JP2004273804A - 誘導性負荷の電流制御装置 - Google Patents

誘導性負荷の電流制御装置 Download PDF

Info

Publication number
JP2004273804A
JP2004273804A JP2003063083A JP2003063083A JP2004273804A JP 2004273804 A JP2004273804 A JP 2004273804A JP 2003063083 A JP2003063083 A JP 2003063083A JP 2003063083 A JP2003063083 A JP 2003063083A JP 2004273804 A JP2004273804 A JP 2004273804A
Authority
JP
Japan
Prior art keywords
signal
inductive load
circuit
pulse width
width modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003063083A
Other languages
English (en)
Other versions
JP3798378B2 (ja
Inventor
Atsuaki Yokoyama
敦明 横山
Minoru Abe
実 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003063083A priority Critical patent/JP3798378B2/ja
Priority to US10/782,859 priority patent/US6965222B2/en
Priority to DE102004010394A priority patent/DE102004010394B4/de
Priority to CNB2004100286842A priority patent/CN100553110C/zh
Publication of JP2004273804A publication Critical patent/JP2004273804A/ja
Application granted granted Critical
Publication of JP3798378B2 publication Critical patent/JP3798378B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/1555Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only for the generation of a regulated current to a load whose impedance is substantially inductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Control Of Electrical Variables (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】電流制御の精度を高めることができる誘導性負荷の電流制御装置を得る。
【解決手段】電流制御装置1aに、パルス幅変調信号出力回路9、鋸歯状波信号生成回路10、指令値平滑回路20、検出値増幅回路30、偏差積分回路40、および電流制御回路50を設け、電流制御回路50は、パルス幅変調信号Aと同周期の鋸歯状波信号C、および偏差積分回路40が生成した検出信号Dに基づいて、ソレノイド4に流れる電流を制御する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、ソレノイド等の誘導性負荷の電流を制御する電流制御装置に関するものである。
【0002】
【従来の技術】
従来の電流制御装置においては、平滑化手段の出力とホールド手段の出力とを比較し、その比較結果に基づき電磁石に流れる駆動電流を制御するスイッチング手段をオン・オフ制御することにより、電源電圧やアクチュエータのコイル抵抗が変化しても、一定の平均電流を得ることができる構成にしている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特許第3030076号公報(第2−3頁、第1図)
【0004】
【発明が解決しようとする課題】
従来の電流制御装置では、平滑化手段であるピークホールドアンプがコイルに流れる電流を検出することにより、スイッチング手段であるパワートランジスタのオン状態の時間を補正していたので、ピークホールドアンプが、パワートランジスタのオン時間およびオフ時間の比率の変化に応じて、コイルに流れる電流の検出を正確におこなえなかった。したがって、電流制御の精度に一定の限界があった。
【0005】
この発明は、上述のような課題を解決するためになされたもので、第1の目的は、電流制御の精度を高めることができる誘導性負荷の電流制御装置を得るものである。
【0006】
【課題を解決するための手段】
この発明に係る誘導性負荷の電流制御装置においては、パルス幅変調信号出力回路、鋸歯状波信号生成回路、指令値平滑回路、偏差積分回路、および電流制御回路を設けたものである。パルス幅変調信号出力回路は、誘導性負荷に流れる電流を目標電流に設定するためのパルス幅変調信号を出力する。鋸歯状波信号生成回路は、パルス幅変調信号と同周期の鋸歯状波信号を生成する。指令値平滑回路は、パルス幅変調信号を平滑化して上記パルス幅変調信号と同周期の設定信号を生成する。偏差積分回路は、誘導性負荷に流れる電流に基づき、パルス幅変調信号と同周期の検出信号を生成する。電流制御回路は、鋸歯状波信号および偏差積分信号に基づいて誘導性負荷に流れる電流を制御する。
【0007】
【発明の実施の形態】
実施の形態1.
この発明の実施の形態1に係る誘導性負荷の電流制御装置について図面を参照しながら説明する。図1は、この発明の実施の形態1に係る誘導性負荷の電流制御装置の構成を示す回路図である。なお以下、各図中、同一符号は同一または相当部分を示す。
【0008】
図1において、電流制御装置1aは、電源スイッチ2を介してバッテリー3からの電源供給を受ける。そして、電流制御装置1aは、開閉素子5aを開閉することにより、ソレノイド(誘導性負荷)4に流れる電流を制御する。開閉素子5aは、例えば、PNP接合型のバイポーラトランジスタ、Pチャンネル型の電界効果トランジスタである。
【0009】
バッテリー3は、電源ユニット8に電源を供給する。この電源ユニット8は、制御用の定電圧(例えば、12V)を発生するとともに、CPU(パルス幅変調信号出力回路)9に所定の電圧(例えば、DC5V)を供給する。
【0010】
図1に示すように、電流制御装置1aは、CPU9、鋸歯状波信号生成回路10、指令値平滑回路20、検出値増幅回路30、偏差積分回路40、および電流制御回路50を備える。
【0011】
CPU9は、マイクロプロセッサであり、所定の周期で動作するパルス幅変調信号Aを出力する。このパルス幅変調信号Aは、ソレノイド4に流れる電流を目標電流に設定するための信号である。パルス幅変調信号Aは、そのパルス幅中、オン時間幅τと周期Tとの比率(τ÷T)を適切な値に設定することにより、ソレノイド4に流れる電流を目標電流に設定することが可能となる。なぜなら、上記目標電流が上記比率に比例するからである。
【0012】
なお、CPU9は、ソレノイド4の電流制御機能のほか、例えば、自動車用エンジン制御装置の駆動機能も有する。自動車用エンジン制御装置の制御機能として、例えば、エンジンの燃料供給量の制御機能や、変速機の制御機能がある。これらの機能は、アクセルペダルの踏込み度合いや車速に応じた機能である。このように、CPU9は、その一部の機能としてソレノイド4の電流を制御する。
【0013】
鋸歯状波信号生成回路10は、CPU9からのパルス幅変調信号Aによって駆動するトランジスタ11を有する。このトランジスタ11は、駆動抵抗12および微分コンデンサ13を介してCPU9と接続されている。安定抵抗14は、トランジスタ11のベース端子およびエミッタ端子の両端子間に接続されている。コンデンサ15は、トランジスタ11のコレクタ端子およびエミッタ端子の両端子間に接続されている。また、コンデンサ15は、充電抵抗16および17を介してCPU9に接続されている。なお、充電抵抗17は、充電抵抗16に比べて、抵抗値が十分に小さい値に設定されている。
【0014】
指令値平滑回路20は、CPU9からのパルス幅変調信号Aによって給電される一次平滑コンデンサ21を有する。この一次平滑コンデンサ21は、充電抵抗22および23を介してCPU9と接続されている。
【0015】
また、指令値平滑回路20は、一次平滑コンデサンサ21の両端電圧を増幅する増幅器24を有する。この増幅器24には、その出力端子に出力抵抗25が接続されている。負帰還抵抗26は、増幅器24の負側入力端子および出力端子の両端子間に接続されている。
【0016】
二次平滑コンデンサ27は、充電抵抗22および23の接続点に接続され、かつ、増幅器24の出力端子に接続されている。
【0017】
検出値増幅回路30は、ソレノイド4に流れる電流を検出する電流検出抵抗6aの両端電圧を増幅する増幅器31を有する。この増幅器31の正側入力端子には、入力抵抗32が接続され、かつ、その出力端子には、出力抵抗33が接続されている。
【0018】
増幅器31は、その出力端子および負側入力端子間に負帰還抵抗34および35が接続されている。増幅器31は、それら負帰還抵抗34および35による分圧電圧が負帰還する機能がある。平滑コンデンサ(半導体素子)36は、負帰還抵抗34の両端子間に接続され、かつ、増幅器31の負側入力端子および出力端子の間に接続されている。この平滑コンデンサ36は、検出値増幅回路30の出力電圧を平滑化する機能がある。転流ダイオード(半導体素子)7aは、ソレノイド4と接続されている。
【0019】
偏差積分回路40は、比較器41と、入力抵抗42および43と、出力抵抗44および45と、積分コンデンサ46とを有する。比較器41の正側入力端子には、入力抵抗42が接続されている。一方、比較器41の負側入力端子には入力抵抗43および積分コンデンサ46が接続されている。比較器41の出力端子には、出力抵抗44および45が接続されている。なお、出力抵抗44および45は、入力抵抗43に比べて十分小さい値に設定されている。
【0020】
電流制御回路50は、比較器51と、駆動抵抗52および53と、安定抵抗54と、トランジスタ55と、開閉素子5aとを有する。比較器51の負側入力端子には鋸歯状波信号Cが入力し、かつ、その正側入力端子には偏差積分信号Eが入力する。一方、比較器51の出力端子からは、開閉信号Fが出力される。
【0021】
駆動抵抗52は、トランジスタ55を駆動するための抵抗であり、駆動抵抗53は、開閉素子5aを通電駆動するための抵抗である。安定抵抗54は、開閉素子5aのベースおよびエミッタの両端子間に接続されている。
【0022】
つぎに、この実施の形態1に係る誘導性負荷の電流制御装置1aの動作について図面を参照しながら説明する。
図2は、この発明の実施の形態1に係る誘導性負荷の電流制御装置の動作を示すタイミングチャートである。
【0023】
図1において、電源スイッチ2が閉路し、かつ、電流制御回路50の開閉素子5aが閉路している場合において、電流制御装置1aは、以下の手順でソレノイド4の電流制御をおこなう。なお、開閉素子5aが閉路している場合、ソレノイド4には、バッテリー3、電源スイッチ2、開閉素子5a、ソレノイド4、および電流検出抵抗6aからなる直列回路を通して所定の駆動電流が流れる。
【0024】
まず、CPU9が発生したパルス幅変調信号Aを図2に示す。図2では、パルス幅変調信号Aは、周期Tとオン時間幅τとの比率(τ÷T)が、目標電流に比例するように予め設定されている。なお、図2において、パルス幅変調信号Aは、ソレノイド4のインダクタンスLおよび内部抵抗Rの比率である誘導時定数(L÷R)よりも小さい値の周期で動作する。
【0025】
続いて、指令値平滑回路20は、パルス幅変調信号Aを平滑化して同周期Tの設定信号Bを生成する。
【0026】
この指令値平滑回路20では、一次平滑コンデンサ21は、CPU9の出力端子OUTからの出力がHレベルの場合(パルス幅変調信号Aがオン時間の場合)は充電し、かつ、上記出力がLレベルの場合(パルス幅変調信号Aがオフ時間の場合)は放電する。これにより、一次平滑コンデンサ21の両端電圧は、パルス幅変調信号Aの上記比率(τ÷T)にほぼ比例する脈動直流信号電圧になる。
