JP2004273526A - レチクル作製方法、レチクル及び荷電粒子線露光方法 - Google Patents

レチクル作製方法、レチクル及び荷電粒子線露光方法 Download PDF

Info

Publication number
JP2004273526A
JP2004273526A JP2003058501A JP2003058501A JP2004273526A JP 2004273526 A JP2004273526 A JP 2004273526A JP 2003058501 A JP2003058501 A JP 2003058501A JP 2003058501 A JP2003058501 A JP 2003058501A JP 2004273526 A JP2004273526 A JP 2004273526A
Authority
JP
Japan
Prior art keywords
pattern
reticle
divided
drawn
cad data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003058501A
Other languages
English (en)
Inventor
Sumuto Shimizu
澄人 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003058501A priority Critical patent/JP2004273526A/ja
Publication of JP2004273526A publication Critical patent/JP2004273526A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】比較的容易な方法でスティッチングマージンを確保してパターン接続精度を向上させることのできるステンシルレチクル作製方法等を提供する。
【解決手段】コンプリメンタリ分割した線分パターン101A、101Bについて、CADデータを作製する際、一次データと二次データとに分ける。一次データは、各パターンの実際の端部から一定量だけ短い一次パターン110を表し、二次データは、この短くした分だけの二次パターン120を表す。電子線描画装置では、一次パターンを通常のパターン形成時のビーム条件で描画し、二次パターンを所定量デフォーカスさせて描画する。これにより、二次パターン120の像120´は全体がデフォーカスされて描画され、ペンシル型パターンに似たパターン形状となる。従って、CADデータ量をあまり増大させず、比較的簡単な作用でペンシル型パターンを作製することができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、電子線露光用のレチクルの作製方法等に関する。特には、ウェハ上で高精度にパターンを接続できるようにレチクルを作製する方法等に関する。
【0002】
【従来技術】
近年、0.1μmルール以降の微細パターン形成技術の開発が活発に行われている。その中で、従来の直接描画型では不可能であった、量産対応も可能なスループットを有する方法として、電子線やイオンビームのような荷電粒子線を利用する縮小投影露光法が注目されており、65nmルールへの適用も期待されている。
【0003】
この方法の特徴の一つとして、比較的広い面積に対応するレチクルパターンが形成されたマスク(レチクル)を予め用意し、そのパターンを一括転写して量産性を確保している。この技術は、EPL(Electron beam Projection Lithography)と呼ばれる。電子線は、光と異なり物質内では必ず散乱を引き起こしてしまうため、マスクは、電子線転写部が開口しているステンシル型や、極薄のメンブレン上に散乱体を配して電子転写部が形成されたメンブレン型の構造が使用される。
【0004】
以下、EPLを用いた露光装置の概要と、同露光装置に使用されるマスクの構造の一例を図面を参照しつつ説明する。ここでは、パターンの全体領域を多数の小領域に分割し、各小領域毎にパターンを順次転写し、感応基板上で各パターン小領域を繋げて全パターンを転写する分割転写方式の電子線投影露光装置について説明する。
【0005】
図10は、分割転写方式の電子線投影露光装置の光学系全体における結像関係及び制御系の概要を示す図である。
光学系の最上流に配置されている電子銃1は、下方に向けて電子線を放射する。電子銃1の下方には2段のコンデンサレンズ2、3が備えられており、電子線は、これらのコンデンサレンズ2、3によって収束されブランキング開口7にクロスオーバーC.O.を結像する。
【0006】
二段目のコンデンサレンズ3の下には、矩形開口4が備えられている。この矩形開口(照明ビーム成形開口)4は、レチクル(マスク)10の一つのサブフィールド(露光の1単位となるパターン小領域)を照明する照明ビームのみを通過させる。この開口4の像は、レンズ9によってレチクル10に結像される。
【0007】
ビーム成形開口4の下方には、ブランキング偏向器5が配置されている。同偏向器5は、必要時に照明ビームを偏向させてブランキング開口7の非開口部に当て、ビームがレチクル10に当たらないようにする。
ブランキング開口7の下には、照明ビーム偏向器(主偏向器)8が配置されている。この偏向器8は、主に照明ビームを図10の横方向(X方向)に順次走査して、照明光学系の視野内にあるレチクル10の各サブフィールドの照明を行う。偏向器8の下方には、照明レンズ9が配置されている。照明レンズ9は、レチクル10上にビーム成形開口4を結像させる。
【0008】
レチクル10は、実際には(図11を参照しつつ後述)光軸垂直面内(X−Y面)に広がっており、多数のサブフィールドを有する。レチクル10上には、全体として一個の半導体デバイスチップをなすパターン(チップパターン)が形成されている。もちろん、複数のレチクルに1個の半導体デバイスチップをなすパターンを分割して配置しても良い。
【0009】
レチクル10は移動可能なレチクルステージ11上に載置されており、レチクル10を光軸垂直方向(XY方向)に動かすことにより、照明光学系の視野よりも広い範囲に広がるレチクル上の各サブフィールドを照明することができる。
レチクルステージ11には、レーザ干渉計を用いた位置検出器12が付設されており、レチクルステージ11の位置をリアルタイムで正確に把握することができる。
【0010】
レチクル10の下方には投影レンズ15及び19並びに偏向器16が設けられている。レチクル10の1つのサブフィールドを通過した電子線は、投影レンズ15、19、偏向器16によってウェハ23上の所定の位置に結像される。ウェハ23上には、適当なレジストが塗布されており、レジストに電子線のドーズが与えられ、レチクル上のパターンが縮小されてウェハ23上に転写される。
【0011】
レチクル10とウェハ23の間を縮小率比で内分する点にクロスオーバーC.O.が形成され、同クロスオーバー位置にはコントラスト開口18が設けられている。同開口18は、レチクル10の非パターン部で散乱された電子線がウェハ23に到達しないよう遮断する。
【0012】
ウェハ23の直上には反射電子検出器22が配置されている。この反射電子検出器22は、ウェハ23の被露光面やステージ上のマークで反射される電子の量を検出する。例えばレチクル10上のマークパターンを通過したビームでウェハ23上のマークを走査し、その際のマークからの反射電子を検出することにより、レチクル10とウェハ23の相対的位置関係を知ることができる。
【0013】
ウェハ23は、静電チャック(図示されず)を介して、XY方向に移動可能なウェハステージ24上に載置されている。上記レチクルステージ11とウェハステージ24とを、互いに逆の方向に同期走査することにより、投影光学系の視野を越えて広がるチップパターン内の各部を順次露光することができる。なお、ウェハステージ24にも、上述のレチクルステージ11と同様の位置検出器25が装備されている。
【0014】
上記各レンズ2、3、9、15、19及び各偏向器5、8、16は、各々のコイル電源制御部2a、3a、9a、15a、19a及び5a、8a、16aを介してコントローラ31によりコントロールされる。また、レチクルステージ11及びウェハステージ24も、ステージ制御部11a、24aを介して、コントローラ31により制御される。ステージ位置検出器12、25は、アンプやA/D変換器等を含むインターフェース12a、25aを介してコントローラ31に信号を送る。また、反射電子検出器22も同様のインターフェース22aを介してコントローラ31に信号を送る。
【0015】
コントローラ31は、ステージ位置の制御誤差や投影ビームの位置誤差を把握し、その誤差を像位置調整偏向器16で補正する。これにより、レチクル10上のサブフィールドの縮小像がウェハ23上の目標位置に正確に転写される。そして、ウェハ23上で各サブフィールド像が繋ぎ合わされて、レチクル上のチップパターン全体がウェハ上に転写される。
【0016】
次に、分割転写方式の電子線投影露光に用いられるレチクルの構造の詳細例について、図11を参照しつつ説明する。
図11は、電子線投影露光用のレチクルの構造例を模式的に示す図である。図11(A)は全体の平面図であり、図11(B)は一部の斜視図であり、図11(C)は一つの小メンブレン領域の平面図である。
【0017】
図11(A)には、レチクル10における全体のパターン分割配置状態が示されている。同図中に多数の正方形41で示されている領域が、一つのサブフィールドに対応したパターン領域を含む小メンブレン領域(厚さ0.1μm〜数μm)である。図11(C)に示すように、小メンブレン領域41は、中央部のパターン領域(サブフィールド)42と、その周囲の額縁状の非パターン領域(スカート43)とからなる。サブフィールド42は転写すべきパターンの形成された部分である。スカート43はパターンの形成されてない部分であり、照明ビームの縁の部分が当たる。
【0018】
一つのサブフィールド42は、現在検討されているところでは、レチクル上で1mm角程度の大きさを有する。投影の縮小率は1/4であり、サブフィールドがウェハ上に縮小投影された投影像の大きさは、0.25mm角である。小メンブレン領域41の周囲の直交する格子状のグリレージと呼ばれる部分45は、レチクルの機械強度を保つための、例えば厚さ0.5〜1mm程度の梁である。グリレージ45の幅は、例えば0.1mm程度である。なお、スカート43の幅は、例えば0.05mm程度である。
【0019】
図11(A)に示すように、図の横方向(X方向)に多数の小メンブレン領域41が並んで一つのグループ(エレクトリカルストライプ44)をなし、そのようなエレクトリカルストライプ44が図の縦方向(Y方向)に多数並んで1つのメカニカルストライプ49を形成している。エレクトリカルストライプ44の長さ(メカニカルストライプ49の幅)は照明光学系の偏向可能視野の大きさによって制限される。
【0020】
メカニカルストライプ49は、X方向に並列に複数存在する。
隣り合うメカニカルストライプ49の間にストラット47として示されている幅の太い梁は、レチクル全体のたわみを小さく保つためのものである。ストラット47はグリレージ45と一体である。
【0021】
現在有力と考えられている方式によれば、1つのメカニカルストライプ(以下単にストライプと呼ぶ)49内のX方向のサブフィールド42の列(エレクトリカルストライプ44)は電子線偏向により順次露光される。一方、ストライプ49内のY方向の列は、連続ステージ走査により順次露光される。
【0022】
上述のマスクは、一般的に、SOI(Silicon On Insulator)を用いて以下のような方法で作製される。
図12は、一般的なSOIウェハを用いたマスク作製方法を模式的に示す図である。
まず、図12(A)に示すSOIウェハ70を準備する。SOIウェハ70は、シリコン支持基板71と、同基板上に形成された酸化シリコン層72と、同層上に形成された薄膜シリコン層73とを有する。メンブレンとなる薄膜シリコン層73には、応力調整のためにイオンが注入されている。
【0023】
次に、図12(B)に示すように、シリコン支持基板71の下面に、レジスト又は酸化シリコン層74を形成する。そして、図12(C)に示すように、レジスト又は酸化シリコン層74を、ストラット(図12(D)、(E)の71a、71b、71c)を形成する部分のみにレジスト又は酸化シリコン層74a、74b、74cが残るようにパターニングする。
【0024】
次に、図12(D)に示すように、このパターンとなるレジスト又は酸化シリコン層74a、74b、74cをマスクとして、かつ、酸化シリコン層72をエッチングストップ層として、シリコン支持基板71をドライエッチングし、ストラット71a、71b、71cを形成する。最後に、図12(E)に示すように、薄膜シリコン層72をエッチングストップ層として酸化シリコン層72をウェットエッチングにより除去し、さらに、レジスト又は酸化シリコン層74を除去する。このようにしてマスクブランクス80が作製される。
【0025】
そして、このマスクブランクス80のシリコン薄膜層73の上面にレジスト膜を塗布し、このレジスト膜に電子線描画装置などを使用してパターンを露光して現像する。これにより、シリコン薄膜層73にレジストパターンが形成される。次いで、このレジストパターンをマスクとしてシリコン薄膜層73をエッチングして、シリコンメンブレン(シリコン薄膜層)にステンシルパターンを形成する。
【0026】
ところで、このようなステンシル型パターンでは、パターンの全方位あるいは3方位がメンブレンによって拘束されないパターン(例えば、孔開き部の中央に島状の非孔開き部が形成された島状パターン、リーフ形状パターン、舌形状パターン、片持ちパターンなど)は、パターン形成ができないか、もしくは、パターンの線幅の制御や、位置精度の制御が難しくなるという問題がある。これは、非孔開き部となる膜の部分を、重力に対して十分にサポートできないため、パターン部が重力方向へ曲がって変形しやすくなるためである。
また、パターンの長さが基準長さ(例えば数十μm)より長い場合も、メンブレンの応力によるパターンの曲がりや自重による歪などが予想される。
【0027】
そこで、パターンを2つ以上に分割して別々のパターン領域に形成し、分割されたパターンを別々に感応基板上に投影露光し、ウェハ上で繋ぎ合わせる方法がある。この方法は、パターンを相補的に分割するため、相補分割(コンプリメンタリ分割)と呼ばれている。
【0028】
図13は、コンプリメンタリ分割の一例を示す図であり、図13(A)は島状パターン、図13(B)は長い線分のパターンの場合である。
図13(A)のパターン領域100には、孔開き部101の中央に島状の非孔開き部102が形成された島状パターンが形成されている。この場合は、島状の非孔開き部102の全方位(周り)を囲む孔開き部101を分割線Lで2つ(101A、101B)に分割する。そして、図13(A)の右側の図に示すように、分割した各孔開き部101A、101Bを別々のパターン領域100−1、100−2に形成する。
【0029】
図13(B)のパターン領域100には、長い線分パターン101が形成されている。この場合は、線分パターン101を3本の分割線L1、L2、L3で複数個(この例では4個)の線分101A、101B、101C、101Dに分割する。そして、一つのパターン領域100−1に、交互に位置する線分101A、101Cを配置し、別のパターン領域100−2に、交互に位置する線分101B、101Dを配置する。
【0030】
このように分割されたパターンは、互いに隣接して露光されてウェハ上で繋ぎ合わされ、パターン全体がウェハ上に形成される。この際、マスク上で分割されたパターンの端部をウェハ上で高精度に接続する必要がある。パターン接続の精度は、外乱磁場や、コンタミ、ビームの揺れやドリフトに起因するビームの安定性や、ステージの位置制御精度、ビーム補正精度、サブフィールド内の像面湾曲や歪などの多くのパラメータに影響を受ける。このため、パターンのスティッチング精度(繋ぎ合わせ精度)は±15nm程度となり、ウェハ上のパターンには接続部での太りや細りなどが起こりやすくなる。
【0031】
図14は、コンプリメンタリ分割を行ったパターンをウェハ上で繋ぎ合わせたパターン接続部の一例を示す図である。
図14(A)に示すように、パターン101Aとパターン101Bを接続した接続部105が細くなった場合は、同部で十分な導通が得られず、断線するおそれもある。
一方、図14(B)に示すように、パターン接続部105が太った場合は、太り部分が隣接する他のパターン部に接続して導通してしまうようなおそれもある。
【0032】
そこで、このスティッチング精度を上げるための方法が、従来より提案されている。このような提案として、分割されたパターンの端部の形状を凸型とする案が報告されている(例えば、特許文献1)。
図15は、特許文献1に報告されているパターンの端部を凸型に加工する例を示す図である。
この例では、図15(A)に示すように、対となるパターン101A、101Bの端部にそれぞれ凸部107A、107Bが形成されている。凸部107の幅W2は、各パターンの幅W1より狭い。パターン101A、101Bをウェハ上で繋ぎ合わせる際には、図15(B)に示すように、凸部107の一部を重ね合わせる。重ね合わされた部分107C(図の斜線の部分)では、電子ビームの照射が重複することになり、ドーズ量が増加する。その結果、実際にはパターンの線幅より狭い重ね合わせ部107Cでパターンの幅が太り、パターン接続部の線幅の変化を小さくできる。
【0033】
この方法によれば、スティッチングマージン(対をなすパターン端部の許容範囲内の線幅方向及び長さ方向の位置決め誤差)を確保することができ、パターン接続部の線幅変化を小さくできる。
【0034】
また、分割されたパターンの端部の形状を、先端に行くに従って細くなるペンシル型とする案もある。
図16は、パターンの端部をペンシル型(先細り型)に加工する例を示す図である。
この例では、パターン101Aの端部107Aを2段のペンシル型に加工している。このようなペンシル型形状によれば、上記の例以上の効果を得ることができるとされている。
【0035】
また、スティッチングマージンを稼ぐことができる理想形状を求める方法も提案されている。このような方法としては、例えば、特許文献2(特開2001−77000号)では、パターンの分割線とエッジとの2つの交点を互いにパターンの長手方向に離し、分割されたパターンの継ぎ目部分が、分割によって形成された2つのパターンの両方に含まれるように、分割されるパターンの形状を決定し、継ぎ目部分の少なくとも一部に二重露光される部分を設ける。
【0036】
他に、長い線状パターンを複数の線状パターンに分割し、分割されたパターンの端部に、パターン転写装置の分解能以下の細い幅の小帯からなるつなぎパターンを配置する方法(例えば、特許文献3参照)や、2つに分割した原版のサブフィールドの境界を所定量ずらし、サブフィールド境界には露光パターンがかからないようにし、2つの原版を各々のサブフィールドの投影像であるイメージフィールドの位置が所定量分だけずれるように露光する方法(例えば、特許文献4参照)もある。
【0037】
【特許文献1】
特開2001−230182号公報
【特許文献2】
特開2001−77000号公報
【特許文献3】
特開平11−204423号公報
【特許文献4】
特開2000−124112号公報
【0038】
【発明が解決しようとする課題】
上述のペンシル型や凸型のパターンは、レチクル設計図形データ(CAD描画指令データ)に基づいてレチクル基板上にEB描画により形成される。先端に行くに従って細くなるペンシル型図形(図16参照)を描画するには、パターンを構成するドットサイズを非常に微細にせざるを得ず、その結果画素数が多くなりパターンのデータ量が増大する。例えば、65nmノードを考慮した場合、縮小倍率を4倍とすると、レチクル上のパターンの寸法は、65×4=260nm程度となる。ペンシル型の先端の幅を40nmとすると、画素数は260/40=6.5倍となる。全データ量は面積で作用するため、6.5の二乗で約40倍となる。そのため、データの処理時間も40倍を要してしまい、コストも増大し、現実的ではない。
【0039】
一方、現行のKrF等の光リソグラフィーにおいても、パターンの端部が丸まったり、短くなるという問題が生じている。このため、レチクルのパターン端部に、セリフパターンとして微小な補正パターンを設けている。この補正パターンにおいても、上記と同じく、画素寸法が微細化し、CAD描画データが増大するという問題を生じている。
【0040】
本発明は上記の課題に鑑みてなされたものであって、比較的容易な方法でスティッチングマージンを確保してパターン接続精度を向上させることのできるステンシルレチクル作製方法等を提供することを目的とする。
【0041】
【課題を解決するための手段】
上記の問題点を解決するため、本発明のレチクル作製方法は、 感応基板上に転写すべき原版パターンを複数のレチクル上又は一枚のレチクルの複数の領域に分割して形成し、分割した前記パターンを前記感応基板上で繋ぎ合わせるように露光転写する露光方法に用いるレチクルを作製する際に、 各々のレチクルのパターン形状の設計データ(CADデータ)を作製し、 レジストを塗布したレチクル基板上に、前記CADデータに即したパターンを描画し、 その後エッチング等の処理を行って前記原版パターンを形成するレチクルの作製方法であって、前記感応基板上で繋ぎ合わせることとなる分割したパターンの端部を所定量デフォーカスして描画することを特徴とする。
【0042】
パターン端部を所定量デフォーカスして描画することにより、レチクル上では、パターン端部を先細り形状に形成することができる。この際、パターン端部の設計データを一次データと二次データに分け、一次データについては電子線を通常通り照射し、二次データについては電子線を所定量デフォーカスして照射する。電子線をデフォーカスする作業はEB描画装置のフォーカスコイルを制御することにより比較的容易に行うことができる。この方法によれば、設計データの容量をあまり増大させずに、パターン端部を先細り形状に形成してスティッチングマージンを稼ぐことができる。
【0043】
本発明においては、 前記CADデータに即したパターンをデフォーカスさせずに描画するとともに、 分割したパターンの端部の先に、該端部の線幅を超えない幅の領域を、デフォーカスされたビームを用いて適当なドーズで露光することとできる。
または、 前記CADデータに即したパターンをデフォーカスさせずに描画するとともに、 分割したパターンの端部の先の凸部領域を、デフォーカスされたビームを用いて適当なドーズ量で露光することとできる。
または、 前記CADデータに即したパターンをデフォーカスさせずに描画するとともに、 分割したパターンの端部、及び、該端部の先の凸部領域を、デフォーカスされたビームを用いて適当なドーズで露光することとできる。
【0044】
または、 前記CADデータに即したパターン、及び、分割したパターンの端部の先の凸部領域を、デフォーカスさせずに描画するとともに、 前記パターンの端部、及び、前記凸部領域を、デフォーカスされたビームを用いて適当なドーズで露光することとできる。
または、 前記CADデータに即したパターンをデフォーカスさせずに描画するとともに、 分割したパターンの端部の幅方向中央部における内側の、該端部の線幅を超えない幅の領域を、デフォーカスされたビームを用いて適当なドーズで露光することとできる。
または、 前記CADデータに即したパターンをデフォーカスさせずに描画するとともに、 分割したパターンの端部の幅方向中央部における内側及び外側の、該端部の線幅を超えない幅の領域を、デフォーカスされたビームを用いて適当なドーズで露光することとできる。
【0045】
以上のような方法でも、比較的簡単にパターン端部を先細りのペンシル型に形成することができる。
【0046】
本発明のレチクルは、 感応基板上に転写すべき原版パターンが複数の領域に分割して形成されたレチクルであって、 前記感応基板上で繋ぎ合わせることとなる分割したレチクル上のパターンの端部が所定量デフォーカスして描画されていることを特徴とする。
【0047】
本発明の露光方法は、 感応基板上に転写すべき原版パターンを複数のレチクル上又は一枚のレチクルの複数の領域に分割して形成し、分割した前記パターンを前記感応基板上で繋ぎ合わせるように露光転写する露光方法であって、 前記感応基板上で繋ぎ合わせることとなる分割したレチクル上のパターンの端部を所定量デフォーカスして描画することを特徴とする。
パターン接続部の線幅変化を小さくできるため、パターン形成精度を向上できる。
【0048】
【発明の実施の形態】
以下、図面を参照しつつ説明する。
ここでは、EPL露光装置を用いて汎用メモリパターンのゲート層を作製するために、同ゲート層を構成するワード線をコンプリメンタリ分割する方法について述べる。
【0049】
図8(A)は、汎用メモリパターンのゲート層の平面図、図8(B)は、コンプリメンタリ分割されたパターンの一部の平面図である。
汎用メモリパターンのゲート層用のパターン300は、図8(A)に示すように、直線状の線分パターン101(一例で長さが150〜200μm、幅が65nm)が複数本平行に配列されたパターンである。このように長い線分パターン101を一つのパターン領域に配置すると、メンブレンの応力によるパターンの曲がりや自重による歪などが生じることがある。このため、図13(B)で説明したように、一つの線分パターン101を所定の長さ(一例で30μm)に分割する。そして、図8(B)に示すように、分割されたパターン部101A、101Bを別々のパターン領域100−1、100−2に順に交互に配置する(図8(B)では一部のみ図示)。
【0050】
次に、本発明の実施の形態に係るレチクルを作製する方法を説明する。
レチクルブランクスを作製する方法は、基本的には図12に示した方法と同じであり、説明を省略する。ここでは、図12に示したレチクルブランクス80を用いて、本発明のレチクル作製方法の実施の形態に係るシリコンメンブレン(シリコン薄膜層)にステンシルパターンを形成する方法について説明する。
【0051】
まず、シリコンメンブレン上に、EB描画対応レジストを塗布する。レジストには、ポジ型化学増幅レジストOEBR−CAP209を使用できる。レジストは、シリコンメンブレン上に膜厚が300nmとなるようにスピン塗布した。その後、ベーク処理を行い、電子線描画装置内に搬送して、パターンを描画する。この際、パターン形状に応じたデータ(CADデータ)を装置に入力する。
【0052】
次に、レチクル上にパターンを電子線描画装置で描画する方法について説明する。
まず、電子線描画装置の概要を説明する。
図9は、電子線描画装置の一例の構成を模式的に示す図である。
この電子線描画装置200は、繰り返しの基本となるパターン(要素図形パターン)の拡大パターンを形成したステンシルマスクを用い、その要素図形パターンについては、感応基板上にそのパターンを縮小転写することにより、パターンを描画する。そして、ステンシルマスクに用意されていないパターンについては、ステンシルパターンに可変成形用のパターンを設けている。この可変成形用のパターンとアパーチャの開口パターンを組み合わせることにより、断面形状を自由に変えられる可変成形ビームを発生できる。
【0053】
電子線描画装置200の最上流には電子銃201が配置されている。電子銃201は下方に向けて電子線を射出する。電子銃201の下方には、ブランキング偏向器202、コンデンサレンズ203、第1成形アパーチャ204が配置されている。電子線はコンデンサレンズ203で集束されて第1成形アパーチャ204の開口パターンを照射する。
【0054】
第1成形アパーチャ204の下方には、第1成形レンズ205、電磁偏向器206、第2成形アパーチャ207、第2成形レンズ208、ステンシルマスク209が配置されている。第1成形アパーチャ204の開口パターンに照射された電子線による像は、第1成形レンズ205により、第2成形アパーチャ207上に結像する。このとき、偏向器206の作用により、第1成形アパーチャ204の像が、第2成形アパーチャ207の複数の開口パターンの内の任意の1つに結像する。
ここで、第2成形アパーチャ207には、可変成形ビーム用の正方形の開口パターンが複数形成されている。ステンシルマスク209には、繰り返しの基本となるパターンの拡大パターンや、可変成形ビーム用の正方形の開口パターンなどが複数形成されている。
【0055】
第2成形アパーチャ207の像は第2成形レンズ208により、ステンシルマスク209の一つの小領域に結像する。ここで、偏向器210により、第2成形アパーチャ207の像を光軸に垂直な方向に偏向させて、ステンシルマスク209の小領域の位置を選択する。
【0056】
ステンシルマスク209の下方には、制限開口211、縮小レンズ212、副偏向器213、主偏向器214、対物レンズ215が配置されている。レチクル217は、対物レンズ215の下方に配置されている。ステンシルマスク209の一つの小領域を通過した電子線は、縮小レンズ212及び対物レンズ215によりレチクル217上に集束される。ここで、第2成形アパーチャ207の選択された小領域のパターン像と、ステンシルマスク209の選択された小領域のパターン像とが重なって得られるパターンが、レチクル217上に縮小して転写される。副偏向器213及び主偏向器214は、電子線を偏向して、レチクル217上の所望の位置に次々とパターンを繋ぎ合わせながら転写する。フォーカスコイル216は、レチクル217上での電子線の焦点を調整する。
【0057】
次に、本発明の第1の実施の形態に係るレチクル作製方法における設計パターンについて説明する。なお、以下では分割部(接続部)のみを説明する。
図1は、本発明の第1の実施の形態に係るレチクル作製方法における設計パターン形状を説明する図であり、図1(A)は、パターンの分割状態、図1(B)は、露光後のパターン形状を示す。
ここでは、分割線Lでコンプリメンタリ分割した線分パターン101A、101Bについて、設計データ(CADデータ)を作製する。このCADデータは、一次データと二次データとを含む。一次データは、繋ぎ合わせるべきパターン101A、101Bの実際の端部から一定量(一例で100nm)だけ短い一次パターン110を表すデータである。そして、二次データとして、この短くした分(一例で100nm)だけの二次パターン120を表すデータを用意する。一次データと二次データは、それぞれ別のデータとして電子線描画装置に送られる。
【0058】
電子線描画装置では、まず、一次データを入力し、通常のパターン形成時のビーム条件(ビーム径10nm以下など)で一次パターン110を描画する。その後、二次データを入力して、通常のビーム条件ではなく、所定量デフォーカスさせて二次パターン120を描画する。デフォーカスさせるには、例えば、電子線描画装置200のフォーカスコイル216を通常条件から適当量ずらしてビームブラーを制御する。例えば、通常条件では10nm程度のビームブラーを、50〜150nm程度とする。
【0059】
このように描画することにより、図1(B)に示すように、一次パターン110の像110´はほぼ設計通りのサイズに描画されるが、二次パターン120の像120´は全体がデフォーカスして描画される。このため、レチクル上では、パターン全体は先端がデフォーカスした形状に形成されて、上述したようなペンシル型パターン(図16参照)に似たパターン形状となる。このため、ペンシル型パターンの場合と同様に、スティッチングマージンを稼ぐことが可能になり、繋ぎ合わせ精度を向上できる。さらに、この際、ペンシル型パターンのようにCADデータ量は増大せず、比較的簡単な作用で作製することができる。
【0060】
なお、パターン先端部のデフォーカスした部分の形状は、ビームブラーの量を選択することにより適宜に変更できる。例えば、先端部のRが大きい方が良い場合は、ビームブラーを大きくし、先端部が少々丸まる程度で良ければ、ビームブラーを小さくする。ビームブラー量は、上述のようにフォーカスコイルの制御により調整できる。
【0061】
次に、以上のように作製されたレチクルを描画装置から取出し、所定のプロセス(PEB、現像、リンス)で処理した後、ドライエッチングしてメンブレンにパターン転写を行う。エッチング終了後、アッシングを行い、レジスト残渣を剥離する。その後、必要に応じて洗浄し、電子線露光装置に搭載して露光を行った。
【0062】
露光においては、まず、露光用ウェハを用意する。最初に、8インチシリコン基板に、必要に応じて所定の表面処理を施し、コーターに搬送した。同コーターでは、初めにHMDS処理を施し、その後レジスト塗布、PBを行った。レジストとして住友化学株式会社製の化学増幅型ネガ型レジストNEBシリーズを使
用し、レジスト厚は250nmとした。露光ドーズ量は30μC/cmとして、所定の方法で露光した。
【0063】
露光後、露光装置から搬出し、所定のレジストプロセス(PEB、現像、リンス)を経た後、CD−SEMにてパターンの測長検査を行った。分割されたパターンの繋ぎ合わせ部を評価したところ、CDが若干増大していたが、±10%の誤差内であり、良好な繋ぎ合わせ精度を得られた。
【0064】
図2は、本発明の第2の実施の形態に係るレチクルの作製方法における設計パターン形状を説明する図であり、図2(A)は、パターンの分割状態、図2(B)は、露光後のパターン形状を示す。
この例のCADデータの一次パターン110は、繋ぎ合わせるべきパターンの実際の形状のままのパターンである。そして、二次パターン120は、分割したパターンの端部の先に位置し、同パターンと同じ線幅で、所定の長さ(一例で100〜500nm)の領域の形状のパターンである。
【0065】
電子線描画装置での描画方法は上述の例と同じであり、まず、一次パターン110を、通常のパターン形成時のビーム条件で描画する。その後、二次パターン120を、通常のビーム条件ではなく、所定量デフォーカスさせて描画する。デフォーカス方法は上述の方法と同様に、フォーカスコイルを通常条件から適当量ずらしてビームブラーを制御する。例えば、通常条件では10nm程度のビームブラーを、50〜100nm程度とする。
【0066】
このような露光によって、レチクル上でのパターン端部の形状は、図2(B)に示すように、一次パターン110の像110´はほぼ設計通りのサイズに描画されるが、二次パターン120の像120´は全体がデフォーカスして描画され、全体として先端が丸まった先細の形状となる。この例においても、上述と同様の方法でレチクルを作製し、線幅の評価を行ったところ、CDが若干増大していたが、±10%の誤差内であり、良好な繋ぎ合わせ精度を得ることができた。
【0067】
図3は、本発明の第3の実施の形態に係るレチクルの作製方法における設計パターン形状を説明する図であり、図3(A)は、パターンの分割状態、図3(B)は、露光後のパターン形状を示す。
この例のCADデータの一次パターン110は、繋ぎ合わせるべきパターンの実際の形状のままのデータである。そして、二次パターン120は、分割したパターンの端部の先に位置し、同パターンより狭い線幅(一例で、実際のレチクル上パターンの線幅の1/3)で、所定の長さ(一例で、実際のレチクル上パターンの線幅の1/3)の凸部となる領域のパターンである。
【0068】
電子線描画装置では、まず、一次パターン110を、通常のパターン形成時のビーム条件で描画する。その後、二次パターン120を、所定量デフォーカスさせて描画する。デフォーカス量は、例えば、通常条件では10nm程度のビームブラーが、50〜100nm程度となる量である。
【0069】
この例においても、図3(B)に示すように、全体として先端が丸まった先細の形状となり、ペンシル型に似たパターンを形成できる。この例では、二次パターンである凸部となる領域を線幅を、実際のレチクル上パターンの1/3としており、画素寸法は、図16に示すペンシル型を作成するための画素の寸法よりかなり大きいといえるが、比較的簡単な作業でより良好なペンシル型を形成することができる。
【0070】
図4は、本発明の第4の実施の形態に係るレチクルの作製方法における設計パターン形状を説明する図である。
この例のCADデータの一次パターン110は、繋ぎ合わせるべきパターンの実際の形状のままのデータである。そして、二次パターン120は、パターンの実際の端部から一定量(一例で400nm)だけ内側に短い部分120aと、パターン端部の先の、同パターンより狭い線幅(一例で、実際のレチクル上パターンの線幅の1/2)で、所定の長さ(一例で、実際のレチクル上パターンの線幅の1/2)の凸部となる領域120bからなるパターンである。
【0071】
電子線描画装置では、まず、一次パターン110を、通常のパターン形成時のビーム条件で描画する。その後、二次パターン120を、所定量デフォーカスさせて描画する。デフォーカス量は、例えば、通常条件では10nm程度のビームブラーが、50〜100nm程度となる量である。
【0072】
図5は、本発明の第5の実施の形態に係るレチクルの作製方法における設計パターン形状を説明する図である。
この例のCADデータの一次パターン110は、繋ぎ合わせるべきパターン110aと、パターン端部の先に位置し、同パターンより狭い線幅(一例で、実際のレチクル上パターンの線幅の1/2)で、所定の長さ(一例で、実際のレチクル上パターンの線幅の1/2)の凸部となる領域からなるパターン110bである。そして、二次パターン120は、パターンの実際の端部から一定量(一例で200nm)だけ内側に短い部分120aと、パターン端部の先に位置し、上述の凸部となる領域からなるパターン110bと同じパターン120bである。
【0073】
電子線描画装置では、まず、一次パターン110を、通常のパターン形成時のビーム条件で描画する。その後、二次パターン120を、所定量デフォーカスさせて描画する。デフォーカス量は、例えば、通常条件では10nm程度のビームブラーが、50〜100nm程度となる量である。
【0074】
図6は、本発明の第6の実施の形態に係るレチクルの作製方法における設計パターン形状を説明する図である。
この例のCADデータの一次パターン110は、繋ぎ合わせるべきパターンの実際の形状のパターンである。そして、二次パターン120は、パターンの端部の幅方向中央部の内側の部分のパターン(一例で、幅は実際のレチクル上パターンの線幅の2/3、長さは実際のレチクル上パターンの線幅の1/2)である。
【0075】
電子線描画装置では、まず、一次パターン110を、通常のパターン形成時のビーム条件で描画する。その後、二次パターン120を、所定量デフォーカスさせて描画する。デフォーカス量は、例えば、通常条件では10nm程度のビームブラーが、50〜150nm程度となる量である。
【0076】
図7は、本発明の第7の実施の形態に係るレチクルの作製方法におけるパターン形状を説明する図である。
この例のCADデータの一次パターン110は、繋ぎ合わせるべきパターンの実際の形状のパターンである。そして、二次パターン120は、パターンの端部の幅方向中央部の内側及び外側の部分のパターン(一例で、幅は実際のレチクル上パターンの線幅の1/2、長さは実際のレチクル上パターンの線幅と同じ)である。
【0077】
電子線描画装置では、まず、一次パターン110を、通常のパターン形成時のビーム条件で描画する。その後、二次パターン120を、所定量デフォーカスさせて描画する。デフォーカス量は、例えば、通常条件では10nm程度のビームブラーが、50〜100nm程度となる量である。
【0078】
上述の第4〜第7の実施の形態に係るレチクル作製方法によっても、繋ぎ合わせるべき端部の先端をペンシル状に形成することができる。そして、二次パターンも比較的大きい画素寸法であるため、データ数の増加を抑えることができる。
【0079】
【発明の効果】
以上説明したように、本発明によれば、CAD設計データを増加させることなくペンシル型パターンを作成できる。このため、スティッチング精度が向上したパターンを形成することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るレチクル作製方法における設計パターン形状を説明する図であり、図1(A)は、パターンの分割状態、図1(B)は、露光後のパターン形状を示す。
【図2】本発明の第2の実施の形態に係るレチクルの作製方法における設計パターン形状を説明する図であり、図2(A)は、パターンの分割状態、図2(B)は、露光後のパターン形状を示す。
【図3】本発明の第3の実施の形態に係るレチクルの作製方法における設計パターン形状を説明する図であり、図3(A)は、パターンの分割状態、図3(B)は、露光後のパターン形状を示す。
【図4】本発明の第4の実施の形態に係るレチクルの作製方法における設計パターン形状を説明する図である。
【図5】本発明の第5の実施の形態に係るレチクルの作製方法における設計パターン形状を説明する図である。
【図6】本発明の第6の実施の形態に係るレチクルの作製方法における設計パターン形状を説明する図である。
【図7】本発明の第7の実施の形態に係るレチクルの作製方法における設計パターン形状を説明する図である。
【図8】図8(A)は、汎用メモリパターンのゲート層の平面図、図8(B)は、コンプリメンタリ分割されたパターンの一部の平面図である。
【図9】電子線描画装置の一例の構成を模式的に示す図である。
【図10】分割転写方式の電子線投影露光装置の光学系全体における結像関係及び制御系の概要を示す図である。
【図11】電子線投影露光用のレチクルの構造例を模式的に示す図である。図11(A)は全体の平面図であり、図11(B)は一部の斜視図であり、図11(C)は一つの小メンブレン領域の平面図である。
【図12】一般的なSOIウェハを用いたマスク作製方法を模式的に示す図である。
【図13】コンプリメンタリ分割の一例を示す図であり、図13(A)は島状パターン、図13(B)は長い線分のパターンの場合である。
【図14】コンプリメンタリ分割を行ったパターンをウェハ上で繋ぎ合わせたパターン接続部の一例を示す図である。
【図15】特許文献1に報告されているパターンの端部を凸型に加工する例を示す図である。
【図16】パターンの端部をペンシル型(先細り型)に加工する例を示す図である。
【符号の説明】
101A、101B 線分パターン 110 一次パターン
120 二次パターン
200 電子線描画装置 201 電子銃
202 ブランキング偏向器 203 コンデンサレンズ
204 第1成形アパーチャ 205 第1成形レンズ
206 電磁偏向器 207 第2成形アパーチャ
208 第2成形レンズ 209 ステンシルマスク
210 偏向器 211 制限開口
212 副偏向器 214 主偏向器
215 対物レンズ 216 フォーカスコイル
217 レチクル

Claims (9)

  1. 感応基板上に転写すべき原版パターンを複数のレチクル上又は一枚のレチクルの複数の領域に分割して形成し、分割した前記パターンを前記感応基板上で繋ぎ合わせるように露光転写する露光方法に用いるレチクルを作製する際に、
    各々のレチクルのパターン形状の設計データ(CADデータ)を作製し、
    レジストを塗布したレチクル基板上に、前記CADデータに即したパターンを描画し、
    その後エッチング等の処理を行って前記原版パターンを形成するレチクルの作製方法であって、
    前記感応基板上で繋ぎ合わせることとなる分割したパターンの端部を所定量デフォーカスして描画することを特徴とするレチクル作製方法。
  2. 前記CADデータに即したパターンをデフォーカスさせずに描画するとともに、
    分割したパターンの端部の先に、該端部の線幅を超えない幅の領域を、デフォーカスされたビームを用いて適当なドーズで露光することを特徴とする請求項1記載のレチクル作製方法。
  3. 前記CADデータに即したパターンをデフォーカスさせずに描画するとともに、
    分割したパターンの端部の先の凸部領域を、デフォーカスされたビームを用いて適当なドーズ量で露光することを特徴とする請求項1記載のレチクル作製方法。
  4. 前記CADデータに即したパターンをデフォーカスさせずに描画するとともに、
    分割したパターンの端部、及び、該端部の先の凸部領域を、デフォーカスされたビームを用いて適当なドーズで露光することを特徴とする請求項1記載のレチクル作製方法。
  5. 前記CADデータに即したパターン、及び、分割したパターンの端部の先の凸部領域を、デフォーカスさせずに描画するとともに、
    前記パターンの端部、及び、前記凸部領域を、デフォーカスされたビームを用いて適当なドーズで露光することを特徴とする請求項1記載のレチクル作製方法。
  6. 前記CADデータに即したパターンをデフォーカスさせずに描画するとともに、
    分割したパターンの端部の幅方向中央部における内側の、該端部の線幅を超えない幅の領域を、デフォーカスされたビームを用いて適当なドーズで露光することを特徴とする請求項1記載のレチクル作製方法。
  7. 前記CADデータに即したパターンをデフォーカスさせずに描画するとともに、
    分割したパターンの端部の幅方向中央部における内側及び外側の、該端部の線幅を超えない幅の領域を、デフォーカスされたビームを用いて適当なドーズで露光することを特徴とする請求項1記載のレチクル作製方法。
  8. 感応基板上に転写すべき原版パターンが複数の領域に分割して形成されたレチクルであって、
    前記感応基板上で繋ぎ合わせることとなる分割したレチクル上のパターンの端部が所定量デフォーカスして描画されていることを特徴とするレチクル。
  9. 感応基板上に転写すべき原版パターンを複数のレチクル上又は一枚のレチクルの複数の領域に分割して形成し、分割した前記パターンを前記感応基板上で繋ぎ合わせるように露光転写する露光方法であって、
    前記感応基板上で繋ぎ合わせることとなる分割したレチクル上のパターンの端部を所定量デフォーカスして描画することを特徴とする露光方法。
JP2003058501A 2003-03-05 2003-03-05 レチクル作製方法、レチクル及び荷電粒子線露光方法 Pending JP2004273526A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058501A JP2004273526A (ja) 2003-03-05 2003-03-05 レチクル作製方法、レチクル及び荷電粒子線露光方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058501A JP2004273526A (ja) 2003-03-05 2003-03-05 レチクル作製方法、レチクル及び荷電粒子線露光方法

Publications (1)

Publication Number Publication Date
JP2004273526A true JP2004273526A (ja) 2004-09-30

Family

ID=33121598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058501A Pending JP2004273526A (ja) 2003-03-05 2003-03-05 レチクル作製方法、レチクル及び荷電粒子線露光方法

Country Status (1)

Country Link
JP (1) JP2004273526A (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253965A (ja) * 2010-06-02 2011-12-15 Dainippon Printing Co Ltd ナノインプリントモールドの製造方法、光学素子の製造方法、およびレジストパターンの形成方法
JP2013503486A (ja) * 2009-08-26 2013-01-31 ディー・ツー・エス・インコーポレイテッド 荷電粒子ビームリソグラフィを用いて可変ビームぼけで表面を製造するための方法および装置
US8828628B2 (en) 2008-09-01 2014-09-09 D2S, Inc. Method and system for design of a reticle to be manufactured using variable shaped beam lithography
US8900778B2 (en) 2008-09-01 2014-12-02 D2S, Inc. Method for forming circular patterns on a surface
US8916315B2 (en) 2009-08-26 2014-12-23 D2S, Inc. Method for fracturing and forming a pattern using shaped beam charged particle beam lithography
US9038003B2 (en) 2012-04-18 2015-05-19 D2S, Inc. Method and system for critical dimension uniformity using charged particle beam lithography
US9034542B2 (en) 2011-06-25 2015-05-19 D2S, Inc. Method and system for forming patterns with charged particle beam lithography
US9043734B2 (en) 2008-09-01 2015-05-26 D2S, Inc. Method and system for forming high accuracy patterns using charged particle beam lithography
US9057956B2 (en) 2011-02-28 2015-06-16 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
US9091946B2 (en) 2011-04-26 2015-07-28 D2S, Inc. Method and system for forming non-manhattan patterns using variable shaped beam lithography
US9164372B2 (en) 2009-08-26 2015-10-20 D2S, Inc. Method and system for forming non-manhattan patterns using variable shaped beam lithography
US9323140B2 (en) 2008-09-01 2016-04-26 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US9341936B2 (en) 2008-09-01 2016-05-17 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US9372391B2 (en) 2008-09-01 2016-06-21 D2S, Inc. Method and system for forming patterns using charged particle beam lithography with variable pattern dosage
US9400857B2 (en) 2011-09-19 2016-07-26 D2S, Inc. Method and system for forming patterns using charged particle beam lithography
US9448473B2 (en) 2009-08-26 2016-09-20 D2S, Inc. Method for fracturing and forming a pattern using shaped beam charged particle beam lithography
US9612530B2 (en) 2011-02-28 2017-04-04 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
US9859100B2 (en) 2012-04-18 2018-01-02 D2S, Inc. Method and system for dimensional uniformity using charged particle beam lithography

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9268214B2 (en) 2008-09-01 2016-02-23 D2S, Inc. Method for forming circular patterns on a surface
US9625809B2 (en) 2008-09-01 2017-04-18 D2S, Inc. Method and system for forming patterns using charged particle beam lithography with variable pattern dosage
US8828628B2 (en) 2008-09-01 2014-09-09 D2S, Inc. Method and system for design of a reticle to be manufactured using variable shaped beam lithography
US8900778B2 (en) 2008-09-01 2014-12-02 D2S, Inc. Method for forming circular patterns on a surface
US9715169B2 (en) 2008-09-01 2017-07-25 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US10101648B2 (en) 2008-09-01 2018-10-16 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US9372391B2 (en) 2008-09-01 2016-06-21 D2S, Inc. Method and system for forming patterns using charged particle beam lithography with variable pattern dosage
US9043734B2 (en) 2008-09-01 2015-05-26 D2S, Inc. Method and system for forming high accuracy patterns using charged particle beam lithography
US9341936B2 (en) 2008-09-01 2016-05-17 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US9323140B2 (en) 2008-09-01 2016-04-26 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US9274412B2 (en) 2008-09-01 2016-03-01 D2S, Inc. Method and system for design of a reticle to be manufactured using variable shaped beam lithography
US8916315B2 (en) 2009-08-26 2014-12-23 D2S, Inc. Method for fracturing and forming a pattern using shaped beam charged particle beam lithography
US9164372B2 (en) 2009-08-26 2015-10-20 D2S, Inc. Method and system for forming non-manhattan patterns using variable shaped beam lithography
US9448473B2 (en) 2009-08-26 2016-09-20 D2S, Inc. Method for fracturing and forming a pattern using shaped beam charged particle beam lithography
JP2013503486A (ja) * 2009-08-26 2013-01-31 ディー・ツー・エス・インコーポレイテッド 荷電粒子ビームリソグラフィを用いて可変ビームぼけで表面を製造するための方法および装置
JP2011253965A (ja) * 2010-06-02 2011-12-15 Dainippon Printing Co Ltd ナノインプリントモールドの製造方法、光学素子の製造方法、およびレジストパターンの形成方法
US9057956B2 (en) 2011-02-28 2015-06-16 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
US9612530B2 (en) 2011-02-28 2017-04-04 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
US9091946B2 (en) 2011-04-26 2015-07-28 D2S, Inc. Method and system for forming non-manhattan patterns using variable shaped beam lithography
US9034542B2 (en) 2011-06-25 2015-05-19 D2S, Inc. Method and system for forming patterns with charged particle beam lithography
US9465297B2 (en) 2011-06-25 2016-10-11 D2S, Inc. Method and system for forming patterns with charged particle beam lithography
US9400857B2 (en) 2011-09-19 2016-07-26 D2S, Inc. Method and system for forming patterns using charged particle beam lithography
US10031413B2 (en) 2011-09-19 2018-07-24 D2S, Inc. Method and system for forming patterns using charged particle beam lithography
US9859100B2 (en) 2012-04-18 2018-01-02 D2S, Inc. Method and system for dimensional uniformity using charged particle beam lithography
US9038003B2 (en) 2012-04-18 2015-05-19 D2S, Inc. Method and system for critical dimension uniformity using charged particle beam lithography
US10431422B2 (en) 2012-04-18 2019-10-01 D2S, Inc. Method and system for dimensional uniformity using charged particle beam lithography

Similar Documents

Publication Publication Date Title
JP2004273526A (ja) レチクル作製方法、レチクル及び荷電粒子線露光方法
JP5116996B2 (ja) 荷電粒子線描画方法、露光装置、及びデバイス製造方法
JP2002075830A (ja) 荷電粒子線露光方法、レチクル及びデバイス製造方法
JPH11329945A (ja) 荷電粒子ビーム転写方法及び荷電粒子ビーム転写装置
JP2001332468A (ja) マスク、荷電粒子線露光方法、荷電粒子線露光装置及びデバイス製造方法
US7049610B2 (en) Charged particle beam exposure method, charged particle beam exposure apparatus, and device manufacturing method
JP2004063546A (ja) 電子ビーム露光方法
JP2008004596A (ja) 荷電粒子線描画方法、露光装置、及びデバイス製造方法
US7005659B2 (en) Charged particle beam exposure apparatus, charged particle beam exposure method, and device manufacturing method using the same apparatus
JP4468752B2 (ja) 荷電粒子線露光方法、荷電粒子線露光装置及びデバイス製造方法
JP3843806B2 (ja) 電子線露光方法及びステンシルレチクル
JP2001244165A (ja) 近接効果補正方法、レチクル及びデバイス製造方法
JP4356064B2 (ja) 荷電粒子線露光装置および該装置を用いたデバイス製造方法
JP2002170760A (ja) 荷電粒子ビーム露光装置、荷電粒子ビーム露光方法及びデバイス製造方法
JP2003007591A (ja) 荷電粒子線光学系の収差評価方法、荷電粒子線装置調整方法、荷電粒子線露光方法、非点収差評価方法及び評価用パターン
JP3728315B2 (ja) 電子ビーム露光装置、電子ビーム露光方法、および、デバイス製造方法
JP2002075829A (ja) 荷電粒子線転写露光方法及びデバイス製造方法
JP4494734B2 (ja) 荷電粒子線描画方法、荷電粒子線露光装置及びデバイス製造方法
JP2003077798A (ja) 近接効果補正方法及びデバイス製造方法
JP4402529B2 (ja) 荷電粒子線露光方法、荷電粒子線露光装置及びデバイス製造方法
US6756182B2 (en) Charged-particle-beam microlithography methods exhibiting reduced coulomb effects
JP2006210459A (ja) 荷電粒子線露光装置、荷電粒子線露光方法、およびデバイス製造方法
JPH10308341A (ja) 電子ビーム露光方法及び電子ビーム露光装置
JP2003068635A (ja) 電子線露光方法及びデバイス製造方法
JPH1079346A (ja) 荷電粒子線転写装置