JP2004273562A - 発光素子およびその製造方法 - Google Patents
発光素子およびその製造方法 Download PDFInfo
- Publication number
- JP2004273562A JP2004273562A JP2003058979A JP2003058979A JP2004273562A JP 2004273562 A JP2004273562 A JP 2004273562A JP 2003058979 A JP2003058979 A JP 2003058979A JP 2003058979 A JP2003058979 A JP 2003058979A JP 2004273562 A JP2004273562 A JP 2004273562A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- light emitting
- compound semiconductor
- cladding layer
- earth metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Formation Of Insulating Films (AREA)
- Semiconductor Lasers (AREA)
Abstract
【解決手段】本発明の発光素子100は、シリコン基板110と、前記シリコン基板110上に形成され、希土類金属およびアルカリ土類金属の少なくとも一方を含む酸化物からなるバッファ層120と、前記バッファ層120の上に形成された化合物半導体からなる発光部と、を含み、前記発光部は、少なくとも下部クラッド層124、上部クラッド層142、および下部クラッド層124と上部クラッド層142との間に配置される活性領域130を含む。
【選択図】 図1
Description
【発明の属する技術分野】
本発明は、発光素子およびその製造方法に関し、特にシリコン基板上に化合物半導体を用いて形成した発光素子およびその製造方法に関する。
【0002】
【背景技術】
半導体レーザーに代表される発光素子は、近年、光通信、光記憶装置、光センサなど多くの分野で使用されている。それらの多くは、III−V族化合物半導体あるいはII−VI族化合物半導体を材料として作製されている。
【0003】
しかし、発光素子の作製に際しては、結晶基板とその上に形成される化合物半導体結晶との格子定数の整合性が重要であり、一般に格子不整合率が2%を超えるようであると格子歪みなどにより十分な特性を得ることができない。このため、従来の発光素子においては、基板材料の選択性に大きな制限があり、例えば、III−V族化合物半導体材料を用いる場合においては、基板としてGaAs基板、InP基板やサファイア基板など一定の格子定数を有する基板を用いることしかできなかった。
【0004】
また、例えば、GaAsなどの化合物半導体材料からなる結晶基板は、良質で大口径のウェハを得ることが難しく、量産性に乏しい。このため、従来から半導体集積回路の分野で実績があり、大口径のウェハを得ることができるシリコン基板上に化合物半導体材料を用いて形成した発光素子の実現が望まれている。
【0005】
【非特許文献1】
栖原敏明著、半導体レーザーの基礎、第1版、日本国、共立出版株式会社、1998年3月25日発行
【0006】
【発明が解決しようとする課題】
本発明の目的は、シリコン基板上に形成された新規な構造を有する発光素子およびその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
(1)本発明の発光素子は、シリコン基板と、前記シリコン基板上に形成され、希土類金属およびアルカリ土類金属の少なくとも一方を含む酸化物からなるバッファ層と、前記バッファ層の上に形成された化合物半導体からなる発光部と、を含み、前記発光部は、少なくとも下部クラッド層、上部クラッド層、および下部クラッド層と上部クラッド層との間に配置される活性領域を含む。
【0008】
本発明によれば、発光素子の基板をシリコン基板とすることで、従来から一般的に用いられてきた化合物半導体基板よりも大口径のウェハを採用することができるようになり、生産性を向上させることができる。
【0009】
また、本発明によれば、希土類金属およびアルカリ土類金属の少なくとも一方を含む酸化物をバッファ層として、基板材料であるシリコンと発光部の材料となる化合物半導体との結晶の格子定数の差を緩和することにより、発光部において歪みの少ない良質な結晶構造を有する新規な構造の発光素子を実現することができる。
【0010】
また、本発明によれば、希土類金属およびアルカリ土類金属の少なくとも一方を含む酸化物の材料を変更することで、所望の格子定数の結晶構造を有するバッファ層を得ることができ、かかるバッファ層を構成する酸化物結晶の格子定数に合わせて発光部を構成する化合物半導体の組成を決定することで、従来においては成しえなかった発光波長帯の発光素子を実現することができるようになる。
【0011】
ここで、前記化合物半導体としては、III族元素としてGa、In、およびAlの少なくともひとつを含み、かつV族元素としてAs、NおよびPの少なくとも1つを含むIII−V族化合物半導体であることができる。
【0012】
かかる態様によれば、これらのIII族元素とV族元素との組合せからなる化合物半導体は、特に、3元系以上の化合物半導体の場合、組成の組合せにより5.4〜6.1の広範囲な格子定数を有する結晶を得ることができる。この格子定数は、化合物半導体結晶の有するバンドギャップエネルギーと密接に関係し、このバンドギャップエネルギーに対応して発光素子の発光波長帯が決定される。このため、かかる格子定数が5.4〜6.1の範囲のIII−V族化合物半導体結晶にあっては、200nmという短波長帯から2μm以上の長波長帯までの広範囲にわたる発光波長帯の発光素子の実現が可能である。従って、このIII−V族化合物半導体結晶の格子定数に合うバッファ層の材料を選択することで、所望の発光波長帯を有する発光素子を得ることができる。
【0013】
そして、前記酸化物としては、Zr、K、Ta、およびTiの少なくとも一つを構成元素に含む3元系以上の複合酸化物であることができる。かかる複合酸化物は、例えば、SrZrO3、BaTiO3、CaZrO3、BaZrO3、およびこれらの固溶体の少なくとも一つであることができる。かかる酸化物結晶は所定の結晶軸において、5.4〜6.1Åの範囲内の格子定数(格子点間距離)を有するため、本発明の発光素子のバッファ層の材料として好適である。
【0014】
さらに、本発明の発光素子では、前記発光部が、下部クラッド層の下に配置される下部ミラー層と、上部クラッド層の上に配置される上部ミラー層と、を含むことができる。かかる態様によれば、発光素子として所望の発光波長帯を有する面発光型レーザーを実現することができる。
【0015】
(2)本発明の発光素子の製造方法は、シリコン基板上に希土類金属およびアルカリ土類金属の少なくとも一方を含む酸化物からなるバッファ層を形成すること、前記バッファ層の上に化合物半導体を結晶成長することにより下部クラッド層、活性領域、および上部クラッド層を順次積層して発光部を形成すること、を含む。
【0016】
また、本発明の発光素子の製造方法は、シリコン基板上に希土類金属およびアルカリ土類金属の少なくとも一方を含む酸化物からなるバッファ層を形成すること、前記バッファ層の上に化合物半導体を結晶成長することにより下部ミラー層、下部クラッド層、活性領域、上部クラッド層、および上部ミラー層を順次積層して発光部を形成すること、を含む。
【0017】
かかる本発明の発光素子の製造方法によれば、所与の格子定数を有する希土類金属あるいはアルカリ土類金属を含む酸化物材料を選択してバッファ層を形成することで、その上に形成する化合物半導体の組成を多種多様に選択することができ、所望の発光波長帯を有する発光素子を得ることができる。
【0018】
【発明の実施の形態】
以下、本発明に好適な実施の形態について、図面を参照しながら説明する。
【0019】
[第1の実施形態]
図1は、本発明の第1の実施形態に係るストライプレーザー100を模式的に示す断面図である。
【0020】
本実施の形態に係るストライプレーザー100は、シリコン基板110上に、酸化物からなるバッファ層120、導電型がn型の化合物半導体からなるn型コンタクト層122、導電型がn型の化合物半導体からなる下部クラッド層124、ノンドープの化合物半導体からなるバリア層132、井戸層134、およびバリア層136により構成された量子井戸構造を有する活性領域130、導電型がp型の化合物半導体からなる上部クラッド層142、および導電型がp型の化合物半導体からなるp型コンタクト層144が順次積層されて構成されている。さらに、ストライプレーザー100は、上述した化合物半導体からなる層を被覆するように形成され、かつp型コンタクト層144の上部がストライプパターニングされた絶縁層150が形成され、p型コンタクト層144の上に金属薄膜からなるp型電極層162が形成されており、n型コンタクト層122の上に金属薄膜からなるn型電極層164が形成されて構成される。
【0021】
本実施の形態に係るストライプレーザー100は、p型電極層162からn型電極層164にかけて順方向電流が通電されることにより、活性領域130で発生した光が下部クラッド層124と上部クラッド層142との間に閉じ込められて活性領域130の端面の間で共振することにより、かかる端面からレーザー光を出射するものである。
【0022】
また、本実施の形態のストライプレーザー100は、以下のような製造工程により形成することができる。
【0023】
図2は、本実施の形態に係るストライプレーザー100の製造工程を模式的に示す断面図である。
【0024】
まず、図2(A)に示すように、シリコン基板110上に例えば、分子線エピタキシー(MBE)法やプラズマCVD法などを用いて、酸化物材料からなるバッファ層120を形成する。
【0025】
シリコン基板110は、その結晶面が(100)配向していることが好ましい。
【0026】
また、バッファ層120は、例えば、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Yなどの希土類金属、および、例えば、Mg、Ca、Sr、Baなどのアルカリ土類金属のなかから少なくともひとつを構成元素として含む酸化物あるいはその固溶体から形成することができる。かかる酸化物は、バッファ層120の上に形成される化合物半導体の組成を考慮して、所定の結晶軸における格子点間距離(格子定数)が例えば、5.4〜6.1Åの範囲にある結晶構造を有するものを材料として用いることができる。また、バッファ層120の材料としては、上述した希土類金属あるいはアルカリ土類金属に加えて、例えば、Zr、K、Ta、およびTiなどの他の金属元素を構成元素として含む3元系以上の複合酸化物を用いることもできる。
【0027】
次に、図2(B)に示すように、バッファ層120の上に、n型コンタクト層122、下部クラッド層124、バリア層132、井戸層134、バリア層136、上部クラッド層142、およびp型クラッド層144を例えば、MBE法や有機金属気相成長法(MOCVD法)を用いて所与の化合物半導体を順次結晶成長することにより形成する。
【0028】
次に、図2(C)に示すように、結晶成長した化合物半導体の層に対して例えば、反応性イオンエッチング(RIE)などの公知のエッチング手法を用いてエッチングを行うことによりn型コンタクト層122を露出させ、その後、素子全体を被覆するように例えば、SiO2などの酸化膜からなる絶縁層150を形成して、かかる絶縁層150のp型コンタクト層144の上部をストライプ形状にパターニングするともに、n型コンタクト層122を露出させる。
【0029】
最終的には、p型コンタクト層144の上部に例えば、Cr膜、AuZn膜、Au膜が順次積層された構造を有するp型電極層162を形成するとともにn型コンタクト層122の上に例えば、Cr膜、AuGe膜、Ni膜、Au膜が順次積層された構造を有するn型電極層164を形成することにより、図1に示すようなストライプレーザー100を得ることができる。かかる工程において、p型電極層162およびn型電極層164は、例えば、蒸着法やスパッタ法などの公知の成膜方法を用いて形成することができる。
【0030】
このようにして得られる本実施の形態のストライプレーザー100は、上述した酸化物材料からなるバッファ層120を有することで、格子歪みがない状態で良好な化合物半導体結晶から構成され、様々な発光波長を有する発光素子を実現することができる。また、良質な大口径ウェハを得ることができるシリコン基板110上に素子を形成することができるため、生産性の向上を図ることができるようになる。
【0031】
ここで、バッファ層120の材料によるストライプレーザー100の発光波長の制御について、以下に詳細に説明する。
【0032】
まず、化合物半導体材料の格子定数と、バンドギャップエネルギー(禁制帯幅)との関係を図3に示す。本実施の形態のストライプレーザー100などの発光素子においては、活性領域130(特に、量子井戸構造の場合は井戸層134)の材料組成が素子の発光波長を決める要因のひとつとなっている。
【0033】
そして、図3においては、3元系混晶であるAlXGa1−XAsであれば、組成Xの変調によりバンドギャップエネルギーの変化があるが、その格子定数については、組成Xの値にかかわらず、ほとんど影響がないことがわかる。一方で、同じ3元系混晶であるInXGa1−XAsやGaXN1−XAsの場合、組成Xが変調されると、約0.1Åの範囲で格子定数の変動が生じ、それに伴いバンドギャップエネルギーもAlXGa1−XAsに比べて大きく変動する。また、4元系混晶であるInXGa1−XAsYP1−YやGaXIn1−XNYAs1−Yの場合は、組成Xおよび組成Yの変動により、格子定数およびバンドギャップエネルギーがともに広範囲で変化することが分かる。
【0034】
さらに、このように組成によって変化するバンドギャップエネルギーとこれにより決定される発光波長との関係を図4に示す。
【0035】
かかる図4によれば、3元系以上の混晶からなる化合物半導体において組成が変調されると材料の選択により広範囲な波長帯における発光波長の発光素子が得られることが分かる。
【0036】
しかし、従来、化合物半導体材料を用いて発光素子を作製するためには、基板材料とその上に形成される化合物半導体層の格子定数との整合性を考慮する必要があり、一般に格子不整合率が2%(代表値)を超えると発光素子として十分な機能を発揮させることが困難であるといわれている。このため、発光素子の基板材料としては、上述したような化合物半導体と格子整合性のよいGaAs基板(格子定数:約5.65Å)やInP基板(格子定数:約5.87Å)が用いられてきた。このため、これらの基板を用いて発光素子を作製する場合、例えば、GaInNAsのように格子定数によらずとも、その組成のみでバンドギャップエネルギーを大きく変化させることができる材料系では、ある一定の範囲で発光波長帯を変化させた発光素子を得ることができたが、GaInNAsを材料として用いる場合、結晶中へのN元素の導入が難しく、組成を大きく変動させることが難しいため、実際には任意に発光波長を選択することは難しい。また、例えば、InGaAsPなどのように、格子定数の変動に伴いバンドギャップエネルギーが大きく変化する材料系においては、その組成を変化させても基板材料の格子定数の制限により、狭い範囲内でしか発光波長を選択することができなかった。この基板材料の格子定数による発光波長の制限は、図3に示すように、例えば、GaNAsやInGaAsなどの3元系混晶の場合において特に顕著である。
【0037】
また、一般に用いられているGaAs基板やInP基板などでは、良質で大口径のウェハを得ることが難しいため、大口径ウェハを得ることが可能なSi基板を用いたヘテロエピタキシー技術が試みられている。しかしながら、Si基板上に例えば、GaAsを結晶成長しようとしてもGaAsとSiの格子不整合率は、5%以上もあり、良質なGaAs結晶をSi基板上に直接得ることは困難であった。
【0038】
そこで、本実施の形態に係るストライプレーザー100では、バッファ層120の材料として、希土類金属あるいはアルカリ土類金属の少なくとも一方を構成元素に含む酸化物を採用し、これによりSi基板と化合物半導体との格子不整合を緩和することができる。また、このことにより、バッファ層120を構成する酸化物結晶の所定の結晶軸における格子点間距離(格子定数)を所与の材料を選択することにより変更することができるため、従来では特定の材料を用いなければ成しえなかった発光波長、あるいは基板材料の格子定数の制限により実現不可能であった発光波長を有する発光素子を種々の化合物半導体材料を用いて実現することができるようになる。すなわち、本実施の形態によれば、希土類金属の酸化物あるいはアルカリ土類金属酸化物をバッファ層120とすることで、その材料選択による格子定数の制御により、ストライプレーザー100における発光波長の制御が可能となる。さらに、本実施の形態によれば、上述したようなSi基板上に所望の化合物半導体材料からなるストライプレーザー100を形成することができるため、大口径ウェハを用いた発光素子の大量生産が可能となる。
【0039】
以下では、本発明を適用した下記の表1に示す実施例1〜5に沿って、上述したバッファ層120を有する本実施の形態のストライプレーザー100の効果を説明する。なお、下記の実施例においてはいずれの場合も基板110は、(100)配向のSi基板を用いるものとする。
【0040】
【表1】
(実施例1)
本例では、バッファ層120を構成する酸化物として、SrZrO3(a=5.8106Å)を用いる場合について説明する。本例において、下部クラッド層122および上部クラッド層142については、表1に示すように、InXGa1−XAsYP1−YまたはInXGa1−XAsを用いることができる。また、本例において活性領域は、表1に示すように、バリア層124,140としてInXGa1−XAsYP1−YまたはInXGa1−XAsを用い、井戸層130としてGaXIn1−XNYAs1−YまたはInXGa1−XAsYP1 −Yを用いた量子井戸構造とすることができる。
【0041】
このような実施例1の構造のストライプレーザーでは、図3に示すように、バッファ層120の格子定数がGaAsとInPの間の値となる。このため、井戸層130としてInXGa1−XAsYP1−Yを用いた場合においては、従来のようにInP基板上に素子を形成していた場合に比べて発光波長を短波長側にシフトさせた発光素子を得ることができる。また、井戸層130としてGaXIn1−XNYAs1−Yを用いた場合においては、従来のようにGaAs基板上に素子を形成していた場合に比べて結晶構造の中に導入しにくいN元素の組成比を低減しても長距離通信に適した1.55μm帯の発光波長を有する発光素子を容易に得ることができるようになる。また、井戸層130としていずれの材料を用いた場合においても、Si基板上に格子歪みの少ない状態で素子を形成することができるため、大口径ウェハを用いた大量生産が可能である。
【0042】
(実施例2)
本例では、バッファ層120を構成する酸化物として、BaTiO3(√2a=5.646Å)を用いる場合について説明する。本例において、下部クラッド層122および上部クラッド層142については、表1に示すように、AlXGa1−XAsを用いることができる。また、本例において活性領域は、表1に示すように、バリア層124,140としてAlXGa1−XAsを用い、井戸層130としてGaAsを用いた量子井戸構造とすることができる。
【0043】
このような実施例2の構造のストライプレーザーでは、図3に示すように、バッファ層120の格子定数がGaAs(5.65Å)とほぼ同一の値となる。このため、従来GaAs基板上に素子を形成していた材料系を用いてSi基板上に格子歪みの少ない状態で素子を形成することができるため、大口径ウェハを用いた大量生産が可能である。
【0044】
(実施例3)
本例では、バッファ層120を構成する酸化物として、CaZrO3(a=5.587Å)を用いる場合について説明する。本例において、下部クラッド層122および上部クラッド層142については、表1に示すように、GaXN1−XAsを用いることができる。また、本例において活性領域は、表1に示すように、バリア層124,140としてGaXN1−XAsを用い、井戸層130としてGaXIn1−XNYAs1−YまたはGaXN1−XAsを用いた量子井戸構造とすることができる。
【0045】
このような実施例3の構造のストライプレーザーでは、図3に示すように、バッファ層120の格子定数がGaAsよりも小さな値となる。このため、従来のようにGaAs基板上に素子を形成していた場合に比べて、結晶構造の中に導入しにくいN元素の組成比を低減しても1.55μm帯を超える長波長の発光波長を有する発光素子を容易に得ることができるようになる。また、本実施例においても、Si基板上に格子歪みの少ない状態で素子を形成することができるため、大口径ウェハを用いた大量生産が可能である。
【0046】
(実施例4)
本例では、バッファ層120を構成する酸化物として、BaZrO3(√2a=5.928Å)を用いる場合について説明する。本例において、下部クラッド層122および上部クラッド層142については、表1に示すように、InXGa1−XAsYP1−YまたはInXGa1−XAsを用いることができる。また、本例において活性領域は、表1に示すように、バリア層124,140としてInXGa1−XAsYP1−YまたはInXGa1−XAsを用い、井戸層130としてGaXIn1−XNYAs1−YまたはInXGa1−XAsYP1−Yを用いた量子井戸構造とすることができる。
【0047】
このような実施例4の構造のストライプレーザーでは、図3に示すように、バッファ層120の格子定数がInPより大きな値となる。このため、井戸層130としてInXGa1−XAsYP1−Yを用いた場合においては、従来のようにInP基板上に素子を形成していた場合に比べて発光波長を長波長側にシフトさせた発光素子を得ることができる。また、井戸層130としてGaXIn1−XNYAs1−Yを用いた場合においては、従来のようにGaAs基板上に素子を形成していた場合に比べて結晶構造の中に導入しにくいN元素の組成比を低減しても1.55μm帯を超える長波長帯の発光波長を有する発光素子を容易に得ることができるようになる。また、井戸層130としていずれの材料を用いた場合においても、Si基板上に格子歪みの少ない状態で素子を形成することができるため、大口径ウェハを用いた大量生産が可能である。
【0048】
[第2の実施形態]
図5は、本発明の第1の実施形態に係る面発光型レーザー200を模式的に示す断面図である。
【0049】
本実施の形態に係るストライプレーザー200は、シリコン基板210上に、酸化物からなるバッファ層220、導電型がn型の化合物半導体からなるn型コンタクト層222、導電型がn型の化合物半導体からなるn型DBRミラー層(下部ミラー層)224、導電型がn型の下部クラッド層226、ノンドープの化合物半導体からなるバリア層232、井戸層234、およびバリア層236により構成された量子井戸構造を有する活性領域230、導電型がp型の化合物半導体からなる上部クラッド層242、導電型がp型の化合物半導体からなるp型DBRミラー層(上部ミラー層)244、および導電型がp型の化合物半導体からなるp型コンタクト層246が順次積層されて構成されている。さらに、面発光型レーザー200は、上述した化合物半導体からなる層を被覆する絶縁層150を有し、かつp型コンタクト層246の上部から光を出射するための開口部を有する金属薄膜からなるp型電極層262と、n型コンタクト層222の上に金属薄膜からなるn型電極層264とを含んで構成される。
【0050】
本実施の形態に係る面発光型レーザー200は、p型電極層262からn型電極層264にかけて順方向電流が通電されることにより、活性領域230で発生した光がp型DBRミラー層244とn型DBRミラー層224との間で分布ブラッグ反射を繰り返しながら共振することにより単一モード発振したレーザー光をp型コンタクト層246の上部から出射するものである。
【0051】
また、本実施の形態の面発光型レーザー200は、以下のような製造工程により形成することができる。
【0052】
図6、7は、本実施の形態に係る面発光型レーザー200の製造工程を模式的に示す断面図である。
【0053】
まず、図6(A)に示すように、シリコン基板210上に例えば、分子線エピタキシー(MBE)法やプラズマCVD法などを用いて、酸化物材料からなるバッファ層220を形成する。
【0054】
本実施の形態に係る面発光型レーザー200においても、第1の実施形態の場合と同様に、シリコン基板210は、その結晶面が(100)配向していることが好ましい。
【0055】
また、バッファ層220についても、第1の実施形態の場合と同様に、例えば、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Yなどの希土類金属、および、例えば、Mg、Ca、Sr、Baなどのアルカリ土類金属のなかから少なくともひとつを構成元素として含む酸化物あるいはその固溶体から形成することができる。かかる酸化物は、バッファ層120の上に形成される化合物半導体の組成を考慮して、所定の結晶軸における格子点間距離(格子定数)が例えば、5.4〜6.1Åの範囲にある結晶構造を有するものを材料として用いることができる。また、バッファ層120の材料としては、上述した希土類金属あるいはアルカリ土類金属に加えて、例えば、Zr、K、Ta、およびTiなどの他の金属元素を構成元素として含む3元系以上の複合酸化物を用いることもできる。
【0056】
次に、図6(B)に示すように、バッファ層220の上に、n型コンタクト層222、n型DBRミラー層224、下部クラッド層226、バリア層232、井戸層234、バリア層236、上部クラッド層242、p型DBRミラー層244およびp型クラッド層246を例えば、MBE法や有機金属気相成長法(MOCVD法)を用いて所与の化合物半導体を順次結晶成長することにより形成する。
【0057】
次に、図7(A)に示すように、結晶成長した化合物半導体の層に対して例えば、反応性イオンエッチング(RIE)などの公知のエッチング手法を用いてエッチングを行うことによりn型コンタクト層222を露出させ、その後、必要に応じてp型DBRミラー層244およびp型コンタクト層246を柱状にエッチングして電流狭窄構造とすることができる。そして、素子全体を被覆するように例えば、SiO2などの酸化膜からなる絶縁層250を形成して、その後p型コンタクト層246およびn型コンタクト層122を露出させる。
【0058】
最終的には、p型コンタクト層246の上に例えば、Cr膜、AuZn膜、Au膜が順次積層された構造を有するp型電極層262を形成するとともにn型コンタクト層222の上に例えば、Cr膜、AuGe膜、Ni膜、Au膜が順次積層された構造を有するn型電極層264を形成することにより、図1に示すような面発光型レーザー200を得ることができる。かかる工程において、p型電極層162およびn型電極層164は、例えば、蒸着法やスパッタ法などの公知の成膜方法を用いて形成することができる。
【0059】
このようにして得られる本実施の形態の面発光型レーザー200は、上述した酸化物材料からなるバッファ層220を有することで、格子歪みがない状態で良好な化合物半導体結晶から構成され、様々な発光波長を有する発光素子を実現することができる。また、良質な大口径ウェハを得ることができるシリコン基板210上に素子を形成することができるため、生産性の向上を図ることができるようになる。
【0060】
そして、本実施の形態においても、上述した第1の実施形態の場合と同様の実施例を採用することができるため、希土類金属の酸化物あるいはアルカリ土類金属酸化物をバッファ層220とすることで、その材料選択による格子定数の制御により、面発光型レーザー200における発光波長の制御が可能となる。
【0061】
以上に本発明に好適な実施の形態について説明したが、本発明は、上述したものに限られず、発明の要旨の範囲内で種々の変形態様により実施することができる。
【0062】
例えば、上述した各実施形態では、バッファ層の材料により格子整合系の発光素子を実現する場合を例に説明したが、本発明では、逆に化合物半導体の層に格子歪みを積極的に導入する格子不整合系の発光素子を実現することもできる。かかる技術は、特に、GaAsを活性領域(井戸層)の材料として用いる場合に有用である。これは、図2にも示されるように、GaAs/AlGaAs系の量子井戸構造では、組成を変更しても一義的に結晶の格子定数が定まってしまうため、従来はかかる量子井戸構造に発光素子としての機能を破壊しない程度の格子歪みを導入することが困難であったからである。しかし、上記実施形態でも述べたように、バッファ層に用いられる酸化物材料の選択により格子定数をGaAsの格子定数(5.65Å)から小さいまたは大きいバッファ層を形成することで、GaAs/AlGaAs系の量子井戸構造においても歪みを導入して、発光波長がシフトした発光素子を実現することが可能となる。このような歪みの導入態様としては、GaAsより格子定数の小さな酸化物材料によりバッファ層を形成することにより圧縮歪みを導入する場合と、GaAsより格子定数の大きな酸化物材料によりバッファ層を形成することにより引張り歪みを導入する場合とがあるが、上述したアルカリ土類金属あるいは希土類金属の酸化物を用いることにより、いずれの態様をも実現することができる。
【図面の簡単な説明】
【図1】第1の実施形態に係るストライプレーザーを示す断面図。
【図2】第1の実施形態に係るストライプレーザーの製造工程を示す断面図。
【図3】化合物半導体結晶の格子定数とバンドギャップエネルギーとの関係を示す図。
【図4】バンドギャップエネルギーと発光波長との関係を示す図。
【図5】第2の実施形態に係る面発光型レーザーを示す断面図。
【図6】第2の実施形態に係る面発光型レーザーの製造工程を示す断面図。
【図7】第2の実施形態に係る面発光型レーザーの製造工程を示す断面図。
【符号の説明】
110 シリコン基板、120 バッファ層、122 n型コンタクト層、124 下部クラッド層、130 活性領域、132,136 バリア層、134 井戸層、142 上部クラッド層、144 p型コンタクト層
Claims (10)
- シリコン基板と、
前記シリコン基板上に形成され、希土類金属およびアルカリ土類金属の少なくとも一方を含む酸化物からなるバッファ層と、
前記バッファ層の上に形成された化合物半導体からなる発光部と、
を含み、
前記発光部は、
少なくとも下部クラッド層、上部クラッド層、および下部クラッド層と上部クラッド層との間に配置される活性領域を含む、発光素子。 - 請求項1において、
前記化合物半導体は、III族元素としてGa、In、およびAlの少なくともひとつを含み、かつV族元素としてAs、NおよびPの少なくとも1つを含むIII−V族化合物半導体である、発光素子。 - 請求項1または2において、
前記酸化物は、Zr、K、Ta、およびTiの少なくとも一つを構成元素に含む3元系以上の複合酸化物である、発光素子。 - 請求項1〜3のいずれかにおいて、
前記複合酸化物は、SrZrO3、BaTiO3、CaZrO3、BaZrO3、およびこれらの固溶体の少なくとも一つである、発光素子。 - 請求項1又は2において、
前記酸化物は、SrZrO3またはBaZrO3であり、
前記クラッド層は、InGaAsPまたはInGaAsからなり、
前記活性領域は、バリア層と井戸層とからなる量子井戸構造を有し、
前記バリア層は、InGaAsPまたはInGaAsからなり、
前記井戸層は、GaInNAsまたはInGaAsPからなる、発光素子。 - 請求項1又は2において、
前記酸化物は、BaTiO3であり、
前記クラッド層は、AlGaAsからなり、
前記活性領域は、バリア層と井戸層とからなる量子井戸構造を有し、
前記バリア層は、AlGaAsからなり、
前記井戸層は、GaAsからなる、発光素子。 - 請求項1又は2において、
前記酸化物は、CaZrO3であり、
前記クラッド層は、GaNAsからなり、
前記活性領域は、バリア層と井戸層とからなる量子井戸構造を有し、
前記バリア層は、GaNAsからなり、
前記井戸層は、GaInNAsまたはGaNAsからなる、発光素子。 - 請求項1〜7のいずれかにおいて、
前記発光部は、
さらに、下部クラッド層の下に配置される下部ミラー層と、上部クラッド層の上に配置される上部ミラー層と、を含む、発光素子。 - シリコン基板上に希土類金属およびアルカリ土類金属の少なくとも一方を含む酸化物からなるバッファ層を形成すること、
前記バッファ層の上に化合物半導体を結晶成長することにより下部クラッド層、活性領域、および上部クラッド層を順次積層して発光部を形成すること、
を含む、発光素子の製造方法。 - シリコン基板上に希土類金属およびアルカリ土類金属の少なくとも一方を含む酸化物からなるバッファ層を形成すること、
前記バッファ層の上に化合物半導体を結晶成長することにより下部ミラー層、下部クラッド層、活性領域、上部クラッド層、および上部ミラー層を順次積層して発光部を形成すること、
を含む、発光素子の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003058979A JP2004273562A (ja) | 2003-03-05 | 2003-03-05 | 発光素子およびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003058979A JP2004273562A (ja) | 2003-03-05 | 2003-03-05 | 発光素子およびその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004273562A true JP2004273562A (ja) | 2004-09-30 |
JP2004273562A5 JP2004273562A5 (ja) | 2005-10-06 |
Family
ID=33121954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003058979A Pending JP2004273562A (ja) | 2003-03-05 | 2003-03-05 | 発光素子およびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004273562A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010165736A (ja) * | 2009-01-13 | 2010-07-29 | Sumitomo Electric Ind Ltd | Iii−v化合物半導体を成長する方法 |
KR101039982B1 (ko) | 2010-03-18 | 2011-06-09 | 엘지이노텍 주식회사 | 발광 소자 및 그 제조방법 |
JP2020017573A (ja) * | 2018-07-23 | 2020-01-30 | 住友電気工業株式会社 | 垂直共振型面発光レーザ |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11260835A (ja) * | 1997-07-11 | 1999-09-24 | Tdk Corp | 電子デバイス用基板 |
JP2000332229A (ja) * | 1999-05-18 | 2000-11-30 | Canon Inc | Si基板上の光電融合デバイス構造及びその製造方法 |
WO2001059835A1 (en) * | 2000-02-10 | 2001-08-16 | Motorola, Inc. | Semiconductor devices |
JP2003234502A (ja) * | 2002-02-07 | 2003-08-22 | Sanyo Electric Co Ltd | 半導体の形成方法および半導体素子 |
-
2003
- 2003-03-05 JP JP2003058979A patent/JP2004273562A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11260835A (ja) * | 1997-07-11 | 1999-09-24 | Tdk Corp | 電子デバイス用基板 |
JP2000332229A (ja) * | 1999-05-18 | 2000-11-30 | Canon Inc | Si基板上の光電融合デバイス構造及びその製造方法 |
WO2001059835A1 (en) * | 2000-02-10 | 2001-08-16 | Motorola, Inc. | Semiconductor devices |
JP2003234502A (ja) * | 2002-02-07 | 2003-08-22 | Sanyo Electric Co Ltd | 半導体の形成方法および半導体素子 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010165736A (ja) * | 2009-01-13 | 2010-07-29 | Sumitomo Electric Ind Ltd | Iii−v化合物半導体を成長する方法 |
KR101039982B1 (ko) | 2010-03-18 | 2011-06-09 | 엘지이노텍 주식회사 | 발광 소자 및 그 제조방법 |
US8173469B2 (en) | 2010-03-18 | 2012-05-08 | Lg Innotek Co., Ltd. | Fabrication method of light emitting device |
JP2020017573A (ja) * | 2018-07-23 | 2020-01-30 | 住友電気工業株式会社 | 垂直共振型面発光レーザ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3854560B2 (ja) | 量子光半導体装置 | |
JP3830051B2 (ja) | 窒化物半導体基板の製造方法、窒化物半導体基板、光半導体装置の製造方法および光半導体装置 | |
US7394104B2 (en) | Semiconductor optical device having current-confined structure | |
JP5153769B2 (ja) | 電子ブロック層を備えた窒化ガリウム・ベース半導体デバイス | |
EP1840978A1 (en) | Semiconductor optical element having wide light spectrum emission characteristics, method for fabricating the same, and external resonator type semiconductor laser | |
JPH10145003A (ja) | 半導体レーザおよび該半導体レーザを用いた光通信システム | |
US9166373B1 (en) | Laser devices having a gallium and nitrogen containing semipolar surface orientation | |
JPH09116225A (ja) | 半導体発光素子 | |
JP2006294818A (ja) | 化合物半導体装置の製造方法 | |
JP5224312B2 (ja) | 半導体レーザダイオード | |
JP2000277867A (ja) | 半導体レーザ装置 | |
JP2004273562A (ja) | 発光素子およびその製造方法 | |
JPH11204875A (ja) | 面発光レーザとそれを用いたレーザ光送信モジュール及び応用システム | |
JP3894978B2 (ja) | 導波路型半導体レーザ素子の製造方法 | |
JPH10200207A (ja) | 半導体レーザの製造方法 | |
JP2002094187A (ja) | 半導体レーザ及びそれを用いた光通信システム | |
JP2004221428A (ja) | 光半導体素子およびその製造方法 | |
JP2556270B2 (ja) | 歪量子井戸型半導体レーザ | |
JPH06204599A (ja) | 半導体レーザおよびその製造方法 | |
JPH09181398A (ja) | 半導体発光素子 | |
JP2002231704A (ja) | 半導体の製造方法及び半導体装置の製造方法 | |
JP2605637B2 (ja) | 垂直共振器型半導体レーザ | |
JPH11126945A (ja) | 歪み半導体結晶の製造方法、これを用いた半導体レーザの製造方法 | |
JPH0936472A (ja) | 半導体レ−ザ素子 | |
JPH11330616A (ja) | 化合物半導体層の成長方法および半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050517 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050517 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20051221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090526 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090805 |