JP2004266145A - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
JP2004266145A
JP2004266145A JP2003055840A JP2003055840A JP2004266145A JP 2004266145 A JP2004266145 A JP 2004266145A JP 2003055840 A JP2003055840 A JP 2003055840A JP 2003055840 A JP2003055840 A JP 2003055840A JP 2004266145 A JP2004266145 A JP 2004266145A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
heat
conversion module
substrate
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003055840A
Other languages
English (en)
Other versions
JP4486785B2 (ja
Inventor
Jun Niekawa
潤 贄川
Yasuhiro Suzuki
康弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okano Electric Wire Co Ltd
Original Assignee
Okano Electric Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okano Electric Wire Co Ltd filed Critical Okano Electric Wire Co Ltd
Priority to JP2003055840A priority Critical patent/JP4486785B2/ja
Publication of JP2004266145A publication Critical patent/JP2004266145A/ja
Application granted granted Critical
Publication of JP4486785B2 publication Critical patent/JP4486785B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

【課題】省電流動作で効率的に冷却可能な冷却装置を提供する。
【解決手段】熱電変換モジュール1は、上下に間隔を介して対向配置された基板6,7と、これら上下の基板6,7の対向表面にそれぞれ互いに間隔を介して形成された複数の電極と、基板6,7間に配置されて互いに間隔を介して配列したP型とN型の複数の熱電変換素子5を設けて形成し、対応する電極を介して熱電変換素子5を接続した接続回路に電流を流すことにより下側基板7を吸熱側基板、上側基板6を放熱側基板と成す。熱電変換モジュール1の上側基板6と下側基板7に沿って連続したヒートパイプ3を設けて高熱伝導性部材4a,4bに内蔵し、ヒートパイプの連通部3cは熱電変換モジュール1の側部がわに露出させる。上側に配置されたヒートパイプ3aの上側にはヒートシンク12を設ける。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、例えばDVD、パーソナルコンピュータや、サーバー、高性能電子計算機等の電子機器におけるLD、CPU、CCDなどの発熱を伴う電子部品に取り付けて、主に電子機器或いは電子部品の冷却を行うために用いられる冷却装置に関するものである。
【0002】
【背景技術】
近年、各種LSI、コンピュータに使われるCPUなどの電子機器の主要部品は小型高性能化が著しい。例えばLSIの配線間隔などが小さくなりサブミクロン領域となるとともにますます高集積化が進み、単に発熱量が増えるだけでなく単位面積当りの発熱量が増える、すなわち、発熱密度の増大という新たな問題が大きな課題となってきている。
【0003】
そこで、これらの熱を冷却する冷却装置が様々に検討されるようになり、例えばペルチェモジュール等の熱電変換モジュールとヒートパイプを組み合わせた冷却装置が提案されている(例えば、特許文献1参照。)。
【0004】
ペルチェモジュールは、例えば図8(a)、(b)に示すように、互いに間隔を介して上下に配置された基板6,7の間に、複数の熱電変換素子5(5a,5b)を立設配置して形成されている。
【0005】
基板6,7は、電気絶縁性を有する板状の電気絶縁性部材であり、例えばアルミナ(Al)等のセラミックにより形成されている。基板6,7には、それぞれ、その片面側(対向面側)に複数の導通用の電極2が互いに間隔を介して配列形成されている。基板6,7は、電極2の位置を互いにずらした状態で電極形成面16,17を対向させて配置されている。
【0006】
前記熱電変換素子5(5a,5b)は対応する電極2を介して直列に接続され、熱電変換素子5(5a,5b)の接続回路が形成されている。なお、電極2上には図示されていない半田が形成されて該半田を介して熱電変換素子5(5a,5b)が電極2上に固定されている。
【0007】
熱電変換素子5(5a,5b)は、ペルチェ素子として一般的に知られており、P型半導体により形成されたP型の熱電変換素子5aと、N型半導体により形成されたN型の熱電変換素子5bとが交互に1対以上(ここでは複数対)配置されている。このように、P型の熱電変換素子5aとN型の熱電変換素子5bが交互に配置され、電極2を介して直列に接続されてPN素子対が形成されている。
【0008】
P型の熱電変換素子5aとN型の熱電変換素子5bは、それぞれ、例えばビスマス・テルル等の金属間化合物にアンチモン、セレン等の元素を添加することにより形成されている。
【0009】
熱電変換モジュールの電極2にリード線28から電流を流すと、この電流が電極2を介してP型の熱電変換素子5aとN型の熱電変換素子5bに流れ(熱電変換素子5の接続回路に流れ)、熱電変換素子5(5a,5b)と電極2との接合部(界面)で冷却・加熱効果が生じる。すなわち、前記接合部を流れる電流の方向によって熱電変換素子5(5a,5b)の一方の端部が発熱せしめられると共に他方の端部が冷却せしめられるペルチェ効果が生じる。
【0010】
このペルチェ効果によって熱電変換素子5(5a,5b)の一方側が吸熱側と成して他方側が放熱側と成す。例えば熱電変換素子5(5a,5b)の一方側である下側基板7側の端部が冷却せしめられると、下側基板7を介し、基板7の下側に設けられた部材(被冷却体)の冷却(吸熱)が行われる。つまり、熱電変換モジュールは、一般に、IC等の電子部品の発熱体を冷却するために用いられ、熱電変換素子5の接続回路に電流を流すことにより、発熱体側に設けられる基板7を吸熱側基板と成す。
【0011】
前記特許文献1に提案されている冷却装置は、例えば被冷却体であるCPU側にヒートパイプの一端側を設け、ヒートパイプの他端側にペルチェモジュールの低温側を設け、CPUが発する熱をヒートパイプによってペルチェモジュール側に移動してから、上記のようなペルチェモジュールの動作により冷却する冷却装置である。
【0012】
【特許文献1】
特開2000−165077
【0013】
【発明が解決しようとする課題】
ところで、ペルチェモジュール等の熱電変換モジュールは、電子機器が用いられる一般的環境において容易に部分的に比較的低い温度を作り出すことができるものの、周知の如く、必ず熱電変換モジュールの冷却に必要な熱量以上の熱を放熱しなければならないために消費電力が大きい。そのため、熱電変換モジュールを適用して形成される冷却装置は、その消費電力が大きくならざるを得ないといった問題があった。
【0014】
本発明は、上記課題を解決するために成されたものであり、その目的は、コンピュータのCPUのような高発熱密度でスポット的に温度が上昇しやすい電子部品に対し、低消費電力で効率的に冷却する冷却装置を提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成するために、本発明は次のような構成をもって課題を解決するための手段としている。すなわち、第1の発明は、上下に間隔を介して対向配置された基板と、これら上下の基板の対向表面にそれぞれ互いに間隔を介して形成された複数の電極と、前記上下の基板間に配置されて互いに間隔を介して配列したP型とN型の複数の熱電変換素子とを有して、これらの熱電変換素子が対応する前記電極を介して接続されて熱電変換素子の接続回路が形成され、該熱電変換素子の接続回路に電流を流すことにより前記下側の基板が吸熱側基板と成して上側の基板が放熱側基板と成す熱電変換モジュールを有し、熱電変換モジュールの上側基板と下側基板の基板面に沿って連続するヒートパイプが設けられており、熱電変換モジュールの上側に配置されたヒートパイプの上側にはヒートシンクが設けられている構成をもって課題を解決する手段としている。
【0016】
また、第2の発明は、上記第1の発明の構成に加え、前記ヒートシンクにはファンが設けられている構成をもって課題を解決する手段としている。
【0017】
さらに、第3の発明は、上記第1または第2の発明の構成に加え、前記熱電変換モジュールの下側基板の下側には第1の高熱伝導性部材が設けられ、熱電変換モジュールの上側基板の上側には前記第1の高熱伝導性部材以上の伝熱面積を有する第2の高熱伝導性部材が設けられており、これらの高熱伝導性部材内にヒートパイプが内蔵され、前記第2の高熱伝導性部材の上側にヒートシンクが設けられている構成をもって課題を解決する手段としている。
【0018】
ここで、高熱伝導性部材は、例えばAl、Cu、あるいはこれらを含む合金で作られた部材を示し、その形状としては板やブロック等が挙げられる。
【0019】
さらに、第4の発明は、上記第1または第2または第3の発明の構成に加え、前記ヒートパイプ内に設けられている作動液が、熱電変換モジュールの上側基板と下側基板の間に配置されているヒートパイプの連通部を介して、下側に配置されたヒートパイプ側から上側に配置されたヒートパイプ側にヒートパイプ内壁を毛細管力により移動することを抑制するサーモサイフォン型の構成を有している構成をもって課題を解決する手段としている。
【0020】
さらに、第5の発明は、上記第4の発明の構成に加え、前記ヒートパイプ内には少なくとも連通部内にウィックが設けられていない構成をもって課題を解決する手段としている。
【0021】
さらに、第6の発明は、上記第1乃至第5のいずれか一つの発明の構成に加え、前記熱電変換モジュールの吸熱側基板または被冷却体あるいは両者の中間の温度を検出する温度検出機能と、該温度検出機能によって検出した検出温度に基づいて、該検出温度が回路開設定温度以下のときに熱電変換素子の接続回路を開とする回路開機能と、熱電変換素子の接続回路を開とした後に前記検出温度が回路開設定温度より大きい回路閉設定温度以上になったときに、前記熱電変換素子の接続回路を閉とすることにより熱電変換素子の接続回路に再び電流が流れるようにする回路復帰機能とを有する省電流制御機構が設けられている構成をもって課題を解決する手段としている。
【0022】
さらに、第7の発明は、上記第6の発明の構成に加え、前記省電流制御機構は熱電変換モジュールの吸熱側基板またはその近傍に設けられている構成をもって課題を解決する手段としている。
【0023】
さらに、第8の発明は、上記第6または第7の発明の構成に加え、前記回路開設定温度と回路閉設定温度の少なくとも一方が互いに異なる複数の省電流制御機構を有し、これら複数の省電流制御機構と熱電変換素子の接続回路との接続を切り換えるスイッチを有する構成をもって課題を解決する手段としている。
【0024】
さらに、第9の発明は、上記第6または第7または第8の発明の構成に加え、前記省電流制御機構はバイメタルまたは形状記憶合金を有して形成されている構成をもって課題を解決する手段としている。
【0025】
さらに、第10の発明は、上記第1乃至第9のいずれか一つの発明の構成に加え、前記熱電変換モジュールは、吸熱側基板の最大吸熱量を得るために熱電変換モジュールに必要な電流値の20〜80%の範囲内で設定した設定値の電流が熱電変換モジュール駆動の定電圧印加時に流れるように内部抵抗を設定した構成をもって課題を解決する手段としている。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して説明する。なお、本実施形態例の説明において、従来例と同一名称部分には同一符号を付し、その重複説明は省略又は簡略化する。
【0027】
図1には、本発明に係る冷却装置の一実施形態例が被冷却体としての発熱部9と共に模式的に示されている。発熱部9は例えばCPU等の電子部品である。図1(a)は冷却装置の正面構成、図1(b)は図1(a)のA−A’断面構成を示す。これらの図に示すように、本実施形態例の装置は熱電変換モジュール1を有し、この熱電変換モジュール1にはP型とN型の熱電変換素子5(5a,5b)が複数設けられている。
【0028】
本実施形態例に適用されている熱電変換モジュール1は、熱電変換素子5(5a,5b)の接続回路に電流を流すことにより前記下側の基板7が吸熱側基板と成して上側の基板6が放熱側基板と成す。なお、熱電変換素子5(5a,5b)の接続回路は、図8に示したような従来の熱電変換モジュールと同様に、熱電変換素子5(5a,5b)が対応する電極2を介して接続して形成されているが、図の簡略化のために、図1において、電極2を省略して示している。
【0029】
熱電変換モジュール1の上側基板6の上側と下側基板7の下側には高熱伝導性部材4(4a,4b)が設けられている。上側基板6の上側に設けられた第2の高熱伝導性部材4aは下側基板7の下側に設けられた第1の高熱伝導性部材4bより伝熱面積が大きく形成されている。
【0030】
これらの高熱伝導性部材4(4a,4b)には3本の管状のヒートパイプ3(3a,3b)が内蔵されており、ヒートパイプ3(3a,3b)は熱電変換モジュール1の上側基板6と下側基板7の基板面に沿って連続して設けられている。熱電変換モジュール1の上側基板6と下側基板7の間には、ヒートパイプ3の連通部3cが熱電変換モジュール1の側部がわに配置されている。
【0031】
高熱伝導性部材4(4a,4b)は、銅やアルミニウム等により形成されており、熱電変換モジュール1の上側に設けられた高熱伝導性部材4aの上側にはヒートシンク12が設けられている。ヒートシンク12は、アルミニウム等により形成されており、ベース14の上側に、互いに間隔を介して複数のフィン13を立設配置して形成されている。なお、ヒートシンク12には必要に応じ、図の鎖線に示すファン20を組み合わせることもできる。
【0032】
ヒートパイプ3(3a,3b,3c)内にはウィックが設けられておらず、ヒートパイプ3(3a,3b,3c)内に設けられている作動液が、連通部3cを介して、下側に配置されたヒートパイプ3b側から上側に配置されたヒートパイプ3a側に毛細管力によって移動すること、つまり、図1(a)の矢印Gに示す重力方向に逆らって3(3a,3b,3c)内の作動液が移動することを抑制するサーモサイフォン型の構成を有している。
【0033】
ヒートパイプ3(3a,3b,3c)は、断面円形状のヒートパイプの上下両側から圧力を加えることにより断面楕円形状に形成されており、例えば図2(a)に示すように、ヒートパイプ3(3a,3b)は高熱伝導性部材4(4a,4b)形成された凹部30に収納されている。なお、図2(b)に示すように、高熱伝導性部材4に形成する凹部30の深さを深くして断面円形状のヒートパイプ3を用いることもできる。
【0034】
図1に示すように、本実施形態例の冷却装置は省電流制御機構22を有している。この省電流制御機構22は、熱電変換モジュール1の吸熱側基板である下側基板7に設けられたバイメタル8を有している。
【0035】
省電流制御機構22は、熱電変換モジュール1の吸熱側基板7の温度を検出する温度検出機能と、該温度検出機能によって検出した検出温度に基づいて、該検出温度が回路開設定温度以下のときに熱電変換素子5の接続回路を開とする回路開機能と、熱電変換素子5の接続回路を開とした後に前記検出温度が回路開設定温度より大きい回路閉設定温度以上になったときに、前記熱電変換素子5の接続回路を閉とすることにより熱電変換素子の接続回路に再び電流が流れるようにする回路復帰機能とを有する。例えば、回路開設定温度は20℃、回路閉設定温度は40℃に設定されている。
【0036】
図5に示すように、バイメタル8の一端側は下側基板7の一端側の固定部18に固定され、この固定部18には熱電変換素子5の接続回路が接続されている。また、バイメタル8の他端側は、図5(a)に示すように、熱電変換素子5の回路を閉とするときには、リード線28に接続され、図5(b)に示すように、熱電変換素子5の回路を開とするときには、下側基板7から離れてリード線28から離れる。
【0037】
つまり、下側基板7の温度が20℃以下になると、バイメタル8を有する省電流制御機構22の働きによって、図5(b)に示すように、熱電変換素子5の接続回路が開となり(バイメタル8が変形して接続回路が開き)、熱電変換モジュール1に流れる電流は遮断される。
【0038】
また、熱電変換モジュール1による冷却が行われずに、ヒートパイプ3(3a,3b,3c)による冷却のみでは冷却能力が不足し、再び発熱体9の温度が上昇して下側基板7の温度が40℃以上になったときには、図5(a)に示すようにバイメタル8が元の状態に戻って熱電変換素子5の接続回路を閉とすることにより、熱電変換素子5の接続回路に再び電流が流れるようにする。そうすると、熱電変換モジュール1による発熱体9の冷却が再開される。
【0039】
また、熱電変換モジュール1は、吸熱側基板(下側基板7)の最大吸熱量を得るために熱電変換モジュール1に必要な電流値(以下、Imaxという)の20〜80%の範囲内で設定した設定値の電流が、熱電変換モジュール駆動の定電圧(例えば5V)印加時に流れるように内部抵抗が設定されている。
【0040】
なお、図3には、本実施形態例で適用している熱電変換モジュール1の投入電流と吸熱量との関係が示されており、この熱電変換モジュール1は、Imaxが2.33Aであり、その60%の値である1.4Aを上記設定値の電流値としている。
【0041】
本実施形態例は以上のように構成されており、例えば発熱部9の負荷が小さく、温度があまり高くならない場合は、熱電変換モジュール1による冷却動作開始後すぐに、下側基板7の温度が回路開設定温度より低くなるので、熱電変換素子5の接続回路はオフとなる。つまり、この場合、熱電変換モジュール1の電源はオフの状態であり、発熱部9で発生した熱はヒートパイプ3(3a,3b,3c)により熱電変換モジュール1を迂回してヒートシンクへ伝えられ、そこで放熱される。また、この場合、熱電変換モジュール1は作動しないので、その駆動エネルギーも消費しない。
【0042】
一方、発熱部9の負荷が大きく、ヒートパイプ3(3a,3b,3c)による冷却のみでは発熱部9が過熱しそうな場合、温度検出手段21による検出温度が回路開設定温度より大きい回路閉設定温度以上になると、省電流制御機構22が熱電変換素子5(5a,5b)の接続回路を閉とすることにより熱電変換素子5(5a,5b)の接続回路に再び電流が流れるようにするので、熱電変換モジュール1による吸熱が始まる。
【0043】
そうすると、発熱部9の熱が、熱電変換モジュール1の下側の高熱伝導性部材4bを介して熱電変換モジュール1の下側基板7に伝えられて下側基板7により吸熱される。また、この熱電変換モジュール1の吸熱に対して必要な放熱は、上側基板6から上側の高熱伝導性部材4aを介してヒートシンク12へ伝えられ、そこで放熱される。この場合、熱電変換モジュール1の放熱の増加に伴い、ヒートシンク12の上部のファン20を稼働させることで、より効果的な放熱が可能となる。
【0044】
なお、本実施形態例においては、ヒートパイプ3(3a,3b,3c)内にはウィックが設けられておらず、重力方向に逆らって作動液が移動することを抑制するサーモサイフォン型(重力型動作)の構成を有しているため、熱電変換モジュール1の放熱側(上側基板6)が高温になったとしても、その熱がヒートパイプ3(3a,3b,3c)を通して熱電変換モジュール1の吸熱側(下側基板7側)や冷却対象の発熱部9側へ還流することはない。
【0045】
そして、上記熱電変換モジュール1による冷却によって発熱部9の温度が下がり、前記回路開設定温度以下になると、省電流制御機構22が熱電変換素子5(5a,5b)の接続回路を開とすることにより熱電変換素子5(5a,5b)の接続回路への電流供給はオフとなり、再び熱電変換モジュール1をバイパスする態様での冷却形態となる。
【0046】
本実施形態例によれば、上記動作により、必要な場合のみ、つまり、発熱部9の温度が高くなったときのみ、必要なだけ熱電変換モジュール1による発熱部9の冷却を行ない、発熱部9の温度が低いときにはヒートパイプ3(3a,3b,3c)による冷却を行うので、無駄に熱電変換モジュール1を作動させることはなく、かつ、従来の空冷だけでは実現できなかった高熱密度、高熱流束等を有する電子部品の発熱部9を効率的に冷却して、発熱部9の温度を適切な温度(例えば80℃といった設定温度近傍の温度)に維持することができる。
【0047】
また、本実施形態例によれば、上側基板6の上側に設けられた第2の高熱伝導性部材4aは下側基板7の下側に設けられた第1の高熱伝導性部材4bより伝熱面積が大きく形成されているので、第2の高熱伝導性部材4aを介しての熱電変換モジュール1の放熱を効率的に行うことができる。
【0048】
さらに、この構成により、本実施形態例では、熱電変換モジュール1の上側に配置したヒートパイプ3aを熱電変換モジュール1の下側に配置したヒートパイプ3bより大きくしているので、ヒートパイプ3によって発熱体9の冷却を行う際の放熱も効率的に行うことができる。
【0049】
さらに、本実施形態例では、熱電変換モジュール1の駆動時に流れる電流をImaxの20〜80%(例えば60%の値である1.4A)としているので、比較的エネルギー効率の良好な領域で熱電変換モジュール1を作動することができる。
【0050】
つまり、熱電変換モジュール1の駆動に際し、熱電変換モジュール1の駆動時に流れる電流をImaxの近傍以上(Imaxの80%を超える値)としたり、Imaxの20%未満の小さい値としたりすると、例えば図4に示すように、熱電変換モジュール1の成績係数(投入電流に対する吸熱量の比)が小さくなり、エネルギー効率が悪くなる。
【0051】
すなわち、熱電変換モジュール1の駆動時に流れる電流を、Imaxの80%を超える値とすると、成績係数が極めて小さい値となり、熱電変換モジュール駆動時に流れる電流をImaxの20%未満の小さい値とすると、急激な吸熱量減少が生じて設定した冷却性能が安定的に得られない。
【0052】
それに対し、本実施形態例では、熱電変換モジュール1の駆動時に流れる電流をImaxの60%の値である1.4Aとしており、このときの成績係数は、図4に示すように、約0.7であるので、比較的エネルギー効率の良好な領域で熱電変換モジュール1を作動することができる。
【0053】
さらに、本実施形態例では、省電流制御機構22による熱電変換素子5の接続回路の開閉動作は、下側基板7の温度に基づいて行われるものであり、この温度は熱電変換素子5の極近傍の温度であるため、熱電変換素子5の接続回路の開閉動作を精度良く行うことができる。
【0054】
なお、本発明は上記実施形態例に限定されることはなく、様々な実施の態様を採り得る。例えば、ヒートパイプ3(3a,3b,3c)の配設態様は特に限定されるものでなく、適宜設定されるものであり、例えば図6(b)に示すように、連通部3cを斜めに襷状に配置して、熱電変換モジュール1の上下に配置されたヒートパイプ3(3a,3b)を接続してもよい。連通部3cをこのように形成すると、連通部3cの曲率半径を大きく形成できる。
【0055】
なお、連通部3cは、図6に示すように、熱電変換モジュール1の両端側にそれぞれ1つずつ設けてもよいし、熱電変換モジュール1の一端側の側部がわに曲率半径が互いに異なる複数の連通部3cを配置してもよい。また、ヒートパイプ3は、図2(c)に示すように、上下に環状に配置し、熱電変換モジュール1(同図には図示せず)の両側部がわに連通部3cを配置してもよい。
【0056】
また、上記実施形態例では、熱電変換モジュール1の上側基板6の上側に設けた第2の高熱伝導性部材4aの伝熱面積を下側基板7の下側に設けた第1の高熱伝導性部材4bより大きく形成したが、これらの高熱伝導性部材4(4a,4b)は互いに同じ大きさとしてもよい。
【0057】
さらに、上記実施形態例では、熱電変換モジュール1の上側基板6の上側と下側基板7の下側にはそれぞれ高熱伝導性部材4(4a,4b)を設け、これらの高熱伝導性部材4(4a,4b)にヒートパイプ3(3a,3b)を内蔵したが、高熱伝導性部材4(4a,4b)を設けずに、箱板状のヒートパイプを折り曲げて形成してもよい。
【0058】
さらに、上記実施形態例では、ヒートパイプ3(3a,3b,3c)内にウィックを設けなかったが、少なくとも連通部3c内にウィックを設けないことにより、下側に配置されたヒートパイプ3b側から上側に配置されたヒートパイプ3a側に作動液が連通部3cを介して移動することを確実に抑制することができ、ヒートパイプ3内で熱が被冷却体側に移動することが確実に抑制され、熱電変換モジュール1により被冷却体を効率的に移動することができる。
【0059】
さらに、上記実施形態例では、熱電変換モジュール1の基板6,7の面が重力方向(図1の矢印G方向)に直交する態様で冷却装置を設けたが、冷却装置は、図1の矢印Sに示すように、重力方向に対して傾いた方向に対し、基板6,7が直交するように配置してもよい。
【0060】
さらに、上記実施形態例では、熱電変換素子5の接続回路の開閉動作の基準となる回路開設定温度を20℃とし、回路閉設定温度を40℃としたが、回路開設定温度や回路閉設定温度は特に限定されるものでなく適宜設定されるものであり、回路開設定温度を回路閉設定温度より小さく設定すればよい。
【0061】
さらに、上記本実施形態例では、省電流制御機構22は熱電変換モジュール1の吸熱側基板(下側基板7)の温度に基づいて熱電変換素子5の接続回路の開閉動作を行ったが、省電流制御機構22は被冷却体である発熱部9の温度に基づいて熱電変換素子5の接続回路の開閉動作を行ってもよいし、被冷却体と吸熱側基板の中間の温度に基づいて熱電変換素子5の接続回路の開閉動作を行うようにしてもよい。
【0062】
なお、本明細書において、吸熱側基板と被冷却体の中間の検出温度とは、吸熱側基板の検出温度と被冷却体の検出温度の間の温度(つまり、被冷却体の検出温度から吸熱側基板の検出温度までの範囲内の温度)をいう。
【0063】
さらに、例えば図7に示すように、回路開設定温度と回路閉設定温度の少なくとも一方が互いに異なる複数(ここでは2つ)の省電流制御機構22を設けて熱電変換モジュール1の制御を行うようにしてもよい。この場合、省電流制御機構22として、バイメタル8(8a,8b)を設け、これら複数のバイメタル8(8a,8b)と熱電変換素子5の接続回路との接続を切り換えるスイッチ15を有する構成とすると、装置の小型化を図れる。
【0064】
なお、図7の(a)において、熱電変換素子5の接続回路は符号10を付して示している。図7(a)は、スイッチ15が接続回路と第1のバイメタル8aとを接続している状態を示しており、図の鎖線に示す態様とすることにより、スイッチ15が接続回路と第2のバイメタル8bとを接続することになる。
【0065】
また、例えば図7に示す例において、第1のバイメタル8aは、回路開設定温度が40℃、回路閉設定温度が50℃とし、第2のバイメタル8bは、回路開設定温度が30℃、回路閉設定温度が40℃としている。これらは熱電変換モジュール1の冷却側であるセラミック製の下側基板7上に実装されており、前記スイッチ15も基板7上に設けられている。
【0066】
このように、スイッチ15により複数のバイメタル8と熱電変換素子5の接続回路との接続を切り換える構成を備えた冷却装置は、夏場と冬場で仕様環境温度に応じて熱電変換モジュール1および冷却装置の冷却の設定を変えたい場合や、被冷却体の冷却条件を必要に応じて切り換えたいときなどに有効に適用される。なお、バイメタル8を3つ以上設けてスイッチ15により切り換える構成も本発明に適用できる。
【0067】
さらに、省電流制御機構22はバイメタル8を有して構成されていたが、バイメタル8の代わりに形状記憶合金とばね等の弾性部材を有して構成した素子としてもよい。この場合、回路開設定温度で形状記憶合金が変形して熱電変換素子5の接続回路を開とし、回路閉設定温度でばね等の弾性部材の弾性復元力によって熱電変換素子5の接続回路を閉とするように構成する。
【0068】
さらに、上記第2実施形態例では、省電流制御機構22は熱電変換モジュール1の下側基板7に設けたが、省電流制御機構22は熱電変換モジュール1の下側基板7の近傍領域や発熱部9の近傍領域に設けてもよい。
【0069】
さらに、上記実施形態例では、冷却装置は、省電流制御機構22を設けて構成したが、省電流制御機構22を省略し、例えば発熱部9の温度に応じて、手動により熱電変換モジュール1の電源のオン・オフを行うようにしてもよい。
【0070】
さらに、上記実施形態例では、熱電変換モジュール駆動の定電圧印加時にImaxの60%の電流が流れるように、熱電変換モジュール1の内部抵抗を設定したが、熱電変換モジュール1の内部抵抗は特に限定されるものでなく適宜設定されるものであり、例えばImaxの20〜80%の範囲内で設定した設定値の電流が、熱電変換モジュール駆動の定電圧印加時に流れるように設定することで、効率的に熱電変換モジュール1を作動できる。
【0071】
さらに、本発明に適用される熱電変換モジュール1の大きさやその詳細構成は特に限定されるものでなく適宜設定されるものでいる。
【0072】
【発明の効果】
本発明によれば、熱電変換モジュールの上側基板と下側基板に沿って連続したヒートパイプを設け、被冷却体側に下側ヒートパイプを配置することにより、例えば被冷却体の温度があまり高くならない(負荷が小さい)ときにはヒートパイプによる冷却を行い、被冷却体の温度が高くなるとき(負荷が大きい)ときには熱電変換モジュールを作動させて、被冷却体の熱をヒートパイプを介して熱電変換モジュールの吸熱側基板により吸熱し、必要なだけ熱電変換モジュールによる被冷却体の冷却を行なうことができる。
【0073】
したがって、本発明の冷却装置は、無駄に熱電変換モジュールを作動させることはなく、かつ、従来の空冷だけでは実現できなかった高熱密度、高熱流束等を有する電子部品等の被冷却体を効率的に冷却して被冷却体の温度を適切な温度に維持することができる。
【0074】
また、ヒートシンクにはファンが設けられている構成によれば、ヒートシンクによる放熱をより効率的に行うことができる。
【0075】
さらに、本発明において、熱電変換モジュールの上下に配置するヒートパイプを高熱伝導性部材に内蔵した構成によれば、高熱伝導性部材によって被冷却体の熱を効率良くヒートパイプに伝えることができ、被冷却体の熱を効率良く吸熱し、かつ、効率良く放熱することができる。
【0076】
さらに、本発明において、ヒートパイプ内に設けられている作動液が、熱電変換モジュールの上側基板と下側基板の間に配置されているヒートパイプの連通部を介して、移動することを抑制するサーモサイフォン型の構成を有している構成によれば、被冷却体側に配置されている熱電変換モジュールの下側基板が熱電変換モジュールの作動に伴って吸熱側基板と成し、ヒートシンク側に配置されている熱電変換モジュールの上側基板が熱電変換モジュールの作動に伴って放熱側基板と成しても、これらの基板温度に対応して作動液が上側のヒートパイプ側に移動することはない。
【0077】
したがって、この構成の本発明によれば、ヒートパイプ内で熱が被冷却体側に移動することが確実に抑制され、熱電変換モジュールにより被冷却体を効率的に移動することができる。
【0078】
さらに、本発明において、少なくともヒートパイプの連通部内にはウィックが設けられていない構成によれば、作動液が下側に配置されたヒートパイプ側から上側ヒートパイプ側に毛細管力によって移動することを確実に抑制することができる。
【0079】
さらに、本発明において、熱電変換モジュールの熱電変換素子の接続回路を開閉する省電流制御機構が設けられている構成によれば、省電流制御機構により、熱電変換モジュールの吸熱側基板または被冷却体あるいは両者の中間の検出温度に基づいて、熱電変換モジュールの熱電変換素子の接続回路を開閉することができるので、熱電変換モジュールによる冷却動作を必要とする時のみ熱電変換モジュールを動作させて、無駄な消費電流を抑制し、かつ、的確に被冷却体の温度を設定温度に維持することができる。
【0080】
さらに、本発明において、省電流制御機構は熱電変換モジュールの吸熱側基板またはその近傍に設けられている構成によれば、省電流制御機構の配設スペースを省スペース化し、かつ、省電流制御機構による熱電変換素子の接続回路の開閉動作をより一層的確に行うことができる。
【0081】
さらに、本発明において、上記回路開設定温度と回路閉設定温度の少なくとも一方が互いに異なる複数の省電流制御機構を有し、これら複数の省電流制御機構と熱電変換素子の接続回路との接続を切り換えるスイッチを有する構成によれば、使用される環境温度に合わせ、温度制御範囲を適切に変更することができるので、被冷却素子の温度を設定温度より低く保つという課題に対し、実際の環境温度に合わせて、複数の省電流制御機構と熱電変換素子との接続を切り換えることができ、より的確に、熱電変換モジュールの省電流化を図れる。
【0082】
さらに、バイメタルや形状記憶合金は、従来の温度センサと温度制御装置を組み合わせた方式に比して非常に安価で小型の素子であるため、バイメタルまたは形状記憶合金を有する省電流制御機構を設ける構成の本発明は、装置の小型化と低価格化をより一層確実に行うことができる。
【0083】
さらに、本発明において、熱電変換モジュール駆動の定電圧印加時に設定電流が流れるように内部抵抗を設定したこと構成によれば、比較的エネルギー効率の良好な領域で熱電変換モジュールを作動することができる。
【図面の簡単な説明】
【図1】本発明に係る冷却装置の一実施形態例の要部構成を模式的に示す説明図である。
【図2】本発明に係る冷却装置に設けられるヒートパイプの配設形態例を示す説明図である。
【図3】上記実施形態例に適用した熱電変換モジュールの投入電流と吸熱量との関係を示すグラフである。
【図4】上記実施形態例に適用した熱電変換モジュールの投入電流と成績係数との関係を示すグラフである。
【図5】上記実施形態例に適用されている熱電変換モジュールの下側基板温度に対応した回路開閉機能を模式的に示す説明図である。
【図6】本発明に係る冷却装置の他の実施形態例を模式的に示す正面説明図(a)と側面説明図(b)である。
【図7】本発明に係る冷却装置のさらに他の実施形態例に適用されている熱電変換モジュールとその周辺構成を模式的に示す平面説明図(a)と側面図(b)である。
【図8】従来の熱電変換モジュールの構成を示す説明図である。
【符号の説明】
1 熱電変換モジュール
2 電極
3 ヒートパイプ
4,4a,4b 高熱伝導性部材
5,5a,5b 熱電変換素子
6 上側基板
7 下側基板
8 バイメタル
9 発熱体
12 ヒートシンク
15 スイッチ
22 省電流制御機構

Claims (10)

  1. 上下に間隔を介して対向配置された基板と、これら上下の基板の対向表面にそれぞれ互いに間隔を介して形成された複数の電極と、前記上下の基板間に配置されて互いに間隔を介して配列したP型とN型の複数の熱電変換素子とを有して、これらの熱電変換素子が対応する前記電極を介して接続されて熱電変換素子の接続回路が形成され、該熱電変換素子の接続回路に電流を流すことにより前記下側の基板が吸熱側基板と成して上側の基板が放熱側基板と成す熱電変換モジュールを有し、熱電変換モジュールの上側基板と下側基板の基板面に沿って連続するヒートパイプが設けられており、熱電変換モジュールの上側に配置されたヒートパイプの上側にはヒートシンクが設けられていることを特徴とする冷却装置。
  2. ヒートシンクにはファンが設けられていることを特徴とする請求項1記載の冷却装置。
  3. 熱電変換モジュールの下側基板の下側には第1の高熱伝導性部材が設けられ、熱電変換モジュールの上側基板の上側には前記第1の高熱伝導性部材以上の伝熱面積を有する第2の高熱伝導性部材が設けられており、これらの高熱伝導性部材内にヒートパイプが内蔵され、前記第2の高熱伝導性部材の上側にヒートシンクが設けられていることを特徴とする請求項1または請求項2記載の冷却装置。
  4. ヒートパイプ内に設けられている作動液が、熱電変換モジュールの上側基板と下側基板の間に配置されているヒートパイプの連通部を介して、下側に配置されたヒートパイプ側から上側に配置されたヒートパイプ側にヒートパイプ内壁を毛細管力により移動することを抑制するサーモサイフォン型の構成を有していることを特徴とする請求項1または請求項2または請求項3記載の冷却装置。
  5. ヒートパイプ内には少なくとも連通部内にウィックが設けられていないことを特徴とする請求項4記載の冷却装置。
  6. 熱電変換モジュールの吸熱側基板または被冷却体あるいは両者の中間の温度を検出する温度検出機能と、該温度検出機能によって検出した検出温度に基づいて、該検出温度が回路開設定温度以下のときに熱電変換素子の接続回路を開とする回路開機能と、熱電変換素子の接続回路を開とした後に前記検出温度が回路開設定温度より大きい回路閉設定温度以上になったときに、前記熱電変換素子の接続回路を閉とすることにより熱電変換素子の接続回路に再び電流が流れるようにする回路復帰機能とを有する省電流制御機構が設けられていることを特徴とする請求項1乃至請求項5のいずれか一つに記載の冷却装置。
  7. 省電流制御機構は熱電変換モジュールの吸熱側基板またはその近傍に設けられていることを特徴とする請求項6記載の冷却装置。
  8. 回路開設定温度と回路閉設定温度の少なくとも一方が互いに異なる複数の省電流制御機構を有し、これら複数の省電流制御機構と熱電変換素子の接続回路との接続を切り換えるスイッチを有することを特徴とする請求項6または請求項7記載の冷却装置。
  9. 省電流制御機構はバイメタルまたは形状記憶合金を有して形成されていることを特徴とする請求項6乃至請求項8のいずれか一つに記載の冷却装置。
  10. 熱電変換モジュールは、吸熱側基板の最大吸熱量を得るために熱電変換モジュールに必要な電流値の20〜80%の範囲内で設定した設定値の電流が熱電変換モジュール駆動の定電圧印加時に流れるように内部抵抗を設定したことを特徴とする請求項1乃至請求項9のいずれか一つに記載の冷却装置。
JP2003055840A 2003-03-03 2003-03-03 冷却装置 Expired - Fee Related JP4486785B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055840A JP4486785B2 (ja) 2003-03-03 2003-03-03 冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055840A JP4486785B2 (ja) 2003-03-03 2003-03-03 冷却装置

Publications (2)

Publication Number Publication Date
JP2004266145A true JP2004266145A (ja) 2004-09-24
JP4486785B2 JP4486785B2 (ja) 2010-06-23

Family

ID=33119735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055840A Expired - Fee Related JP4486785B2 (ja) 2003-03-03 2003-03-03 冷却装置

Country Status (1)

Country Link
JP (1) JP4486785B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157770A (ja) * 2005-11-30 2007-06-21 Furukawa Electric Co Ltd:The 電子部品用冷却装置、その温度制御方法及びその温度制御プログラム
CN100396999C (zh) * 2005-09-27 2008-06-25 上海理工大学 热电制冷振荡热管复合冷却温控系统
CN100463148C (zh) * 2005-11-25 2009-02-18 鸿富锦精密工业(深圳)有限公司 散热装置
CN102446878A (zh) * 2010-10-11 2012-05-09 海洋王照明科技股份有限公司 一种半导体制冷装置
CN109786279A (zh) * 2017-11-14 2019-05-21 台湾积体电路制造股份有限公司 加热平台、热处理和制造方法
IT202100027713A1 (it) * 2021-10-28 2023-04-28 Giacomo Ruaro Dispositivo di recupero di energia termica

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102162375B1 (ko) * 2018-09-27 2020-10-06 한국기계연구원 폐열을 이용한 열전발전 장치
EP4109688A1 (en) * 2021-06-25 2022-12-28 Nokia Technologies Oy Integrated heat spreader

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100396999C (zh) * 2005-09-27 2008-06-25 上海理工大学 热电制冷振荡热管复合冷却温控系统
CN100463148C (zh) * 2005-11-25 2009-02-18 鸿富锦精密工业(深圳)有限公司 散热装置
JP2007157770A (ja) * 2005-11-30 2007-06-21 Furukawa Electric Co Ltd:The 電子部品用冷却装置、その温度制御方法及びその温度制御プログラム
CN102446878A (zh) * 2010-10-11 2012-05-09 海洋王照明科技股份有限公司 一种半导体制冷装置
CN109786279A (zh) * 2017-11-14 2019-05-21 台湾积体电路制造股份有限公司 加热平台、热处理和制造方法
CN109786279B (zh) * 2017-11-14 2022-11-29 台湾积体电路制造股份有限公司 加热平台、热处理和制造方法
IT202100027713A1 (it) * 2021-10-28 2023-04-28 Giacomo Ruaro Dispositivo di recupero di energia termica

Also Published As

Publication number Publication date
JP4486785B2 (ja) 2010-06-23

Similar Documents

Publication Publication Date Title
US7795711B2 (en) Microelectronic cooling apparatus and associated method
US20100269517A1 (en) Module for cooling semiconductor device
US20080229759A1 (en) Method and apparatus for cooling integrated circuit chips using recycled power
JP4551261B2 (ja) 冷却ジャケット
JPWO2004001865A1 (ja) 熱電素子とそれを用いた電子部品モジュールおよび携帯用電子機器
KR20090032019A (ko) 마이크로전자 패키지 및 그것의 상호접속 피쳐 냉각 방법
WO2004061982A1 (ja) 熱電変換材料を利用した電子部品の冷却装置
JP2007234913A (ja) 電子回路構造、該構造を備える電子機器、熱起電力発生方法、補助電力発生方法、及び半導体ベアチップ
JP3977378B2 (ja) 半導体素子冷却用モジュール
JPH11351769A (ja) ヒートシンク
US6774450B2 (en) Semiconductor device with thermoelectric heat dissipating element
JP4486785B2 (ja) 冷却装置
KR20030068633A (ko) 열전소자를 이용한 집적회로 냉각장치
TW200416376A (en) Semiconductor integrated circuit device and semiconductor integrated circuit chip thereof
JP4391351B2 (ja) 冷却装置
JP2005136211A (ja) 冷却装置
JP2004221409A (ja) ペルチェモジュール装置
US7532476B2 (en) Flow solutions for microelectronic cooling
JP5100165B2 (ja) 冷却基板
JP2005136212A (ja) 熱交換装置
JP4360624B2 (ja) 半導体素子冷却用ヒートシンク
JP4325026B2 (ja) 冷却装置及び電子機器
JP2013143792A (ja) 発電システム
JP5453296B2 (ja) 半導体装置
JP5170870B2 (ja) 冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees