、凸形を示すB部、右下がりするC部の他に、凹形を示すD部の特性が同時に得られる。この周波数イコライザにおいても従来のものと同様、A部、B部の損失の傾きおよびC部、D部の形は抵抗7に依存し、抵抗値が高いほど緩やかになる。
【0019】
次に動作原理について説明する。
この発明の周波数イコライザ2を図1(b)のように増幅器1の出力側に接続することにより、増幅器の利得に周波数特性があってもこのイコライザ2で補償することができ、イコライザ入力端子3から入射したマイクロ波信号を増幅し、イコライザの出力端子5からほぼ同レベルの信号を出力させることができる。
なお、このイコライザ2は増幅器1の入力側に接続しても同様に平坦な利得特性が得られる。
【0020】
以上のように、この発明の周波数イコライザ2では凹形の損失特性も兼ね備えているため、従来の周波数イコライザ2では補償することができなかった凸形の利得特性を持つ増幅器1の補償もできる利点がある。
なお、上記実施例では増幅器の利得の周波数特性が変化しない場合に有効な周波数イコライザについて述べた。
【0021】
しかし、図4に示すように増幅器の利得の周波数特性は温度により変化する場合がある。一般に温度が高くなると増幅器を構成する半導体の位相が遅れるため、等価的に電気長が長くなったように見える。このため、利得が最大となる周波数が低い方にずれ、逆に低温では高い方にずれる場合がある。この場合、所要帯域では図に示すように高温では右下がり、低温では右上がりの利得の周波数特性となる。
【0022】
以上によれば、マイクロ波信号が伝搬する主線路6と接地間に、抵抗7と伝送線路11とインダクタ12との直列回路を設け、この直列回路の伝送線路11とインダクタ12との間に先端開放線路13を接続することにより、従来の周波数イコライザ2では補償できなかった凸形の振幅の周波数特性をもつ増幅器1、ミクサ等の補償もできる効果がある。以下、増幅器1の利得の周波数特性が温度で変化する場合に有効な周波数イコライザ2について述べる。
【0023】
実施の形態2.
図5は実施の形態2の周波数イコライザの構成および損失の周波数特性を示す図であり、15はキャパシタであり、4、5は図1と同じ、6、7、11〜13は図2と同じものである。
【0024】
図5(a)は実施の形態2の周波数イコライザの構成を示す図である。
この周波数イコライザ2は実施の形態1で示した周波数イコライザの先端開放線路13に、温度が高くなるに従いキャパシタンスが増加するようなキャパシタ15を直列接続したものである。
【0025】
この場合、先端開放線路13の電気長はキャパシタ15の影響により、等価的に短縮されたように見える。このため、常温において実施の形態1のもと電気的に等しくするため、実施の形態1よりもやや長く選ばれている。従って、この発明の周波数イコライザ2に用いた先端開放線路13の電気長は実施の形態1のものに比べ、等価的に低温ではキャパシタ15のキャパシタンスが小さくなるため短く、常温では等しく、また、高温では逆に長くなる。
【0026】
図5(b)は実施の形態2の周波数イコライザの損失の周波数特性を示すものである。ここでは凹形の特性が得られるf0近傍のみ示している。低温において、先端開放線路13の電気長は等価的に短くなるため、伝送線路11およびインダクタ12を含む回路の直列共振周波数はf0よりも高い方にずれる。このため、損失が最大となる周波数は高い方にずれることになる。また、高温においては逆に低いほうにずれる。
【0027】
従って、所要帯域における損失の傾きは低温で右下がり、高温では右上がりの特性が得られる。この場合でも所望の抵抗7を選ぶことにより、増幅器1の利得の傾きに応じて損失の傾きを設定できる。
【0028】
以上のように、この発明の周波数イコライザ2を増幅器1の利得の周波数特性の補償に使用することにより、図4のように増幅器1の利得の傾きが高温で右下がり、低温で右上がりするような場合であっても、図5(b)に示すように、これらの傾きを補償するような損失の傾きが得られ、低温〜高温まで補償できる利点がある。
【0029】
以上によれば、実施例1の周波数イコライザ2の先端開放線路13に、温度が高くなるに従いキャパシタンスが増加するようなキャパシタ15を直列接続することにより、温度により振幅の周波数特性が変化するような増幅器1、ミクサ等に対しても低温〜高温にわたって補償ができる効果がある。
【0030】
実施の形態3.
図6は実施の形態3の周波数イコライザの構成および損失の周波数特性を示す図であり、16は可変容量素子、17は抵抗、18はバイアス端子であり、4、5は図1と同じ、6、7、11〜13は図2と同じものである。
【0031】
図6(a)は実施の形態3の周波数イコライザの構成を示す図である。
この周波数イコライザ2は実施の形態1で示した周波数イコライザ2の先端開放線路13に、バラクタダイオード、FET等のバイアス電圧によりキャパシタンスが変化する可変容量素子16を直列接続したものであり、可変容量素子16と先端開放線路13との接続部には抵抗17を介してバイアス端子18が接続されている。このため、可変容量素子16には抵抗17を介してバイアス端子18から所望のバイアス電圧を印加することができる。なお、抵抗17は高周波的に影響が小さい高抵抗のものが使われている。
【0032】
この場合においても実施の形態2と同様に先端開放線路13の電気長は可変容量素子16の影響により、等価的に短縮されたように見える。このため、常温において実施の形態1のもと電気的に等しくするため、実施の形態1よりもやや長く選ばれている。可変容量素子16は印加する逆バイアス電圧によりキャパシタンスが変化し、一般にバイアス電圧が高いほどキャパシタンスが小さくなる。
【0033】
図6(b)はこの発明の実施の形態3の周波数イコライザの損失の周波数特性を示す図である。この図においても凹形の特性が得られるf0近傍のみ示している。
可変容量素子16に印加するバイアス電圧を常温時よりも高くすると、可変容量素子16のキャパシタンスが小さくなり、先端開放線路13の電気長は等価的に短くなる。このため、伝送線路11およびインダクタ12を含む回路の直列共振周波数はf0よりも高い方にずれる。即ち、損失が最大となる周波数は高い方にずれることになる。逆に、バイアス電圧が低くなると低い方にずれる。
【0034】
従って、所要帯域における損失の傾きはバイアス電圧を高くすると右下がり、低くすると右上がりの特性が得られる。この場合でも所望の抵抗7を選ぶことにより、増幅器の利得の傾きに応じて損失の傾きを設定できる。
【0035】
以上のように、この発明の周波数イコライザを増幅器1の利得の周波数特性の補償に使用することにより、図4のように増幅器1の利得が高温で右下がりするような場合は可変容量素子16に印加するバイアス電圧を低く、逆に、低温で右上がりするような場合は高く設定することにより、低温〜高温まで補償できる。また、印加するバイアス電圧により、直列共振周波数を簡単に調整できるため、増幅器、ミクサ等の振幅の周波数特性にバラツキがあっても容易に対処できる利点もある。
【0036】
以上によれば、実施例1の周波数イコライザ2の先端開放線路13に、印加電圧によりキャパシタンスが変化するような可変容量素子16を直列接続することにより、温度により振幅の周波数特性が変化するような増幅器1、ミクサ等の振幅補償ができ、また、増幅器1、ミクサ等の特性がバラツキがあっても可変容量素子16の印加するバイアス電圧の設定を見直すだけで容易に対処できる効果がある。
【0037】
実施の形態4.
図7は実施の形態4の周波数イコライザの構成を示すものであり、19は1/4波長線路であり、2は図1と同じものである。
【0038】
この周波数イコライザは実施の形態1〜実施の形態3で示した周波数イコライザ2を所要帯域の中心周波数で1/4波長を有する1/4波長線路19を介して縦続接続した構成のものである。
【0039】
このように複数個の周波数イコライザ2を1/4波長線路19を介して接続することにより、それぞれの周波数イコライザ2で発生した反射波が互いに打ち消し合い、良好なリターンロス特性の周波数イコライザを得ることができる。なお、このように縦続接続した場合でも本来の周波数イコライザの機能を損なうことはない。
【0040】
以上によれば、実施例1〜実施例3の周波数イコライザ2を1/4波長間隔で複数個縦続接続することにより、温度により振幅の周波数特性が変化するような増幅器1、ミクサ等の振幅補償ができとともに、リターンロスの良好な周波数イコライザ2を実現できる効果がある。
【0041】
【発明の効果】
この発明の周波数イコライザによれば、以上で述べたように、マイクロ波信号が伝搬する主線路と接地間に、抵抗と伝送線路とインダクタとの直列回路を設け、この直列回路の伝送線路とインダクタとの間に先端開放線路を接続し、伝送線路と先端開放線路の電気長を所望の周波数帯で1/4波長よりも短く選ぶことにより、従来の周波数イコライザの損失の周波数特性の他に、凹形の特性も兼ね備えた周波数イコライザを得ることができる効果がある。
【図面の簡単な説明】
【図1】一般的な増幅器の利得の周波数特性および周波数イコライザの応用例を示す図である。
【図2】この発明による実施の形態1の周波数イコライザの構成および斜視図を示す図である。
【図3】この発明による実施の形態1の周波数イコライザの損失の周波数特性を示す図である。
【図4】一般的な増幅器の温度に対する利得の周波数特性の一例を示す図である。
【図5】この発明による実施の形態2の周波数イコライザの構成および損失の周波数特性を示す図である。
【図6】この発明による実施の形態3の周波数イコライザの構成および損失の周波数特性を示す図である。
【図7】この発明による実施の形態4の周波数イコライザの構成を示す図である。
【符号の説明】
1 増幅器、2 周波数イコライザ、 3 増幅器の入力端子、 4 イコライザの入力端子、 5 イコライザの出力端子、 6 主線路、 7 抵抗、 11 伝送線路、 12 インダクタ、 13 先端開放線路、 14 誘電体基板、 15 キャパシタ、16 可変容量素子、 17 抵抗、 18 バイアス端子、 19 1/4波長線路。
Claims (4)
- 増幅器、ミクサ等の振幅周波数特性を改善するための周波数イコライザにおいて、
マイクロ波信号が伝搬する主線路と接地間に設け、抵抗と伝送線路とインダクタとが直列に順次接続した直列回路と、
上記伝送線路と上記インダクタとの間に接続された先端開放線路とを具備し、
上記伝送線路と上記先端開放線路の電気長が所望の周波数帯で1/4波長よりも短く設定したことを特徴とする周波数イコライザ。 - 上記先端開放線路に、
温度が高くなるに従いキャパシタンスが増加するようなキャパシタを直列接続したことを特徴とする請求項1記載の周波数イコライザ。 - 上記先端開放線路に、
印加電圧によりキャパシタンスが変化するような可変容量素子を直列接続したことを特徴とする請求項1記載の周波数イコライザ。 - 上記周波数イコライザを所望の周波数帯で1/4波長間隔で複数個縦続接続したことを特徴とする請求項1〜請求項3のいずれか1項に記載の周波数イコライザ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003082331A JP3852603B2 (ja) | 2003-03-25 | 2003-03-25 | 周波数イコライザ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003082331A JP3852603B2 (ja) | 2003-03-25 | 2003-03-25 | 周波数イコライザ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004289749A true JP2004289749A (ja) | 2004-10-14 |
JP3852603B2 JP3852603B2 (ja) | 2006-12-06 |
Family
ID=33295655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003082331A Expired - Fee Related JP3852603B2 (ja) | 2003-03-25 | 2003-03-25 | 周波数イコライザ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3852603B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010166127A (ja) * | 2009-01-13 | 2010-07-29 | Mitsubishi Electric Corp | イコライザ |
JP2017017422A (ja) * | 2015-06-29 | 2017-01-19 | 三菱電機株式会社 | イコライザ |
JP2021153279A (ja) * | 2020-03-25 | 2021-09-30 | Necスペーステクノロジー株式会社 | 振幅周波数特性補償回路、無線機器および振幅周波数特性補償方法 |
-
2003
- 2003-03-25 JP JP2003082331A patent/JP3852603B2/ja not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010166127A (ja) * | 2009-01-13 | 2010-07-29 | Mitsubishi Electric Corp | イコライザ |
JP4670960B2 (ja) * | 2009-01-13 | 2011-04-13 | 三菱電機株式会社 | イコライザ |
JP2017017422A (ja) * | 2015-06-29 | 2017-01-19 | 三菱電機株式会社 | イコライザ |
JP2021153279A (ja) * | 2020-03-25 | 2021-09-30 | Necスペーステクノロジー株式会社 | 振幅周波数特性補償回路、無線機器および振幅周波数特性補償方法 |
JP7485445B2 (ja) | 2020-03-25 | 2024-05-16 | Necスペーステクノロジー株式会社 | 振幅周波数特性補償回路、無線機器および振幅周波数特性補償方法 |
Also Published As
Publication number | Publication date |
---|---|
JP3852603B2 (ja) | 2006-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6765540B2 (en) | Tunable antenna matching circuit | |
EP0949754B1 (en) | High-frequency power amplifier circuit and high-frequency power amplifier module | |
US7030715B2 (en) | High-frequency semiconductor device | |
US6127894A (en) | High frequency shunt feedback amplifier topology | |
US4754234A (en) | Broadband distributed amplifier for microwave frequences | |
JPH09289421A (ja) | 高周波用電力増幅器 | |
JP3852603B2 (ja) | 周波数イコライザ | |
US4878033A (en) | Low noise microwave amplifier having optimal stability, gain, and noise control | |
JP2003282721A (ja) | 半導体装置および送受信装置 | |
JPH11136011A (ja) | マイクロストリップバランおよび高周波電力増幅器 | |
JPH04298105A (ja) | 半導体増幅器 | |
JP2005101871A (ja) | 分布型増幅器 | |
JP6532618B2 (ja) | 高周波回路及び高周波電力増幅器 | |
JP5274332B2 (ja) | マイクロ波半導体装置 | |
JP3731122B2 (ja) | マイクロ波高出力増幅器 | |
JP2004080826A (ja) | マイクロ波増幅器 | |
JP3590523B2 (ja) | マイクロ波増幅器 | |
JPH08130423A (ja) | 高調波抑圧回路 | |
JP2000040922A (ja) | マイクロ波増幅器 | |
JP4533987B2 (ja) | 周波数変換方法及び周波数変換器 | |
JP3239720B2 (ja) | マイクロ波減衰器 | |
JPH11308060A (ja) | 増幅装置 | |
JPH07263634A (ja) | 伝送線路及び半導体装置 | |
JP2008187633A (ja) | マイクロ波装置 | |
JPS62271502A (ja) | マイクロ波装置の整合回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040712 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060816 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060829 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3852603 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090915 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100915 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110915 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110915 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120915 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130915 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |