JP2004253437A - パターン形成方法、これを用いた磁気抵抗効果素子及び磁気ヘッドの製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置 - Google Patents

パターン形成方法、これを用いた磁気抵抗効果素子及び磁気ヘッドの製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置 Download PDF

Info

Publication number
JP2004253437A
JP2004253437A JP2003039400A JP2003039400A JP2004253437A JP 2004253437 A JP2004253437 A JP 2004253437A JP 2003039400 A JP2003039400 A JP 2003039400A JP 2003039400 A JP2003039400 A JP 2003039400A JP 2004253437 A JP2004253437 A JP 2004253437A
Authority
JP
Japan
Prior art keywords
layer
etching
film
magnetic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003039400A
Other languages
English (en)
Other versions
JP3895281B2 (ja
Inventor
Takero Kagami
健朗 加々美
Kazuki Sato
一樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003039400A priority Critical patent/JP3895281B2/ja
Priority to US10/773,234 priority patent/US7231705B2/en
Publication of JP2004253437A publication Critical patent/JP2004253437A/ja
Application granted granted Critical
Publication of JP3895281B2 publication Critical patent/JP3895281B2/ja
Priority to US11/798,260 priority patent/US7784170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49041Fabricating head structure or component thereof including measuring or testing with significant slider/housing shaping or treating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • Y10T29/49044Plural magnetic deposition layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • Y10T29/49046Depositing magnetic layer or coating with etching or machining of magnetic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49048Machining magnetic material [e.g., grinding, etching, polishing]
    • Y10T29/49052Machining magnetic material [e.g., grinding, etching, polishing] by etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/4906Providing winding

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

【課題】リフトオフ用レジストパターンをマスクとしてドライエッチングによりパターニングした膜の周縁部等の上に残る不要な形成物を、除去する。
【解決手段】基板101上に成膜された複数層23〜28からなる第1の膜上に、リフトオフ用レジストパターンを形成する。前記レジストパターンをマスクとしてドライエッチングを行うことにより、前記第1の膜をパターニングする。
その後、前記レジストパターンが前記第1の膜上に存在する状態で、第2の膜30を成膜する。次に、前記リフトオフ用レジストパターンを除去してリフトオフする。その後、この状態の基板101をエッチングする。このエッチング段階は、エッチング粒子の入射角度を、基板101の法線方向に対して60゜以上90゜以下に設定して、ドライエッチングを行う段階を含む。
【選択図】 図17

Description

【0001】
【発明の属する技術分野】
本発明は、リフトオフ法を用いたパターン形成方法、これを用いた磁気抵抗効果素子及び磁気ヘッドの製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置に関するものである。
【0002】
【従来の技術】
ハードディスクドライブ(HDD)の大容量小型化に伴い、高感度、高出力のヘッドが要求されている。その要求に対して、現行製品であるGMRヘッド(Giant Magneto−Resistive Head)の懸命な特性改善が進んでおり、一方でGMRヘッドの2倍以上の抵抗変化率が期待できるトンネル磁気抵抗効果型ヘッド(TMRヘッド)の開発も精力的に行われている。
【0003】
GMRヘッドとTMRヘッドは、一般的に、センス電流を流す方向の違いからヘッド構造が異なる。一般にGMRヘッドのような膜面に対して平行にセンス電流を流すヘッド構造をCIP(Current In Plane)構造、TMRヘッドのように膜面に対して垂直にセンス電流を流すヘッド構造をCPP(Current Perpendicular to Plane)構造と呼ぶ。CPP構造は、磁気シールドそのものを電極として用いることができるため、CIP構造の狭リードギャップ化において深刻な問題になっている、磁気シールド−素子間ショート(絶縁不良)が本質的に生じない。そのため、高記録密度化においてCPP構造は大変有利である。
【0004】
CPP構造のヘッドとしては、TMRヘッドの他にも、例えば、磁気抵抗効果素子にスピンバルブ膜(スペキュラー型、デュアルスピンバルブ型磁性多層膜を含む)を用いながらもCPP構造を持つCPP−GMRヘッドも知られている。
【0005】
CPP構造のヘッドでは、いずれのタイプのヘッドであっても、基体上に形成された磁気抵抗効果層に電流を流すための上部電極及び下部電極が、前記磁気抵抗効果層の上面側(基体と反対側)及び下面側(基体側)にそれぞれ形成されている。そして、CPP構造のヘッドは、上部電極と下部電極との間の電流パスを制限するための絶縁層が、磁気抵抗効果層の主要な層(例えば、TMRヘッドの場合にはトンネルバリア層)の周囲に配置された構造を有している。この制限された電流パスは、磁気記録媒体からの磁場を検出するための有効領域とほぼ一致する。特許文献1には、このようなCPP構造のヘッドの例として、TMRヘッドが開示されている。前記絶縁層の材料としては、一般的に、Al又はSiOが用いられている。また、磁気ヘッドでは、CPP構造のヘッドであるかCIP構造のヘッド(後述するLOL構造のヘッドを含む)であるかを問わず、一般的に、磁気抵抗効果層のトラック幅方向の両側に磁区制御層を設けることが多い。この磁区制御層は、磁気抵抗効果層の一部を構成するフリー層に磁区制御のためのバイアス磁界(いわゆる縦バイアス)を付与するものである。
【0006】
特許文献1に開示されているような従来のCPP構造のヘッドを製造する場合、一般的に、リフトオフ法が用いられている。すなわち、基板上に形成された磁気抵抗効果層を構成する構成層上にリフトオフ用レジストパターンを形成し、このレジストパターンをマスクとしてイオンミリング等のドライエッチングにより前記構成層をパターニングし、更に前記レジストパターンが存在する状態で絶縁層(あるいは、絶縁層と金属層(磁区制御層)との積層)を成膜し、前記レジストパターン及びその上の絶縁層(あるいは、絶縁層と金属層(磁区制御層)との積層)を除去し、これにより、前記絶縁層を前記構成層の周囲に形成するとともに、磁区制御層を前記構成層のトラック幅方向の両側に形成している。
【0007】
その後前記上部電極が形成されるが、製造工程上、一般的に、磁気抵抗効果層の形成後であって上部電極の形成前に、磁気抵抗効果層が形成された基体が大気中に置かれる。このとき、磁気抵抗効果層の上面が空気中で酸化されてしまうことにより磁気抵抗効果層のMR比等の特性を損なうような事態を防止するため、磁気抵抗効果層の上面には、保護膜として、キャップ層と呼ばれる非磁性金属層が予め形成される。この非磁性金属層としては、例えば、Ta、Ru、Rh、Au、Pt、Ag、Pd、Ir、Cuなどが用いられている。そして、CPP構造のヘッドでは、上部電極は、この非磁性金属層を介して、磁気抵抗効果層に電気的に接続されている。前記非磁性金属層は、前記構成層の最上に形成され、他の構成層と共に前記イオンミリング等によりパターニングされる。
【0008】
CPP構造のヘッドでは、上部電極及び前記非磁性金属層を経由して磁気抵抗効果層に電流を流すため、上部電極と非磁性金属層との間に良好な電気的接触を保ち、低抵抗化を実現する必要がある。ところが、非磁性金属層としてTa、Ru、Rh、Au、Pt、Ag、Pd、Ir、Cuなどが用いられているので、磁気抵抗効果層及び非磁性金属層が形成された基体を大気中に置いた際に、非磁性金属層の表面は空気中で酸化するか、あるいは、非磁性金属層の表面にO、HOなどが吸着する。このため、そのままの状態で非磁性金属層の上に上部電極などの他の層を形成するとすれば、上部電極と非磁性金属層との間に良好な電気的接触を保つことができない。そこで、非磁性金属層の上に上部電極などの他の層を形成する前に、上部電極等を成膜するのと同一の真空装置内で、ドライエッチング(スパッタエッチング、イオンビームエッチング等、ドライプロセス全般を含む)することより、非磁性金属層の表面酸化膜が除去されている。従来は、このドライエッチングは、クラスターを形成しないエッチング粒子を用い、そのエッチング粒子の入射角を基体の面の法線方向に設定して、行われていた。
【0009】
CIP構造のヘッドとしては、LOL(lead overlay)構造を持つヘッドも知られている(例えば、特許文献2)。LOL構造は、スピンバルブ膜等の磁気抵抗効果層の上面側に、磁気抵抗効果層に電流を流すための2つの上部電極が形成され、一方の上部電極の一部が磁気抵抗効果層の面方向の一方側部分に重なるとともに他方の上部電極の一部が磁気抵抗効果層の面方向の他方方側部分に重なるように配置され、両者の電極が面方向に間隔をあけた構造である。すなわち、LOL構造は、磁気抵抗効果層の有効領域にその膜面と略々平行な方向に電流を流すための一対のリード層が、磁気抵抗効果層の上面側(基体とは反対側)において前記前記磁気抵抗効果層の一部上まで延在するオーバーレイ部を有する構造である。
【0010】
このようなLOL構造のヘッドを製造する場合にも、CPP構造のヘッドを製造する場合と同様に、一般的にリフトオフ法が用いられている。すなわち、基板上に形成された磁気抵抗効果層を構成する構成層上にリフトオフ用レジストパターンを形成し、このレジストパターンをマスクとしてイオンミリング等のドライエッチングにより前記構成層をパターニングし、更に前記レジストパターンが存在する状態で絶縁層(あるいは、金属層(磁区制御層))を成膜し、前記レジストパターン及びその上の絶縁層(あるいは、金属層(磁区制御層))を除去し、これにより、前記絶縁層を前記構成層の周囲(LOL構造では、ハイト方向後端部(ABS(エアベアリング面)とは反対側の端部)に形成するとともに、磁区制御層を前記構成層のトラック幅方向の両側に形成している。
【0011】
その後前記リード層が形成されるが、製造工程上、一般的に、磁気抵抗効果層の形成後であってリード層の形成前に、磁気抵抗効果層が形成された基体が大気中に置かれる。このとき、磁気抵抗効果層の上面が空気中で酸化されてしまうことにより磁気抵抗効果層のMR比等の特性を損なうような事態を防止するため、CPP構造のヘッドの場合と同様に、磁気抵抗効果層の上面には、保護膜として、キャップ層と呼ばれる非磁性金属層が予め形成される。この非磁性金属層としては、例えば、Ta、Ru、Rh、Au、Pt、Ag、Pd、Ir、Cuなどが用いられている。そして、LOL構造のヘッドでは、リード層は、この非磁性金属層を介して、磁気抵抗効果層に電気的に接続されている。前記非磁性金属層は、前記構成層の最上に形成され、他の構成層と共に前記イオンミリング等によりパターニングされる。
【0012】
LOL構造のヘッドでは、リード層及び前記非磁性金属層を経由して磁気抵抗効果層に電流を流すため、リード層と非磁性金属層との間に良好な電気的接触を保ち、低抵抗化を実現する必要がある。ところが、非磁性金属層としてTa、Ru、Rh、Au、Pt、Ag、Pd、Ir、Cuなどが用いられているので、磁気抵抗効果層及び非磁性金属層が形成された基体を大気中に置いた際に、非磁性金属層の表面は空気中で酸化するか、あるいは、非磁性金属層の表面にO、HOなどが吸着する。このため、そのままの状態で非磁性金属層の上にリード層などの他の層を形成するとすれば、リード層と非磁性金属層との間に良好な電気的接触を保つことができない。そこで、非磁性金属層の上にリード層などの他の層を形成する前に、リード層等を成膜するのと同一の真空装置内で、ドライエッチング(スパッタエッチング、イオンビームエッチング等、ドライプロセス全般を含む)することより、非磁性金属層の表面酸化膜が除去されている。従来は、このドライエッチングは、CPP構造のヘッドの場合と同様に、クラスターを形成しないエッチング粒子を用い、そのエッチング粒子の入射角を基体の面の法線方向に設定して、行われていた。
【0013】
また、磁気ヘッドの製造以外の種々の用途においても、リフトオフ法を用いたパターン形成方法が用いられている。
【0014】
【特許文献1】
特開2001−23131号公報
【特許文献2】
特開2000−99926号公報
【0015】
【発明が解決しようとする課題】
しかしながら、前述したCPP構造のヘッド及びLOL構造のヘッドを製造する従来の製造方法では、前記リフトオフ用レジストパターンがアンダーカットを有する断面形状又は逆テーパ状の断面形状などを持つことに起因して、前記非磁性金属層の周縁部等の上に、前記非磁性金属層の表面酸化膜やイオンミリング等のドライエッチングの際の再付着物や前記絶縁層(あるいは、絶縁層と金属層(磁区制御層)との積層)が残ってしまい、これにより磁気抵抗効果層に流れる電流の通路が制限され、電気的に良好な接触をしている領域が減ってしまう。その結果、従来の製造方法で製造されたヘッドでは、磁気抵抗効果素子の直列抵抗成分が増大し、MR特性の劣化やヘッドの高抵抗化に伴う周波数特性の劣化等などが生ずる。前記リフトオフ用レジストパターンのアンダーカット等の寸法は、リフトオフ時のバリの発生等を避けるために所定寸法以下にすることが困難である。このため、高記録密度化を図るべく磁気抵抗効果素子の寸法を小さくすると、電気的に良好な接触をしている領域が著しく減り、磁気抵抗効果層に流れる電流の通路が著しく制限され、MR特性の劣化やヘッドの高抵抗化に伴う周波数特性の劣化等などの影響が顕著に現れてしまう。これらの点については、本発明と比較される比較例の説明において、後に詳述する。
【0016】
また、前述したように、前記リフトオフ用レジストパターンのアンダーカット等に起因して、前記非磁性金属層の周縁部(ここでは、トラック幅方向の両側の周縁部)等の上に磁区制御層も残ってしまう。このため、磁区制御層も磁気抵抗効果層上に乗り上げた状態となる。したがって、磁区制御層からのバイアス磁界の一部がフリー層に入らずに両側の磁区制御層の乗り上げ部間を通ってバイパスされてしまう。その結果、磁区制御層によるフリー層に対する縦バイアス効果が弱まってしまい、フリー層の磁区制御を十分に行うことができない。前述したように前記リフトオフ用レジストパターンのアンダーカット等の寸法を所定寸法以下にすることが困難であることから、高記録密度化を図るべく磁気抵抗効果素子の寸法を小さくすると、両側の磁区制御層の乗り上げ部間の距離が著しく狭まり、フリー層の磁区制御への影響が顕著に現れてしまう。この点についても、本発明と比較される比較例の説明において、後に詳述する。
【0017】
以上、磁気ヘッドの製造方法を例に挙げて説明したが、磁気ヘッドの製造以外の種々の用途において用いられる、リフトオフ法を利用したパターン形成方法においても、リフトオフ用レジストパターンがアンダーカット等を持つことに起因して、不都合が生ずる場合がある。すなわち、リフトオフ用レジストパターンをマスクとしてイオンミリング等によりパターニングした第1の膜の周縁部等の上に、イオンミリング等の際の再付着物や前記第1の膜の周囲に形成した第2の膜などによる不要な形成物が残ってしまうことにより、不都合が生ずる場合がある。
【0018】
本発明は、このような事情に鑑みてなされたもので、リフトオフ用レジストパターンをマスクとしてドライエッチングによりパターニングした膜の周縁部等の上に残る不要な形成物を、除去又は減らすことができるパターン形成方法を提供することを目的とする。
【0019】
また、本発明は、リフトオフ用レジストパターンをマスクとしてドライエッチングによりパターニングした膜の周縁部等の上に残る不要な形成物を、除去又は減らすことができ、これにより、直列抵抗成分を低減できるという利点及び/又は縦バイアスをより有効にフリー層に印加できるという利点を得ることができる磁気抵抗効果素子及び磁気ヘッドを製造することができる磁気抵抗効果素子及び磁気ヘッドの各製造方法を提供することを目的とする。
【0020】
さらに、本発明は、高記録密度化を図ることができる磁気ディスク装置、及びこれに用いることができるヘッドサスペンションアセンブリを提供することを目的とする。
【0021】
【課題を解決するための手段】
前記課題を解決するため、本発明の第1の態様によるパターン形成方法は、基体の一方の面側に成膜された1層以上からなる第1の膜上に、リフトオフ用レジストパターンを形成するリフトオフ用レジストパターン形成段階と、前記リフトオフ用レジストパターンをマスクとしてドライエッチングを行うことにより、前記第1の膜をパターニングするパターニング段階と、前記パターニング段階の後に、前記リフトオフ用レジストパターンが前記第1の膜上に存在する状態で、前記基体の前記一方の面側に、1層以上からなる第2の膜を成膜する成膜段階と、前記リフトオフ用レジストパターンを除去することにより、前記第2の膜の前記リフトオフ用レジストパターン上の部分を除去する除去段階と、前記除去段階の後に、前記基体の前記一方の面側をエッチングするエッチング段階と、を備え、前記エッチング段階は、実質的にクラスターを形成しないエッチング粒子を用い、前記基体の前記一方の面側に対する前記エッチング粒子の主たる入射角度を、前記基体の前記一方の面の法線方向に対して60゜以上90゜以下に設定して、ドライエッチングを行う段階を含むものである。
【0022】
この第1の態様によれば、前記パターニング段階のドライエッチングの際に、リフトオフ用レジストパターンのアンダーカット等に相当する前記第1の膜上の領域に、再付着物が形成される。また、前記成膜段階において、前記再付着物上に前記第2の膜の一部が乗り上がる。したがって、前記再付着物及びその上への前記第2の膜の乗り上げ部からなる形成物が、前記除去段階の後に、リフトオフ用レジストパターンのアンダーカット等に相当する前記第1の膜上の領域に、形成されることになる。しかしながら、前記第1の態様によれば、前記エッチング段階の前記ドライエッチングが行われるので、前記形成物が除去又は減らされる。なお、前記エッチング段階の前記ドライエッチングは、所望の程度(前記形成物が除去又は減らされる程度)行えばよい。
【0023】
前記エッチング段階の前記ドライエッチングを前記入射角度に設定して行うことで、前記形成物を選択的に除去又は減らすことができる傾向(以下、「形成物の除去又は低減の選択性」という。)を高めることことができることが、後述する実験等により確認された。これは、エッチング粒子が前記形成物を横から叩くことにより、前記形成物の除去又は低減の選択性(換言すると、凸部を平坦化する平坦化能力)が高まるものと考えられる。前述した従来技術と同様にエッチング粒子の入射角を基体の面の法線方向に設定してドライエッチングを行うことで、前記形成物を除去又は減らすことも可能であるが、その場合には、前記形成物の除去又は低減の選択性が低くなる。このため、前記形成物を十分に減らそうとすると、前記第1の膜のエッチング量もかなり大きく増えてしまい、前記第1の膜の本来の機能等を阻害したりするなどの不都合が生ずる。これに対し、前記第1の態様では、前記形成物の除去又は低減の選択性を高めることができるので、そのような不都合は生じない。前記形成物の除去又は低減の選択性をより向上させるためには、前記エッチング段階の前記ドライエッチングの前記入射角度を75゜以上90゜以下に設定することが好ましく、80゜以上90゜以下に設定することがより好ましく、85゜以上90゜以下に設定することがより一層好ましい。これらは、後述する実験等から判明した。
【0024】
ところで、前記第1の態様において、前記エッチング段階は、例えば、前記入射角度を60゜以上90゜以下に設定したドライエッチングの前又は後に、実質的にクラスターを形成しないエッチング粒子を用いてそのエッチング粒子の入射角度を他の角度(例えば、略0゜)に設定したドライエッチングを含んでもよい。この場合であっても、前記エッチング段階全体としての前記形成物の除去又は低減の選択性は、前記入射角度を0゜に設定したドライエッチングのみを行う場合に比べて、高まる。
【0025】
なお、前記第1の膜の最上層が金属層でありこの金属層が既に酸化されている場合において、当該金属層の表面酸化膜を除去する必要がある場合、前記エッチング段階によって前記表面酸化膜を除去することも可能である。
【0026】
本発明の第2の態様によるパターン形成方法は、前記第1の態様において、前記エッチング段階の前記ドライエッチングは、He、Ne、Ar、Kr及びXeからなる群より選ばれた1種以上からなる単体ガス又は混合ガスを用いたイオンビームエッチングであるものである。
【0027】
この第2の態様は、前記エッチング段階の前記ドライエッチングの具体例を挙げたものである。もっとも、前記第1の態様では、前記ドライエッチングは、必ずしもこの例に限定されるものではない。
【0028】
本発明の第3の態様によるパターン形成方法は、基体の一方の面側に成膜された1層以上からなる第1の膜上に、リフトオフ用レジストパターンを形成するリフトオフ用レジストパターン形成段階と、前記リフトオフ用レジストパターンをマスクとしてドライエッチングを行うことにより、前記第1の膜をパターニングするパターニング段階と、前記パターニング段階の後に、前記リフトオフ用レジストパターンが前記第1の膜上に存在する状態で、前記基体の前記一方の面側に、1層以上からなる第2の膜を成膜する成膜段階と、前記リフトオフ用レジストパターンを除去することにより、前記第2の膜の前記リフトオフ用レジストパターン上の部分を除去する除去段階と、前記除去段階の後に、前記基体の前記一方の面側をエッチングするエッチング段階と、を備え、前記エッチング段階は、ガスクラスターイオンビームによるドライエッチングを行う段階を含むものである。
【0029】
この第3の態様によれば、前記第1の態様と同様に、前記再付着物及びその上への前記第2の膜の乗り上げ部からなる形成物が、前記除去段階の後に、リフトオフ用レジストパターンのアンダーカット等に相当する前記第1の膜上の領域に、形成されることになる。しかしながら、前記第3の態様によれば、前記エッチング段階でガスクラスターイオンビームによるドライエッチングが行われるので、前記形成物が除去又は減らされる。すなわち、ガスクラスターイオンビームを用いると、クラスターが基板に衝突した後に、クラスターを構成する原子又は分子による多体衝突効果により当該原子又は分子には基板表面に平行な運動量成分が生じるため、平坦化作用により前記形成物が除去又は減らされる。ガスクラスターイオンビームの入射角度は、特に限定されるものではなく、例えば、前記基体の前記一方の面の法線方向に対して略々0゜に設定することができる。なお、ガスクラスターイオンビームを用いる場合、その条件を適宜設定することで、前記第1の膜を実質的にエッチングしないことも、前記第1の膜を所望の程度エッチングすることも可能である。
【0030】
ところで、前記第3の態様において、前記エッチング段階は、例えば、前記ガスクラスターイオンビームによるドライエッチングの前又は後に、実質的にクラスターを形成しないエッチング粒子を用いてそのエッチング粒子の入射角度を所定の角度(例えば、略0゜)に設定したドライエッチングを含んでもよい。この場合であっても、前記エッチング段階全体としての前記形成物の除去又は低減の選択性は、クラスターを形成しないエッチング粒子を用いて前記入射角度を0゜に設定したドライエッチングのみを行う場合に比べて、高まる。
【0031】
本発明の第4の態様によるパターン形成方法は、前記第1乃至第3のいずれかの態様において、前記リフトオフ用レジストパターンは、アンダーカットを有する断面形状又は逆テーパ状の断面形状を持つものである。
【0032】
この第4の態様は、リフトオフ用レジストパターンの断面形状の具体例を挙げたものである。もっとも、前記第1乃至第3の態様では、リフトオフ用レジストパターンの断面形状は、必ずしもこの例に限定されるものではない。
【0033】
本発明の第5の態様によるパターン形成方法は、前記第1乃至第4のいずれかの態様において、前記エッチング段階の前記ドライエッチングは、前記基体を前記法線と略平行な軸回りに回転させながら行うものである。
【0034】
この第5の態様によれば、基体が法線と略平行な軸回りに回転しながらドライエッチングされる。したがって、前記第1及び第2の態様のように実質的にクラスターを形成しないエッチング粒子を用いる場合であっても、前記形成物に対して種々の方向からエッチング粒子が当たるため、種々の方向の側に形成された前記形成物を効率良く減らすことができる。もっとも、前記第1及び第2の態様において、前記第1乃至第2の態様では、例えば所定の方向の側に形成された前記形成物を除去するような場合には、基体を回転させることなく、例えば直線状に揺動等させてもよい。なお、前記第3の態様のようにクラスターイオンビームを用いる場合には、基体を回転させなくても、種々の方向の側に形成された前記形成物を比較的効率良く減らすことができる。勿論、基体を回転させても良い。
【0035】
本発明の第6の態様によるパターン形成方法は、前記第1乃至第5のいずれかの態様において、前記第2の膜が絶縁層を含むものである。
【0036】
この第6の態様は、前記第2の膜の具体例を挙げたものである。もっとも、前記第1乃至第5の態様では、前記第2の膜は、必ずしもこの例に限定されるものではない。例えば、前記第2の膜は金属層を含んでいてもよい。また、前記絶縁層の材料としては、AlやSiOなどを挙げることができるが、これらに限定されるもではない。
【0037】
本発明の第7の態様によるパターン形成方法は、前記第1乃至第6のいずれかの態様において、前記第1の膜の前記基体とは最も反対側の層が金属層であるものである。
【0038】
この第7の態様は、前記第1の膜の基体とは最も反対側の層の具体例を挙げたものであるが、前記第1乃至第6の態様では、前記第1の膜は、必ずしもこの例に限定されるものではない。
【0039】
本発明の第8の態様による磁気抵抗効果素子の製造方法は、基体の一方の面側に形成された磁気抵抗効果層を有する磁気抵抗効果素子の製造方法であって、前記第1乃至第7のいずれかの態様によるパターン形成方法を含み、前記第1の膜は、前記磁気抵抗効果層を構成する構成層のうちの少なくとも前記基体とは最も反対側の構成層を含むものである。
【0040】
この第8の態様によれば、前記第1乃至第7のいずれかの態様によるパターン形成方法が用いられているので、前記形成物を除去又は減らすことができる。したがって、前記第8の態様による製造方法により製造した磁気抵抗効果素子では、下記の第1の利点及び/又は第2の利点を得ることができる。
【0041】
第1の利点について説明する。磁気抵抗効果層に流れる電流の通路の前記形成物等による制限が少なくなり、磁気抵抗効果素子の直列抵抗成分が減少する。このため、高記録密度化等を図るべく磁気抵抗効果素子の寸法を小さくしても、MR特性の劣化やヘッドの高抵抗化に伴う周波数特性の劣化等などの影響を低減することができるという利点が得られる。
【0042】
第2の利点について説明する。後述する第9の態様のように前記第2の膜が磁区制御層を含むと、磁区制御層の磁気抵抗効果層上への乗り上がり部が減らされることになる。したがって、磁区制御層からのバイアス磁界がより多くフリー層に入る。このため、高記録密度化等を図るべく磁気抵抗効果素子の寸法を小さくしても、縦バイアスを有効にフリー層に印加することができ、磁区制御層によるフリー層に対する縦バイアス効果を向上させることができるという利点が得られる。
【0043】
本発明の第9の態様による磁気抵抗効果素子の製造方法は、前記8の態様において、前記第1の膜がフリー層を含み、前記第2の膜が前記フリー層の磁区を制御する磁区制御層を含むものである。
【0044】
この第9の態様によれば、前記第8の態様に関して説明した第2の利点を得ることができる。
【0045】
本発明の第10の態様による磁気抵抗効果素子の製造方法は、前記第8又は9の態様において、前記磁気抵抗効果素子は、前記磁気抵抗効果層の有効領域にその膜面と略々垂直な方向に電流を流すための一対の電極を有するものである。
【0046】
この第10の態様は、本発明による製造方法を、CPP構造の磁気抵抗効果素子の製造方法に適用した例を挙げたものである。
【0047】
本発明の第11の態様による磁気抵抗効果素子の製造方法は、前記第10の態様において、前記磁気抵抗効果層は、フリー層と、該フリー層の一方の面側に形成されたトンネルバリア層又は非磁性金属層と、前記トンネルバリア層又は前記非磁性金属層の前記フリー層とは反対の側に形成されたピンド層と、前記ピンド層の前記トンネルバリア層又は前記非磁性金属層とは反対の側に形成されたピン層とを含むものである。
【0048】
この第11の態様は、本発明による製造方法を、TMR素子又はCPP構造を持つGMR素子の製造方法に適用した例を挙げたものである。
【0049】
本発明の第12の態様による磁気抵抗効果素子の製造方法は、前記第8又は9の態様において、前記磁気抵抗効果素子は、前記磁気抵抗効果層の有効領域にその膜面と略々平行な方向に電流を流すための一対のリード層を備え、前記一対のリード層は、前記磁気抵抗効果層の前記基体とは反対側において前記前記磁気抵抗効果層の一部上まで延在するオーバーレイ部を有するものである。
【0050】
この第12の態様は、本発明による製造方法を、LOL構造の磁気抵抗効果素子の製造方法に適用した例を挙げたものである。
【0051】
本発明の第13の態様による磁気ヘッドの製造方法は、基体の一方の面側に形成された磁気抵抗効果層を有する磁気抵抗効果素子を備えた磁気ヘッドの製造方法であって、前記第8乃至第12のいずれかの態様による製造方法を含むものである。
【0052】
この第13の態様によれば、前記第8の態様に関して説明した第1の利点及び/又は第2の利点を得ることができる磁気抵抗効果素子を有する磁気ヘッドを製造することができ、ひいては、高記録密度化を図っても、MR特性の劣化やヘッドの高抵抗化に伴う周波数特性の劣化やフリー層への縦バイアス効果の低下などの影響が少ない磁気ヘッドを製造することができる。
【0053】
本発明の第14の態様による磁気ヘッドの製造方法は、前記第13の態様において、前記パターニング段階により少なくとも前記磁気抵抗効果素子のハイト方向の一方側の端部が規定されるものである。
【0054】
本発明の第15の態様による磁気ヘッドの製造方法は、前記第13又は第14の態様において、前記パターニング段階により少なくとも前記磁気抵抗効果素子のトラック幅方向の両側の端部が規定されるものである。
【0055】
前記第14の態様は前記パターニング段階により磁気抵抗効果素子のハイト方向の一方側の端部が規定される例を挙げたものであり、前記第15の態様は前記パターニング段階により磁気抵抗効果素子のトラック幅方向の両側の端部が規定される例を挙げたものである。勿論、前記パターニング段階により、磁気抵抗効果素子のハイト方向の一方側の端部及び磁気抵抗効果素子のトラック幅方向の両側の端部の全てが、同時に規定されてもよい。また、前記磁気抵抗効果素子のハイト方向の一方側の端部を規定するためのパターニング段階並びにこれに引き続く成膜段階及び除去段階と、前記磁気抵抗効果素子のトラック幅方向の両側の端部を規定するためのパターニング段階並びにこれに引き続く成膜段階及び除去段階とを、別々に行い、これらの段階の後に、1度のドライエッチングで、トラック幅方向の側及びハイト方向の側にそれぞれ形成された前記形成物を、一括して除去してもよい。
【0056】
本発明の第16の態様によるヘッドサスペンションアセンブリは、前記第13乃至第15のいずれかの態様による製造方法により製造された磁気ヘッドと、該磁気ヘッドが先端部付近に搭載され前記磁気ヘッドを支持するサスペンションと、を備えたものである。
【0057】
この第16の態様によれば、前記第13乃至第15のいずれかの態様による製造方法により製造された磁気ヘッドが用いられているので、磁気ディスク装置等の高記録密度化等を図ることができる。
【0058】
本発明の第17の態様による磁気ディスク装置は、前記第16の態様によるヘッドサスペンションアセンブリと、該アセンブリを支持するアーム部と、該アーム部を移動させて磁気ヘッドの位置決めを行うアクチュエータと、を備えたものである。
【0059】
この第17の態様によれば、前記第14の態様によるヘッドサスペンションアセンブリが用いられているので、高記録密度化等を図ることができる。
【0060】
【発明の実施の形態】
以下、本発明によるパターン形成方法、これを用いた磁気抵抗効果素子及び磁気ヘッドの製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置について、図面を参照して説明する。
【0061】
[第1の実施の形態]
【0062】
図1は、本発明の第1の実施の形態による磁気ヘッド製造方法により製造される磁気ヘッドを模式的に示す概略斜視図である。図2は、図1に示す磁気ヘッドのTMR素子2及び誘導型磁気変換素子3の部分を模式的に示す拡大断面図である。図3は、図2中のA−A’矢視概略図である。図4は、図2中のTMR素子2付近を更に拡大した拡大図である。図5は、図3中のTMR素子2付近を更に拡大した拡大図である。理解を容易にするため、図1乃至図5に示すように、互いに直交するX軸、Y軸及びZ軸を定義する(後述する図についても同様である。)。また、Z軸方向のうち矢印の向きを+Z方向又は+Z側、その反対の向きを−Z方向又は−Z側と呼び、X軸方向及びY軸方向についても同様とする。X軸方向が磁気記録媒体の移動方向と一致している。Z軸方向がTMR素子2のトラック幅方向と一致している。
【0063】
本発明の第1の実施の形態による磁気ヘッド製造方法により製造される磁気ヘッドは、図1に示すように、基体としてのスライダ1と、再生用磁気ヘッド素子として用いられる磁気抵抗効果素子としてのTMR素子2と、記録用磁気ヘッド素子としての誘導型磁気変換素子3と、DLC(ダイヤモンドライクカーボン)膜等からなる保護膜4とを備え、複合型磁気ヘッドとして構成されている。もっとも、本発明により製造される磁気ヘッドは、例えば、TMR素子2のみを備えていてもよい。また、本例では、素子2,3はそれぞれ1個ずつ設けられているが、その数は何ら限定されるものではない。
【0064】
スライダ1は磁気記録媒体対向面側にレール部11,12を有し、レール部11、12の表面がABS(エアベアリング面)を構成している。図1に示す例では、レール部11、12の数は2本であるが、これに限らない。例えば、1〜3本のレール部を有してもよいし、ABSはレール部を持たない平面であってもよい。また、浮上特性改善等のために、ABSに種々の幾何学的形状が付されることもある。本発明による磁気ヘッドは、いずれのタイプのスライダを有していてもよい。
【0065】
本例では、保護膜4はレール部11,12の表面にのみ設けられ、保護膜4の表面がABSを構成している。もっとも、保護膜4は、スライダ1の磁気記録媒体対向面の全面に設けてもよい。また、保護膜4を設けることが好ましいが、必ずしも保護膜4を設ける必要はない。
【0066】
TMR素子2及び誘導型磁気変換素子3は、図1に示すように、レール部11、12の空気流出端部TRの側に設けられている。記録媒体移動方向は、図中のX軸方向と一致しており、磁気記録媒体が高速移動した時に動く空気の流出方向と一致する。空気は流入端部LEから入り、流出端部TRから流出する。スライダ1の空気流出端部TRの端面には、TMR素子2に接続されたボンディングパッド5a,5b及び誘導型磁気変換素子3に接続されたボンディングパッド5c,5dが設けられている。
【0067】
TMR素子2及び誘導型磁気変換素子3は、図2及び図3に示すように、スライダ1を構成するセラミック基体15の上に設けられた下地層16の上に、積層されている。セラミック基体15は、通常、アルチック(Al−TiC)又はSiC等で構成される。Al−TiCを用いる場合、これは導電性があるので、下地層16として、例えばAlからなる絶縁膜が用いられる。
下地層16は、場合によっては設けなくてもよい。
【0068】
TMR素子2は、図4及び図5に示すように、下地層16上に形成された下部電極21と、下部電極21の上側(基体15と反対側)に形成された上部電極31と、電極21,31間に下部電極21側から順に積層された、下部金属層(下層)22、下部金属層(上層)23、ピン層24、ピンド層25、トンネルバリア層26、フリー層27、保護膜となる非磁性金属層としての上部金属層(キャップ層)28、及び、上部電極31の下地層としての上部金属層29と、を備えている。ピン層24、ピンド層25、トンネルバリア層26及びフリー層27が、磁気抵抗効果層を構成している。実際のTMR素子2は、図示されたような層数の膜構造ではなく、より多層の膜構造を有するのが一般的であるが、図に示す磁気ヘッドでは、説明の簡略化のため、TMR素子2の基本動作に必要な最少膜構造を示してある。なお、図4において、MRhは、TMR素子2が規定するMRハイトを示している。図5において、TWは、TMR素子2が規定するトラック幅を示している。
【0069】
本例では、下部電極21及び上部電極31は、下部磁気シールド及び上部磁気シールドとしてそれぞれ兼用されている。電極21,31は、例えば、NiFeなどの磁性材料で形成されている。図面には示していないが、これらの電極21,31は、前述したボンディングパッド5a,5bにそれぞれ電気的に接続されている。なお、下部電極21及び上部電極31とは別に、下部磁気シールド及び上部磁気シールドを設けてもよいことは、言うまでもない。
【0070】
下部金属層22は、導電体となっており、例えば、Ta、Ru、Rh、Au、Pt、Ag、Pd、Ir、Cuなどで構成される。下部金属層23は、導電体となっており、例えば、NiFe層などで構成される。本例では、上側の下部金属層23は磁気抵抗効果層の部分のみに形成され、下側の下部金属層22はZ軸方向に電極21上に広く延在しているが、上側の下部金属層23もZ軸方向に広く延在させてもよいし、あるいは、下側の下部金属層22も磁気抵抗効果層の部分のみに形成してもよい。あるいは、下部金属層22,23を、Z軸方向のみならずY軸方向にも電極21上に広く延在させてもよい。
【0071】
ピン層24は、反強磁性層で構成され、例えば、PtMn、IrMn、RuRhMn、FeMn、NiMn、PdPtMn、RhMn又はCrMnPtなどのMn系合金で形成することが好ましい。ピンド層25及びフリー層27は、それぞれ強磁性層で構成され、例えば、Fe、Co、Ni、FeCo、NiFe、CoZrNb又はFeCoNiなどの材料で形成される。ピンド層25は、ピン層24との間の交換結合によってその磁化方向が所定方向に固定されている。一方、フリー層27は、基本的に磁気情報である外部磁場に応答して自由に磁化の向きが変わるようになっている。なお、本例では、下部電極21側からピン層24、ピンド層25、トンネルバリア層26、フリー層27の順に配置されているが、下部電極21側からフリー層27、トンネルバリア層26、ピンド層25、ピン層24の順に配置してもよい。トンネルバリア層26は、例えば、Al、NiO、GdO、MgO、Ta、MoO、TiO又はWOなどの材料で形成される。
【0072】
キャップ層としての上部金属層(非磁性金属層)28は、例えば、Ta、Ru、Rh、Au、Pt、Ag、Pd、Ir、Cuの単体、又は、これらのいずれか2種以上の組み合わせからなる合金、を用いた、単層膜又は多層膜で形成される。本例では、上部金属層28は後述するように製造時に層23〜27と一緒にミリングされ、上部金属層28は層23〜27と実質的にちょうど重なっている。
【0073】
上部電極の下地層となる上部金属層29は、導電体となっており、Ta、Tiなどの非磁性金属材料で形成される。本例では、上部金属層29は、磁気シールドギャップ(電極21,31間のギャップ)を所望の間隔に保つために、設けられている。もっとも、必ずしも上部金属層29を設ける必要はない。
【0074】
図3及び図5に示すように、前記磁気抵抗効果層のZ軸方向の両側には、フリー層27に磁区制御のためのバイアス磁界を付与する磁区制御層32が形成されている。磁区制御層32は、例えば、Cr/CoPt(コバルト白金合金)、Cr/CoCrPt(コバルトクロム白金合金)、TiW/CoPt、TiW/CoCrPtなどの硬磁性材料で形成される。あるいは、磁区制御層32は、例えば、軟磁性層と反強磁性層を積層し交換結合を使った層でもよい。磁区制御層32の下側には、Al又はSiOなどからなる絶縁層34が形成されている。絶縁層34は、磁区制御層32と層23〜28の端面との間にも介在し、層23〜28が磁区制御層32によって電気的に短絡しないようになっている。
【0075】
また、図2及び図4に示すように、磁区制御層32が形成されていない領域には、下部金属層22と上部金属層29間において、Al又はSiOなどからなる絶縁層30が形成されている。
【0076】
誘導型磁気変換素子3は、図2及び図3に示すように、当該素子3に対する下部磁性層としても兼用される前記上部電極31、上部磁性層36、コイル層37、アルミナ等からなるライトギャップ層38、ノボラック樹脂等の有機樹脂で構成された絶縁層39及びアルミナ等からなる保護層40などを有している。磁性層36の材質としては、例えば、NiFe又はFeNなどが用いられる。下部磁性層としても兼用された上部電極31及び上部磁性層36の先端部は、微小厚みのアルミナなどのライトギャップ層38を隔てて対向する下部ポール部31a及び上部ポール部36aとなっており、下部ポール部31a及び上部ポール部36aにおいて磁気記録媒体に対して情報の書き込みを行なう。下部磁性層としても兼用された上部電極31及び上部磁性層36は、そのヨーク部が下部ポール部31a及び上部ポール部36aとは反対側にある結合部41において、磁気回路を完成するように互いに結合されている。絶縁層39の内部には、ヨーク部の結合部41のまわりを渦巻状にまわるように、コイル層37が形成されている。コイル層37の両端は、前述したボンディングパッド5c,5dに電気的に接続されている。コイル層37の巻数及び層数は任意である。また、誘導型磁気変換素子3の構造も任意でよい。上部電極31は、誘導型磁気変換素子3の下部磁性層とTMR素子2の上部電極の役割を分けるために、Al、SiOなどの絶縁層を挟んで2層に分けても良い。
【0077】
次に、本発明の第1の実施の形態による磁気ヘッド製造方法として、図1乃至図5に示す磁気ヘッドの製造方法の一例について、説明する。
【0078】
まず、ウエハ工程を行う。すなわち、基体15となるべきAl−TiC又はSiC等のウエハ101を用意し、薄膜形成技術等を用いて、ウエハ101上のマトリクス状の多数の磁気ヘッドの形成領域にそれぞれ、前述した各層を前述した構造となるように形成する。
【0079】
このウエハ工程の概要について、図6乃至図19を参照して説明する。図6乃至図19はウエハ工程を構成する各工程を模式的に示す図である。図6(a)、図7(a)、図12(a)及び図19(a)はそれぞれ概略平面図である。図7(a)において、TWは、TMR素子2が規定するトラック幅を示している。図6(b)は図6(a)中のC−D線に沿った概略断面図、図7(b)は図7(a)中のC−D線に沿った概略断面図、図12(b)は図12(a)中のE−F線に沿った概略断面図、図19(b)は図19(a)中のE−F線に沿った概略断面図である。図8乃至図11はそれぞれ、図6に示す状態から図7に示す状態に至る各工程を詳細に示す概略拡大断面図である。図13乃至図16はそれぞれ、図7に示す状態から図12に示す状態に至る各工程を詳細に示す概略拡大断面図である。図17及び図18はそれぞれ、図12及び図16に示す状態の後の工程を示す概略拡大断面図である。
【0080】
ウエハ工程では、まず、ウエハ101上に、下地層16、下部電極21、下部金属層22、下部金属層23、ピン層24、ピンド層25、トンネルバリア層26、フリー層27及び上部金属層28を、順次積層する(図6)。このとき、下部電極21は例えばめっき法により形成し、他の層は例えばスパッタ法で形成する。その後、この状態の基板が一旦大気中に置かれる。このとき、磁気抵抗効果層の上面(本実施の形態では、フリー層27の上面)は、上部金属層28により保護されるので、酸化されない。しかし、上部金属層28の上面に酸化膜50が形成されることになる(図6)。
【0081】
次に、第1のドライエッチングとしてのイオンミリングにより、下部金属層23、ピン層24、ピンド層25、トンネルバリア層26、フリー層27、上部金属層28及び酸化膜50を、部分的に除去して、パターニングする。次いで、この除去した部分に、リフトオフ法により、絶縁層34及び磁区制御層32を形成する(図7)。
【0082】
この工程について、図8乃至図11を参照して詳細に説明する。まず、図6に示す状態の基板上(本実施の形態では、表面酸化膜50上)に、第1のリフトオフ用レジストパターン71を形成する(図8)。本実施の形態では、第1のリフトオフ用レジストパターン71として、アンダーカット71aを有する断面形状を持つ2層レジストが用いられている。もっとも、第1のリフトオフ用レジストパターン71として、例えば、単層レジスト法によって形成したアンダーカットを有する断面形状を持つレジストを用いてもよいし、単層レジスト法等によって形成した逆テーパ状の断面形状を持つレジストを用いてもよい。この点は、後述する第2のリフトオフ用レジストパターン81、及び、後述する第3の実施の形態で用いるリフトオフ用レジストパターン111,121についても、同様である。
【0083】
次に、第1のリフトオフ用レジストパターン71をマスクとして、第1のドライエッチングとしてのイオンミリング(他のドライエッチングでもよい。)を行うことにより、層23〜28,50をパターニングする(図9)。このパターニングにより、TMR素子2のトラック幅TWが規定されて、TMR素子2のトラック幅方向の両側の端部が規定される。このパターニングの際に、アンダーカット71aに相当する表面酸化膜50上の領域には、図9に示すように、層23〜28,50のイオンミリングによる再付着物72が形成される。なお、図9において、領域R3は、アンダーカット71aに相当する領域のうち+Z側(トラック幅方向の一方側)の領域を示している。この点は、図5、図7、図10、図11、図19についても同様である。図5、図7及び図19において、領域R2は、アンダーカット71aに相当する領域のうち−Z側(トラック幅方向の他方側)の領域を示している。
【0084】
次いで、第1のリフトオフ用レジストパターン71が表面酸化膜50上に存在する状態で、基板101上に絶縁層34及び磁区制御層32をスパッタ法等により順次成膜する(図10)。このとき、アンダーカット71aに相当する表面酸化膜50上の領域には(すなわち、再付着物72上には)、図10に示すように、絶縁層34及び磁区制御層32の一部(以下、「乗り上げ部」と呼ぶ。)が乗り上がる。
【0085】
このように、第1のリフトオフ用レジストパターン71のアンダーカット71aに相当する表面酸化膜50上の領域には、再付着物72、並びに、絶縁層34及び磁区制御層32の乗り上げ部による形成物が形成される。
【0086】
その後、第1のリフトオフ用レジストパターン71を除去することにより、絶縁層34及び磁区制御層32の第1のリフトオフ用レジストパターン71上の部分を除去する(図11)。図11は図7と同じ状態を示している。
【0087】
次に、第2のドライエッチングとしてのイオンミリングにより、TMR素子2のハイト方向に関して必要な幅(Y軸方向の幅)を持つとともに所定長さだけZ軸方向に延びる帯状部分を残して、下部金属層23、ピン層24、ピンド層25、トンネルバリア層26、フリー層27、上部金属層28、表面酸化膜50、磁区制御層32及び絶縁層34を、部分的に除去して、パターニングする。次いで、この除去した部分に、リフトオフ法により、絶縁層30を形成する(図12)。
【0088】
この工程について、図13乃至図16を参照して詳細に説明する。まず、図7及び図11に示す状態の基板上に、第2のリフトオフ用レジストパターン81を形成する(図13)。
【0089】
次に、第2のリフトオフ用レジストパターン81をマスクとして、第2のドライエッチングとしてのイオンミリング(他のドライエッチングでもよい。)を行うことにより、層23〜28,50,32,34をパターニングする(図14)。このパターニングにより、TMR素子2のハイト方向の一方の端部(本実施の形態では、−Y側の端部、すなわち、ABSと反対側の端部)が規定される。このパターニングの際に、第2のリフトオフ用レジストパターン81のアンダーカット81aに相当する表面酸化膜50等の上の領域には、図14に示すように、層23〜28,50,32,34のイオンミリングによる再付着物82が形成される。なお、図14において、領域R1は、アンダーカット81aに相当する領域のうち−Y側(ABSと反対側)の領域を示している。この点は、図4、図12、図15〜図18についても同様である。
【0090】
次いで、第2のリフトオフ用レジストパターン81が基板上に存在する状態で、基板101上に絶縁層30をスパッタ法等により成膜する(図15)。このとき、アンダーカット81aに相当する表面酸化膜50等の上の領域には(すなわち、再付着物82上には)、図15に示すように、絶縁層30の一部(以下、「乗り上げ部」と呼ぶ。)が乗り上がる。
【0091】
このように、第2のリフトオフ用レジストパターン81のアンダーカット81aに相当する表面酸化膜50上等の領域には、再付着物82及び絶縁層30の乗り上げ部による形成物が形成される。
【0092】
その後、第2のリフトオフ用レジストパターン81を除去することにより、絶縁層30の第2のリフトオフ用レジストパターン81上の部分を除去する(図16)。図16は図12と同じ状態を示している。
【0093】
次に、図12及び図16に示す状態の基板101の上面側をエッチングするエッチング工程を行う。このエッチング工程では、図17に示すように、実質的にクラスターを形成しないエッチング粒子を用い、基板101の上面側に対する前記エッチング粒子の主たる入射角度θを、基板101の上面の法線Pの方向に対して60゜以上90゜以下に設定して、ドライエッチングを行う。本実施の形態では、このドライエッチングとして、通常のイオンビームエッチング(すなわち、実質的にクラスターを形成しないエッチング粒子を用いたイオンビームエッチング)を行う。このとき、He、Ne、Ar、Kr及びXeからなる群より選ばれた1種以上からなる単体ガス又は混合ガスを用いることが好ましい。もっとも、本発明では、前記エッチング工程で行う実質的にクラスターを形成しないエッチング粒子を用いたドライエッチングは、イオンビームエッチングに限定されるものではない。前記形成物(再付着物72,82、絶縁層34及び磁区制御層32の乗り上げ部、及び、絶縁層30の乗り上げ部)の除去又は低減の選択性(換言すると、凸部を平坦にする平坦化能力)をより向上させるためには、前記入射角度θを75゜以上90゜以下に設定することが好ましく、80゜以上90゜以下に設定することがより好ましく、85゜以上90゜以下に設定することがより一層好ましい。
【0094】
入射角度θを60゜以上90゜以下に設定したイオンビームエッチングは、法線Pとほぼ平行な軸回りに基板101を回転させながら行うことが好ましいが、必ずしも基板101を回転させる必要はない。
【0095】
本実施の形態では、入射角度θを60゜以上90゜以下に設定したイオンビームエッチングは、上部金属層29を形成するのと同じ真空装置内で、前記形成物が除去されるとともに前記形成物の下及びその他の領域に存在する表面酸化膜50が除去される程度まで、行う。もっとも、例えば、前記形成物が除去され前記形成物下の表面酸化膜50が残る程度まで、入射角度θを60゜以上90゜以下に設定したイオンビームエッチングを行ってもよい。この場合、表面酸化膜50を除去するために、入射角度θを60゜以上90゜以下に設定したイオンビームエッチングの後に、例えば、エッチング粒子の主たる入射角度θを他の角度(例えば、略0゜)に設定したドライエッチング(例えば、イオンビームエッチング)を行ってもよい。この場合、エッチング粒子の主たる入射角度θを他の角度(例えば、略0゜)に設定したドライエッチングを、上部金属層29を形成するのと同じ真空装置内で行うことにより、入射角度θを60゜以上90゜以下に設定したイオンビームエッチングを、上部金属層29を形成するのとは別の真空装置内で行うこともできる。これは、入射角度θを60゜以上90゜以下に設定したイオンビームエッチングによって前記形成物が除去又は低減された後に、一旦大気暴露されて表面酸化膜が形成されても、その表面酸化膜は、エッチング粒子の主たる入射角度θを他の角度(例えば、略0゜)に設定したドライエッチングによって除去することができるためである。なお、前述した順序とは逆に、エッチング粒子の主たる入射角度θを他の角度(例えば、略0゜)に設定したドライエッチングを行った後に、入射角度θを60゜以上90゜以下に設定したイオンビームエッチングを行ってもよい。
【0096】
本実施の形態では、前述した入射角度θを60゜以上90゜以下に設定したイオンビームエッチングによって、図18に示すように、前記形成物(再付着物72,82、絶縁層34及び磁区制御層32の乗り上げ部、及び、絶縁層30の乗り上げ部)、並びに、前記形成物下及びその他の領域に存在していた表面酸化膜50が、除去される。なお、図18はXY平面と平行な平面に沿った断面を示しているので、図18には、領域R2,R3上の形成物(再付着物72、絶縁層34及び磁区制御層32の乗り上げ部)の除去後の様子は現れていないが、その除去後の様子は、後述する図19等に現れている。
【0097】
このとき、前述したように入射角度θが60゜以上90゜以下に設定されたことによって、前記形成物の除去又は低減の選択性が高まる。これは、エッチング粒子が前記形成物を横から叩くことにより、前記形成物の除去又は低減の選択性(換言すると、凸部を平坦にする平坦化能力)が高まるものと考えられる。また、本実施の形態では、次の理由によっても、前記形成物の除去又は低減の選択性が高まるものと考えられる。すなわち、イオンビームの入射角度θが略0゜である場合には、Al、SiO等の絶縁膜のエッチングレートは金属のエッチングレートに対して低いが、イオンビームの入射角度θが60゜以上90゜以下である場合には、Al、SiO等の絶縁膜のエッチングレートは金属のエッチングレートと大差がないかあるいは金属のエッチングレートより高くなる。そして、前記形成物には絶縁層34及び絶縁層30の乗り上げ部が含まれる一方、上部金属層28は金属からなる。したがって、絶縁物と金属とのエッチングレートの関係からも、前記形成物の除去又は低減の選択性が高まるものと考えられる。
【0098】
その後、図18に示す状態の基板101上に、上部金属層29がスパッタ法等により形成され、更に、メッキ法等により上部電極31を形成する(図19)。
【0099】
最後に、ギャップ層38、コイル層37、絶縁層39、上部磁性層36及び保護膜40を形成し、更に電極5a〜5d等を形成する。これにより、ウエハ工程が完了する。
【0100】
次に、ウエハ工程が完了したウエハに対して、公知の工程を経て磁気ヘッドを完成させる。簡単に説明すると、前記ウエハから、基体上に複数の磁気ヘッドの部分が一列状に配列された各バー(バー状磁気ヘッド集合体)切り出す。次いで、このバーに対して、スロートハイト、MRハイト等を設定するために、そのABS側にラッピング処理(研磨)を施す。次に、ABS側に保護膜4を形成し、更に、エッチング等によりレール11,12を形成する。最後に、機械加工により切断してバーを個々の磁気ヘッドに分離する。これにより、本実施の形態による磁気ヘッドが完成する。
【0101】
なお、本実施の形態はTMRヘッドの例であるが、本実施の形態において、トンネルバリア層26に代えてCu、Au又はAgなどの非磁性金属層を形成することで、CPP−GMRヘッドを構成してもよい。
【0102】
ここで、本実施の形態による製造方法と比較される第1の比較例について、図20乃至図24を参照して説明する。図20乃至図22は、この第1の比較例による製造方法の一部の各工程を模式的に示す図である。図20及び図21は、それぞれ図17及び図18に対応する概略拡大断面図である。図22(a)は概略平面図、図22(b)は図22(a)中のE−F線に沿った概略断面図である。
図22は図12に対応している。図23及び図24は、この第1の比較例による製造方法により製造される磁気ヘッドのTMR素子2の部分を模式的に示す拡大断面図である。図23及び図24は、それぞれ図4及び図5に対応している。図20乃至図24において、図1乃至図22中の要素と同一又は対応する要素には同一符号を付し、その重複する説明は省略する。
【0103】
この第1の比較例による製造方法は、従来技術に準じて、前述した本実施の形態による製造方法を次のように変形したものである。すなわち、この第1の比較例による製造方法が前述した第1の実施の形態による製造方法と異なる所は、前記エッチング工程で、図17に示すように入射角度θを60゜以上90゜以下に設定した通常のイオンビームエッチングに代えて、図20に示すように入射角度θを0゜に設定した通常のイオンビームエッチングを行う点のみである。
【0104】
前記形成物(再付着物72,82、絶縁層34及び磁区制御層32の乗り上げ部、及び、絶縁層30の乗り上げ部)が形成されていない領域の表面酸化膜50がちょうど除去される程度まで、入射角度θを0゜に設定した前記イオンビームエッチングを行うと、図21に示すように、前記形成物の一部は除去されるものの、前記形成物の他の部分が残るとともに、前記形成物下の表面酸化膜50が残る。これは、エッチング粒子が前記形成物を上から叩くことにより、前記形成物の除去又は低減の選択性(すなわち、平坦化能力)が低いためであると考えられる。また、イオンビームの入射角度θが略0゜である場合には、Al、SiO等の絶縁膜のエッチングレートは金属のエッチングレートに対して低いので、これによっても前記形成物の除去又は低減の選択性が低くなるためであると考えられる。
【0105】
したがって、図21に示す状態の基板101上に、上部金属層29及び上部電極31を形成すると、図22に示すようになる。このため、この第1の比較例による製造方法により製造された磁気ヘッドでは、図23及び図24に示すように、前述した領域R1〜R3に、表面酸化膜50、再付着物72,82及び絶縁層30,34などが残ってしまい、これらによって、磁気抵抗効果層に流れる電流の通路が制限され、電気的に良好な接触をしている領域が減ってしまう。その結果、TMR素子2の直列抵抗成分が増大し、これにより、MR特性の劣化やヘッドの高抵抗化に伴う周波数特性の劣化等などが生ずる。領域R1〜R3の幅は、前述した第1のリフトオフ用レジストパターン71,81のアンダーカット71a,81aの寸法により定まる。したがって、リフトオフ時のバリの発生等を避けるためには、領域R1〜R3の幅を所定寸法(例えば、数十nm)以下にすることは困難である。このため、高記録密度化を図るべくTMR素子2の寸法を小さくする(例えば、MRハイトMRhを100nm以下にしようとする)と、電気的に良好な接触をしている領域が著しく減り、磁気抵抗効果層に流れる電流の通路が著しく制限され、MR特性の劣化やヘッドの高抵抗化に伴う周波数特性の劣化等などの影響が顕著に現れてしまう。
【0106】
また、この第1の比較例による製造方法により製造された磁気ヘッドでは、図24に示すように、領域R2,R3に、磁区制御層32が乗り上げている。したがって、磁区制御層32からのバイアス磁界の一部がフリー層27に入らずに両側の磁区制御層32の乗り上げ部間を通ってバイパスされてしまう。その結果、磁区制御層32によるフリー層27に対する縦バイアス効果が弱まってしまい、フリー層27の磁区制御を十分に行うことができない。前述したように領域R2,R3の幅は所定寸法以下にすることが困難であるため、高記録密度化を図るべくTMR素子2の寸法を小さくすると、両側の磁区制御層32の乗り上げ部間の距離が著しく狭まり、フリー層27の磁区制御への影響が顕著に現れてしまう。
【0107】
これに対し、前述した本実施の形態による製造方法では、前述したように、前記エッチング工程において、図17に示すように入射角度θを60゜以上90゜以下に設定したイオンビームエッチングを行う。これにより、図18に示すように、前記形成物(再付着物72,82、絶縁層34及び磁区制御層32の乗り上げ部、及び、絶縁層30の乗り上げ部)、並びに、前記形成物下及びその他の領域に存在していた表面酸化膜50が、除去される。したがって、本実施の形態による製造方法で製造した図1乃至図5に示す磁気ヘッドでは、磁気抵抗効果層に流れる電流の通路が制限されず、電気的に良好な接触をしている領域が減ってしまうことがない。このため、高記録密度化を図るべくTMR素子2の寸法を小さくしても、MR特性の劣化やヘッドの高抵抗化に伴う周波数特性の劣化等などを防止することができる。また、磁区制御層32の乗り上げ部が除去されることから、磁区制御層32からのバイアス磁界がより多くフリー層27に入る。このため、高記録密度化等を図るべくTMR素子2の寸法を小さくしても、縦バイアスを有効にフリー層27に印加することができ、磁区制御層32によるフリー層27に対する縦バイアス効果を向上させることができる。
【0108】
ところで、前述した第1の比較例においても、図20に示すように入射角度θを0゜に設定したイオンビームエッチングを十分に長く行えば、前記形成物及びその下の表面酸化膜50を除去することは可能である。しかし、その場合には、前記形成物の除去又は低減の選択性が低いため、上部金属層28のエッチング量も大きく増えてしまう。このため、エッチング分布が問題になったり、磁気抵抗効果層(特にトンネルバリア層26)へのイオンビームによるダメージの影響が大きくなってMR比が下がるという問題(すなわち、磁気抵抗効果層の本来の機能を阻害するという問題)が生じたりする。これに対し、前述した本実施の形態による製造方法では、前記形成物の除去又は低減の選択性を高めることができるので、そのような不都合は生じない。
【0109】
次に、本実施の形態の変形例について説明する。本実施の形態では、前述したように、図12及び図16に示す状態の基板101の上面側をエッチングするエッチング工程として、実質的にクラスターを形成しないエッチング粒子を用いその入射角度θを前述した角度に設定した通常のイオンビームエッチングを行っている。しかしながら、本発明は、この通常のイオンビームエッチングの代わりに、ガスクラスターイオンビーム(GCIB)によるドライエッチングを行ってもよい。具体的には、例えば、1〜5kg程度に加圧したガスを10−4Torr〜10−1Torr程度に減圧したチャンバに吹き出すことにより断熱膨張によって生じる10〜10個のガスクラスターをイオン化し、加速電極によって所定の電圧にて加速して基板101の上面側に入射させる。基板101の上面側に対するガスクラスターイオンビームの入射方向は、ほぼ基板101の上面の法線の方向とすることができるが、その入射方向は適宜傾けてもよい。ガスクラスターイオンビームのために用いられるガスとしては、例えば、He、Ne、Ar、Kr、Xe及びHからなる群より選ばれた1種以上からなる単体ガス又は混合ガスを挙げることができる。また、加速電圧は例えば10〜20keV、総照射量(総ドーズ量)は例えば1015〜1017ions/cmとすることができる。
【0110】
このようにガスクラスターイオンビームを用いると、クラスターが基板101に衝突した後に、クラスターを構成する原子又は分子による多体衝突効果により当該原子又は分子には基板101表面に平行な運動量成分が生じるため、平坦化作用により前記形成物(再付着物72,82、絶縁層34及び磁区制御層32の乗り上げ部、及び、絶縁層30の乗り上げ部)される。したがって、ガスクラスターイオンビームを用いた場合にも、本実施の形態と同様の利点が得られる。なお、ガスクラスターイオンビームにより平坦化作用を得ることができることは、後述する実験により確認された。
【0111】
なお、ガスクラスターイオンビームによるドライエッチングの条件を適宜設定することによって、前記形成物下及びその他の領域に存在していた表面酸化膜50を同時に除去することも可能であるし、表面酸化膜50を実質的に除去しないことも可能である。後者の場合には、例えば、ガスクラスターイオンビームによるドライエッチングの前又は後に、表面酸化膜除去のために、実質的にクラスターを形成しないエッチング粒子を用いそのエッチング粒子の主たる入射角度θを例えば略0゜に設定したドライエッチングを行えばよい。
【0112】
[第2の実施の形態]
【0113】
図25は、本発明の第2の実施の形態による磁気ヘッド製造方法により製造される磁気ヘッドのTMR素子2及び誘導型磁気変換素子3の部分を模式的に示す拡大断面図である。図26は、図25中のTMR素子2の付近を更に拡大した拡大図である。図25及び図26は、それぞれ図2及び図4に対応している。図27は、本発明の第2の実施の形態による磁気ヘッド製造方法の一工程を模式的に示す概略断面図であり、図17に対応している。図25乃至図27において、図1乃至図5及び図17中の要素と同一又は対応する要素には同一符号を付し、その重複する説明は省略する。
【0114】
図25及び図26に示す磁気ヘッドが図1乃至図5に示す磁気ヘッドと異なる所は、図25及び図27に示すように、図2及び図4中の絶縁層30の位置に、下側の絶縁層30aとその上に積層された層30bが設けられている点のみである。絶縁層30aの材料としては、例えば、Al又はSiOなどが用いられる。また、層30bの材料としては、Al及びSiOよりイオンビームダメージ低減効果の高い材料、例えば金属が用いられている。
【0115】
ここで、2つの材料のイオンビームダメージ低減効果の高低について説明すると、当該2つの材料でそれぞれ同じ厚さの層を構成し、各層の一方側にそれぞれイオンビームダメージが問題となる対象層(例えば、トンネルバリア層)を形成し、前記2つの材料の層に、対象層と反対側から同じエネルギーのイオンビームをそれぞれ直接又は同じ所定層を介して照射したとき、対象層が破壊されなかったりその特性が劣化し難い方の材料を他方の材料よりイオンビームダメージ低減効果が高いという。一般的に、構成元素の原子量が大きい材料ほど、ここでいうイオンビームダメージ低減効果が高くなると考えられる。イオンビームダメージは、前記材料内を通過してAr等のイオンビームが対象層に直接到達し対象層を破壊したり、あるいは、前記材料内の結晶格子中を格子振動という形でイオンビームのエネルギーが伝わり対象層を破壊したり、前記材料内の結晶中の原子が玉突き状態でイオンビームのエネルギーを伝えて対象層を破壊したりすることにより、生ずるものと考えられる。
【0116】
本実施の形態による磁気ヘッド製造方法が、前記第1の実施の形態による磁気ヘッド製造方法と異なる所は、基本的に、前記第1の実施の形態において絶縁層30を形成する代わりに、絶縁層30a及び層30bを順次形成する点のみである。
【0117】
図27は、入射角度θを60゜以上90゜以下に設定したイオンビームエッチングの工程(前記第1の実施の形態における図17に示すイオンビームエッチングの工程と同じ工程)の状況を示している。本実施の形態では、絶縁層30に代えて絶縁層30a及び層30bが形成されたことに伴い、図27に示すように、領域R1の再付着物82上には、絶縁層30a及び層30bの一部が乗り上がっている。本実施の形態では、トンネルバリア層26の−Y側の端面に向かおうとするイオンビームの経路には、絶縁層30よりイオンビームダメージ低減効果の高い材料からなる層30bが介在している。このため、本実施の形態によれば、前記第1の実施の形態に比べて、トンネルバリア層26の−Y側の端面に向かおうとするイオンビームによるトンネルバリア層26のダメージがより低減されるので、好ましい。
【0118】
その他の点については、本実施の形態によっても、前記第1の実施の形態と同様の利点が得られる。なお、前述した第1の実施の形態の変形例と同様の変形を、本実施の形態にも適用できることは、言うまでもない。
【0119】
[第3の実施の形態]
【0120】
図28は、本発明の第3の実施の形態による磁気ヘッド製造方法により製造される磁気ヘッドのGMR素子6及び誘導型磁気変換素子3の部分を模式的に示す拡大断面図である。図29は、図28中のGMR素子6の付近を更に拡大した拡大図である。図30は、図29中のB−B’矢視概略図である。図28乃至図30は、それぞれ図2、図4及び図5に対応している。図28乃至図30において、図1乃至図5中の要素と同一又は対応する要素には同一符号を付し、その重複する説明は省略する。
【0121】
図28乃至図30に示す磁気ヘッドは、LOL構造を持つ磁気ヘッドの一例である。図28乃至図30に示す磁気ヘッドが図1乃至図5に示す磁気ヘッドと異なる所は、層21,31間の構造と、これに伴う層21,31の機能である。図1乃至図5に示す磁気ヘッドでは、層21,31がそれぞれ磁気シールド及び電極を兼用しているのに対し、図28乃至図30に示す磁気ヘッドでは、層21,31は、磁気シールドとしてのみ用いられ、電極として作用しない。したがって、図28乃至図30に示す磁気ヘッドでは、層21,31をそれぞれ下部磁気シールド層及び上部磁気シールド層と呼ぶ。
【0122】
図28乃至図30に示す磁気ヘッドでは、下部磁気シールド層21と上部磁気シールド層31との間に、下部シールドギャップ層61及び上部シールドギャップ層62が形成されている。磁気抵抗効果素子として図1乃至図5に示す磁気ヘッドにおけるTMR素子2に代わりに設けられたGMR素子6が、シールドギャップ層61,62間に形成されている。図28及び図29中において、63はシールドギャップ層61,62間に形成されたシールドギャップ層である。シールドギャップ層61,62,63は、絶縁層であり、例えば、Al又はSiOなどの材料で形成される。
【0123】
GMR素子6が図1乃至図5中のTMR素子2と異なる所は、トンネルバリア層26に代えて、Cu、Au又はAgなどの非磁性金属層64が形成されている点である。ピン層24、ピンド層25、非磁性金属層64及びフリー層27が、磁気抵抗効果層を構成している。なお、図28乃至図30に示す磁気ヘッドでは、図1乃至図5中の磁気ヘッドで形成された下地層22は形成されていない。
【0124】
磁区制御層32は、前記磁気抵抗効果層のZ軸方向の両側において、下部シールドギャップ層61上に形成されている。なお、図28乃至図30に示す磁気ヘッドでは、図1乃至図5中の磁気ヘッドで形成された絶縁層34は形成されていない。一対のリード層(電極層)65が、上部金属層28を介して前記磁気抵抗効果層の両端部にそれぞれ部分的にオーバーラップしてオーバーレイ部を持つように、上部金属層28及び磁区制御層32上にそれぞれ形成されている。リード層65は、例えば、Au、AuCu、AuNi、AuSi又はAlTiなどの材料で形成される。
【0125】
なお、図29において、MRhは、GMR素子6が規定するMRハイトを示している。図30において、TWは、GMR素子6が規定するトラック幅を示している。
【0126】
次に、本発明の第3の実施の形態による磁気ヘッド製造方法として、図28乃至図30に示す磁気ヘッドの製造方法の一例について、説明する。
【0127】
まず、ウエハ工程を行う。すなわち、基体15となるべきAl−TiC又はSiC等のウエハ101を用意し、薄膜形成技術等を用いて、ウエハ101上のマトリクス状の多数の磁気ヘッドの形成領域にそれぞれ、前述した各層を前述した構造となるように形成する。
【0128】
このウエハ工程の概要について、図31乃至図45を参照して説明する。図31乃至図45はウエハ工程を構成する各工程を模式的に示す図である。図31(a)、図32(a)、図37(a)、図44(a)及び図45(a)はそれぞれ概略平面図である。図32(a)において、TWは、GMR素子6が規定するトラック幅を示している。図31(b)は図31(a)中のH−J線に沿った概略断面図、図32(b)は図32(a)中のH−J線に沿った概略断面図、図37(b)は図37(a)中のL−K線に沿った概略断面図、図44(b)は図44(a)中のH−J線に沿った概略断面図、図45(b)は図45(a)中のH−J線に沿った概略断面図である。図33乃至図36はそれぞれ、図31に示す状態から図32に示す状態に至る各工程を詳細に示す概略拡大断面図である。図38乃至図41はそれぞれ、図32に示す状態から図37に示す状態に至る各工程を詳細に示す概略拡大断面図である。図42及び図43はそれぞれ、図37及び図41に示す状態の後の工程を示す概略拡大断面図である。
【0129】
ウエハ工程では、まず、ウエハ101上に、下地層16、下部磁気シールド層21、下部シールドギャップ層61、下部金属層23、ピン層24、ピンド層25、非磁性金属層64、フリー層27及び上部金属層28を、順次積層する(図31)。このとき、下部磁気シールド層21は例えばめっき法により形成し、他の層は例えばスパッタ法で形成する。その後、この状態の基板が一旦大気中に置かれる。このとき、磁気抵抗効果層の上面(本実施の形態では、フリー層27の上面)は、上部金属層28により保護されるので、酸化されない。しかし、上部金属層28の上面に酸化膜50が形成されることになる(図31)。
【0130】
次に、第1のドライエッチングとしてのイオンミリングにより、下部金属層23、ピン層24、ピンド層25、非磁性金属層64、フリー層27、上部金属層28及び酸化膜50を、部分的に除去して、パターニングする。次いで、この除去した部分に、リフトオフ法により、磁区制御層32を形成する(図32)。
【0131】
この工程について、図33乃至図36を参照して詳細に説明する。まず、図32に示す状態の基板上(本実施の形態では、表面酸化膜50上)に、第2のリフトオフ用レジストパターン111を形成する(図33)。
【0132】
次に、第1のリフトオフ用レジストパターン111をマスクとして、第1のドライエッチングとしてのイオンミリング(他のドライエッチングでもよい。)を行うことにより、層23〜25,64,27,28,50をパターニングする(図34)。このパターニングにより、GMR素子6のトラック幅方向の両側の端部が規定される。このパターニングの際に、第1のリフトオフ用レジストパターン111のアンダーカット111aに相当する表面酸化膜50上の領域には、図34に示すように、層23〜25,64,27,28,50のイオンミリングによる再付着物112が形成される。なお、図34において、領域R6は、アンダーカット111aに相当する領域のうち+Z側(トラック幅方向の一方側)の領域を示している。この点は、図30、図32、図35、図36、図44、図45についても同様である。図30、図32、図44及び図45において、領域R5は、アンダーカット111aに相当する領域のうち−Z側(トラック幅方向の他方側)の領域を示している。
【0133】
次いで、第1のリフトオフ用レジストパターン111が表面酸化膜50上に存在する状態で、基板101上に磁区制御層32をスパッタ法等により成膜する(図35)。このとき、アンダーカット111aに相当する表面酸化膜50上の領域には(すなわち、再付着物112上には)、図35に示すように、磁区制御層32の一部(以下、「乗り上げ部」と呼ぶ。)が乗り上がる。
【0134】
このように、第1のリフトオフ用レジストパターン111のアンダーカット111aに相当する表面酸化膜50上の領域には、再付着物112及び磁区制御層32の乗り上げ部による形成物が形成される。
【0135】
その後、第1のリフトオフ用レジストパターン111を除去することにより、磁区制御層32の第1のリフトオフ用レジストパターン111上の部分を除去する(図36)。図36は図32と同じ状態を示している。
【0136】
次に、第2のドライエッチングとしてのイオンミリングにより、GMR素子6のハイト方向に関して必要な幅(Y軸方向の幅)を持つとともに所定長さだけZ軸方向に延びる帯状部分を含むコ字状部分を残して、下部金属層23、ピン層24、ピンド層25、非磁性金属層64、フリー層27、上部金属層28、表面酸化膜50及び磁区制御層32を、部分的に除去して、パターニングする。次いで、この除去した部分に、リフトオフ法により、シールドギャップ層(絶縁層)63を形成する(図37)。
【0137】
この工程について、図38乃至図41を参照して詳細に説明する。まず、図32及び図36に示す状態の基板上に、第2のリフトオフ用レジストパターン121を形成する(図38)。
【0138】
次に、第2のリフトオフ用レジストパターン38をマスクとして、第2のドライエッチングとしてのイオンミリング(他のドライエッチングでもよい。)を行うことにより、層23〜25,64,27,28,50,32をパターニングする(図39)。このパターニングにより、GMR素子6のハイト方向の一方の端部(本実施の形態では、−Y側の端部、すなわち、ABSと反対側の端部)が規定される。このパターニングの際に、第2のリフトオフ用レジストパターン121のアンダーカット121aに相当する表面酸化膜50等の上の領域には、図39に示すように、層23〜25,64,27,28,50,32のイオンミリングによる再付着物122が形成される。なお、図39において、領域R4は、アンダーカット121aに相当する領域のうち−Y側(ABSと反対側)の領域を示している。この点は、図29、図37、図40〜図43についても同様である。
【0139】
次いで、第2のリフトオフ用レジストパターン121が基板上に存在する状態で、基板101上にシールドギャップ層(絶縁層)63をスパッタ法等により成膜する(図40)。このとき、アンダーカット121aに相当する表面酸化膜50等の上の領域には(すなわち、再付着物122上には)、図40に示すように、シールドギャップ層63の一部(以下、「乗り上げ部」と呼ぶ。)が乗り上がる。
【0140】
このように、第2のリフトオフ用レジストパターン121のアンダーカット121aに相当する表面酸化膜50上等の領域には、再付着物122及びシールドギャップ層63の乗り上げ部による形成物が形成される。
【0141】
その後、第2のリフトオフ用レジストパターン121を除去することにより、シールドギャップ層63の第2のリフトオフ用レジストパターン121上の部分を除去する(図41)。図41は図37と同じ状態を示している。
【0142】
次に、図37及び図41に示す状態の基板101の上面側をエッチングするエッチング工程を行う。このエッチング工程では、図42に示すように、前述した第1の実施の形態における図17に示すドライエッチングと同様に、実質的にクラスターを形成しないエッチング粒子を用い、基板101の上面側に対するエッチング粒子の主たる入射角度θを、基板101の上面の法線Pの方向に対して60゜以上90゜以下に設定して、ドライエッチングを行う。このドライエッチングに関しても、第1の実施の形態において図17に関して説明した内容は基本的にそのまま適合する。
【0143】
本実施の形態では、前述した入射角度θを60゜以上90゜以下に設定したイオンビームエッチングによって、図43に示すように、前記形成物(再付着物112,122、磁区制御層32の乗り上げ部、及び、シールドギャップ層63の乗り上げ部)、並びに、前記形成物下及びその他の領域に存在していた表面酸化膜50が、除去される。このとき、前述したように入射角度θが60゜以上90゜以下に設定されたことによって、前記形成物の除去又は低減の選択性が高まる。なお、図43はXY平面と平行な平面に沿った断面を示しているので、図43には、領域R5,R6上の形成物(再付着物112及び磁区制御層32の乗り上げ部)の除去後の様子は現れていないが、その除去後の様子は、後述する図44等に現れている。
【0144】
その後、図43に示す状態の基板101上に、リード層65が形成される(図44)。次いで、上部シールドギャップ層62がスパッタ法等により形成され、更に、メッキ法等により上部磁気シールド層31を形成する(図45)。
【0145】
最後に、ギャップ層38、コイル層37、絶縁層39、上部磁性層36及び保護膜40を形成し、更に電極5a〜5d等を形成する。これにより、ウエハ工程が完了する。
【0146】
次に、ウエハ工程が完了したウエハに対して、前述した第1の実施の形態と同様に、公知の工程を経て磁気ヘッドを完成させる。
【0147】
ここで、本実施の形態による製造方法と比較される第2の比較例について、図46乃至図52を参照して説明する。図46乃至図49は、この第2の比較例による製造方法の一部の各工程を模式的に示す図である。図46及び図47は、それぞれ図42及び図43に対応する概略拡大断面図である。図48(a)及び図49(a)は概略平面図、図48(b)は図48(a)中のH−J線に沿った概略断面図、図49(b)は図49(a)中のH−J線に沿った概略断面図である。図48及び図49は、それぞれ図44及び図45に対応している。図50乃至図52は、この第2の比較例による製造方法により製造された磁気ヘッドのGMR素子6の部分を模式的に示す拡大断面図である。図50は図29に対応している。図51は、図50中のM−M’矢視概略図であり、図30に対応している。
図52は、図50中のN−N’矢視概略図である。図46乃至図52において、図29乃至図45中の要素と同一又は対応する要素には同一符号を付し、その重複する説明は省略する。
【0148】
この第2の比較例による製造方法は、従来技術に準じて、前述した本実施の形態による製造方法を次のように変形したものである。すなわち、この第2の比較例による製造方法が前述した第2の実施の形態による製造方法と異なる所は、前記エッチング工程で、図42に示すように入射角度θを60゜以上90゜以下に設定した通常のイオンビームエッチングに代えて、図46に示すように入射角度θを0゜に設定した通常のイオンビームエッチングを行う点のみである。
【0149】
前記形成物(再付着物112,122、磁区制御層32の乗り上げ部、及び、シールドギャップ層63の乗り上げ部)が形成されていない領域の表面酸化膜50がちょうど除去される程度まで、入射角度θを0゜に設定した前記イオンビームエッチングを行うと、図47に示すように、前記形成物の一部は除去されるものの、前記形成物の他の部分が残るとともに、前記形成物下の表面酸化膜50が残る。これは、エッチング粒子が前記形成物を上から叩くことにより、前記形成物の除去又は低減の選択性が低いためであると考えられる。また、イオンビームの入射角度θが略0゜である場合には、Al、SiO等の絶縁膜のエッチングレートは金属のエッチングレートに対して低いので、これによっても前記形成物の除去又は低減の選択性が低くなるためであると考えられる。
【0150】
したがって、図47に示す状態の基板101上に、リード層65を形成すると、図48に示すようになる。更に上部シールドギャップ層62及び上部磁気シールド層31を形成すると、図49に示すようになる。このため、この第2の比較例による製造方法により製造された磁気ヘッドでは、図50乃至図52に示すように、前述した領域R4〜R6に、表面酸化膜50、再付着物112,122及びシールドギャップ層(絶縁層)63などが残ってしまい、これらによって、磁気抵抗効果層に流れる電流の通路が制限され、電気的に良好な接触をしている領域が減ってしまう。その結果、GMR素子6から本来の出力が得られないという問題が生ずる。領域R4〜R6の幅は、前述した第1のリフトオフ用レジストパターン111,121のアンダーカット111a,121aの寸法により定まる。したがって、リフトオフ時のバリの発生等を避けるためには、領域R4〜R6の幅を所定寸法(例えば、数十nm)以下にすることは困難である。このため、高記録密度化を図るべくGMR素子6の寸法を小さくする(例えば、MRハイトMRhを100nm以下にしようとする)と、電気的に良好な接触をしている領域が著しく減り、GMR素子6から本来の出力が得られないという問題が顕著に現れてしまう。
【0151】
また、この第2の比較例による製造方法により製造された磁気ヘッドでは、図51に示すように、領域R5,R6に、磁区制御層32が乗り上げている。したがって、前述した第1の比較例の場合と同様に、磁区制御層32からのバイアス磁界の一部がフリー層27に入らずに両側の磁区制御層32の乗り上げ部間を通ってバイパスされてしまう。その結果、磁区制御層32によるフリー層27に対する縦バイアス効果が弱まってしまい、フリー層27の磁区制御を十分に行うことができない。前述したように領域R5,R6の幅は所定寸法以下にすることが困難であるため、高記録密度化を図るべくGMR素子6の寸法を小さくすると、両側の磁区制御層32の乗り上げ部間の距離が著しく狭まり、フリー層27の磁区制御への影響が顕著に現れてしまう。
【0152】
これに対し、前述した本実施の形態による製造方法では、前述したように、前記エッチング工程において、図42に示すように入射角度θを60゜以上90゜以下に設定したイオンビームエッチングを行う。これにより、図43に示すように、前記形成物(再付着物112,122、磁区制御層32の乗り上げ部、及び、シールドギャップ層63の乗り上げ部)、並びに、前記形成物下及びその他の領域に存在していた表面酸化膜50が、除去される。したがって、本実施の形態による製造方法で製造した図28乃至図30に示す磁気ヘッドでは、磁気抵抗効果層に流れる電流の通路が制限されず、電気的に良好な接触をしている領域が減ってしまうことがない。このため、高記録密度化を図るべくGMR素子6の寸法を小さくしても、出力の低下などを防止することができる。また、磁区制御層32の乗り上げ部が除去されることから、磁区制御層32からのバイアス磁界がより多くフリー層27に入る。このため、高記録密度化等を図るべくTMR素子2の寸法を小さくしても、縦バイアスを有効にフリー層27に印加することができ、磁区制御層32によるフリー層27に対する縦バイアス効果を向上させることができる。
【0153】
ところで、前述した第2の比較例においても、図46に示すように入射角度θを0゜に設定したイオンビームエッチングを十分に長く行えば、前記形成物及びその下の表面酸化膜50を除去することは可能である。しかし、その場合には、前記形成物の除去又は低減の選択性が低く、また平坦化効果も使えないため、上部金属層28のエッチング量も大きく増えてしまう。このため、エッチング分布が問題になったり、磁気抵抗効果層へのイオンビームによるダメージの影響が大きくなってMR比が下がるという問題(すなわち、磁気抵抗効果層の本来の機能を阻害するという問題)が生じたりする。これに対し、前述した本実施の形態による製造方法では、前記形成物の除去又は低減の選択性を高めることができるので、そのような不都合は生じない。
【0154】
なお、前述した第1の実施の形態の変形例と同様の変形を、本実施の形態にも適用できることは、言うまでもない。
【0155】
[第4の実施の形態]
【0156】
図53は、本発明の第4の実施の形態による磁気ディスク装置の要部の構成を示す概略斜視図である。
【0157】
第4の実施の形態による磁気ディスク装置は、軸170の回りに回転可能に設けられた磁気ディスク171と、磁気ディスク171に対して情報の記録及び再生を行う磁気ヘッド172と、磁気ヘッド172を磁気ディスク171のトラック上に位置決めするためのアッセンブリキャリッジ装置173と、を備えている。
【0158】
アセンブリキャリッジ装置173は、軸174を中心にして回動可能なキャリッジ175と、このキャリッジ175を回動駆動する例えばボイスコイルモータ(VCM)からなるアクチュエータ176とから主として構成されている。
【0159】
キャリッジ175には、軸174の方向にスタックされた複数の駆動アーム177の基部が取り付けられており、各駆動アーム177の先端部には、磁気ヘッド172を搭載したヘッドサスペンションアッセンブリ178が固着されている。各ヘッドサスペンションアセンブリ178は、その先端部に有する磁気ヘッド172が、各磁気ディスク171の表面に対して対向するように駆動アーム177の先端部に設けられている。
【0160】
第4の実施の形態では、磁気ヘッド172として、前述した第1乃至第3の実施の形態による磁気ヘッド製造方法のいずれかにより製造された磁気ヘッドが、搭載されている。したがって、第4の実施の形態によれば、高記録密度化を図ることができるなどの利点が得られる。
【0161】
【実施例】
[実施例1及び比較例1のサンプル]
【0162】
実施例1のサンプルとして、前記第1の実施の形態による磁気ヘッド製造方法により図1乃至図5に示す磁気ヘッドと同様の磁気ヘッドを作製した。また、比較例1のサンプルとして、前記第1の実施の形態に関連して説明した前記第1の比較例による磁気ヘッド製造方法により図23及び図24に示す磁気ヘッドと同様の磁気ヘッドを作製した。
【0163】
これらのサンプルの各層の構成は、同一とした。その主要な各層の構成は、下記の表1に示す通りとした。これらのサンプルの製造方法は、図17及び図20にそれぞれ示すイオンビームエッチングに相当するイオンビームエッチングの条件を除き、同一の方法及び条件とした。
【0164】
【表1】
Figure 2004253437
【0165】
実施例1のサンプルでは、前記イオンビームエッチングの条件は、使用ガスをArガス、加速電圧を250V、ビーム電流を0.1mA/cm、Arガス圧を2×10−4Torr、基板温度を50℃、エッチング時間を20分、イオンビーム入射角度(基板の法線に対する角度)θを80゜とした。このエッチング条件は、上部金属層28を構成するTaに対するエッチングレートが0.35nm/minとなることを、実験により確認した。
【0166】
一方、比較例1のサンプルでは、前記イオンビームエッチングの条件は、使用ガスをArガス、加速電圧を250V、ビーム電流を0.1mA/cm、Arガス圧 2×10−4Torr、基板温度を50℃、エッチング時間を5.4分、イオンビーム入射角度(基板の法線に対する角度)θを0゜とした。このエッチング条件は、上部金属層28を構成するTaに対するエッチングレートが1.3nm/minとなることを、実験により確認した。
【0167】
このように、実施例1のサンプルと比較例1のサンプルとでは、前記イオンビームエッチングの条件について、イオンビーム入射角度θ及びエッチング時間のみを変え、他の条件は同一とした。両者のエッチング時間は、Taに対する両者のエッチング量(エッチングレートに基づく計算値)が同じく7nmとなるように設定した。
【0168】
なお、実施例1のサンプル及び比較例1のサンプルの両方とも、TMR素子2のトラック幅TWを0.13μmとし、TMR素子2のMRハイトMRhを0.1μmとし、保護膜4を厚さ3nmのDLC膜とし、浮上型磁気ヘッドとした。
【0169】
そして、これらのサンプルの再生出力を測定した。この測定では、全てサンプルについて、フライングハイトを10nm、メディア保護膜を3nmとし、バイアス電圧は150mVと一定にした。
【0170】
この測定の結果、実施例1のサンプルの場合は、抵抗値は250Ω、出力は5.25mVとなり、比較例1のサンプルの場合は、抵抗値は700Ω、出力は1.90mVとなった。このように、実施例1のサンプルは、比較例1のサンプルと比べて良好な結果を示した。
【0171】
これは、比較例1のサンプルでは、図23及び図24に示すように、領域R1〜R3に、前記形成物(再付着物72,82、絶縁層34及び磁区制御層32の乗り上げ部、及び、絶縁層30の乗り上げ部)、並びに、表面酸化膜50が存在することにより、接触抵抗が増加し、抵抗値の増大及びMR比の劣化による出力の低下が起きたのに対し、実施例1のサンプルでは、図4及び図5に示すように、領域R1〜R3に前記形成物及び表面酸化膜50が存在しないことにより、接触抵抗が低下し、MR比の向上による出力の増加が起きたためであると考えられる。
【0172】
[サンプル1〜5]
【0173】
前述した実施例1のサンプル及び比較例1のサンプルと同一の各層の構成(その主要な各層の構成は表1の通り。)を持ち、かつ、図17及び図20にそれぞれ示すイオンビームエッチングに相当するイオンビームエッチングの条件を除き、前述した実施例1のサンプル及び比較例1のサンプルと同一の方法及び条件で前記イオンビームエッチングまでの工程を行ったウエハを、サンプル1〜5として作製した。
【0174】
サンプル1〜5では、前記イオンビームエッチングの条件について、イオンビーム入射角度θ及びエッチング時間のみを表2に示す通りに変え、他の条件は前記実施例1のサンプル及び前記比較例1のサンプルの場合と同一とした。表2には、各イオンビーム入射角度θ毎のTa(上部金属層28の材料)に対するエッチングレート(実験値)及びAlに対するエッチングレート(実験値)も掲載している。表2からわかるように、サンプル1〜5のエッチング時間は、Taに対するエッチング量(エッチングレートに基づく計算値)が同じく5nmとなるように設定した。
【0175】
【表2】
Figure 2004253437
【0176】
そして、各サンプル1〜5について、前記イオンビームエッチングの前後において、AFM(原子間力顕微鏡)を用いてプロファイルを得ることで、図54に示す乗り上げ部の高さh1及び段差h2を測定した。図54は、サンプル1〜5の測定個所を模式的に示す断面図であり、図17及び図18、並びに、図20及び図21に対応している。ただし、図54では、前記イオンビームエッチングの前後の状態の表面の高さの様子を模式的に示しており、表面酸化膜50及び再付着物82等は図示していない。高さh1は、乗り上げ部から+Y方向に十分に離れた位置の表面の高さ(この高さは、勿論、前記イオンビームエッチングの前後で変化する。)を基準とした乗り上げ部の高さ(層23〜28の−Y側の端面付近において最も高い高さ)である。段差h2は、乗り上げ部から+Y方向に十分に離れた位置の表面の高さを基準とした、乗り上げ部から−Y方向に十分に離れた位置の表面の高さである。
【0177】
各サンプル1〜5の前記イオンビームエッチングの前後における乗り上げ部の高さh1及び段差h2の測定結果を、表3に示す。また、この測定結果のうちイオンビーム入射角度θとイオンビームエッチング後の乗り上げ部の高さh1との関係を、図55に示す。
【0178】
【表3】
Figure 2004253437
【0179】
各サンプル1〜5は、前述したように、前記イオンビームエッチングにより、Taからなる上部金属層28を計算上5nmエッチングされている。そして、表2、表3及び図55からわかるように、イオンビーム入射角度θを60゜以上90゜以下にすると、乗り上げ部の高さh1は5nm以下となる。したがって、イオンビーム入射角度θを60゜以上90゜以下にすると、計算上は、乗り上げ部においてTa面が完全に露出し、絶縁層の乗り上げ部、ミリング再付着物及び表面酸化膜50を完全に除去していると考えられる。
【0180】
また、表2及び表3からわかるように、イオンビーム入射角度θが60゜以上90゜以下では、前記イオンビームエッチング後の乗り上げ部の高さh1が前記イオンビームエッチング前の乗り上げ部の高さh1の60%以下、イオンビーム入射角度θが75゜以上90゜以下では30%以下、イオンビーム入射角度θが85゜以上90゜以下では10%以下となっている。したがって、Taからなる上部金属層28の同じエッチング量に対して、入射角度θが大きいほど乗り上げ部を平坦化することができ、絶縁層の乗り上げ部、ミリング再付着物及び表面酸化膜50をより多く除去できていると考えられる。
【0181】
以上の理由で、イオンビーム入射角度θを60゜以上90゜以下に設定することが好ましく、75゜以上90゜以下に設定することがより好ましく、80゜以上90゜以下に設定することがより一層好ましく、85゜以上90゜以下に設定することが更に一層好ましい。
【0182】
前述したように、表2には、各イオンビーム入射角度θ毎のTaに対するエッチングレート(実験値)及びAlに対するエッチングレート(実験値)も掲載している。本発明者は、Ta以外に上部金属層28として用いることができる他の代表的な金属材料(具体的には、Ru、Rh、Au)、及び、Al以外に絶縁層として用いることができる他の代表的な絶縁材料(具体的には、SiO)について、各イオンビーム入射角度θ毎のエッチングレートを実験により得た。その結果を、表4に示す。なお、これらのエッチングレートを得た際のイオンビームエッチングの条件は、Ta及びAlのエッチングレートを得た際の条件と同一とした。
【0183】
【表4】
Figure 2004253437
【0184】
表2及び表4に示す各材料に対するエッチングレートから、Alのエッチングレートに対するTa、Ru、Rh、Auのエッチングレートの比(エッチングレート比)をそれぞれ算出した。その算出結果を、下記の表5及び図56に示す。
【0185】
【表5】
Figure 2004253437
【0186】
また、表2及び表4に示す各材料に対するエッチングレートから、SiOのエッチングレートに対するTa、Ru、Rh、Auのエッチングレートの比(エッチングレート比)をそれぞれ算出した。その算出結果を、下記の表6及び図57に示す。
【0187】
【表6】
Figure 2004253437
【0188】
表5、表6、図56、図57に挙げた金属材料は、上部金属層(キャップ層)28として代表的なものである。表5及び図56からわかるように、Alに対するエッチングレート比は、イオンビーム入射角度θが60゜以上において、ほとんど全ての金属材料で1より小さくなる。また、表6及び図57からわかるように、SiOに対するエッチングレート比は、イオンビーム入射角度θが60゜以上において、全ての金属材料で1より小さくなる。これらのエッチングレート比が1より小さいということは、Al又はSiOが上部金属層(キャップ層)28となるべき当該金属材料に比べてエッチングされ易いことを意味し、磁気抵抗効果層の周辺部の前述した形成物が選択的に除去され易いことを意味する。
【0189】
したがって、表5、表6、図56、図57に示す結果からも、イオンビーム入射角度θを60゜以上90゜以下に設定することが好ましいことわかる。また、Al又はSiOに対するエッチングレート比が小さいほど好ましいので、表5、表6、図56、図57に示す結果からも、イオンビーム入射角度θを75゜以上90゜以下に設定することがより好ましく、80゜以上90゜以下に設定することがより一層好ましく、85゜以上90゜以下に設定することが更に一層好ましいことが、わかる。
【0190】
[サンプル6〜17]
【0191】
さらに、本発明者は、イオンビーム入射角度θを90゜に近づけた通常のイオンビームエッチング、及び、ガスクラスターイオンビームによるエッチングについて、次の実験により凸部の平坦化効果を確かめた。
【0192】
図58に示すような構造を持つサンプル6〜17を作製した。これらのサンプル6〜17は、次の工程により作製したものである。まず、シリコン基板201上に厚さ50nmのTa層202をスパッタにて成膜した。次に、電子ビームリソグラフィ(EBリソグラフィ)にて所定幅W3のレジストパターン(図示せず)を形成した。次いで、このレジストパターンをマスクとして、Ta層202をイオンミリングによりパターニングした。その後、前記レジストを剥離した後に、シリコン基板201及びTa層の上に、厚さ100nmのSiO層203を成膜した。これにより得たものをそれぞれサンプル6〜17とした。
【0193】
前記幅W3を、サンプル6,10,14では80nm、サンプル7,11,15では120nm、サンプル8,12,16では160nm、サンプル9,13,17では160nmとした。この点以外については、全てのサンプル6〜17について同一とした。
【0194】
サンプル6〜13については、図17及び図20にそれぞれ示すイオンビームエッチングに相当する通常のイオンビームエッチングを行った。
【0195】
サンプル6〜9では、前記イオンビームエッチングの条件は、使用ガスをArガス、加速電圧を500V、ビーム電流を0.32mA/cm、Arガス圧を4.1×10−4Torr、基板温度を50℃、エッチング時間を18.2分、イオンビーム入射角度(基板の法線に対する角度)θを80゜とした。このエッチング条件は、SiOに対するエッチングレートが1.1nm/minとなることを、実験により確認した。
【0196】
サンプル10〜13では、前記イオンビームエッチングの条件は、エッチング時間を23.5分、イオンビーム入射角度(基板の法線に対する角度)θを85゜とした以外、サンプル6〜9の場合と同じ条件とした。このエッチング条件は、SiOに対するエッチングレートが0.85nm/minとなることを、実験により確認した。
【0197】
サンプル6〜9の前記エッチング時間及びサンプル10〜13のエッチング時間は、SiOに対するエッチング量(エッチングレートに基づく計算値)が同じく20nmとなるように設定した。
【0198】
サンプル14〜17については、ガスクラスターイオンビームによるエッチングを行った。その条件は、サンプル14〜17について同一とし、使用ガスをArガス、加速電圧を20kV、総ドーズ量を5×1015ions/cmとし、ガスクラスターイオンビームの入射角度(基板の法線に対する角度)θを0゜とした。
【0199】
そして、各サンプル6〜17について、前記エッチングの前後において、AFMを用いてプロファイルを得ることで、図58に示す段差h3を測定した。その測定結果を、下記の表7〜表9に示す。
【0200】
【表7】
Figure 2004253437
【0201】
【表8】
Figure 2004253437
【0202】
【表9】
Figure 2004253437
【0203】
表7〜表9からわかるように、いずれのエッチングの後においても、段差h3が小さくなっており、平坦化効果が得られる。このことは、前述した第1乃至第3の実施の形態及びその変形例のように、入射角度θを大きくした通常のイオンビームエッチングを行ったりガスクラスターイオンビームによるエッチングを行ったりすることで、磁気抵抗効果層の周辺部の前述した形成物(凸部)を除去し得ることを、意味する。
【0204】
そして、表9を表7及び表8と比較することでわかるように、ガスクラスターイオンビームによるエッチングによっても、入射角度θを大きくした通常のイオンビームエッチングと同様の平坦化効果が得られる。このことから、磁気抵抗効果層の周辺部の前述した形成物を除去するために、イオンビーム入射角度θを大きくした通常のイオンビームエッチングの代わりに、ガスクラスターイオンビームによるエッチングを有効に用いることができることが、判明した。
【0205】
以上、本発明の各実施の形態及びそれらの変形例について説明したが、本発明はこれらに限定されるものではない。
【0206】
例えば、前述した第1乃至第3の実施の形態は、本発明によるパターン形成方法を磁気ヘッド製造方法における磁気抵抗効果素子製造方法に適用した例であるが、本発明によるパターン形成方法は、磁気検出器やMRAM(Magnetic random access memory)などの製造方法における磁気抵抗効果素子製造方法に適用したり、その他の種々の用途に適用することができる。
【0207】
【発明の効果】
以上説明したように、本発明によれば、リフトオフ用レジストパターンをマスクとしてドライエッチングによりパターニングした膜の周縁部等の上に残る不要な形成物を、除去又は減らすことができるパターン形成方法を提供することができる。
【0208】
また、本発明によれば、リフトオフ用レジストパターンをマスクとしてドライエッチングによりパターニングした膜の周縁部等の上に残る不要な形成物を、除去又は減らすことができ、これにより、直列抵抗成分を低減できるという利点及び/又は縦バイアスをより有効にフリー層に印加できるという利点を得ることができる磁気抵抗効果素子及び磁気ヘッドを製造することができる磁気抵抗効果素子及び磁気ヘッドの各製造方法を提供することができる。
【0209】
さらに、本発明によれば、高記録密度化を図ることができる磁気ディスク装置、及びこれに用いることができるヘッドサスペンションアセンブリを提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による磁気ヘッド製造方法により製造される磁気ヘッドを模式的に示す概略斜視図である。
【図2】図1に示す磁気ヘッドのTMR素子及び誘導型磁気変換素子の部分を模式的に示す拡大断面図である。
【図3】図2中のA−A’矢視概略図である。
【図4】図2中のTMR素子付近を更に拡大した拡大図である。
【図5】図3中のTMR素子付近を更に拡大した拡大図である。
【図6】本発明の第1の実施の形態による磁気ヘッド製造方法の一工程を模式的に示す図である。
【図7】本発明の第1の実施の形態による磁気ヘッド製造方法の他の工程を模式的に示す図である。
【図8】本発明の第1の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図9】本発明の第1の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図10】本発明の第1の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図11】本発明の第1の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図12】本発明の第1の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図13】本発明の第1の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図14】本発明の第1の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図15】本発明の第1の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図16】本発明の第1の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図17】本発明の第1の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図18】本発明の第1の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図19】本発明の第1の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図20】第1の比較例による磁気ヘッド製造方法の一工程を模式的に示す図である。
【図21】第1の比較例による磁気ヘッド製造方法の他の工程を模式的に示す図である。
【図22】第1の比較例による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図23】第1の比較例による磁気ヘッド製造方法により製造される磁気ヘッドのTMR素子の部分を模式的に示す拡大断面図である。
【図24】第1の比較例による磁気ヘッド製造方法により製造される磁気ヘッドのTMR素子の部分を模式的に示す他の拡大断面図である。
【図25】本発明の第2の実施の形態による磁気ヘッド製造方法により製造される磁気ヘッドのTMR素子及び誘導型磁気変換素子の部分を模式的に示す拡大断面図である。
【図26】図25中のTMR素子の付近を更に拡大した拡大図である。
【図27】本発明の第2の実施の形態による磁気ヘッド製造方法の一工程を模式的に示す概略断面図である。
【図28】本発明の第3の実施の形態による磁気ヘッド製造方法により製造される磁気ヘッドのGMR素子及び誘導型磁気変換素子の部分を模式的に示す拡大断面図である。
【図29】図28中のGMR素子の付近を更に拡大した拡大図である。
【図30】図29中のB−B’矢視概略図である。
【図31】本発明の第3の実施の形態による磁気ヘッド製造方法の一工程を模式的に示す図である。
【図32】本発明の第3の実施の形態による磁気ヘッド製造方法の他の工程を模式的に示す図である。
【図33】本発明の第3の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図34】本発明の第3の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図35】本発明の第3の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図36】本発明の第3の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図37】本発明の第3の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図38】本発明の第3の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図39】本発明の第3の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図40】本発明の第3の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図41】本発明の第3の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図42】本発明の第3の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図43】本発明の第3の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図44】本発明の第3の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図45】本発明の第3の実施の形態による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図46】第2の比較例による磁気ヘッド製造方法の一工程を模式的に示す図である。
【図47】第2の比較例による磁気ヘッド製造方法の他の工程を模式的に示す図である。
【図48】第2の比較例による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図49】第2の比較例による磁気ヘッド製造方法の更に他の工程を模式的に示す図である。
【図50】第2の比較例による磁気ヘッド製造方法により製造される磁気ヘッドのGMR素子の部分を模式的に示す拡大断面図である。
【図51】図50中のM−M’矢視概略図である。
【図52】図50中のN−N’矢視概略図である。
【図53】本発明の第4の実施の形態による磁気ディスク装置の要部の構成を示す概略斜視図である。
【図54】イオンビームエッチングの前後の状態の表面の高さの様子を模式的に示す図である。
【図55】イオンビーム入射角度θとイオンビームエッチング後の乗り上げ部の高さとの関係を示す図である。
【図56】イオンビーム入射角度θとAlに対する各金属のエッチングレート比との関係を示す図である。
【図57】イオンビーム入射角度θとSiOに対する各金属のエッチングレート比との関係を示す図である。
【図58】所定のサンプルの構造を模式的に示す概略断面図である。
【符号の説明】
1 スライダ
2 TMR素子
3 誘導型磁気変換素子
6 GMR素子
21 下部電極(下部磁気シールド層)
22,23 下部金属層
24 ピン層
25 ピンド層
26 トンネルバリア層
27 フリー層
28 上部金属層
29 上部金属層
30,34 絶縁層
31 上部電極(上部磁気シールド層)
32 磁区制御層
33,35 絶縁層
50 表面酸化膜
61 下部シールドギャップ層
62 上部シールドギャップ層
63 シールドギャップ層(絶縁層)
64 非磁性金属層
71,81,111,121 リフトオフ用レジストパターン
71a,81a,111a,121a アンダーカット
72,82,112,122 再付着物

Claims (17)

  1. 基体の一方の面側に成膜された1層以上からなる第1の膜上に、リフトオフ用レジストパターンを形成するリフトオフ用レジストパターン形成段階と、
    前記リフトオフ用レジストパターンをマスクとしてドライエッチングを行うことにより、前記第1の膜をパターニングするパターニング段階と、
    前記パターニング段階の後に、前記リフトオフ用レジストパターンが前記第1の膜上に存在する状態で、前記基体の前記一方の面側に、1層以上からなる第2の膜を成膜する成膜段階と、
    前記リフトオフ用レジストパターンを除去することにより、前記第2の膜の前記リフトオフ用レジストパターン上の部分を除去する除去段階と、
    前記除去段階の後に、前記基体の前記一方の面側をエッチングするエッチング段階と、を備え、
    前記エッチング段階は、実質的にクラスターを形成しないエッチング粒子を用い、前記基体の前記一方の面側に対する前記エッチング粒子の主たる入射角度を、前記基体の前記一方の面の法線方向に対して60゜以上90゜以下に設定して、ドライエッチングを行う段階を含む、ことを特徴とするパターン形成方法。
  2. 前記エッチング段階の前記ドライエッチングは、He、Ne、Ar、Kr及びXeからなる群より選ばれた1種以上からなる単体ガス又は混合ガスを用いたイオンビームエッチングであることを特徴とする請求項1記載のパターン形成方法。
  3. 基体の一方の面側に成膜された1層以上からなる第1の膜上に、リフトオフ用レジストパターンを形成するリフトオフ用レジストパターン形成段階と、
    前記リフトオフ用レジストパターンをマスクとしてドライエッチングを行うことにより、前記第1の膜をパターニングするパターニング段階と、
    前記パターニング段階の後に、前記リフトオフ用レジストパターンが前記第1の膜上に存在する状態で、前記基体の前記一方の面側に、1層以上からなる第2の膜を成膜する成膜段階と、
    前記リフトオフ用レジストパターンを除去することにより、前記第2の膜の前記リフトオフ用レジストパターン上の部分を除去する除去段階と、
    前記除去段階の後に、前記基体の前記一方の面側をエッチングするエッチング段階と、を備え、
    前記エッチング段階は、ガスクラスターイオンビームによるドライエッチングを行う段階を含む、ことを特徴とするパターン形成方法。
  4. 前記リフトオフ用レジストパターンは、アンダーカットを有する断面形状又は逆テーパ状の断面形状を持つことを特徴とする請求項1乃至3のいずれかに記載のパターン形成方法。
  5. 前記エッチング段階の前記ドライエッチングは、前記基体を前記法線と略平行な軸回りに回転させながら行うことを特徴とする請求項1乃至4のいずれかに記載のパターン形成方法。
  6. 前記第2の膜が絶縁層を含むことを特徴とする請求項1乃至5のいずれかに記載のパターン形成方法。
  7. 前記第1の膜の前記基体とは最も反対側の層が金属層であることを特徴とする請求項1乃至6のいずれかに記載のパターン形成方法。
  8. 基体の一方の面側に形成された磁気抵抗効果層を有する磁気抵抗効果素子の製造方法であって、請求項1乃至7のいずれかに記載のパターン形成方法を含み、前記第1の膜は、前記磁気抵抗効果層を構成する構成層のうちの少なくとも前記基体とは最も反対側の構成層を含むことを特徴とする磁気抵抗効果素子の製造方法。
  9. 前記第1の膜がフリー層を含み、前記第2の膜が前記フリー層の磁区を制御する磁区制御層を含むことを特徴とする請求項8記載の磁気抵抗効果素子の製造方法。
  10. 前記磁気抵抗効果素子は、前記磁気抵抗効果層の有効領域にその膜面と略々垂直な方向に電流を流すための一対の電極を有することを特徴とする請求項8又は9記載の磁気抵抗効果素子の製造方法。
  11. 前記磁気抵抗効果層は、フリー層と、該フリー層の一方の面側に形成されたトンネルバリア層又は非磁性金属層と、前記トンネルバリア層又は前記非磁性金属層の前記フリー層とは反対の側に形成されたピンド層と、前記ピンド層の前記トンネルバリア層又は前記非磁性金属層とは反対の側に形成されたピン層とを含むことを特徴とする請求項10記載の磁気抵抗効果素子の製造方法。
  12. 前記磁気抵抗効果素子は、前記磁気抵抗効果層の有効領域にその膜面と略々平行な方向に電流を流すための一対のリード層を備え、
    前記一対のリード層は、前記磁気抵抗効果層の前記基体とは反対側において前記前記磁気抵抗効果層の一部上まで延在するオーバーレイ部を有することを特徴とする請求項8又は9記載の磁気抵抗効果素子の製造方法。
  13. 基体の一方の面側に形成された磁気抵抗効果層を有する磁気抵抗効果素子を備えた磁気ヘッドの製造方法であって、請求項8乃至12のいずれかに記載の製造方法を含むことを特徴とする磁気ヘッドの製造方法。
  14. 前記パターニング段階により少なくとも前記磁気抵抗効果素子のハイト方向の一方側の端部が規定されることを特徴とする請求項13記載の磁気ヘッドの製造方法。
  15. 前記パターニング段階により少なくとも前記磁気抵抗効果素子のトラック幅方向の両側の端部が規定されることを特徴とする請求項13又は14記載の磁気ヘッドの製造方法。
  16. 請求項13乃至15のいずれかに記載の製造方法により製造された磁気ヘッドと、該磁気ヘッドが先端部付近に搭載され前記磁気ヘッドを支持するサスペンションと、を備えたことを特徴とするヘッドサスペンションアセンブリ。
  17. 請求項16記載のヘッドサスペンションアセンブリと、該アセンブリを支持するアーム部と、該アーム部を移動させて磁気ヘッドの位置決めを行うアクチュエータと、を備えたことを特徴とする磁気ディスク装置。
JP2003039400A 2003-02-18 2003-02-18 パターン形成方法、これを用いた磁気抵抗効果素子及び磁気ヘッドの製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置 Expired - Fee Related JP3895281B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003039400A JP3895281B2 (ja) 2003-02-18 2003-02-18 パターン形成方法、これを用いた磁気抵抗効果素子及び磁気ヘッドの製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置
US10/773,234 US7231705B2 (en) 2003-02-18 2004-02-09 Method for forming a resist pattern of magnetic device
US11/798,260 US7784170B2 (en) 2003-02-18 2007-05-11 Method for forming a resist pattern of magnetic device by etching with a gas cluster ion beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039400A JP3895281B2 (ja) 2003-02-18 2003-02-18 パターン形成方法、これを用いた磁気抵抗効果素子及び磁気ヘッドの製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置

Publications (2)

Publication Number Publication Date
JP2004253437A true JP2004253437A (ja) 2004-09-09
JP3895281B2 JP3895281B2 (ja) 2007-03-22

Family

ID=32844467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039400A Expired - Fee Related JP3895281B2 (ja) 2003-02-18 2003-02-18 パターン形成方法、これを用いた磁気抵抗効果素子及び磁気ヘッドの製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置

Country Status (2)

Country Link
US (2) US7231705B2 (ja)
JP (1) JP3895281B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031838A1 (ja) * 2003-09-30 2005-04-07 Japan Aviation Electronics Industry Limited 固体表面の平坦化方法及びその装置
JP2006156065A (ja) * 2004-11-29 2006-06-15 Hitachi Ltd ガスクラスターイオンビーム照射装置
US7652857B2 (en) 2005-06-08 2010-01-26 Tdk Corporation Tunneling magnetic sensing element having two-layer insulating film
US8178857B2 (en) 2005-05-20 2012-05-15 Japan Aviation Electronics Industry, Limited Method and apparatus for flattening solid surface
US8233618B2 (en) 2007-07-25 2012-07-31 Sai Chuen Hui Method and system for generating a pair of public key and secret key
WO2016031520A1 (ja) * 2014-08-26 2016-03-03 東京エレクトロン株式会社 被処理体をエッチングする方法
KR20180012872A (ko) * 2015-06-25 2018-02-06 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 이온들을 사용하여 나노스케일 패턴화 특징부들을 엔지니어링하기 위한 기술들
US11664045B1 (en) * 2022-02-22 2023-05-30 Headway Technologies, Inc. Manufacturing method for magnetoresistive element

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100440450C (zh) * 2003-09-30 2008-12-03 日本航空电子工业株式会社 固体表面平坦化方法及其装置
JP4008420B2 (ja) * 2004-02-23 2007-11-14 Tdk株式会社 磁気記録媒体の製造方法
JP2008502150A (ja) * 2004-06-03 2008-01-24 エピオン コーポレーション 改善された二重ダマシン集積構造およびその製造方法
US7514725B2 (en) * 2004-11-30 2009-04-07 Spire Corporation Nanophotovoltaic devices
US7423847B2 (en) * 2005-11-03 2008-09-09 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-the-plane spin-valve (CPP-SV) sensor with current-confining apertures concentrated near the sensing edge
US7808750B2 (en) * 2007-07-31 2010-10-05 Tdk Corporation Thin-film magnetic head comprising magneto-resistive effect device, and hard disk system
US8163185B1 (en) 2008-03-31 2012-04-24 Western Digital (Fremont), Llc Method and apparatus for lifting off photoresist beneath an overlayer
US8551347B2 (en) * 2008-12-22 2013-10-08 HGST Netherlands B.V. Methods for creating a stepped perpendicular magnetic pole via milling and/or metal liftoff
US8659855B2 (en) * 2010-03-19 2014-02-25 Seagate Technology Llc Trilayer reader with current constraint at the ABS
US8837092B2 (en) 2012-06-29 2014-09-16 Seagate Technology Llc Magnetic element with biasing structure distal the air bearing surface
US8780508B2 (en) 2012-06-29 2014-07-15 Seagate Technology Llc Magnetic element with biased side shield lamination
US8865008B2 (en) 2012-10-25 2014-10-21 Headway Technologies, Inc. Two step method to fabricate small dimension devices for magnetic recording applications
US8760821B1 (en) * 2013-02-25 2014-06-24 HGST Netherlands B.V. Higher stability read head using a read sensor with a flat back edge
CN104981892A (zh) * 2013-06-04 2015-10-14 新日铁住金株式会社 外延碳化硅晶片用碳化硅单晶基板的制造方法以及外延碳化硅晶片用碳化硅单晶基板
US8976492B1 (en) * 2013-10-29 2015-03-10 HGST Netherlands B.V. Magnetic head having two domain control layers for stabilizing magnetization of the hard bias layer
JP2019161106A (ja) * 2018-03-15 2019-09-19 東芝メモリ株式会社 半導体記憶装置の製造方法
US10520818B1 (en) 2018-09-18 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Critical dimension (CD) uniformity of photoresist island patterns using alternating phase shifting mask
CN112531102B (zh) * 2019-09-18 2023-04-07 中电海康集团有限公司 Mtj底电极及其制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491600A (en) * 1994-05-04 1996-02-13 International Business Machines Corporation Multi-layer conductor leads in a magnetoresistive head
JP3153167B2 (ja) * 1997-12-12 2001-04-03 日本電気株式会社 強磁性トンネル接合素子の製造方法
US6486068B2 (en) * 1998-01-08 2002-11-26 Toyoda Gosei Co., Ltd. Method for manufacturing group III nitride compound semiconductor laser diodes
JP2000099926A (ja) 1998-09-25 2000-04-07 Hitachi Ltd 磁気ヘッド及び磁気ディスク装置並びにその作製法
JP2001006130A (ja) * 1999-06-24 2001-01-12 Tdk Corp トンネル磁気抵抗効果型ヘッド
JP3382181B2 (ja) * 1999-07-12 2003-03-04 ティーディーケイ株式会社 トンネル磁気抵抗効果素子の特性検査方法および特性検査装置、ならびにハードディスクドライブ装置
JP3321768B2 (ja) * 1999-07-23 2002-09-09 ティーディーケイ株式会社 トンネル磁気抵抗効果素子
JP2001084535A (ja) * 1999-09-16 2001-03-30 Tdk Corp 薄膜磁気ヘッドの製造方法および磁気抵抗効果装置の製造方法
JP3371101B2 (ja) * 2000-02-02 2003-01-27 ティーディーケイ株式会社 レジストパターンおよびその形成方法、薄膜パターン形成方法ならびにマイクロデバイスの製造方法
JP2002076472A (ja) * 2000-08-31 2002-03-15 Alps Electric Co Ltd スピンバルブ型薄膜磁気素子およびこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP3590768B2 (ja) 2000-12-28 2004-11-17 株式会社東芝 垂直通電型磁気抵抗効果素子の製造方法
JP3965029B2 (ja) 2001-06-12 2007-08-22 Tdk株式会社 パターン化薄膜形成方法およびマイクロデバイスの製造方法
US6669983B2 (en) * 2001-10-25 2003-12-30 Tdk Corporation Manufacturing method of thin-film magnetic head with magnetoresistive effect element

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031838A1 (ja) * 2003-09-30 2005-04-07 Japan Aviation Electronics Industry Limited 固体表面の平坦化方法及びその装置
US8764952B2 (en) 2003-09-30 2014-07-01 Japan Aviation Electronics Industry Limited Method for smoothing a solid surface
JP4636862B2 (ja) * 2004-11-29 2011-02-23 株式会社日立製作所 ガスクラスターイオンビーム照射装置
JP2006156065A (ja) * 2004-11-29 2006-06-15 Hitachi Ltd ガスクラスターイオンビーム照射装置
US8178857B2 (en) 2005-05-20 2012-05-15 Japan Aviation Electronics Industry, Limited Method and apparatus for flattening solid surface
US7652857B2 (en) 2005-06-08 2010-01-26 Tdk Corporation Tunneling magnetic sensing element having two-layer insulating film
US8233618B2 (en) 2007-07-25 2012-07-31 Sai Chuen Hui Method and system for generating a pair of public key and secret key
WO2016031520A1 (ja) * 2014-08-26 2016-03-03 東京エレクトロン株式会社 被処理体をエッチングする方法
JP2016046470A (ja) * 2014-08-26 2016-04-04 東京エレクトロン株式会社 被処理体をエッチングする方法
KR20180012872A (ko) * 2015-06-25 2018-02-06 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 이온들을 사용하여 나노스케일 패턴화 특징부들을 엔지니어링하기 위한 기술들
US11488823B2 (en) 2015-06-25 2022-11-01 Varian Semiconductor Equipment Associates, Inc. Techniques to engineer nanoscale patterned features using ions
KR102574460B1 (ko) * 2015-06-25 2023-09-04 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 기판을 패턴화하는 방법
US11908691B2 (en) 2015-06-25 2024-02-20 Applied Materials, Inc. Techniques to engineer nanoscale patterned features using ions
US11664045B1 (en) * 2022-02-22 2023-05-30 Headway Technologies, Inc. Manufacturing method for magnetoresistive element

Also Published As

Publication number Publication date
JP3895281B2 (ja) 2007-03-22
US20040160700A1 (en) 2004-08-19
US7784170B2 (en) 2010-08-31
US20070215573A1 (en) 2007-09-20
US7231705B2 (en) 2007-06-19

Similar Documents

Publication Publication Date Title
JP3895281B2 (ja) パターン形成方法、これを用いた磁気抵抗効果素子及び磁気ヘッドの製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置
JP3673796B2 (ja) 磁気抵抗効果素子の製造方法、磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置
US6847509B2 (en) Magnetoresistive head and perpendicular magnetic recording-reproducing apparatus
US7525775B2 (en) Oblique angle etched underlayers for improved exchange biased structures in a magnetoresitive sensor
US6591481B2 (en) Method of manufacturing magnetoresistive device and method of manufacturing thin-film magnetic head
JP2005032780A (ja) 磁気抵抗効果素子、これを用いた磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置
JP2005235371A (ja) リード線機構の安定を強化した自動ピン止め型読取りセンサ
JP2012059345A (ja) 絶縁構造を改良した平面垂直通電型(cpp)磁気抵抗(mr)センサ
JP3699716B2 (ja) 磁気ヘッド及びその製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置
JP3795841B2 (ja) 磁気抵抗効果素子、磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置
US7082673B2 (en) Method of manufacturing magnetoresistive device capable of preventing a sense current from flowing into dead regions of a magnetoresistive element, and method of manufacturing thin-film magnetic head
US20120320473A1 (en) Magnetic sensor having a hard bias seed structure
JP2001006126A (ja) 磁気抵抗効果ヘッド及びそのヘッドを備えた磁気抵抗検出システム並びにそのヘッドを備えた磁気記憶システム
JP3971140B2 (ja) 磁気抵抗効果素子並びにこれを用いた磁気ヘッド及びヘッドサスペンションアセンブリ
JP2001052316A (ja) 磁気抵抗効果ヘッド、その製造方法、及びそれを用いた磁気記録装置
JP2004199812A (ja) 薄膜磁気ヘッド及びその製造方法
JP3936312B2 (ja) 磁気抵抗効果素子の製造方法、並びに、磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置
US20060209471A1 (en) Magnetoresistive element and method of manufacturing the same
US7215516B2 (en) Magnetoresistive head having magnetoresistive film including free layer and pinned layer arranged in head height direction
JP3818596B2 (ja) 磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置
JP3588093B2 (ja) 磁気抵抗効果素子、これを用いた磁気ヘッド、並びにヘッドサスペンションアセンブリ
JP4077466B2 (ja) 磁気ヘッドの製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置
JP2001043512A (ja) 磁気抵抗効果素子、磁気抵抗効果ヘッド及び磁気抵抗検出システム並びに磁気記憶システム
JP4112442B2 (ja) 磁気ヘッド、並びに、これを用いたヘッドサスペンションアセンブリ及び磁気ディスク装置
JP2003198005A (ja) 磁気抵抗効果素子、これを用いた磁気ヘッド及びその製造方法、並びにヘッドサスペンションアセンブリ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees