JP2004233543A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2004233543A
JP2004233543A JP2003020682A JP2003020682A JP2004233543A JP 2004233543 A JP2004233543 A JP 2004233543A JP 2003020682 A JP2003020682 A JP 2003020682A JP 2003020682 A JP2003020682 A JP 2003020682A JP 2004233543 A JP2004233543 A JP 2004233543A
Authority
JP
Japan
Prior art keywords
temperature
control
detected
ratio
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003020682A
Other languages
English (en)
Inventor
Junichi Shirai
潤一 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2003020682A priority Critical patent/JP2004233543A/ja
Publication of JP2004233543A publication Critical patent/JP2004233543A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

【課題】演算量の増大を抑制しつつ、定着装置の温度を制御するときの温度リップルの発生を抑制することができる画像形成装置を提供する。
【解決手段】ヒータ363により加熱される熱ローラ362の温度を検出する温度センサ366と、ヒータ363への電力をオンオフするトライアック364と、所定の制御間隔毎の制御タイミングで検出温度に応じて熱ローラ362の温度を所定の目標温度にさせるべくトライアック364のオンオフ比率を設定するCPU8とを備える。またCPU8は、現在の検出温度とその直前の制御タイミングで検出された検出温度との差分をその間の制御間隔で除した平均変化率を用いて次回の制御タイミングでの熱ローラ362の予測温度を算出する。さらにCPU8は、予測温度が目標温度を越えるときは、平均変化率を減少させるべくオンオフ比率を変更する。
【選択図】図3

Description

【0001】
【発明の属する技術分野】
本発明は、記録紙に形成されたトナー像を加熱溶融して定着させる定着装置を備えた画像形成装置に係わり、特にその定着装置の温度制御に関する。
【0002】
【従来の技術】
従来、記録紙に形成されたトナー像を加熱溶融することにより、画像を定着させる定着装置を用いたプリンタ、複写機、ファクシミリ等の画像形成装置が知られている。このような定着装置を用いた画像形成装置では、定着装置の温度を画像形成に適した設定温度にするため、例えば定着装置の温度が設定温度よりも低い場合には定着装置に設けられたヒータへの電力供給をオンさせ、定着装置の温度が設定温度よりも高い場合はそのヒータへの電力供給をオフさせるオンオフ制御による温度制御が行われている。
【0003】
しかし、上記のようなオンオフ制御による温度制御では、設定温度に対するオーバーシュートやアンダーシュートによる温度リップルが発生するため精度の高い温度制御が困難である。そこで、一定の周期毎に定着装置の温度と目標となる設定温度との間の温度差を検出し、この温度差に応じてヒータに供給する電力量を算出すると共に、算出した電力量に応じた電力供給のオンオフパターンでヒータへの電力供給を行うことにより、温度リップルを抑制する温度制御方法が知られている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2002−31985号公報
【0005】
【発明が解決しようとする課題】
しかし、上記のような、定着装置の温度と設定温度との間の温度差からヒータに供給する電力量を算出する温度制御方法を用いた画像形成装置では、定着装置の温度を検出する温度センサの時定数、その他の定着装置の熱容量等の温度制御に影響を与える要素を補正するための補正率等の温度特性データを用いてヒータに電力を供給してから定着装置の温度が変化するまでの応答遅れ時間を補正したり、所定温度上昇させるために必要な電力量を示すゲインを用いて定着装置を設定温度にするための電力量を算出したりする演算処理が必要となるため、温度制御を行うための演算量が大きくなるという不都合がある。
【0006】
本発明は上記事情に鑑みてなされたもので、演算量の増大を抑制しつつ、定着装置の温度を制御するときの温度リップルの発生を抑制することができる画像形成装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、記録紙に形成されたトナー像を加熱溶融して定着させる定着手段と、前記定着手段を加熱する加熱手段と、前記定着手段の温度を検出する検出手段と、前記加熱手段へ供給される電力をオンオフするスイッチング手段と、所定の制御間隔毎の制御タイミングで、前記検出手段により検出された検出温度に応じて前記定着手段の温度を所定の目標温度にさせるべく前記スイッチング手段のオンオフ比率を設定する温度制御手段とを備えた画像形成装置であって、現在の検出温度と、直前の制御タイミングで検出された検出温度との差分をその間の制御間隔で除した平均変化率を算出すると共に、その平均変化率を用いて次回の制御タイミングにおける前記定着手段の温度となる予測温度を算出する予測手段を備え、前記温度制御手段は、前記予測温度が、前記目標温度を越える場合、前記オンオフ比率を変更することを特徴としている。
【0008】
請求項1に記載の発明によれば、検出手段により検出された定着手段の検出温度と、その直前の制御タイミングで検出された検出温度との差分をその間の制御間隔で除した平均変化率が算出され、その算出された平均変化率から次回の制御タイミングでの定着手段の温度が予測される。そして、その予測温度が目標温度を越える場合、すなわち定着手段の温度が次回の制御タイミングより前に目標温度に到達することが予測されるときに、その温度の平均変化率を減少すべくスイッチング手段のオンオフ比率が変更される。
【0009】
請求項2に記載の発明は、請求項1記載の画像形成装置において、前記温度制御手段は、前記予測温度が、前記目標温度を越える場合、前記制御間隔を短縮することを特徴としている。
【0010】
請求項2に記載の発明によれば、定着装置の温度が次回の制御タイミングより前に目標温度に到達することが予測されるときに制御間隔がより短い時間に設定される。
【0011】
請求項3に記載の発明は、請求項1又は2記載の画像形成装置において、前記温度制御手段は、前記検出温度が前記目標温度より低い温度であって前記予測温度が前記目標温度を越える場合、前記オンオフ比率のオン比率を減少することにより前記平均変化率を減少させ、さらに前記検出温度が前記目標温度より低い温度から前記目標温度を越えた場合、前記スイッチング手段をオフさせることを特徴としている。
【0012】
請求項3に記載の発明によれば、定着手段の温度を目標温度にするべく温度を上昇させるときに、予測温度が目標温度を越える場合、スイッチング手段のオン比率が減少されることにより温度の平均変化率が減少され、さらに検出温度が目標温度より低い温度から目標温度を越えたとき、スイッチング手段がオフされる。
【0013】
請求項4に記載の発明は、請求項1〜3のいずれかに記載の画像形成装置において、前記温度制御手段は、前記検出温度が前記目標温度より高い温度であり、且つ前記スイッチング手段がオフされているときに、前記予測温度が前記目標温度を下回る場合、前記スイッチング手段を所定のオンオフ比率でオンオフさせて前記電力の供給を開始させ、さらに前記検出温度が前記目標温度を下回り、且つ前記平均変化率が前記検出温度の下降を示す場合には、前記オンオフ比率のオン比率を増加させることを特徴としている。
【0014】
請求項4に記載の発明によれば、スイッチング手段がオフにされ、定着手段の温度が目標温度にするべく下降するときに、定着手段の温度が次回の制御タイミングより前に目標温度に到達することが予測されるときは、所定のオンオフ比率でスイッチング手段をオンオフさせて電力の供給を開始させ、さらに、検出温度が目標温度を下回った後、温度の平均変化率が検出温度の下降を示す場合には、スイッチング手段のオン比率が増加される。この場合、検出温度が目標温度に近くなると平均変化率が減少する。
【0015】
請求項5に記載の発明は、請求項1〜4のいずれかに記載の画像形成装置において、前記電力は交流電圧により供給され、前記温度制御手段は、前記交流電圧の半サイクルを単位とする単位サイクル毎に前記スイッチング手段をオンオフし、オン状態の単位サイクル数とオフ状態の単位サイクル数とを組み合わせる比率によって、前記オンオフ比率を設定することを特徴としている。
【0016】
請求項5に記載の発明によれば、交流電圧の半サイクル単位でスイッチング手段がオンオフされ、オン状態の単位サイクル数とオフ状態の単位サイクル数とを組み合わせる比率によって、前記オンオフ比率が設定される。
【0017】
【発明の実施の形態】
図1は、本発明の一実施形態に係る画像形成装置の一例であるプリンタ1の内部構成を概略的に示す断面図である。また、図2は、図1に示すプリンタ1の概略構成を説明するためのブロック図である。
【0018】
プリンタ1は、それぞれサイズが異なる記録紙を収納する複数の給紙カセット2と、給紙カセット2から搬送されてきた記録紙に画像を形成する画像形成部3と、画像形成部3により画像形成された記録紙が排出される排出トレイ4と、記録紙を搬送する用紙搬送機構5とを備える。
【0019】
また、図2を参照してプリンタ1は、ケーブル等によりデータ送受信可能に接続されたPC(Personal Computer)9との間で印刷データ及びプリンタ制御コマンド等の送受信を行うための通信I/F7と、液晶表示器及びキースイッチ等からなりユーザからの操作指示を受け付けるための操作部6と、通信I/F7を介して受信した印刷データ及びプリンタ制御コマンド等に応じて画像形成部3及び用紙搬送機構5等の各部の動作を制御するための制御信号を出力して画像形成動作を行わせるCPU(Central Processing Unit)8を主要部とする制御部10とを備える。
【0020】
図1に戻って用紙搬送機構5は、給紙カセット2から記録紙を1枚ずつ繰り出して画像形成部3へ搬送する給紙ローラ51、画像形成部3内へ用紙を搬送する搬送ローラ52、及び画像形成部3から搬送されてきた記録紙を排出トレイ4へ排出する排出ローラ53等を備える。
【0021】
画像形成部3は、CPU8から出力された画像データを用いて記録紙に画像を形成するもので、例えば、表面が感光体で構成されたドラム形状の感光体ドラム31と、感光体ドラム31の表面を帯電させる帯電部32と、CPU8からの画像データに基づきレーザー光を出力して感光体ドラム31を露光する露光部33と、感光体ドラム31上にトナー像を形成する現像部34と、感光体ドラム31上のトナー像を記録紙に転写する転写部35と、トナー像が転写された記録紙を加熱してトナー像を記録紙に定着させる定着部36とを備える。
【0022】
定着部36は、記録紙上に形成されたトナー像を溶融するための熱ローラ362と、この熱ローラ362との間で記録紙を圧接しつつ搬送する圧ローラ361とを備える。また、熱ローラ362の内部には、熱ローラ362を加熱する加熱手段であるヒータ363が設けられ、CPU8からの制御信号に応じてヒータ363に供給される電力がオンオフされる。
【0023】
図2を参照して制御部10は、装置全体の動作を司るもので、CPU8、プリンタ1の制御プログラム等を記憶するROM(Read Only Memory)、及びデータを記憶するRAM(Random Access Memory)等を備え、CPU8が制御プログラムをROMから読み出して実行することにより予測手段、及び温度制御手段として機能する。また、CPU8は、通信I/F7を介してPC9からプリンタ制御コマンド及び印刷データを受信し、その印刷データに基づく画像データを生成し、その画像データに基づきプリンタ1の各部に制御信号を出力し、プリンタ1に所定の画像形成動作をさせる。
【0024】
図3は、CPU8による熱ローラ362の温度制御を行うための構成を説明する概略ブロック図である。図3に示すプリンタ1は、電源接続端子11,12を備える。そして、電源接続端子11,12間に交流電源13が接続される。また、電源接続端子11,12間に直列にスイッチング手段であるトライアック364とヒータ363とが接続され、トライアック364のゲートがフォトトライアックカプラ365を介してCPU8に接続されている。これにより、トライアック364とCPU8との間が絶縁されると共にCPU8からの制御信号に応じてトライアック364がオンオフされ、ヒータ363への電力供給がオンオフされる。
【0025】
また、交流電圧が0Vと交差するゼロクロスタイミングを検出するゼロクロス検出回路14が電源接続端子11,12間に接続され、ゼロクロス検出回路14で検出されたゼロクロスタイミングを示すゼロクロス信号が、ゼロクロス検出回路14からCPU8へ出力される。
【0026】
また、熱ローラ362の温度を検出し、その温度に応じた信号を出力する例えばサーミスタ等からなる検出手段である温度センサ366が、熱ローラ362の近傍に設けられている。そして、温度センサ366からの出力電圧は、アンプ367を介してA/Dコンバータ368へ出力され、さらにA/Dコンバータ368によってアナログデジタル変換された後に、CPU8へ出力される。これにより、熱ローラ362の温度が検出温度TとしてCPU8によって取得可能にされている。
【0027】
また、CPU8は、画像形成動作時に、熱ローラ362の温度を画像形成に適した目標温度Tにするべく、ゼロクロス信号を受信したタイミングと同期させてトライアック364をオンオフさせ、ヒータ363への電力供給をオンオフさせることにより、熱ローラ362を加熱する熱量を調整する。この場合、目標温度Tは、例えば予めROMに記憶されていてもよく、ユーザにより操作部6を用いて設定された記録紙の種類、例えば厚紙、薄紙、OHP(Over Head Projector)用フィルム等の種類毎に画像形成に適した温度を目標温度Tとして設定してもよく、あるいは画像データを記録紙に印字したときの記録紙の面積に対する印字部分の積算面積である印字率等に応じて目標温度Tを設定する構成としてもよい。また、CPU8がトライアック364をオンさせる制御信号の出力タイミングがゼロクロス信号と同期されるので、トライアック364への電圧ストレスを軽減しつつトライアック364をオンさせることができる。
【0028】
また、CPU8は、例えばCPU8により制御間隔を示す時間が設定されることによりダウンカウントを開始し、設定された時間間隔毎にタイムアップ信号をCPU8へ出力するタイマ81を備える。そして、CPU8は、タイマ81からのタイムアップ信号を受信したとき、A/Dコンバータ368から取得した検出温度Tと、その前のタイムアップ信号受信時に取得した検出温度Tとから熱ローラ362の温度の平均変化率を算出する。そして、CPU8は、その平均変化率を用いて次の制御タイミングでの熱ローラ362の予測温度を算出する。
【0029】
さらに、CPU8は、その予測温度が検出温度Tから見て目標温度Tを越えた温度であったときは、平均変化率をより小さくすべくトライアック364のオンオフ比率を変更すると共に、タイマ81に設定された制御間隔をより短い時間に変更する。この場合、CPU8は、タイマ81の設定値として交流電圧の半波長、例えば交流電圧が50Hzである場合には、10msec(50Hzの半波長)を制御単位として、この制御単位の整数倍の時間を制御間隔としてタイマ81に設定する。また、CPU8は、ゼロクロス信号を受信したタイミングと同期してタイマ81に制御間隔を設定し、タイマ81のダウンカウントを開始させる。これにより、タイマ81からのタイムアップ信号の出力タイミングと、ゼロクロス検出回路14からのゼロクロス信号の出力タイミングが同期する。
【0030】
なお、CPU8は、タイマ81を備えず、ゼロクロス検出回路14から出力されたゼロクロス信号の回数をカウントするダウンカウンタを備え、交流波形の半サイクルを制御単位として制御間隔に対応する制御単位数をカウンタに設定することにより、制御間隔を設定する構成としてもよい。
【0031】
次に、図1に示すプリンタ1による熱ローラ362の温度制御動作を説明する。図4、図6は、図1に示すプリンタ1の温度制御動作を説明するためのフローチャートである。また、図5は、図4に示すプリンタ1の温度制御動作に対応する熱ローラ362の温度と、ヒータ363に印加される交流電圧のオンオフ状態とを説明するための図である。また、図7は、図6に示すプリンタ1の温度制御動作に対応する熱ローラ362の温度と、ヒータ363に印加される交流電圧のオンオフ状態とを説明するための図である。図5、図7において、横軸は時間を示し、波形16は熱ローラ362の温度を示すグラフで、縦軸が温度を示す。また、波形17は交流電源13から出力される交流電圧波形を示し、斜線部がトライアック364のオン状態を、斜線がない部分がトライアック364のオフ状態を示す。
【0032】
まず、図4のステップS101において、温度センサ366により検出された熱ローラ362の温度データがアンプ367及びA/Dコンバータ368を介してCPU8へ出力され、CPU8によって検出温度Tが取得される。そして、CPU8により検出温度Tと目標温度Tとが比較された結果、T<Tのときは、熱ローラ362の温度を上昇させるべくステップS102へ移行する一方、T≧Tのときは、熱ローラ362の温度を下降させるべく図6のステップS201へ移行する。例えば、図5に示すtの制御タイミングでは、CPU8により制御タイミングtでの熱ローラ362の温度、すなわち温度Tが検出温度Tとして取得され、この検出温度TがRAMに記憶される。この場合、T<Tであるので、ステップS102へ移行する。
【0033】
次に、ステップS102において、CPU8により、トライアック364のオンオフ比率がオン比率を大きくするように変更される。例えば、制御タイミングtで、トライアック364のオンオフ比率が常時オフ(オン比率0)から常時オン(オン比率1)に変更される。これにより、図5に示す制御タイミングtから波形17が常時オン状態のパターン▲1▼にされると共に、波形16で示す熱ローラ362の温度が上昇する。また、CPU8により、例えば8制御単位に相当する80msecが、制御間隔tcyc1としてタイマ81へ設定される。
【0034】
次に、ステップS103において、CPU8によりタイマ81からのタイムアップ信号が受け付けられたとき、すなわち制御タイミングtから制御間隔tcyc1が経過した制御タイミングtで、CPU8により温度Tが検出温度Tとして取得される。
【0035】
次に、ステップS104において、CPU8によりRAMに記憶されている一つ前の制御タイミングtで取得された検出温度T、すなわち温度Tと、制御タイミングtでの温度Tとから、制御タイミングtから制御タイミングtまでの間の検出温度Tの平均変化率Kが算出され、K>0のときはステップS105へ移行する一方、K≦0のときは、トライアック364をオンさせているにも関わらず検出温度Tが上昇しないことを示しているので、ヒータ363や温度センサ366等に故障が生じていると判断され、ヒータエラーとしてステップS106へ移行し、プリンタ1の動作が終了する。
【0036】
この場合、平均変化率Kは、具体的には、現在の制御タイミングtでの検出温度Tを温度T、一つ前の制御タイミングtn−1での検出温度Tを温度Tn−1、制御タイミングtn−1から制御タイミングtまでの制御間隔をtcyc、温度Tn−1と温度Tとの差分をΔTとすると、
Figure 2004233543
として算出される。例えば、制御タイミングtにおいては、K=(T−T)/tcyc1 として算出され、K>0となるので、ステップS105へ移行する。
【0037】
次に、ステップS105において、CPU8により制御間隔tcyc後の予測温度TFn+1が算出され、予測温度TFn+1と目標温度Tとが比較された結果、TFn+1<Tのときはパターン▲1▼での温度制御を継続すべく再びステップS101へ移行する一方、TFn+1≧Tのときは、平均変化率Kをより小さくすると共に制御間隔tcycをより短い時間に変更して温度制御を行うべくステップS107へ移行する。
【0038】
この場合、予測温度TFn+1は、例えば、
Fn+1=T+K×tcyc ・・・(2)
として算出される。例えば、制御タイミングtにおいては、TFn+1=TF3=T+K×tcyc1<Tであるので、ステップS101へ移行してパターン▲1▼での温度制御が継続される。そして、次の制御タイミングtで、CPU8によりステップS103〜S105と同様の処理が実行され、TFn+1=TF4=T+K×tcyc1≧Tとなり、ステップS107へ移行する。
【0039】
次に、ステップS107において、CPU8により、制御間隔tcyc1より短い例えば5制御単位に相当する50msecが、制御間隔tcyc2としてタイマ81へ設定される。
次に、ステップS108において、CPU8によって検出温度Tが取得される。そして、CPU8により検出温度Tと目標温度Tとが比較された結果、T<Tのときは、平均変化率Kをより小さくして熱ローラ362の温度を上昇させるべくステップS109へ移行する一方、T≧Tのときは、熱ローラ362の温度を下降させるべく図6のステップS201へ移行する。例えば、制御タイミングtでは、CPU8により温度Tが検出温度Tとして取得され、この検出温度TがRAMに記憶される。この場合、T<Tであるので、ステップS109へ移行する。
【0040】
次に、ステップS109において、CPU8によりトライアック364のオンオフ比率が、制御タイミングtで、常時オン状態のパターン▲1▼(オン比率1)から、例えば、5制御単位のうち3制御単位をオンするパターン▲2▼(オン比率3/5)へとオン比率が小さくなるように変更される。これにより、平均変化率Kがより小さくされる。
【0041】
次に、ステップS110において、CPU8によりタイマ81からのタイムアップ信号が受け付けられたとき、すなわち制御タイミングtから制御間隔tcyc2が経過した制御タイミングtで、CPU8により温度Tが検出温度Tとして取得される。
【0042】
次に、ステップS111において、CPU8によりRAMに記憶されている一つ前の制御タイミングtで取得された検出温度T、すなわち温度Tと、制御タイミングtでの温度Tとから、制御タイミングtから制御タイミングtまでの間の検出温度Tの平均変化率Kが、式(1)を用いて算出され、K>0のときはステップS112へ移行する一方、K≦0のときは、検出温度Tが下降していることを示しているので、検出温度Tを上昇させるべく再びステップS102へ移行する。例えば、制御タイミングtにおいては、K=(T−T)/tcyc2として算出され、K>0となるので、ステップS112へ移行する。
【0043】
次に、ステップS112において、CPU8により制御間隔tcyc後の予測温度TFn+1が、式(2)を用いて算出され、予測温度TFn+1と目標温度Tとが比較された結果、TFn+1<Tのときはパターン▲2▼での温度制御を継続すべく再びステップS108へ移行する一方、TFn+1≧Tのときは、平均変化率Kをより小さくすると共に制御間隔tcycをより短い時間に変更して温度制御を行うべくステップS113へ移行する。例えば、制御タイミングtにおいては、TFn+1=TF5=T+K×tcyc2<TであるのでステップS108へ移行してパターン▲2▼での温度制御が継続される。そして、次の制御タイミングtで、CPU8によりステップS110〜S112と同様の処理が実行され、TFn+1=TF6=T+K×tcyc2≧Tとなり、ステップS113へ移行する。
【0044】
次に、ステップS113において、CPU8により、制御間隔tcyc2より短い例えば3制御単位に相当する30msecが、制御間隔tcyc3としてタイマ81へ設定される。
【0045】
次に、ステップS114において、CPU8によって検出温度Tが取得される。そして、CPU8により検出温度Tと目標温度Tとが比較された結果、T<Tのときは、より小さい平均変化率Kで熱ローラ362の温度を上昇させるべくステップS115へ移行する一方、T≧Tのときは、熱ローラ362の温度を下降させるべく図6のステップS201へ移行する。例えば、制御タイミングtでは、CPU8により温度Tが検出温度Tとして取得され、この検出温度TがRAMに記憶される。この場合、T<Tであるので、ステップS115へ移行する。
【0046】
次に、ステップS115において、CPU8によりトライアック364のオンオフ比率が、オン比率3/5のパターン▲2▼から、例えば、3制御単位のうち1制御単位をオンするパターン▲3▼(オン比率1/3)へとオン比率が小さくなるように変更される。これにより、平均変化率Kがより小さくされる。
【0047】
次に、ステップS116において、CPU8によりタイマ81からのタイムアップ信号が受け付けられたとき、すなわち制御タイミングtから制御間隔tcyc3が経過した制御タイミングtで、CPU8により温度Tが検出温度Tとして取得される。
【0048】
次に、ステップS117において、CPU8によりRAMに記憶されている一つ前の制御タイミングtで取得された検出温度T、すなわち温度Tと、制御タイミングtでの温度Tとから、制御タイミングtから制御タイミングtまでの間の検出温度Tの平均変化率Kが、式(1)を用いて算出され、K>0のときはパターン▲3▼での温度制御を継続すべく再びステップS114へ移行する一方、K≦0のときは、検出温度Tが上昇していないことを示しているので、検出温度Tを上昇させるべく再びステップS109へ移行する。
【0049】
例えば、制御タイミングtにおいては、K=(T−T)/tcyc3 として算出され、K>0となるので、再びステップS114へ移行し、検出温度Tが目標温度Tに達してT≧TとなるまでステップS114〜S117の処理が繰り返される。なお、ステップS117の後、さらにステップS112と同様の処理により制御間隔tcyc後の予測温度TFn+1を算出し、TFn+1≧Tのときは、ステップS113〜S117と同様の処理により平均変化率Kをより小さくすると共に制御間隔tcycをより短い時間に変更して温度制御を行う構成としてもよい。
【0050】
そして、ステップS114において、制御タイミングtでCPU8により検出温度Tと目標温度Tとが比較された結果、T≧Tとなり、熱ローラ362の温度を下降させるべく図6のステップS201へ移行する。
【0051】
以上、ステップS101〜S117の温度上昇処理により、制御間隔tcyc後の予測温度TFn+1を算出し、予測温度TFn+1が目標温度T以上になるときは、制御間隔tcycをより短い時間に変更すると共に、トライアック364のオン比率をより小さくすることにより平均変化率Kをより小さくするので、検出温度Tが目標温度Tに近くなると平均変化率Kがより小さくされると共にきめ細かく温度が制御される結果、温度のオーバーシュートを抑制できる。
【0052】
また、式(1)及び式(2)により制御間隔tcyc後の予測温度TFn+1を算出するので、少ない演算量で温度のオーバーシュートを抑制可能な温度制御を実行することができる。
【0053】
図6を参照して、ステップS201において、CPU8によりトライアック364は常時オフ状態にされる。また、CPU8により、例えば8制御単位に相当する80msecが、制御間隔tcyc1としてタイマ81へ設定される。
【0054】
次に、ステップS202において、図7で示す制御タイミングt12でCPU8によりタイマ81からのタイムアップ信号が受け付けられたとき、CPU8により温度T12が検出温度Tとして取得される。
【0055】
次に、ステップS203において、CPU8によりRAMに記憶されている一つ前の制御タイミングt11で取得された検出温度T、すなわち温度T11と、制御タイミングt12での温度T12とから、制御タイミングt11から制御タイミングt12までの間の検出温度Tの平均変化率Kが式(1)を用いて算出され、K<0のときはステップS204へ移行する一方、K≧0のときは、検出温度Tが下降していないことを示しているので、熱ローラ362の温度を下降させるべく再びステップS201〜S203の処理を繰り返してトライアック364の常時オフ状態を継続する。例えば、制御タイミングt12においては、検出温度Tが下降し、K<0であるので、ステップS204へ移行する。
【0056】
次に、ステップS204において、CPU8により制御間隔tcyc後の予測温度TFn+1が式(2)を用いて算出され、予測温度TFn+1と目標温度Tとが比較された結果、TFn+1≧Tのときはトライアック364の常時オフ状態を継続すべく再びステップS201へ移行する一方、TFn+1<Tのときは、平均変化率Kをより小さくすると共に制御間隔tcycをより短い時間に変更して温度制御を行うべくステップS205へ移行する。例えば、制御タイミングt12においては、TFn+1=TF13=T12+K×tcyc1<Tであるので、ステップS205へ移行する。
【0057】
次に、ステップS205において、CPU8により、例えば3制御単位に相当する30msecが、制御間隔tcyc3としてタイマ81へ設定される。
【0058】
次に、ステップS206において、CPU8によって検出温度Tが取得される。そして、CPU8により検出温度Tと目標温度Tとが比較された結果、T≧Tのときは、より小さい平均変化率Kで熱ローラ362の温度を下降させるべくステップS207へ移行する一方、T<Tのときは、熱ローラ362の温度を上昇させるべく図4のステップS101へ移行する。例えば、制御タイミングt12では、CPU8により温度T12が検出温度Tとして取得され、この検出温度TがRAMに記憶される。この場合、T≧Tであるので、ステップS207へ移行する。
【0059】
次に、ステップS207において、CPU8によりトライアック364のオンオフ比率が、常時オフ状態(オン比率0)から、例えば、3制御単位のうち1制御単位をオンするパターン▲3▼(オン比率1/3)へとオン比率が大きくなるように変更される。これにより、平均変化率Kがより小さくされる。
【0060】
次に、ステップS208において、CPU8によりタイマ81からのタイムアップ信号が受け付けられたとき、すなわち制御タイミングt12から制御間隔tcyc3が経過した制御タイミングt13で、CPU8により温度T13が検出温度Tとして取得される。
【0061】
次に、ステップS209において、CPU8によりRAMに記憶されている一つ前の制御タイミングt12で取得された検出温度T、すなわち温度T12と、制御タイミングt13での温度T13とから、制御タイミングt12から制御タイミングt13までの間の検出温度Tの平均変化率Kが、式(1)を用いて算出され、K<0のときはステップS210へ移行する一方、K≧0のときは、検出温度Tが上昇していることを示しているので、検出温度Tを下降させるべく再びステップS201へ移行する。例えば、制御タイミングt13においては、K=(T13−T12)/tcyc3 として算出され、K<0となるので、ステップS210へ移行する。
【0062】
次に、ステップS210において、CPU8により制御間隔tcyc後の予測温度TFn+1が、式(2)を用いて算出され、予測温度TFn+1と目標温度Tとが比較された結果、TFn+1≧Tのときはパターン▲3▼での温度制御を継続すべく再びステップS206へ移行する一方、TFn+1<Tのときは、平均変化率Kをより小さくすると共に制御間隔tcycをより短い時間に変更して温度制御を行うべくステップS211へ移行する。例えば、制御タイミングt13においては、TFn+1=TF14=T13+K×tcyc3≧TであるのでステップS206へ移行してパターン▲3▼での温度制御が継続される。そして、次の制御タイミングt14で、CPU8によりステップS207〜S210と同様の処理が実行され、TFn+1=TF15=T14+K×tcyc3<Tとなり、ステップS211へ移行する。
【0063】
次に、ステップS211において、CPU8により、制御間隔tcyc3より長い例えば5制御単位に相当する50msecが、制御間隔tcyc2としてタイマ81へ設定される。
【0064】
次に、ステップS212において、CPU8によって検出温度Tが取得される。そして、CPU8により検出温度Tと目標温度Tとが比較された結果、T≧Tのときは、より小さい平均変化率Kで熱ローラ362の温度を下降させるべくステップS213へ移行する一方、T<Tのときは、熱ローラ362の温度を上昇させるべく図4のステップS101へ移行する。
【0065】
なお、ステップS212からステップS101へ移行する場合において、熱ローラ362の温度をより小さい平均変化率Kで上昇を開始させるために、次のステップS102で、トライアック364のオンオフ比率を常時オン状態のパターン▲1▼よりも低いオン比率に設定したり、タイマ81へ設定する制御間隔をtcyc1よりも短い時間に設定したりする構成としてもよい。
【0066】
次に、ステップS213において、CPU8によりトライアック364のオンオフ比率が、オン比率1/3のパターン▲3▼から、例えば、5制御単位のうち2制御単位をオンするパターン▲4▼(オン比率2/5)へとオン比率を大きくするように変更される。これにより、平均変化率Kがより小さくされる。
【0067】
次に、ステップS214において、CPU8によりタイマ81からのタイムアップ信号が受け付けられたとき、すなわち制御タイミングt14から制御間隔tcyc2が経過した制御タイミングt15で、CPU8により温度T15が検出温度Tとして取得される。
【0068】
次に、ステップS215において、CPU8によりRAMに記憶されている一つ前の制御タイミングt14で取得された検出温度T、すなわち温度T14と、制御タイミングt15での温度T15とから、制御タイミングt14から制御タイミングt15までの間の検出温度Tの平均変化率Kが、式(1)を用いて算出され、K<0のときはパターン▲4▼での温度制御を継続すべく再びステップS212へ移行する一方、K≧0のときは、検出温度Tが下降していないことを示しているので、検出温度Tを下降させるべく再びステップS201へ移行する。
【0069】
例えば、制御タイミングt15においては、K=(T15−T14)/tcyc2 として算出され、K<0となるので再びステップS212へ移行する。そして、ステップS212において検出温度Tが目標温度Tよりも低い温度T15となるので、T<Tの関係が成立し、検出温度Tを上昇させるべく図4のステップS101へ移行する。
【0070】
以上、ステップS201〜S215の温度下降処理により、制御間隔tcyc後の予測温度TFn+1を算出し、予測温度TFn+1が目標温度T未満になるときは、制御間隔tcycをより短い時間に変更すると共に、トライアック364のオン比率をより小さくすることにより平均変化率Kをより小さくするので、検出温度Tが目標温度Tに近くなると平均変化率Kがより小さくされると共にきめ細かく温度が制御される結果、温度のアンダーシュートを抑制できる。
【0071】
また、式(1)及び式(2)により制御間隔tcyc後の予測温度TFn+1を算出するので、少ない演算量で温度のアンダーシュートを抑制可能な温度制御を実行することができる。
【0072】
さらに、制御タイミングt15以降、ステップS101〜S117の温度上昇制御と、ステップS201〜S215の温度下降制御を繰り返すことにより、熱ローラ362の温度を温度リップルが抑制された状態で目標温度Tに設定することができる。
【0073】
なお、制御タイミングt15以降、温度を下降から上昇へ滑らかに変化させるため、例えば制御制御タイミングt15以前のトライアック364のオン比率と制御間隔tcycとを急激に変化させないように、ステップS102において、例えばパターン▲2▼によるトライアック364のオンオフをさせるようにしてもよく、例えば制御間隔tcyc2をタイマ81に設定するようにしてもよい。
【0074】
また、本発明をプリンタに適応した例を示したが、本発明に係る画像形成装置は、例えば複写機、ファクシミリ等の画像形成装置であってもよい。
【0075】
【発明の効果】
請求項1に記載の発明によれば、定着手段の温度が次回の制御タイミングより前に目標温度に到達することが予測されるときに、平均変化率を減少すべくスイッチング手段のオンオフ比率を変更するので、検出温度が目標温度に近くなると平均変化率が減少される結果、温度リップルの発生を抑制できる。また、検出温度から算出された温度の平均変化率を用いて次回の制御タイミングでの定着手段の温度を予測するので、定着装置の温度を制御するための演算量の増大を抑制できる。
【0076】
請求項2に記載の発明によれば、定着手段の温度が次回の制御タイミングより前に目標温度に到達することが予測されるときに制御間隔が短縮されるので、検出温度が目標温度に近くなると制御タイミングの頻度が高められる結果、より高い精度で定着手段の温度を制御することができる。
【0077】
請求項3に記載の発明によれば、定着手段の温度を目標温度にするべく温度を上昇させるときに、検出温度が目標温度に近くなると平均変化率を減少させることができるので、温度のオーバーシュートを抑制できる。
【0078】
請求項4に記載の発明によれば、検出温度が目標温度に近くなると平均変化率が減少するので、温度のアンダーシュートを抑制できる。さらに、検出温度が目標温度を下回った後、平均変化率が検出温度の下降を示す場合には、オンオフ比率のオン比率を増加させるので定着手段の温度が下降し続けることを抑制できる。
【0079】
請求項5に記載の発明によれば、交流電圧の半サイクル単位でスイッチング手段をオンオフさせるので、交流電圧がゼロボルトと交差するタイミングでスイッチング手段をオンオフさせることができ、スイッチング手段への電圧ストレスを軽減することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る画像形成装置の一例であるプリンタの内部構成を概略的に示す断面図である。
【図2】図1に示すプリンタの概略構成を説明するためのブロック図である。
【図3】図1に示すプリンタの温度制御を行うための構成を説明する概略ブロック図である。
【図4】図1に示すプリンタの温度制御動作を説明するためのフローチャートである。
【図5】図4に示すフローチャートに対応する熱ローラの温度とヒータに印加される交流電圧のオンオフ状態とを説明するための図である。
【図6】図1に示すプリンタの温度制御動作を説明するためのフローチャートである。
【図7】図6に示すフローチャートに対応する熱ローラの温度とヒータに印加される交流電圧のオンオフ状態とを説明するための図である。
【符号の説明】
1 プリンタ
3 画像形成部
8 CPU
13 交流電源
14 ゼロクロス検出回路
36 定着部
81 タイマ
361 圧ローラ
362 熱ローラ
363 ヒータ
364 トライアック
365 フォトトライアックカプラ
366 温度センサ
367 アンプ
368 A/Dコンバータ

Claims (5)

  1. 記録紙に形成されたトナー像を加熱溶融して定着させる定着手段と、前記定着手段を加熱する加熱手段と、前記定着手段の温度を検出する検出手段と、前記加熱手段へ供給される電力をオンオフするスイッチング手段と、所定の制御間隔毎の制御タイミングで、前記検出手段により検出された検出温度に応じて前記定着手段の温度を所定の目標温度にさせるべく前記スイッチング手段のオンオフ比率を設定する温度制御手段とを備えた画像形成装置であって、
    現在の検出温度と、直前の制御タイミングで検出された検出温度との差分をその間の制御間隔で除した平均変化率を算出すると共に、その平均変化率を用いて次回の制御タイミングにおける前記定着手段の温度となる予測温度を算出する予測手段を備え、
    前記温度制御手段は、前記予測温度が、前記目標温度を越える場合、前記オンオフ比率を変更することを特徴とする画像形成装置。
  2. 前記温度制御手段は、前記予測温度が、前記目標温度を越える場合、前記制御間隔を短縮することを特徴とする請求項1記載の画像形成装置。
  3. 前記温度制御手段は、前記検出温度が前記目標温度より低い温度であって前記予測温度が前記目標温度を越える場合、前記オンオフ比率のオン比率を減少することにより前記平均変化率を減少させ、さらに前記検出温度が前記目標温度より低い温度から前記目標温度を越えた場合、前記スイッチング手段をオフさせることを特徴とする請求項1又は2記載の画像形成装置。
  4. 前記温度制御手段は、前記検出温度が前記目標温度より高い温度であり、且つ前記スイッチング手段がオフされているときに、前記予測温度が前記目標温度を下回る場合、前記スイッチング手段を所定のオンオフ比率でオンオフさせて前記電力の供給を開始させ、さらに前記検出温度が前記目標温度を下回り、且つ前記平均変化率が前記検出温度の下降を示す場合には、前記オンオフ比率のオン比率を増加させることを特徴とする請求項1〜3のいずれかに記載の画像形成装置。
  5. 前記電力は交流電圧により供給され、
    前記温度制御手段は、前記交流電圧の半サイクルを単位とする単位サイクル毎に前記スイッチング手段をオンオフし、オン状態の単位サイクル数とオフ状態の単位サイクル数とを組み合わせる比率によって、前記オンオフ比率を設定することを特徴とする請求項1〜4のいずれかに記載の画像形成装置。
JP2003020682A 2003-01-29 2003-01-29 画像形成装置 Withdrawn JP2004233543A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020682A JP2004233543A (ja) 2003-01-29 2003-01-29 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020682A JP2004233543A (ja) 2003-01-29 2003-01-29 画像形成装置

Publications (1)

Publication Number Publication Date
JP2004233543A true JP2004233543A (ja) 2004-08-19

Family

ID=32950248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020682A Withdrawn JP2004233543A (ja) 2003-01-29 2003-01-29 画像形成装置

Country Status (1)

Country Link
JP (1) JP2004233543A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7693439B2 (en) 2006-05-26 2010-04-06 Ricoh Company, Ltd. Fixing device, and method and device for heating control used in the same
US7734208B2 (en) 2005-09-09 2010-06-08 Ricoh Company, Ltd. Image fixing apparatus and image forming apparatus capable of effectively controlling an image fixing temperature
JP2012242618A (ja) * 2011-05-19 2012-12-10 Canon Inc 像加熱装置
US8526836B2 (en) 2009-12-11 2013-09-03 Sharp Kabushiki Kaisha Fixing device, image forming apparatus, and temperature control method for fixing device
JP2017223885A (ja) * 2016-06-17 2017-12-21 コニカミノルタ株式会社 画像形成装置
US10289040B2 (en) * 2017-03-17 2019-05-14 Konica Minolta, Inc. Image forming apparatus, method of controlling image forming apparatus, and program
CN112000046A (zh) * 2020-09-07 2020-11-27 淄博京科电气有限公司 一种电动滚筒智能控制器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7734208B2 (en) 2005-09-09 2010-06-08 Ricoh Company, Ltd. Image fixing apparatus and image forming apparatus capable of effectively controlling an image fixing temperature
US7693439B2 (en) 2006-05-26 2010-04-06 Ricoh Company, Ltd. Fixing device, and method and device for heating control used in the same
US8526836B2 (en) 2009-12-11 2013-09-03 Sharp Kabushiki Kaisha Fixing device, image forming apparatus, and temperature control method for fixing device
JP2012242618A (ja) * 2011-05-19 2012-12-10 Canon Inc 像加熱装置
JP2017223885A (ja) * 2016-06-17 2017-12-21 コニカミノルタ株式会社 画像形成装置
US10289040B2 (en) * 2017-03-17 2019-05-14 Konica Minolta, Inc. Image forming apparatus, method of controlling image forming apparatus, and program
CN112000046A (zh) * 2020-09-07 2020-11-27 淄博京科电气有限公司 一种电动滚筒智能控制器

Similar Documents

Publication Publication Date Title
US7088937B2 (en) Image fixing device with phase controlled heaters
US20070071468A1 (en) Image forming apparatus, recording material conveying method, program for implementing the method, and storage medium storing the program
JP2000267507A (ja) 画像形成装置
JP2007003663A (ja) ヒータ制御装置
JP2004233543A (ja) 画像形成装置
JP6499460B2 (ja) 画像形成装置
JP5136113B2 (ja) 画像形成装置
US7634209B2 (en) Temperature control method for fixing device, and fixing device and image-forming apparatus that use the same
US9639039B2 (en) Image forming apparatus
JP6528577B2 (ja) 画像形成装置、制御方法、および制御プログラム
JP2008185652A (ja) 画像形成装置における定着装置の温度制御方法と装置
CN116449664A (zh) 温度控制装置及具备温度控制装置的图像形成装置
JP2010181567A (ja) 定着ヒータ制御装置及び画像形成装置
JP2005049710A (ja) 制御装置、画像形成装置およびその制御プログラム
JP2007140400A (ja) 画像形成装置およびその定着器制御方法
JPH10213996A (ja) 熱定着装置の電力制御装置
JPH11249490A (ja) 加熱装置及びこの加熱装置を備える画像形成装置
JP2015169910A (ja) 画像形成装置
JP2005017459A (ja) 画像形成装置
JP2004233413A (ja) 画像形成装置
JP2006047398A (ja) 画像形成装置
JP2001282032A (ja) 定着装置および定着方法
JP4360872B2 (ja) 定着ローラ温度制御方法、定着装置及び画像形成装置
JP2007316410A (ja) 画像形成装置
KR100547142B1 (ko) 히터 램프가 구비된 정착기의 대기온도 제어방법

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404