JP2004285437A - 上・下降伏現象を示さない超微細粒鋼 - Google Patents

上・下降伏現象を示さない超微細粒鋼 Download PDF

Info

Publication number
JP2004285437A
JP2004285437A JP2003080498A JP2003080498A JP2004285437A JP 2004285437 A JP2004285437 A JP 2004285437A JP 2003080498 A JP2003080498 A JP 2003080498A JP 2003080498 A JP2003080498 A JP 2003080498A JP 2004285437 A JP2004285437 A JP 2004285437A
Authority
JP
Japan
Prior art keywords
carbide
steel
nitride
grained steel
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003080498A
Other languages
English (en)
Other versions
JP4590540B2 (ja
Inventor
Saburo Matsuoka
三郎 松岡
Yoshiyuki Furuya
佳之 古谷
Toshihiro Hanamura
年裕 花村
Shiro Toritsuka
史郎 鳥塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003080498A priority Critical patent/JP4590540B2/ja
Publication of JP2004285437A publication Critical patent/JP2004285437A/ja
Application granted granted Critical
Publication of JP4590540B2 publication Critical patent/JP4590540B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

【課題】高強度を有する上・下降伏現象を示さない超微細粒鋼を提供する。
【解決手段】フェライト粒径が3μm以下である超微細粒鋼において、Ti(チタン)、Nb(ニオブ)、V(バナジウム)、Mo(モリブデン)の内から選択される少なくとも1つの元素が添加され、Ti炭化物、Nb炭化物、V炭化物、Mo炭化物若しくはこれらの2種類以上の炭化物によりC(炭素)がすべて固定されるとともに、Ti窒化物、Nb窒化物、V窒化物、Mo窒化物若しくはこれらの2種類以上の窒化物によりN(窒素)もすべて固定され、上・下の降伏現象を示さない。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
この出願の発明は、上・下降伏現象を示さない超微細粒鋼に関するものである。さらに詳しくは、この出願の発明は、上・下降伏現象を示さないばかりでなく、高強度を有する上・下降伏現象を示さない超微細粒鋼に関するものである。
【0002】
【従来の技術】
フェライト粒径が3μm以下の超微細粒鋼は、たとえばFe−C−Mn−Si系等の単純組成を有し、したがって、高強度化のために高価な微量元素を使用しなくてよく、また、現行の溶接技術をそのまま使用することができるという利点を有する。高強度はフェライトの細粒化の結果として得られるが、上記超微細粒鋼では、上降伏応力/引張強度若しくは下降伏応力/引張強度、すなわちYRが高くなっている。
【0003】
最近の建築設計においては、地震エネルギーはダンパー機能が付与されたブレースに吸収させ、高YRで弾性範囲が広い柱と梁は塑性変形させず、それらに建物の強度を持たせるという研究がなされている。超微細粒鋼は、そのような建物の柱及び梁といった構造材料に有効である。
【0004】
しかしながら、地震エネルギーを柱及び梁の塑性変形で吸収させる現行の設計法では、高YRは不利であり、超微細粒鋼の適用は難しい。また、自動車において、弾性設計されている部品には超微細粒鋼は有効であるが、衝撃エネルギーを吸収する場合には高YRは不利であり、超微細粒鋼の適用は難しい。
【0005】
【発明が解決しようとする課題】
一方、極低炭素IF鋼(Interstitial Free 鋼)は上・下降伏現象を示さない。この極低炭素IF鋼では、C(炭素)が0.001mass%〜0.002mass%に抑えられ、Ti(チタン)とNb(ニオブ)が単独若しくは複合添加され、Ti炭化物、Nb炭化物、Ti窒化物、Nb窒化物によりCとN(窒素)が固定されている。CとNを固定することにより、上・下降伏減少が消え、また、固溶強化がなくなる。極低炭素であるため、炭化物の分散量がきわめて少なく、炭化物による分散強化も小さく抑えられる。したがって、極低炭素IF鋼は低強度であり、加工性に優れるため、自動車鋼板として使用されている(たとえば、特許文献1参照)。
【0006】
しかしながら、上記のとおり、極低炭素IF鋼は強度が低い。そして、細粒化により強度を高めるという研究はこれまでになされていない。
【0007】
この出願の発明は、以上のとおりの事情に鑑みてなされたものであり、上・下降伏現象を示さないばかりでなく、高強度を有する上・下降伏現象を示さない超微細粒鋼を提供することを解決すべき課題としている。
【0008】
【特許文献1】
特公昭42−12348号公報
【0009】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、フェライト粒径が3μm以下である超微細粒鋼において、Ti(チタン)、Nb(ニオブ)、V(バナジウム)、Mo(モリブデン)の内から選択される少なくとも1つの元素が添加され、Ti炭化物、Nb炭化物、V炭化物、Mo炭化物若しくはこれらの2種類以上の炭化物によりC(炭素)がすべて固定されるとともに、Ti窒化物、Nb窒化物、V窒化物、Mo窒化物若しくはこれらの2種類以上の窒化物によりN(窒素)もすべて固定され、上・下の降伏現象を示さないことを特徴とする上・下降伏現象を示さない超微細粒鋼(請求項1)を提供する。
【0010】
また、この出願の発明は、Ti炭化物、Nb炭化物、V炭化物、Mo炭化物若しくはこれらの2種類以上の炭化物が直径150nm以下で析出し、分散していること(請求項2)を一態様として提供する。
【0011】
以下、実施例を示しつつこの出願の発明の上・下降伏現象を示さない超微細粒鋼についてさらに詳しく説明する。
【0012】
【発明の実施の形態】
この出願の発明の上・下降伏現象を示さない超微細粒鋼では、フェライト粒径が3μm以下である超微細粒鋼において、Ti(チタン)、Nb(ニオブ)、V(バナジウム)、Mo(モリブデン)内から選択される少なくとも1つの元素が添加される。鋼中のC(炭素)は、Ti炭化物、Nb炭化物、V炭化物、Mo炭化物若しくはこれらの2種類以上の炭化物によりすべて固定され、また、N(窒素)がTi窒化物、Nb窒化物、V窒化物、Mo窒化物若しくはこれらの2種類以上の窒化物によりN(窒素)がすべて固定される。その結果、鋼中に含まれるC及びNがすべて固定され、上・下降伏現象が消滅する。
【0013】
化学量論組成を有する炭化物TiC、NbC、VC、MoCにより固定することのできる炭素量Cは、炭素と結合する各元素の量をTi、Nb、V、Moとすると次式で与えられる。
【0014】
Figure 2004285437
ここで、C、Ti、Nb、V、Moの単位はmass%である。また、C、Ti、Nb、V、Moの原子量をそれぞれ12.01、47.86、92.90、50.94、94.94とした。
【0015】
通常の溶解過程で鋼中に含まれるNは少ないが、Cと同様に固溶するため、窒化物として固定する必要がある。窒化物TiN、NbN、VN、MoNにより固定することのできるNは、窒素と結合する各元素の量をTi、Nb、V、Moとすると、式(1)においてCの原子量12.01をNの原子量14.00に置き換えることにより次式で与えられる。
【0016】
=(1/3.42)Ti+(1/6.63)Nb+(1/3.64)V+(1/6.85)Mo (2)
ここで、N、Ti、Nb、V、Moの単位はmass%である。
【0017】
鋼中に含まれるCとNをすべて固定するためには、
C<C、N<N (3)
が成立する必要がある(C、Nの単位はmass%である)。
【0018】
各元素の添加量は、
Ti=Ti+Ti、Nb=Nb+Nb、V=V+V、Mo=Mo+Mo (4)
となる。ここで、Ti、Nb、V、Moの単位はmass%である。
【0019】
この出願の発明の上・下降伏現象を示さない超微細粒鋼では、加工熱処理過程によりフェライトが細粒化し、粒径が3μm以下となり、強度が発現し、また、Ti、Nb、V、Moの添加により鋼中のすべてのC及びNが固定されて上・下降伏現象が消える。フェライトが粒径3μm以下の微細粒であることと上・下降伏現象を示さないことから、シャルピー衝撃特性と疲労特性にも優れ、この出願の発明の上・下降伏現象を示さない超微細粒鋼は、強度、靱性、疲労特性の3大特性が高い構造材料として有効となる。
【0020】
この出願の発明の上・下降伏現象を示さない超微細粒鋼は、その組成については、Ti、Nb、V及びMoの添加元素を除き、たとえば、
C:0.001〜0.90mass%、
Mn:0.8〜3.0mass%、
Si:0.80mass%以下、
Al:0.10mass%以下、
残部がFe及び不可避的不純物を例示することができる。
【0021】
他の添加成分としては、たとえば、
Cu:0.05〜2.5mass%、
Ni:0.05〜3mass%、
Cr:0.01〜3mass%、
W:0.01〜0.5mass%、
Ca:0.001〜0.01mass%、
REM(希土類元素):0.001〜0.02mass%、
B:0.0001〜0.006mass%
を例示することができ、上記の内の1種若しくは2種以上の添加が可能である。
【0022】
なお、この出願の発明の上・下降伏現象を示さない超微細粒鋼では、フェライト細粒化の加工熱処理過程でTi炭化物、Nb炭化物、V炭化物、Mo炭化物若しくはこれらの2種類以上の炭化物を直径150nm以下に析出させ、分散させることができ、強度をより高めることができる。
【0023】
【実施例】
[実施例1]
実施例1に使用した供試材の化学成分は表1に示したとおりである。残部は鉄及び不可避的不純物である。
【0024】
【表1】
Figure 2004285437
表1において単位はmass%である。実施例1においては、Cが0.001mass%〜0.002mass%の極低炭素IF鋼に比べ、C量を0.05mass%と高くした。A材にはTiは添加されていないが、a材にはCとNをすべて固定するため、Ti=0.21mass%とした。TiのみでC、Nを固定する場合、上述の式(1)〜(4)から求められる最小限必要なTiの量(mass%)は、
(Ti)min=3.99C+3.42N=3.99×0.050+3.42×0.001=0.20292 (5)
であり、Tiの添加量0.21%はこの値より大きく、CとNをすべて固定することができる。
【0025】
表2に加工処理条件を示した。
【0026】
【表2】
Figure 2004285437
前処理として1100℃で1時間保持後に鍛造を加え、室温まで空冷した。次いで、900℃で1時間保持後に空冷し、550℃になった時点で93%の溝ロール加工をし、水冷して超微細粒鋼を作製した。
【0027】
図1(a)(b)は、それぞれ、A材、a材の微視組織図である。図1(a)に示したA材では、析出物が粗大であり、偏析のあるFeCが分散している。図1(b)に示したa材では、微細なTiC粒子が均一に分散している。A材とa材ともにフェライト粒径は約0.5μmである。
【0028】
図2(a)(b)は、それぞれ、引張試験で得られたA材、a材の応力−ひずみ曲線である。
【0029】
図2(a)に示したように、Tiが添加されていないA材では上・下降伏現象が現れている。一方、Tiが添加されたa材では、図2(b)に示したように、上・下降伏現象が消滅している。
【0030】
図2(a)(b)に示した応力−ひずみ曲線から得られる諸特性を表3に示した。
【0031】
【表3】
Figure 2004285437
a材では上・下降伏現象を示さないため、降伏応力に替えて0.2%耐力を示した。
【0032】
表3から確認されるように、a材はA材に比べ、CがTi炭化物(TiC)、NがTi窒化物(TiN)となるため、CとNの固溶強化がなくなり、0.2%耐力と引張強度が低下している。しかしながら、上降伏応力/引張強度(UYS/TS)、下降伏応力/引張強度(LYS/TS)に替えて求めた(0.2YS/TS)はA材のUYS/TS、LYS/TSのいずれよりも低い。すなわちa材のYSは低くなっている。
[実施例2]
実施例2で用いた供試材の化学成分を表4に(残部は鉄及び不可避的不純物)、加工熱処理条件を表5にそれぞれ示した。
【0033】
【表4】
Figure 2004285437
【0034】
【表5】
Figure 2004285437
供試材のC量は0.05、0.15、約0.45mass%とした。Tiは、すべての供試材に添加したが、B、D、E材では、3.99C+3.42N>Tiとし、上・下降伏現象を示すように添加し、b、d、e材では、3.99C+3.42N<Tiとし、上・下降伏現象を示さないように添加した。また、TiC量を増やし、その析出強化により強度を高めることを目指した。加工熱処理条件については、溝ロール圧延前に固溶Tiを多くする目的で、1200℃で1時間保持後に室温まで空冷する前処理を追加した。溝ロール圧延では、微細なTiCを析出させる目的で、表2に示した加工熱処理条件Iから900℃で1時間保持する工程を取り除いた。
【0035】
各材について得られた機械的性質を表6に示した。
【0036】
【表6】
Figure 2004285437
B、D、E材では上・下降伏現象が現れ、YRは高くなった。b、d、e材では上・下降伏現象が消滅し、YRは低くなった。
【0037】
b、d、e材を比較すると、0.2%耐力及び引張強度は、C=0.05mass%のb材よりC=0.15mass%のd材で低くなった。これは、C量が増えると、溝ロール圧延前に固溶することのできるTi量が減り、そのため、溝ロール圧延前に大きめのTiCが存在し、かつ溝ロール圧延中に微細なTiCの析出が減るため、十分に分散強化されず、強度特性が低下することが原因である。C=0.15mass%のd材に比べ、C=0.43mass%のe材では溝ロール圧延前の大きめのTiCが増えるため、強度特性が高くなった。
[実施例3]
実施例3で用いた供試材の化学成分を表7に(残部は鉄及び不可避的不純物)、加工熱処理条件を表8に示した。
【0038】
【表7】
Figure 2004285437
【0039】
【表8】
Figure 2004285437
供試材のC量は約0.05、0.75mass%とし、Ti量は両材とも3.99C+3.42N<Tiとなるようにした。加工熱処理条件については、前処理として、1200℃で1時間保持後に鍛造し、室温まで空冷した。溝ロール圧延には3種類の条件を採用し、III条件は実施例1のI条件とほぼ同じにし、IV条件は実施例2のII条件と同じにした。V条件は新規であり、多くの微細なTiCを析出させるために、1200℃で1時間保持後に空冷し、室温に空冷せず、650℃になった時点で減面率91%の溝ロール圧延を行った。
【0040】
各材について得られた機械的性質を表9に示した。
【0041】
【表9】
Figure 2004285437
f材、g材は、ともにどの加工条件でも上・下降伏現象が消滅し、YRは、a、b、d、e材と同程度に低くなった。
【0042】
実施例1−3の中で上下降伏現象を示さない超微細粒鋼において、最も高強度が得られた供試材と加工熱処理条件の組合せは、C量=0.075mass%の供試材gと加工熱処理条件Vの組合せであった。
【0043】
図3は、加工熱処理条件Vで作製したg材の薄膜の透過型電子顕微鏡で観測して得た微細組織図である。図1(b)に示したa材と同程度の粒径(約0.5μm)であるが、直径10nm以下の微細な炭化物が観察される。さらに、抽出レプリカを透過型電子顕微鏡で観察した結果、炭化物の直径は10nm以下であることが確認された。表9中で最も低強度となったf材の薄膜とその抽出レプリカを透過電子顕微鏡で観察した結果、フェライト粒径は約0.5μm、炭化物の直径は10nm〜150nmであった。図1(b)に微視組織を示したa材は、f材と化学成分、加工熱処理条件がほぼ同じであるが、炭化物の直径はほぼ50nmである。
【0044】
このように、フェライトの細粒強化に加え、Ti炭化物を微細に析出させることにより、析出物分散強化を発現させ、超微細粒鋼の強度を高めることができる。また、微細なTi炭化物の量を増やすことでより高い強度が得られる。
【0045】
実施例1−3で得られたすべての超微細粒鋼のシャルピー衝撃特性を図4−6に示した。
【0046】
試験片は、JIS Z2202「金属材料衝撃試験片」の4号試験片(幅10mm、厚さ10mm、V切り欠き深さ2mm)とした。現行の建築用鋼材としても多く使用されている溶接構造用圧延鋼材JIS−SM50Bでは、使用温度0℃におけるシャルピー衝撃エネルギーが27.5Jであるが、最近の建築用鋼材については、使用温度が−80℃においてシャルピー衝撃エネルギーが100Jであることが開発目標となっている。上・下降伏現象を示さなかったa、b、d、e、f、g材については、C量が0.43mass%のe材を除いて延性/脆性遷移温度は−100℃以下、シャルピー衝撃エネルギーは100J以上となっており、上記開発目標を超えている。e材は現状の鋼よりも約2倍の値を示している。上・下降伏現象を示すA、B、D、E材は高強度であるが、上・下降伏現象を示さないa、b、d、e、f、g材と比べると、衝撃エネルギーがやや劣っている。
【0047】
実施例1で得られた供試材A、a材の高サイクル疲労特性、すなわち応力振幅と破断寿命の関係を図7に示した。
【0048】
試験部直径が6mmの砂時計試験片を用い、回転曲げ疲労試験を行った。10回の繰り返し数で決める疲労限σは引張強度TSと良い相関があることが知られており、たとえば金属材料技術研究所(現 物質・材料研究機構)の疲労データシート(松岡三郎、長島伸夫、西島 敏、金属材料強度データシート資料17「機械構造用金属材料の疲労に関する指標特性」、金属材料技術研究所(現 物質・材料研究機構)、1999年)によると、フェライト・パーライト鋼(TS=450〜750MPa)でσ=0.395TS、焼戻しマルテンサイト鋼(TS=700〜1200MPa)でσ=0.522TSの実験式が得られている。
【0049】
図7からA、a材では、σ=480MPa、420MPaが得られ、σ/TS=0.57、0.58となっている。これらの数値は、超微細粒フェライト鋼の親類であるフェライト・パーライト鋼よりはるかに高く、焼戻しマルテンサイト鋼より少し高い。すなわち、上・下降伏現象の有無にかかわらず、超微細粒鋼は優れた疲労特性を示す。
【0050】
もちろん、この出願の発明は、以上の実施形態及び実施形態によって限定されるものではない。細部については様々な態様が可能であることはいうまでもない。
【0051】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、上・下降伏現象を示さないばかりでなく、高強度を有する上・下降伏現象を示さない超微細粒鋼が提供される。
【図面の簡単な説明】
【図1】(a)(b)は、それぞれ、実施例1で得られたA材、a材の微視組織図である。
【図2】(a)(b)は、それぞれ、実施例1において引張試験で得られたA材、a材の応力−ひずみ曲線である。
【図3】加工熱処理条件Vで作製したg材の薄膜の透過型電子顕微鏡で観測して得た微細組織図である。
【図4】実施例1で得られた超微細粒鋼のシャルピー衝撃特性を示した図である。
【図5】実施例2で得られた超微細粒鋼のシャルピー衝撃特性を示した図である。
【図6】(a)(b)は、それぞれ、実施例3で得られた超微細粒鋼のシャルピー衝撃特性を示した図である。
【図7】実施例1で得られた供試材A、a材の高サイクル疲労特性を示した図である。

Claims (2)

  1. フェライト粒径が3μm以下である超微細粒鋼において、Ti(チタン)、Nb(ニオブ)、V(バナジウム)、Mo(モリブデン)の内から選択される少なくとも1つの元素が添加され、Ti炭化物、Nb炭化物、V炭化物、Mo炭化物若しくはこれらの2種類以上の炭化物によりC(炭素)がすべて固定されるとともに、Ti窒化物、Nb窒化物、V窒化物、Mo窒化物若しくはこれらの2種類以上の窒化物によりN(窒素)もすべて固定され、上・下の降伏現象を示さないことを特徴とする上・下降伏現象を示さない超微細粒鋼。
  2. Ti炭化物、Nb炭化物、V炭化物、Mo炭化物若しくはこれらの2種類以上の炭化物が直径150nm以下で析出し、分散している請求項1記載の上・下降伏現象を示さない超微細粒鋼。
JP2003080498A 2003-03-24 2003-03-24 上・下降伏現象を示さない超微細粒鋼 Expired - Lifetime JP4590540B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080498A JP4590540B2 (ja) 2003-03-24 2003-03-24 上・下降伏現象を示さない超微細粒鋼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080498A JP4590540B2 (ja) 2003-03-24 2003-03-24 上・下降伏現象を示さない超微細粒鋼

Publications (2)

Publication Number Publication Date
JP2004285437A true JP2004285437A (ja) 2004-10-14
JP4590540B2 JP4590540B2 (ja) 2010-12-01

Family

ID=33294332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080498A Expired - Lifetime JP4590540B2 (ja) 2003-03-24 2003-03-24 上・下降伏現象を示さない超微細粒鋼

Country Status (1)

Country Link
JP (1) JP4590540B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284748A (ja) * 2006-04-17 2007-11-01 Nippon Steel Corp ダンパー用低降伏点鋼およびその製造方法
JP2008248290A (ja) * 2007-03-29 2008-10-16 Nippon Steel Corp 靭性に優れたダンパー用低降伏点鋼およびその製造方法
WO2010098172A1 (ja) * 2009-02-25 2010-09-02 独立行政法人産業技術総合研究所 耐水素疲労フェライト鋼とその製造方法
KR101228798B1 (ko) * 2010-12-03 2013-01-31 포항공과대학교 산학협력단 초세립 고강도 선재 및 그 제조방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284748A (ja) * 2006-04-17 2007-11-01 Nippon Steel Corp ダンパー用低降伏点鋼およびその製造方法
JP4705508B2 (ja) * 2006-04-17 2011-06-22 新日本製鐵株式会社 ダンパー用低降伏点鋼およびその製造方法
JP2008248290A (ja) * 2007-03-29 2008-10-16 Nippon Steel Corp 靭性に優れたダンパー用低降伏点鋼およびその製造方法
WO2010098172A1 (ja) * 2009-02-25 2010-09-02 独立行政法人産業技術総合研究所 耐水素疲労フェライト鋼とその製造方法
JP2010222699A (ja) * 2009-02-25 2010-10-07 National Institute Of Advanced Industrial Science & Technology 耐水素疲労フェライト鋼とその製造方法
KR101228798B1 (ko) * 2010-12-03 2013-01-31 포항공과대학교 산학협력단 초세립 고강도 선재 및 그 제조방법

Also Published As

Publication number Publication date
JP4590540B2 (ja) 2010-12-01

Similar Documents

Publication Publication Date Title
KR102269845B1 (ko) 열연 강판 및 그 제조 방법
JP5344454B2 (ja) 温間加工用鋼、その鋼を用いた温間加工方法、およびそれにより得られる鋼材ならびに鋼部品
KR101289518B1 (ko) 오스테나이트계 스테인리스 강판 및 그 제조 방법
JP4538094B2 (ja) 高強度厚鋼板およびその製造方法
WO2017138504A1 (ja) 高強度鋼板及びその製造方法
JP5597006B2 (ja) 構造部材用高強度および高延性オーステナイト系ステンレス鋼板およびその製造方法
KR20100027993A (ko) 후강판
WO2010055609A1 (ja) 高強度厚鋼板およびその製造方法
JP2009007665A (ja) 加工性に優れた耐磨耗鋼板およびその製造方法
KR20070086676A (ko) 고강도 강판 및 그 제조 방법
JP2008297571A (ja) 加工性に優れた耐磨耗鋼板およびその製造方法
US20220064766A1 (en) Bolt, and steel material for bolts
JP5458624B2 (ja) 加工性に優れた耐磨耗鋼板およびその製造方法
JPH07252592A (ja) 成形性、低温靭性及び疲労特性に優れた熱延高強度鋼板
WO2007029687A1 (ja) 低合金鋼
JP2010121191A (ja) 耐遅れ破壊特性および溶接性に優れる高強度厚鋼板およびその製造方法
KR20070057027A (ko) 용접열 영향부의 인성이 우수하고 연화가 작은 후강판
JP5369458B2 (ja) 耐遅れ破壊特性に優れた高強度鋼
JP2007177327A (ja) 溶接熱影響部の靭性に優れ、軟化が小さい厚鋼板
JP2004359974A (ja) 耐遅れ破壊特性に優れた高強度鋼板およびその製造方法
JP4645307B2 (ja) 低温靭性に優れた耐摩耗鋼およびその製造方法
JP4590540B2 (ja) 上・下降伏現象を示さない超微細粒鋼
JP2018168425A (ja) 低合金油井用継目無鋼管
JP5421615B2 (ja) Ni節減型ステンレス鋼製自動車用部材
KR101791324B1 (ko) 피로 특성이 우수한 고강도 강재 및 그 제조 방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4590540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term