一方、指令値平滑回路20の二次平滑コンデンサ27は、CPU9の出力端子OUTからの出力がHレベルの場合は、充電抵抗22および23を介して充電し、かつ、上記出力がLレベルの場合は、一次平滑コンデンサ21を充電する。これにより、一次平滑コンデンサ21の両端電圧は、上昇や下降が抑制され、脈動成分が少ない直流信号電圧になる。
【0027】
上記設定信号Bを図2に示す。図2では、設定信号Bは、微小な脈動成分を含む設定信号電圧Vs成分になっている。
【0028】
一方、鋸歯状波信号生成回路10は、上記パルス幅変調信号Aの発生に伴って、パルス幅変調信号Aと同周期Tの鋸歯状波信号Cを生成する。この鋸歯状波信号Cを図2に示す。図2では、鋸歯状波信号Cは、パルス幅変調信号Aと同周期Tの信号になっている。鋸歯状波信号生成回路10は、鋸歯状波信号Cを生成するに際し、パルス幅変調信号Aのパルスの立ち上りのタイミングで動作する。これによると、鋸歯状波信号生成回路10はCPU9の動作と同期をとることができ、電流制御の動作が安定する。
【0029】
検出値増幅回路30は、ソレノイド4に流れる通電電流に基づき、パルス幅変調信号Aと同周期Tの検出信号Dを生成する。この検出信号Dを図2に示す。図2では、検出信号Dは、ソレノイド4のインダクタンス、および平滑コンデンサ36により平滑された脈動成分を有する直流電圧成分になっている。この検出信号Dの電圧を検出信号電圧Vfと呼ぶ。
【0030】
図1において、検出値増幅回路30では、平滑コンデンサ36が検出信号電圧Vfの脈動成分を抑制している。しかも、パルス幅変調信号Aは、ソレノイド4のインダクタンスLおよび内部抵抗Rの比率である誘導時定数(L÷R)よりも小さい値の周期で動作する。これによると、ソレノイド4の電流制御が安定しておこなえるようになる。
【0031】
偏差積分回路40は、指令値平滑回路20からの設定信号B、および検出値増幅回路30からの検出信号Dの偏差積分に応じた偏差積分信号Eを生成する。この偏差積分信号Eを図2に示す。図2では、偏差積分信号Eは、パルス幅変調信号Aのオン時間幅τの前後を電圧変動する直流電圧成分になっている。この偏差積分信号Eを偏差積分信号電圧Veと呼ぶ。
【0032】
この偏差積分信号電圧Veは、次式によって算出される。
Ve=Vs+[∫{(Vs−Vf)÷RC}dt]・・・(1)
但し、Vs=設定信号電圧、Vf=検出信号電圧、R=入力抵抗43の抵抗値、C=積分コンデンサ46の静電容量である。
【0033】
この式(1)で示したように、偏差積分信号Eは、設定信号Bおよび検出信号Dの偏差積分電圧[∫{(Vs−Vf)÷RC}dt]、および設定信号Bの設定信号電圧Vsからなる電圧成分を有する。つまり、設定信号電圧Veは、設定信号電圧Vsが基準成分である。
【0034】
式(1)中、設定信号電圧Vsは、パルス幅変調信号Aと同じ周期Tで脈動する。しかも偏差電圧(Vs−Vf)もパルス幅変調信号Aと同じ周期Tで脈動する。なぜなら、設定信号電圧Vsおよび検出信号電圧Vfは、ともにパルス幅変調信号Aの周期Tと同じ周期で脈動するからである。したがって、偏差積分信号電圧Veも、パルス幅変調信号Aと同じ周期Tで動作する。これにより、単一の周期Tのみで電流制御をおこなうことが可能となり、開閉素子5aのオン時間およびオフ時間の比率の変化に対しても安定した電流制御をおこなうことが可能となる。しかも高速の応答が可能になる。
【0035】
電流制御回路50は、鋸歯状波信号生成回路10からの鋸歯状波信号Cおよび偏差積分回路40からの偏差積分信号Eを入力する。そして、電流制御回路50は、鋸歯状波信号Cと偏差積分信号Eとを比較した結果に応じて、ソレノイド4に流れる電流を開閉素子5aにより制御する。
【0036】
図1において、電流制御回路50では、比較器51は、鋸歯状波信号Cと偏差積分信号Eとを比較した結果に応じて生成した開閉信号Fをトランジスタ55に出力する。この開閉信号Fを図2に示す。図2では、開閉信号Fは、パルス幅変調信号Aと同じ周期Tで動作し、かつ、オン時間幅tを有する。このオン時間幅tは、図2において、鋸歯状波信号Cと偏差積分信号Eとが交差する点Pの位置によって決定される。
【0037】
そして、このオン時間幅tのあいだは、電流制御回路50の開閉素子5aは、トランジスタ55を介して閉路する。すると、ソレノイド4に電流が流れる。一方、オフ時間幅(T−t)のあいだは、開閉素子5aは、トランジスタ55を介して開路する。すると、ソレノイド4に流れていた電流が、検出抵抗6aから転流ダイオード7aへ環流し減衰する。これによると、ソレノイド4の脈動成分が抑制されるので、ソレノイド4の電流制御が安定し易くなる。なお、図2において、偏差積分電圧Veが、バイアス電圧Vb以下の場合、開閉素子5aは常時オフの状態になる。
【0038】
ここで、上述した式(1)および図2を参照しながら、電流制御装置1aの動作について検討する。上記式(1)において、例えば、設定信号電圧Vsが検出信号電圧Vfよりも大きい状態が持続した場合(Vs>Vfの場合)、偏差積分電圧Veが上昇する。すると、図2において、交点Pの位置が右側へ移動し、開閉信号Fのオン時間幅tが増加する。このため、検出信号電圧Vfが増大することになり、その誤差が補正される。
【0039】
一方、上記式(1)において、例えば、設定信号電圧Vsが検出信号電圧Vfよりも小さい状態が持続した場合(Vs<Vfの場合)、偏差積分電圧Veが下降する。すると、図2において、交点Pの位置が左側へ移動し、開閉信号Fのオン時間幅tが減少する。このため、検出電圧Vfが減少することになり、その誤差が補正される。
【0040】
また、上記式(1)において、積分項[∫{(Vs−Vf)÷RC}dt]の値が零の場合、偏差積分電圧Veは、設定電圧Vsがバイアス成分電圧となる。このため、パルス幅変調信号Aのオン時間幅τ、および開閉信号Fのオン時間幅tを同値にした場合、バッテリー3の電圧変動やソレノイド4の内部抵抗の変動に伴って、オン時間幅tは、次の式で表すことができる。
t=τ+Δt ・・・(2)
但し、Δt=変動時間(誤差)である。
【0041】
このため、図2において、例えば、設定信号電圧Vsが段階的に増加すると、図2のオン時間幅tは漸増収束する。このため、オン時間幅tが不安定な状態で増加することはない。
【0042】
さらに、式(1)において、設定信号電圧Vsが、目標電流の変更に応じて増減すると、偏差積分信号電圧Veも直ちに増減する。このため、偏差積分信号電圧Veが目標電流の変化に追従する方向に変化する。しかも式(1)において、偏差電圧(Vs−Vf)がわずかでも存在する場合、その偏差電圧が積分されるので、その誤差が修正される。
【0043】
以上説明したように、電流制御装置1aは、誘導性負荷4に流れる電流を目標電流に設定するためのパルス幅変調信号Aを出力するパルス幅変調信号出力回路9と、上記パルス幅変調信号Aと同周期Tの鋸歯状波信号Cを生成する鋸歯状波信号生成回路10と、上記パルス幅変調信号Aを平滑化して上記パルス幅変調信号Aと同周期Tの設定信号Bを生成する指令値平滑回路20と、上記誘導性負荷4に流れる電流に基づいて、上記パルス幅変調信号Aと同周期Tの検出信号Dを生成する検出値増幅回路30と、上記設定信号Bおよび上記検出信号Dの偏差積分に応じた偏差積分信号Eを生成する偏差積分回路40と、上記鋸歯状波信号Cおよび上記偏差積分信号Eに基づいて、上記誘導性負荷4に流れる電流を制御する電流制御回路50とを備える。
【0044】
このようすると、電流制御回路50が、周期Tの鋸歯状波信号Cと、周期Tの偏差積分信号Eとを比較した結果に応じて、ソレノイド4に流れる電流を開閉素子5aにより制御する。このため、単一の周期Tのみで電流制御をおこなうことができ、開閉素子5aのオン時間およびオフ時間の比率の変化に対して、一定の電流を常にソレノイド4に流すことができる。また、高速な応答を可能にすることができる。さらに、ソレノイド4の温度変動による影響を受けることがない。
【0045】
さらに、単一のパルス幅変調信号Aのみでソレノイド4に流す電流を自在に可変することができ、これにより、電流制御装置1aのハードウエアの構成を比較的簡易にすることができる。
【0046】
実施の形態2.
この発明の実施の形態2に係る誘導性負荷の電流制御装置について図面を参照しながら説明する。図3は、この発明の実施の形態2に係る誘導性負荷の電流制御装置1bの構成を示す回路図である。なお、上記実施の形態1と同一符号については重複説明を適宜省略する。
【0047】
図3において、電流制御装置1bは、上記電流制御装置1aの検出値増幅回路30に代えて、検出値増幅回路60を設けている。また、この電流制御装置1bは、上記電流制御装置1aの開閉素子5aおよび転流ダイオード7aに代えて、開閉素子5bおよび転流ダイオード7bを設けている。開閉素子5bは、例えば、NPN接合型のバイポーラトランジスタ、Nチャンネル型の電界効果トランジスタである。その他の構成は、上記実施の形態1とほぼ同一である。
【0048】
検出値増幅回路60は、増幅器61と、入力抵抗62と、負帰還抵抗63および64とを有する。増幅器61は、負帰還抵抗63および64による分圧電圧が負帰還接続されている。また、この検出値増幅回路60は、平滑コンデンサ65と、充電抵抗66と、ダイオード67と、放電抵抗68とを有する。平滑コンデンサ65は、増幅器61の出力端子からの電荷が、充電抵抗66およびダイオード67を介して充電される。放電抵抗68は、ダイオード67と並列に接続されている。この放電抵抗68は、増幅器61の出力端子が零の場合に、平滑コンデンサ65の充電電荷を放出させる機能がある。なお、充電抵抗66は、開閉素子5bが開路し又は閉路した場合に、検出信号電圧Vsの脈動成分を低減させる機能がある。
【0049】
なお、放電抵抗68の抵抗値R、および平滑コンデンサ65の静電容量Cの積からなる放電平滑時定数(R×C)が、ソレノイド4のインダクタンスLおよび内部抵抗Rの比率である誘導時定数(L÷R)と同等の値に設定されている。同等というのは、同一又は近似を意味する。以下同じ。
【0050】
図3において、指令値平滑回路20では、一次平滑コンデンサ21および二次平滑コンデンサ27は、放電抵抗68の抵抗値R1、および平滑コンデンサ65の静電容量Cの積からなる平滑時定数(R1×C)による平滑に比べ、高次の平滑をおこなう機能がある。このようにすると、設定信号Bが、検出信号Dと同等の平滑特性を有する。このため、偏差信号電圧Veの脈動成分が低減する。これにより、電流制御装置1bは、電流制御を安定しておこない、かつ、過渡電流応答を高速にすることが可能となる。
【0051】
つぎに、この実施の形態2に係る誘導性負荷の電流制御装置1bの動作について図3を参照しながら説明する。
【0052】
図3において、電源スイッチ2が閉路し、かつ、電流制御回路50の開閉素子5bが閉路している場合において、電流制御装置1bは、以下の手順でソレノイド4の電流制御をおこなう。
【0053】
図3において、CPU9、鋸歯状波信号生成回路10、指令値平滑回路20、検出値増幅回路60、偏差積分回路40、および電流制御回路50が、上述した実施の形態1とほぼ同様の動作をおこなう。つまり、電流制御装置1bは、開閉素子5bを開閉することにより、ソレノイド(誘導性負荷)4に流れる電流を制御する。
【0054】
図3では、開閉素子5bが閉路すると、ソレノイド4には、バッテリー3、電源スイッチ2、ソレノイド4、開閉素子5b、および電流検出抵抗6bからなる直列回路を通して所定の駆動電流が流れる。
【0055】
検出値増幅回路60では、開閉素子5bが閉路しているとき、平滑コンデンサ65は、増幅器61の出力端子からの電荷が、充電抵抗66およびダイオード67を介して充電される。
【0056】
一方、開閉素子5bが開路すると、ソレノイド4に流れていた電流が、転流ダイオード7bを通して環流し減衰する。すると、検出抵抗6bに電流が流れなくなっていく。これによると、ソレノイド4の脈動成分が抑制されるので、ソレノイド4の電流制御が安定し易くなる。
【0057】
検出値増幅回路60では、開閉素子5bが開路しているとき、平滑コンデンサ65の両端電圧は、ソレノイド4に流れていた電流が転流ダイオード7bを通して減衰するのと同様の減衰特性で減少していく。これは、放電時定数(放電抵抗68の抵抗値R×平滑コンデンサ65の静電容量C)が、誘導時定数(ソレノイド4のインダクタンスL÷ソレノイド4の内部抵抗R)と同等の値に設定されているからである。これによると、ソレノイド4の脈動成分が抑制されるので、ソレノイド4の電流制御が安定し易くなる。しかもこの平滑コンデンサ65の充放電時において、充電抵抗66の抵抗値R1、および平滑コンデンサ65の静電容量Cの積からなる平滑時定数(R1×C)による影響で、ソレノイド4の脈動成分がより一層抑制される。このことは、上記実施の形態1の場合も同様である。
【0058】
なお、図3において、放電抵抗68は、充電抵抗66およびダイオード67からなる直列回路と並列に接続してもよい。この場合、上記平滑時定数における充電抵抗の抵抗値は、放電抵抗68および充電抵抗66の合成抵抗の抵抗値である。
【0059】
このようにして、検出値増幅回路60が、図2に示した検出信号Dを偏差積分回路40に出力すると、開閉素子5bが開閉することにより、ソレノイド4を流れる電流が制御される。したがって、上記実施の形態1と同様の効果を得る。
【0060】
しかもこの実施の形態2では、開閉素子5bとして、NPN接合型のバイポーラトランジスタや、Nチャンネル型の電界効果トランジスタが準備される。このため、電流制御装置1bは、開閉素子5bとして、PNP接合型のバイポーラトランジスタや、Pチャンネル型の電界効果トランジスタを準備する場合に比べて低廉で、かつ構成を簡易にすることができる。
【0061】
また、この実施の形態2では、検出値増幅回路60は、開閉素子5bが閉路した場合には充電抵抗66を介して充電するとともに、開閉素子5bが開路した場合にはその充電された電荷を放電抵抗68を介して放電する平滑コンデンサ65を有する。そして、放電時定数(R×C)が、誘導時定数(L÷R)と同等の値に設定されている。したがって、ソレノイド4に流れる電流に応じて検出信号電圧Vfを正確に検出することが可能となる。
【0062】
実施の形態3.
この発明の実施の形態3に係る誘導性負荷の電流制御装置について図面を参照しながら説明する。図4は、この発明の実施の形態3に係る誘導性負荷の電流制御装置1cの構成を示す回路図である。なお、実施の形態1と同一符号については重複説明を適宜省略する。
【0063】
図4において、電流制御装置1cは、過負荷保護回路70を備えている。また、この電流制御装置1cは、CPU(処理手段)90、プログラムメモリ(記憶装置)91、演算処理用メモリ(記憶装置)92、出力インターフェース回路93、入力インターフェース回路94、および変換器95を備えている。その他の構成は、上記実施の形態1と同様である。
【0064】
過負荷保護回路70は、比較器71と、入力抵抗72と、分圧抵抗73および74と、正帰還抵抗75と、トランジスタ76と、駆動抵抗77と、加算抵抗78と、ダイオード79とを有する。比較器71の正側入力端子は、入力抵抗72を介して、電流検出抵抗6aによって生じる電圧が印加される。比較器71の負側入力端子は、分圧抵抗73および74を介して、所定の電圧(例えば、5V)が印加される。正帰還抵抗75は、比較器71の出力端子および正側入力端子に接続されている。トランジスタ76は、比較器71の出力電圧によって、駆動抵抗77を介して導通して駆動する機能がある。このトランジスタ76のコレクタ端子は、トランジスタ51のベース端子に接続されている。加算抵抗78は、ダイオード79と直列接続され、かつ、比較器71の出力端子に接続されている。ダイオード79は、変換器95と接続されている。
【0065】
プログラムメモリ91は、ソレノイド4に流れる電流の制御状態を監視するための監視プログラムを格納する。図4において、FMEMは、フラッシュメモリの略である。上記監視プログラムは、上記パルス幅変調信号Aにより設定されるソレノイド4の目標電流と、変換器95が変換した検出信号Dに基づくソレノイド4の通電電流との比較結果から、ソレノイド4の電流制御が正常におこなわれているかを監視するためのプログラムである。ソレノイド4の通電電流(ソレノイド4に実際に流れる電流)は、電流検出抵抗6aの抵抗値などから算出される。また、正常に行われているかどうかは、例えば、上記比較結果の値が許容範囲内かどうかという観点から判断される。許容範囲は、例えば、電流制御装置1cの回路構成や、ソレノイド4の目標電流などの要素から算出される。
【0066】
演算処理用メモリ92は、例えば、RAMである。変換器95は、アナログ信号をデジタル変換するための多チャンネル式変換器である。アクチュエータ96は、車載電気負荷群である。たとえば、エンジンに対する燃料噴射用電磁弁、点火コイル、変速機の変速段切換用電磁弁などがこれに該当する。
【0067】
センサスイッチ97は、例えば、エンジンの回転センサ、クランクの角度センサ、車速センサなどに用いられるスイッチ群である。アナログセンサ98は、例えば、アクセルセンサ、スロットルセンサ、エアフローセンサなどからなるアナログセンサ群である。アクセスセンサは、アクセルペダルの踏み込み度合いを検出するためのセンサである。スロットルセンサは、スロットルの弁開度を検出するためのセンサである。エアフローセンサは、吸気量を測定するためのセンサである。
【0068】
CPU90は、センサスイッチ97から入力したセンサや、変換器95を介してデジタル変換されたアナログセンサ98の変化量に応じて、アクチュエータ96の駆動を制御する。また、このCPU90は、電流制御装置1aのCPU(パルス幅変調信号生成回路)9を含んでいる。これにより、単一のCPU90により、ソレノイド4の電流制御や、アクチュエータ96の駆動制御を行うことが可能となる。したがって、電流制御装置1cは、低廉で、かつ構成を小型にすることが可能となる。
【0069】
つぎに、この実施の形態3に係る電流制御装置1cの動作について図4を参照しながら説明する。
【0070】
図4において、電流制御装置1cが、上記実施の形態1の場合と同様の手順でソレノイド4の電流制御をおこなっている場合を想定して、電流制御の状態監視の動作を説明していく。
【0071】
図4において、検出値増幅回路30が、検出信号Dを偏差積分回路40に出力するとともに、検出信号Dを変換器95に出力する。すると、変換器95は、検出信号Dをデジタル変換し、変換後の検出信号DをCPU90に出力する。
【0072】
CPU90は、プログラムメモリ91に格納された監視プログラムに従って、パルス幅変調信号Aにより設定されるソレノイド4の目標電流と、変換器95が変換した検出信号Dに基づくソレノイド4の通電電流とを比較する。そして、CPU90は、上記比較結果に基づき、ソレノイド4に流れる電流の制御状態を上記監視プログラムに従って監視し、監視状況をディスプレイ(出力装置)99へ出力する。監視状況としては、例えば、動作正常、動作異常がある。なお、ソレノイド4や配線の断線が生じた場合、CPU90は、パルス幅変調信号Aを発生しているのにもかかわらず、検出信号電圧vfを検出できない。したがって、この場合、CPU90は、動作異常の旨をディスプレイ99へ出力する。これにより、ソレノイド4や配線の断線も検出することが可能となる。
【0073】
なお、CPU90は、監視状況として、ソレノイド4の温度異常をディスプレイ99へ出力してもよい。この場合、演算処理用メモリ(記憶装置)92には、ソレノイド4の抵抗値および許容温度の対応付けを格納する。CPU90は、変換器95がデジタル変換したバッテリー3の電圧を入力し、このバッテリー3の電圧から、演算処理用メモリ92の対応付けを参照し、ソレノイド4の温度が適正かどうかを判断する。たとえば、回路構成に基づいて、バッテリー3の電圧からソレノイド4の抵抗値をCPU90は算出する。そして、CPU90は、ソレノイド4の温度が適正ではないと判断したとき、ソレノイド4の温度異常をディスプレイ99へ出力する。
【0074】
以上説明したように、電流制御装置1cは、検出信号Bの電圧をデジタル変換する変換器95と、誘導性負荷4に流れる電流の制御状態を監視するための監視プログラムを格納する記憶手段(プログラムメモリ)91と、上記監視プログラムに従って上記パルス幅変調信号回路(CPU)9が生成したパルス幅変調信号Aにより設定される上記誘導性負荷4の目標電流、および上記変換器95が変換した検出信号Dに基づく上記誘導性負荷4の通電電流を比較し、比較結果に基づき、上記誘導性負荷4に流れる電流の制御状態を上記監視プログラムに従って監視し、監視状況を出力装置(ディスプレイ)99へ出力する処理手段(CPU)90とをさらに備えている。
【0075】
このようにすると、CPU90が、ソレノイド4に流れる電流の制御状態を監視するので、電流制御装置1cは、ソレノイド4の電流制御に対する安全性を高めることができる。例えば、故障等による事故を事前に防止することができる。
【0076】
さらに、図4では、過負荷保護回路70は、ソレノイド4の異常を検出した場合、開閉素子5aの導通を遮断するとともに、その場合の検出信号電圧をCPU90へ出力する。ソレノイド4の異常としては、例えば、ソレノイド4の短絡などがある。以下、具体的に説明していく。
【0077】
過負荷保護回路70では、ソレノイド4の異常を検出した場合、比較器71の出力電圧がHレベルとなる。しかも正帰還抵抗75によって、そのHレベルの状態が保持される。これにより、トランジスタ76が導通し、トランジスタ55が不導通になるので、開閉素子5aが開路する。したがって、開閉素子5aの焼損を防止することができる。
【0078】
一方、変換器95は、ソレノイド4の異常を検出した場合、加算抵抗78およびダイオード79を介して、その場合の検出信号Dを過負荷保護回路70から入力する。入力された検出信号Dの検出信号電圧Vfは、一定の許容値を超える。なぜなら、検出信号Dが、加算抵抗78およびダイオード79を介して入力されるからである。
【0079】
続いて、CPU90は、変換器95がデジタル変換した検出信号Dの検出信号電圧Vfに基づき、ソレノイド4に異常が発生した旨をディスプレイ99へ出力する。これにより、電流制御装置1cは、ソレノイド4の過負荷状態等の異常を認識させることができる。しかも、この実施の形態3では、ソレノイド4の異常が生じた場合、過負荷保護回路70の機能によって、開閉素子5aが閉路する。このため、開閉素子5aの保護をCPU90の外部回路がおこなうこととなり、CPU90の負荷が軽減する。
【0080】
なお、上記実施の形態1又は2において、鋸歯状波信号Cは、図2に示したように、その波形が、漸増したのち急に減少する場合で説明した。ただし、鋸歯状波信号Cは、その波形が、急に増加したのち漸減してもよい。このようにしても、上記実施の形態1又は2と同様の効果を得ることができる。この場合、鋸歯状波信号の電圧が、偏差積分信号電圧Veよりも高いときに開閉素子5a又は5bが開路する。一方、鋸歯状波信号の電圧が、偏差積分信号電圧Veよりも低いときに開閉素子5a又は5bが閉路する。
【0081】
また、上記実施の形態1又は2において、偏差積分信号回路40は、偏差積分信号電圧Veを次式(3)にしたがって生成してもよい。このようにしても、上記実施の形態1又は2と同様の効果を得ることができる。
Ve=Vs+[∫{(Vf−Vs)÷RC}dt]・・・(3)
但し、Vs=設定信号電圧、Vf=検出信号電圧、R=入力抵抗43の抵抗値、C=積分コンデンサ46の静電容量である。
この場合、鋸歯状波信号の電圧が、偏差積分信号電圧Veより低いときに開閉素子5a又は5bが開路する。一方、鋸歯状波信号の電圧が、偏差積分信号電圧Veより高いときに開閉素子5a又は5bが閉路する。
【0082】
【発明の効果】
この発明は以上説明したように、パルス幅変調信号と同周期の鋸歯状波信号および偏差積分信号に基づいて、誘導性負荷に流れる電流を制御する。このため、単一の周期のみで電流制御をおこなうことができ、これにより、電流制御の精度を高めることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1に係る誘導性負荷の電流制御装置の構成を示す回路図である。
【図2】この発明の実施の形態1に係る誘導性負荷の電流制御装置の動作を示すタイミングチャートである。
【図3】この発明の実施の形態2に係る誘導性負荷の電流制御装置の構成を示す回路図である。
【図4】この発明の実施の形態3に係る誘導性負荷の電流制御装置の構成を示す回路図である。
【符号の説明】
1a、1b、1c 電流制御装置、4 ソレノイド、5a、5b 開閉素子、7a、7b 転流ダイオード、9 CPU(パルス幅変調信号出力回路)、10鋸歯状波信号生成回路、20 指令値平滑回路、30 検出値増幅回路、40偏差積分回路、50 電流制御回路、70 過負荷保護回路、90 CPU(処理手段)、91 プログラムメモリ(記憶手段)、95 変換器、99 ディスプレイ(出力装置)、A パルス幅変調信号、B 設定信号、C 鋸歯状波信号、D 検出信号、E 偏差積分信号、F 開閉信号。

Claims (9)

  1. 誘導性負荷に流れる電流を目標電流に設定するためのパルス幅変調信号を出力するパルス幅変調信号出力回路と、
    前記パルス幅変調信号と同周期の鋸歯状波信号を生成する鋸歯状波信号生成回路と、
    前記パルス幅変調信号を平滑化して前記パルス幅変調信号と同周期の設定信号を生成する指令値平滑回路と、
    前記誘導性負荷に流れる電流に基づいて、前記パルス幅変調信号と同周期の検出信号を生成する検出値増幅回路と、
    前記設定信号および前記検出信号の偏差積分に応じた偏差積分信号を生成する偏差積分回路と、
    前記鋸歯状波信号および前記偏差積分信号に基づいて、前記誘導性負荷に流れる電流を制御する電流制御回路と
    を備えたことを特徴とする誘導性負荷の電流制御装置。
  2. 前記鋸歯状波信号生成回路は、前記パルス幅変調信号のパルスの立ち上りのタイミングで動作する
    ことを特徴とした請求項1記載の誘導性負荷の電流制御装置。
  3. 前記偏差積分信号は、前記設定信号の設定電圧、および前記設定信号および前記検出信号の偏差積分電圧からなる電圧成分を有する
    ことを特徴とした請求項1又は2記載の誘導性負荷の電流制御装置。
  4. 前記パルス幅変調信号は、前記誘導性負荷のインダクタンスおよび内部抵抗の比率である誘導時定数よりも小さい値の周期で動作し、
    前記検出値増幅回路は、前記誘導性負荷に流れる電流の脈動成分を抑制するための半導体素子を有する
    ことを特徴とした請求項1、2又は3記載の誘導性負荷の電流制御装置。
  5. 前記検出値増幅回路は、前記開閉素子が閉路した場合には充電抵抗を介して充電するとともに、前記開閉素子が開路した場合には放電抵抗を介して前記充電された電荷を放電する平滑コンデンサを有し、
    前記放電抵抗の抵抗値、および前記平滑コンデンサの静電容量の積からなる放電時定数が、前記誘導時定数と同等の値に設定されている
    ことを特徴とする請求項1、2又は3記載の誘導性負荷の電流制御装置。
  6. 前記設定信号は、前記検出信号と同等の平滑特性を有する
    ことを特徴とした請求項1、2又は3記載の誘導性負荷の電流制御装置。
  7. 前記検出信号の電圧をデジタル変換する変換器と、
    前記誘導性負荷に流れる電流の制御状態を監視するための監視プログラムを格納する記憶手段と、
    前記監視プログラムに従って前記パルス幅変調信号回路が生成したパルス幅変調信号により設定される前記誘導性負荷の目標電流と、前記変換器が変換した検出信号に基づく前記誘導性負荷の通電電流とを比較し、比較結果に基づき、前記誘導性負荷に流れる電流の制御状態を前記監視プログラムに従って監視し、監視状況を出力装置へ出力する処理手段と
    をさらに備えたことを特徴とする請求項1記載の誘導性負荷の電流制御装置。
  8. 前記誘導性負荷の異常を検出した場合、前記開閉素子の導通を遮断するとともに、その場合の前記検出信号を前記処理手段へ出力する過負荷保護手段をさらに備えるとともに、
    前記処理手段は、前記過負荷保護手段が出力した検出信号に基づき、前記異常が発生した旨をさらに前記出力装置へ出力する
    ことを特徴とする請求項7記載の誘導性負荷の電流制御装置。
  9. 前記処理手段は、前記パルス幅変調信号回路を含んでいる
    ことを特徴とする請求項7記載の誘導性負荷の電流制御装置。
JP2003063083A 2003-03-10 2003-03-10 誘導性負荷の電流制御装置 Expired - Fee Related JP3798378B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003063083A JP3798378B2 (ja) 2003-03-10 2003-03-10 誘導性負荷の電流制御装置
US10/782,859 US6965222B2 (en) 2003-03-10 2004-02-23 Current controller for inductive load
DE102004010394A DE102004010394B4 (de) 2003-03-10 2004-03-03 Strom-Controller für induktive Last
CNB2004100286842A CN100553110C (zh) 2003-03-10 2004-03-10 感应负荷的电流控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063083A JP3798378B2 (ja) 2003-03-10 2003-03-10 誘導性負荷の電流制御装置

Publications (2)

Publication Number Publication Date
JP2004273804A true JP2004273804A (ja) 2004-09-30
JP3798378B2 JP3798378B2 (ja) 2006-07-19

Family

ID=32923668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063083A Expired - Fee Related JP3798378B2 (ja) 2003-03-10 2003-03-10 誘導性負荷の電流制御装置

Country Status (4)

Country Link
US (1) US6965222B2 (ja)
JP (1) JP3798378B2 (ja)
CN (1) CN100553110C (ja)
DE (1) DE102004010394B4 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050135023A1 (en) * 2003-12-19 2005-06-23 Sipex Corporation Programmable digital power controller
US7848126B2 (en) 2007-08-21 2010-12-07 Infineon Technologies Ag Integrating current regulator and method for regulating current
DE102007058314B4 (de) * 2007-12-04 2018-11-15 Diehl Aerospace Gmbh Vorrichtung zum Messen eines Laststroms
US8004258B2 (en) * 2008-08-15 2011-08-23 Infineon Technologies Ag Regulation of a current through an inductive load
DE102009044950A1 (de) 2009-09-24 2011-03-31 Robert Bosch Gmbh Elektrische Schaltungsanordnung zur Schaltung eines elektrischen Verbrauchers
JP5966308B2 (ja) * 2011-10-13 2016-08-10 富士電機株式会社 誘導性負荷制御装置
US9470723B2 (en) * 2012-04-09 2016-10-18 Mitsubishi Electric Corporation PLC analog output module
KR101434049B1 (ko) * 2012-12-07 2014-09-02 삼성전기주식회사 전원 공급 장치
US10486281B2 (en) 2015-12-14 2019-11-26 Milwaukee Electric Tool Corporation Overload detection in a power tool
EP3424648B1 (en) * 2016-03-05 2021-09-08 Koki Holdings Co., Ltd. Electrically powered tool
BE1026021B1 (de) * 2018-02-14 2019-09-16 Phoenix Contact Gmbh & Co Stromschaltersteuerung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164515U (ja) 1985-03-29 1986-10-13
DE3741765A1 (de) * 1987-12-10 1989-06-22 Wabco Westinghouse Fahrzeug Stromregler
JP3030076B2 (ja) * 1990-11-01 2000-04-10 三菱電機株式会社 電流制御回路
DE29600866U1 (de) * 1996-01-19 1996-03-07 Festo Kg Schaltungsanordnung zur Steuerung von Magnetventilen
DE19727944A1 (de) * 1997-07-01 1999-01-07 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung eines Verbrauchers
CN1325563A (zh) * 1998-10-30 2001-12-05 美国西门子汽车公司 组合的电压和电流转换速率限制
DE19920306B4 (de) * 1999-05-03 2008-02-28 Stmicroelectronics Gmbh Schaltungsvorrichtung zum Regeln des Stroms durch eine induktive Last
US6285174B1 (en) * 2000-10-13 2001-09-04 National Semiconductor Corporation Switching DC-to-Dc converter having on-time signal generation circuit and method for generating signal indicative of converter on-time

Also Published As

Publication number Publication date
DE102004010394B4 (de) 2007-05-24
JP3798378B2 (ja) 2006-07-19
CN1533023A (zh) 2004-09-29
CN100553110C (zh) 2009-10-21
US6965222B2 (en) 2005-11-15
US20040178782A1 (en) 2004-09-16
DE102004010394A1 (de) 2004-09-30

Similar Documents

Publication Publication Date Title
US9531377B2 (en) Semiconductor device
US8625249B2 (en) Control apparatus for electromagnetic inductive load
JP5776216B2 (ja) 電流制御機能および自己遮断機能を備えた半導体装置
US20190363633A1 (en) Systems and methods for two-level protection of power conversion systems
US9890757B2 (en) Electronic control of a spark plug for an internal combustion engine
US8928373B2 (en) Semiconductor device
US20100043757A1 (en) Circuit Arrangement and Method for Operating an Inductive Load
US20050252496A1 (en) Ignition device for internal combustion engine
JP3798378B2 (ja) 誘導性負荷の電流制御装置
JP4420012B2 (ja) 過電流保護回路
JP2004147437A (ja) 多出力電源装置及び車載電子制御装置
US7545127B2 (en) Power supply controller
JP3030076B2 (ja) 電流制御回路
JPS5875809A (ja) 電磁負荷用制御装置
JP2012036848A (ja) 電流制御機能を備えた半導体装置
JP2003527534A (ja) 内燃機関での点火のためのエネルギー供給を制御する装置および方法
JP2005180771A (ja) 点火装置
JP2002176346A (ja) 誘導性負荷駆動装置
JP2008011347A (ja) 負荷断線検出回路
JP2000179391A (ja) 電磁弁駆動装置
JPH09196991A (ja) 故障検出回路及びその検出方法
US7924077B2 (en) Signal processing apparatus including latch circuit
JP4211640B2 (ja) 電子制御装置
JPH0739200A (ja) 車両用発電機の電圧制御装置
JP3652527B2 (ja) 電気機器の電力制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Ref document number: 3798378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees