JP2004253459A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2004253459A
JP2004253459A JP2003039866A JP2003039866A JP2004253459A JP 2004253459 A JP2004253459 A JP 2004253459A JP 2003039866 A JP2003039866 A JP 2003039866A JP 2003039866 A JP2003039866 A JP 2003039866A JP 2004253459 A JP2004253459 A JP 2004253459A
Authority
JP
Japan
Prior art keywords
layer
light
substrate
getter
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003039866A
Other languages
English (en)
Inventor
Takuto Yasumatsu
拓人 安松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003039866A priority Critical patent/JP2004253459A/ja
Publication of JP2004253459A publication Critical patent/JP2004253459A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】本発明は、大粒界且つ清浄な多結晶シリコン膜を容易に得られるようにした半導体装置の製造方法を提供することを目的とする。
【解決手段】基板10上にゲッター層12を形成した後、このゲッター層にガスを吸着させ、更にこのゲッター層12の上に、ガスバリア層13,非晶質半導体層15を順に形成する。そして、この非晶質半導体層15の形成された面と反対の基板面側から、ゲッター層12の吸収波長を有する第1の光52を照射してアニールし、続いて非晶質半導体層15の形成された基板面側から光アニールして結晶化を行なう。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜トランジスタ(TFT)等の半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
液晶装置、エレクトロルミネッセンス(EL)装置等の表示装置として、マトリクス状に配置された多数の画素を、画素毎に駆動するために、各画素に薄膜半導体装置である薄膜トランジスタ(TFT)を設けたアクティブマトリクス型の表示装置が知られている。かかる用途に用いられるTFTとしては、多結晶シリコン(p−Si)TFTが広く用いられている。このようなp−SiTFTの製造プロセスとしては、非晶質シリコン(a−Si)をELA(エキシマレーザアニール)法で融解結晶化して多結晶化するプロセスが知られている。
【0003】
ところで、p−SiTFTでは、シリコンの結晶性がTFTの電気的特性に大きな影響を与えるが通常のELAにより得られる結晶粒径は数100nmと小さく、結晶成長方向もばらつきがあり、TFT内部に結晶粒界が多数存在する。そのため結晶粒の拡大を図るべく、アニール時にシリコンの横方向成長を促進するための方法が必要となる。このような方法としては、例えば、CWレーザの走査やSLS法等が考えられるが、いずれも製造装置に大きな変更が必要となる。このような課題を解決するために、In−Hyuk Song等は、下記の非特許文献1において、Air−gapを用いた新しい結晶化方法を提案した。この結晶化方法では、a−Si半導体層の下層側にウェットエッチングによりAir−gap(空間)を形成し、この空間の形成された領域と他の領域との熱伝導率差を利用してa−Siの横方向成長を行なっている。
【0004】
【非特許文献1】
“High Performance Dual−Gate Poly−Si Floating Active Structure”,In−Hyuk Song et.al.,AM−LCD’02,p.29−p.32(2002)
【0005】
【発明が解決しようとする課題】
しかしながら、上述の方法では、TFT裏面の狭い領域にウェットエッチングを行なうため、エッチング液残り等が懸念される。また、Air−gap(空間)内の雰囲気は大気に暴露されることなく真空であることが望ましいが、gap内の雰囲気を制御することは実際上困難である。これらはいずれもTFTの信頼性に大きく影響するため、実用化には疑問がもたれる。
本発明はこのような課題に鑑み創案されたものであり、大粒界且つ清浄な多結晶シリコン膜を容易に得られるようにした半導体装置の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記課題を解決するために、本発明の半導体装置の製造方法は、基板上にゲッター層を形成する工程と、前記ゲッター層にガスを吸着させる工程と、前記ゲッター層の上にガスバリア層を形成する工程と、前記ガスバリア層の上に非晶質半導体層を形成する工程と、前記非晶質半導体層の形成された面と反対の基板面側から、前記ゲッター層の吸収波長を有する第1の光を照射してアニールする工程と、前記非晶質半導体層の形成された基板面側から第2の光を照射してアニールを行なう工程とを備えたことを特徴とする。
【0007】
本製造方法では、ガスを吸着させたゲッター層の上にガスバリア層を形成しているため、基板裏面(即ち、非晶質半導体層の形成された面と反対側の基板面)から第1の光を照射すると、ゲッター層からガスが放出され、ゲッター層とガスバリア層との間に空間が形成される。この状態で、基板表面(即ち、非晶質半導体層の形成された基板面)から第2の光を照射してアニールを行なった場合、前記空間は熱伝導率が低いため、非晶質半導体において、この空間の上層側の領域はそれに隣接する領域に比べて結晶化が遅れる。この結果、非晶質半導体層では、空間のない領域(即ち、空間の両端側に位置する領域)から結晶化が始まり、空間の中心に向かって横方向成長して大粒界が形成される。
【0008】
このように本製造方法によれば、従来の製造工程を略そのまま踏襲しながら容易に大粒界の多結晶シリコン膜を得ることができる。また、本製造方法では、前記空間を形成する際に、前記非特許文献1に開示されるようなエッチング等の工程を用いないため、空間内にエッチング残り等の不純物が残留することがなく、信頼性の高い半導体装置を製造することができる。しかも、上述のようにゲッター層からの脱離ガスを用いて空間を形成した場合、一連のアニール工程を終えて基板が冷却されるとゲッター層はゲッター作用を回復し、前記空間内は真空状態となる。これにより、半導体装置の信頼性が更に高まる。
なお、上述の多結晶半導体層は、薄膜トランジスタ(TFT)の能動層として用いてもよく、これにより、高性能なTFTを構成することができる。
【0009】
また、脱離ガスによるTFTの破壊を防止するために、ゲッター層にガスを吸着させる工程は、ゲッター層へのガスの吸着量を制御可能な程度に減圧された状態で行なうことが望ましい。
さらに、ガスバリア層は、脱離ガスを閉じ込めることのできる材料であればどのようなものでもよいが、特に、アルミニウム(Al)、銅(Cu)、銀(Ag)、金(Au)等の熱伝導率の高い材料を含むことで、第1の光照射によりアニールされたゲッター層の熱を効率よく拡散させることができるため、好ましい。
【0010】
また、第2の光は、フラッシュランプ光、エキシマレーザ光、赤外線ランプ光の内のいずれかを含むことが望ましい。具体的には、フラッシュランプ光を用いたフラッシュランプアニール(FLA)、エキシマレーザ光を用いたエキシマレーザアニール(ELA)、赤外線ランプ光を用いた急速熱アニール(RTA)により、非晶質半導体層を効果的に結晶化することができる。
また、第1の光は、パルスランプ光、パルスレーザー光、フラッシュランプ光の内の少なくとも一つを含むことが望ましい。瞬間的な光によるアニールで光吸収材料のゲッター層のみを瞬間的に高温することにより、他の構造に熱的ダメージを与えることなく脱ガスを可能にする。
【0011】
【発明の実施の形態】
以下、図面を参照しながら本発明の半導体装置の製造方法について説明する。
図1〜図5はいずれも、本実施形態の半導体装置(薄膜トランジスタ;TFT)の製造方法を工程順に示す概略断面図である。なお、各図において、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材毎に縮尺を異ならせてある。
【0012】
はじめに、図1(a)に示すように、超音波洗浄等により清浄化したガラス基板10を用意した後、基板温度が150〜450℃となる条件下で、ガラス基板10の全面に、シリコン酸化膜等の絶縁膜からなる緩衝膜11をプラズマCVD法等により、例えば500nm程度の厚さに成膜する(第1の緩衝層形成工程)。この工程において用いる原料ガスとしては、モノシランと一酸化二窒素との混合ガスや、TEOS(テトラエトキシシラン、Si(OC)と酸素、ジシランとアンモニア等が好適である。
【0013】
次に、図1(b)に示すように、ガスを吸着させるためのゲッター層12をスパッタリング等により基板全面に100nm程度の厚さに形成し(ゲッター層形成工程)、続いて、図1(c)に示すように、基板10を減圧雰囲気下でガス51に曝し、ゲッター層12に前記ガス51を吸着させる(ガス吸着工程)。
なお、ゲッター層12には、例えばBa、Ni、W、Ti、V、Zr、Al、Ag、Au、Mg、Ca、Mn、Ce、Nb、Mo、Ta、Th等のゲッター作用を有する金属や、このような金属を少なくとも一種類以上含む金属化合物を用いることができる。また、吸着ガスとしては、例えば水素、水蒸気、酸素、窒素等を用いることができる。
【0014】
次に、図1(d)に示すように、ガス51の吸着されたゲッター層12の上にスパッタリング法やプラズマCVD法等により、ガスを透過させないガスバリア層13を形成する(ガスバリア層形成工程)。このガスバリア層13には、例えば、Al,Cu,Ag,Au等の熱伝導率の高い金属を含む材料を用いることが好ましい。このような金属材料を用いることで、後述の第1のアニール工程により高温となったゲッター層12の熱を効率よく拡散させることができる。
【0015】
なお、図1(b)〜図1(d)に示した一連の工程は、同一のスパッタ装置若しくは蒸着装置により行なわれることが望ましい。具体的には、ゲッター層形成工程〜ガスバリア層形成工程を、Ti形成チャンバ、搬送装置、吸着ガス導入チャンバ、Al形成チャンバが減圧雰囲気下で互いに連結された成膜装置内で行ない、ゲッター層12が大気に暴露されないようにする。これにより、ゲッター層へのガスの吸着量が制御可能となり、後述の第1のアニール工程においてTFTの破壊を防止することができる。
【0016】
次に、図2(a)に示すように、基板温度が150〜450℃となる条件下で、ガスバリア層13の上に、シリコン酸化膜等の絶縁膜からなる緩衝膜14をプラズマCVD法等により、例えば500nm程度の厚さに成膜する(第2の緩衝層形成工程)。
次に、図2(b)に示すように、基板温度が150°〜450°となる条件下で、緩衝膜14を形成したガラス基板10の全面に非晶質シリコン膜(非晶質半導体層)15をプラズマCVD法等により400nm程度の厚さに成膜する(非晶質半導体層形成工程)。この工程において用いる原料ガスとしては、ジシランやモノシランが好適である。
【0017】
次に、図2(c)に示すように、基板裏面側からTFTの能動層を形成する領域に局所的に瞬間光アニールを行なう(第1のアニール工程)。光源としては、例えばゲッター層12が吸収する波長領域を有するパルスランプ、パルスレーザーやフラッシュランプを用いることができる。
この工程により、ゲッター層12は高温となり、ガス吸着工程においてゲッター層12に吸着されたガスが放出される。そして、前記ゲッター層12上には前記ガスバリア層13が形成されているので、この脱離ガスによる圧力上昇により、前記ゲッター層12と前記ガスバリア層13との間に空間12aが形成される(図2(d)参照)。なお、上述の第1のアニール工程が終了して基板10が冷却されると、ゲッター層12はゲッター作用を回復するため、前記空間12aの内部は真空状態となる。
【0018】
次に、図3(a)に示すように、基板表面側から光アニールを行ない、非晶質シリコン膜15を結晶化する(第2のアニール工程)。なお、光源としては、エキシマレーザ、フラッシュランプ、赤外線ランプ等を用いることができる。
【0019】
本実施形態では、非晶質半導体層15の下層側に空間12aが形成されているため、この第2のアニール工程において、基板表面側から第2の光53を照射すると、前記空間12aは熱伝導率が低いため、非晶質シリコン膜15において、この空間12aの上層側の領域Aはそれに隣接する両側の領域Bに比べて結晶化が遅れる。この結果、非晶質シリコン膜15では、空間12aの中心に向かって横方向成長して大粒界が形成される。そして、以上により、非晶質シリコン膜15は多結晶化され、能動層として機能する多結晶シリコン膜16となる。
【0020】
次に、図3(b)に示すように、多結晶化シリコン膜16をフォトリソグラフィ技術により所望の形状にパターニングし(パターニング工程)、続いて、図3(c)に示すように、このパターニングされた多結晶シリコン膜16を覆うように基板10全面に、例えば210℃以下の温度条件で、シリコン酸化膜,シリコン窒化膜等からなるゲート絶縁膜17をプラズマCVD法等により、例えば70nm程度の厚さに成膜する。なお、この工程において用いる原料ガスとしては、TEOSと酸素ガスとの混合ガス等が好適である。
【0021】
次に、図4(a)に示すように、ゲート絶縁膜17上であって多結晶シリコン膜16に対向する位置に所定形状のゲート電極18をパターン形成する。具体的には、ゲート絶縁膜17を形成したガラス基板10の全面に、スパッタリング法等により、導電性を有するアルミニウム、タンタル、モリブデン等の金属、又はこれらの金属のいずれかを主成分とする合金、若しくは多結晶シリコン等の導電膜を500nm程度の厚さに成膜した後、該導電膜をフォトリソグラフィ技術により所定形状にパターニングする。
【0022】
次に、図4(b)に示すように、ゲート電極18をマスクとして、多結晶シリコン膜16に対し、約0.1×1013〜約10×1013/cmのドーズ量で低濃度の不純物イオン(リンイオン)を打ち込み、ゲート電極18に対して自己整合的に低濃度ソース領域16b、低濃度ドレイン領域16cを形成する。ここで、ゲート電極18の直下に位置し、不純物イオンが導入されなかった部分はチャネル領域16aとなる。
【0023】
また、図4(c)に示すように、ゲート電極18より幅広のレジストマスク(図示略)を形成して高濃度の不純物イオン(リンイオン)を約0.1×1015〜約10×1015/cmのドーズ量で打ち込み、高濃度ソース領域16d、及び高濃度ドレイン領域16eを形成する。これによりLDD(Lightly Doped Drain)構造のソース領域及びドレイン領域が形成される。
【0024】
なお、LDD(Lightly Doped Drain)構造のソース領域及びドレイン領域を形成する代わりに、低濃度の不純物の打ち込みを行わずにゲート電極18より幅広のレジストマスクを形成した状態で高濃度の不純物(リンイオン)を打ち込み、オフセット構造のソース領域及びドレイン領域を形成しても良い。また、ゲート電極18をマスクとして高濃度の不純物を打ち込み、セルフアライン構造のソース領域及びドレイン領域を形成しても良い。
【0025】
次に、図5(a)に示すように、ゲート電極18の表面側にCVD法等により、シリコン酸化膜等からなる層間絶縁膜19を1000nm程度の厚さに成膜する。この工程において用いる原料ガスとしては、TEOSと酸素ガスとの混合ガス等が好適である。
【0026】
また、図5(b)に示すように、所定のパターンのレジストマスク(図示略)を形成した後、該レジストマスクを介して層間絶縁膜19のドライエッチングを行い、層間絶縁膜19において高濃度ソース領域16d及び高濃度ドレイン領域16eに対応する部分にコンタクトホール20、21をそれぞれ形成する。
【0027】
さらに、図5(c)に示すように、層間絶縁膜19の全面に、アルミニウム、チタン、窒化チタン、タンタル、モリブデン、又はこれらの金属のいずれかを主成分とする合金、若しくは多結晶シリコンを主成分とする材料等の導電膜22を、スパッタリング法等によりベタ状に成膜する。
【0028】
続いて、導電膜22をフォトリソグラフィ法によりパターニングし、図5(d)に示すような厚さ400nm〜800nmのソース電極23及びドレイン電極24を形成する。
【0029】
このような製造方法によれば、従来の製造方法を略そのまま踏襲しながら容易に大粒界の多結晶シリコン膜を形成することができる。また、前記製造方法では、空間12aを形成する際に、エッチング等の工程を用いないため、空間内にエッチング残り等の不純物が残留する虞がなく、信頼性の高いTFTを製造することができる。しかも、上述のようにゲッター層12からの脱離ガスを用いて空間12aを形成する方法では、基板10が冷却されると、ゲッター層12はゲッター作用を回復し空間12a内は真空状態となる。これにより、TFTの信頼性が更に高まる。
【0030】
なお、本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
例えば、前記実施形態では、ガスバリア層としてAl等の熱伝導率の高い金属材料を用いたが、前記ガスバリア層はこのような金属材料に限定されず、インジウム錫酸化物(ITO)等の半導体材料や絶縁材料を用いることも可能である。
【0031】
また、前記実施形態では、半導体装置としてN型トランジスタを例に挙げて説明したが、P型トランジスタを製造する場合にも同様の工程を適用することができる。また、本実施形態の製造方法は、特に基板上に多数のTFTを形成するアクティブマトリクス型の液晶装置やEL装置等の表示装置を製造する場合に好適に適用することができる。
さらに、前記実施形態では、ゲッター層12を基板10全面に形成した場合について説明したが、例えば、本薄膜トランジスタ1を透過型液晶表示装置に適用する場合には、ゲッター層形成工程において、ゲッター層をマスク蒸着やフォトリソグラフィ技術等によりTFTの形成領域或いは非表示領域にのみ形成する。
【図面の簡単な説明】
【図1】本発明に係る半導体装置の製造方法を示す工程図である。
【図2】同、製造工程を示す工程図である。
【図3】同、製造工程を示す工程図である。
【図4】同、製造工程を示す工程図である。
【図5】同、製造工程を示す工程図である。
【符号の説明】
1…薄膜トランジスタ(半導体装置) 10…基板 12…ゲッター層 13…ガスバリア層 15…非晶質シリコン膜(非晶質半導体膜)51…ガス 52…第1の光 53…第2の光

Claims (6)

  1. 基板上にゲッター層を形成する工程と、
    前記ゲッター層にガスを吸着させる工程と、
    前記ゲッター層の上にガスバリア層を形成する工程と、
    前記ガスバリア層の上に非晶質半導体層を形成する工程と、
    前記非晶質半導体層の形成された面と反対の基板面側から、前記ゲッター層の吸収波長を有する第1の光を照射してアニールする工程と、
    前記非晶質半導体層の形成された基板面側から第2の光を照射してアニールを行なう工程とを備えたことを特徴とする、半導体装置の製造方法。
  2. 前記多結晶半導体層を薄膜トランジスタの能動層として用いることを特徴とする、請求項1記載の半導体装置の製造方法。
  3. 前記ゲッター層にガスを吸着させる工程は、減圧雰囲気下で行なわれることを特徴とする、請求項1又は2記載の半導体装置の製造方法。
  4. 前記ガスバリア層は、アルミニウム、銅、銀、金の内の少なくとも一つを含むことを特徴とする、請求項1〜3のいずれか1項に記載の半導体装置の製造方法。
  5. 前記第2の光が、フラッシュランプ光、エキシマレーザ光、赤外線ランプ光の内の少なくとも一つを含むことを特徴とする、請求項1〜4のいずれかの項に記載の半導体装置の製造方法。
  6. 前記第1の光がパルスランプ光、パルスレーザー光、フラッシュランプ光の内の少なくとも一つを含むことを特徴とする、請求項1乃至5のいずれか1項に記載の半導体装置の製造方法。
JP2003039866A 2003-02-18 2003-02-18 半導体装置の製造方法 Pending JP2004253459A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039866A JP2004253459A (ja) 2003-02-18 2003-02-18 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039866A JP2004253459A (ja) 2003-02-18 2003-02-18 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2004253459A true JP2004253459A (ja) 2004-09-09

Family

ID=33023918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039866A Pending JP2004253459A (ja) 2003-02-18 2003-02-18 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2004253459A (ja)

Similar Documents

Publication Publication Date Title
JP5166152B2 (ja) 薄膜トランジスタの製造方法
US5663077A (en) Method of manufacturing a thin film transistor in which the gate insulator comprises two oxide films
JP5197211B2 (ja) 薄膜トランジスタ、その製造方法、及びこれを具備した有機電界発光表示装置
EP2146371B1 (en) Method of fabricating thin film transistor
US20120268681A1 (en) Semiconductor circuit for electro-optical device and method of manufacturing the same
TWI492315B (zh) 低溫多晶矽薄膜晶體管製造方法
JP2008300831A (ja) 多結晶シリコン層の製造方法、これを利用して形成された薄膜トランジスタ、その製造方法及びこれを含む有機電界発光表示装置
US20070284581A1 (en) Method of fabricating pmos thin film transistor
JP3325992B2 (ja) 半導体装置の作製方法
JP2010206201A (ja) 多結晶シリコン層の製造方法
JP2008252108A (ja) 半導体装置
JP2006024887A (ja) 半導体装置及びその製造方法
JP3347340B2 (ja) 薄膜トランジスタの製造方法
JP2004253459A (ja) 半導体装置の製造方法
JP4547857B2 (ja) トランジスタの製造方法
JP2003158135A (ja) 薄膜トランジスタの製造方法およびそれを備える表示装置の製造方法
JP3094542B2 (ja) アクティブマトリクス基板の製造方法
JP2004253460A (ja) 半導体装置の製造方法
JP2004253461A (ja) 半導体基板の製造方法
KR100615202B1 (ko) 박막 트랜지스터, 박막 트랜지스터를 제조하는 방법 및이를 구비한 평판 디스플레이 소자
JPH1187724A (ja) 半導体素子の製造方法
JP2008270637A (ja) 薄膜トランジスタの製造方法及び薄膜トランジスタ
JPH10189993A (ja) 半導体装置及びその製造方法
JP2009016600A (ja) 半導体装置およびその製造方法
JP2006135348A (ja) 半導体装置およびその作製方法