JP2004225123A - 基材表面に酸化物膜を形成する方法及び該方法に使用する装置 - Google Patents

基材表面に酸化物膜を形成する方法及び該方法に使用する装置 Download PDF

Info

Publication number
JP2004225123A
JP2004225123A JP2003015587A JP2003015587A JP2004225123A JP 2004225123 A JP2004225123 A JP 2004225123A JP 2003015587 A JP2003015587 A JP 2003015587A JP 2003015587 A JP2003015587 A JP 2003015587A JP 2004225123 A JP2004225123 A JP 2004225123A
Authority
JP
Japan
Prior art keywords
oxide film
fine particles
oxide
raw material
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003015587A
Other languages
English (en)
Inventor
Shuji Tokita
修二 時田
Norihiko Yamagishi
則彦 山岸
Hidetoshi Saito
秀俊 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKITA CVD SYSTEMS KK
Original Assignee
TOKITA CVD SYSTEMS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKITA CVD SYSTEMS KK filed Critical TOKITA CVD SYSTEMS KK
Priority to JP2003015587A priority Critical patent/JP2004225123A/ja
Publication of JP2004225123A publication Critical patent/JP2004225123A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

【課題】基材表面を高温に加熱することなく大気開放型CVD法により、各種の基材表面に緻密で膜厚の厚い酸化物膜を効率良く形成する方法、及び該方法に使用する装置を提供する。
【解決手段】大気開放型CVD法において、気化させた酸化物膜の原料とキャリヤーガスの混合物、及び加熱された酸化物微粒子をあらかじめ衝突させて、酸化物膜の原料を酸化物微粒子の熱と空気中の酸素によりあらかじめ分解酸化を進めながら、酸化物微粒子と共に基材表面に吹付けることにより基材表面に酸化物膜を形成する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、大気開放型化学気相折出法(CVD)法により各種基材表面に効率よく酸化物膜を形成する方法及び該方法に使用する装置に関する。
【0002】
【従来の技術】
基材表面に酸化チタン、酸化珪素、酸化インジューム、酸化錫等の酸化物膜を形成する方法としては、ゾルゲル法、真空蒸着法、CVD法、PVD法、溶射法等種々の方法が知られているが、大気開放型CVD法は大型設備を必要とせず、長尺状の基材にも連続的に金属酸化物膜を形成することができることから注目を集めている。(例えば、特許文献1、2参照)
大気開放型CVD法では、キャリアガス供給源、原料気化器、ノズル、これらを接続する配管及び基材を載置し加熱する基材加熱装置を有するCVD装置を使用して、気化させた原料をキャリアガスとともに加熱された基材表面にノズルから吹き付け、基材表面で空気中の酸素と原料ガスを反応させて基材表面に酸化物膜を堆積させる。
【0003】
【特許文献1】
特開平10−152396号公報
【特許文献2】
特開2000−38671号公報
【0004】
しかしながら、従来の大気開放型CVD法では、原料ガスの分解酸化に必要な熱エネルギーを基材から供給するために、基材を300〜600℃という高温に加熱することが必要であった。また、供給する原料ガスの数%程度しか反応に使用することができないために、基材表面に酸化物膜を堆積させる速度が遅く、10μm以上の膜厚を有する酸化物膜を基材表面に形成することは極めて困難であった。
一方、半導体製造装置に使用される部品では、10μm以上の非常に厚い機能膜(例えば、耐食性膜)が必要とされ、セラミックス微粒子をプラズマ溶射することにより形成した酸化物膜が利用されているが、プラズマ溶射により形成した酸化物膜は、膜内の粒子が大きく緻密な膜ではないので、耐食性等、機能性膜に必要とされる性状を満たすものではなかった。
【0005】
【発明が解決しようとする課題】
したがって、本発明はこれら従来技術の問題点を解消して、基材表面を高温に加熱することなく大気開放型CVD法により、各種の基材表面に緻密で膜厚の厚い酸化物膜を効率良く形成する方法、及び該方法に使用する装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者等は上記課題を解決するために鋭意検討した結果、大気開放型CVD法において、気化させた酸化物膜の原料とキャリヤーガスの混合物、及び加熱された酸化物微粒子をあらかじめ衝突させて、酸化物膜の原料を酸化物微粒子の熱と空気中の酸素によりあらかじめ分解酸化を進めながら、酸化物微粒子と共に基材表面に吹付けることによって、緻密で膜厚の厚い酸化物膜が基材表面に効率良く形成されることを見出し、本発明を完成したものである。
【0007】
すなわち、本発明は次のような構成をとるものである。
1.気化させた酸化物膜の原料とキャリヤーガスの混合物、及び加熱された酸化物微粒子を、大気開放下に加熱された基材表面に同時に吹付けることを特徴とする基材表面に酸化物膜を形成する方法。
2.酸化物膜の原料が有機金属錯化合物であることを特徴とする1に記載の基材表面に酸化物膜を形成する方法。
3.酸化物微粒子の粒径が10〜10000nmであることを特徴とする1又は2に記載の基材表面に酸化物膜を形成する方法。
4.酸化物微粒子の加熱温度が200〜2000℃であることを特徴とする1〜3のいずれかに記載の基材表面に酸化物膜を形成する方法。
5.酸化物微粒子の表面が溶融状態となるように加熱されたものであることを特徴とする4に記載の基材表面に酸化物膜を形成する方法。
6.酸化物微粒子の原料を気化させた後に酸素と加熱反応させて酸化物微粒子を生成させることを特徴とする1〜5のいずれかに記載の基材表面に酸化物膜を形成する方法。
7.酸化物微粒子の原料を溶媒に溶解又は分散させた後にミスト状とし、酸素と加熱反応させて酸化物微粒子を生成させることを特徴とする1〜5のいずれかに記載の基材表面に酸化物膜を形成する方法。
8.基材表面の加熱温度が常温〜600℃であることを特徴とする1〜7のいずれかに記載の基材表面に酸化物膜を形成する方法。
9.基材が金属、金属酸化物、ガラス、陶磁器、セラミックス、プラスチック又は紙から選択されたものであることを特徴とする1〜8のいずれかに記載の基材表面に酸化物膜を形成する方法。
10.第1のキャリヤーガス供給手段、酸化物膜の原料気化器、気化した酸化物膜原料の吹付け手段、第2のキャリヤーガス供給手段、酸化物微粒子の生成手段、酸化物微粒子の吹付け手段及び基材の加熱手段を具備することを特徴とする1〜9のいずれかに記載の基材表面に酸化物膜を形成する方法に使用する装置。
11.酸化物微粒子の生成手段が酸化物微粒子の原料気化器及び気化した酸化物微粒子の原料の加熱手段により構成されたものであることを特徴とする10に記載の装置。
12.酸化物微粒子の生成手段が溶媒に溶解又は分散させた酸化物微粒子の原料のミスト化手段及びミスト化された原料の加熱手段により構成されたものであることを特徴とする10に記載の装置。
【0008】
【発明の実施の形態】
つぎに、図に基づいて本発明の実施の形態について説明する。図1は、本発明の基材表面に酸化物膜を形成する方法の1例を示す模式図、そして図2は図1の方法に使用する装置の1例を示す模式図である。
この形態では、図2にみられるように大気開放型CVD装置を、乾燥窒素ガス供給源1、流量計2、原料気化器3、バルブ4、高温ヒーター5、高温ヒーター15で周囲を覆ったノズル6からなる酸化物微粒子を供給するラインAと;乾燥窒素ガス供給源11、流量計12、原料気化器13、ノズル16からなる気化された酸化物膜の原料ガスを供給するラインBの2つのラインにより構成する。そして、ラインAにはバルブ4を介して酸素供給源9から流量計10、バルブ14を経由して酸素が供給される。
【0009】
ラインAにおいては、原料気化器3で気化された酸化物微粒子の原料ガスが、乾燥窒素ガス供給源1から供給された窒素ガス(キャリヤーガス)と共にバルブ4を介して高温ヒーター5に供給される。高温ヒーター5で高温に加熱された原料ガスは、バルブ4を介して供給された酸素と反応して粒径10〜10000nm程度の微粒子状の酸化物を形成する。この酸化物微粒子は、キャリヤーガスとともに高温ヒーター15で加熱されたノズル6から噴出される。原料気化器3に供給する酸化物微粒子の原料としては、通常は原料気化器13に供給する酸化物膜の原料と同じものが使用される。
ラインBにおいては、原料気化器13で気化された酸化物膜の原料ガスが、乾燥窒素ガス供給源11から供給された窒素ガスと共にノズル16に供給され、ノズル16から噴出される。
【0010】
ノズル6から噴出される高温に加熱された酸化物微粒子と、ノズル16から噴出される酸化物膜の原料ガスは、基材7の上部であらかじめ衝突させた後に、基材7の表面に吹付けられる。その際に、ノズル16から噴出される酸化物膜の原料ガスは、高温に加熱された酸化物微粒子の表面で、酸化物微粒子から供給される熱と空気中の酸素によって分解酸化された後に、酸化物微粒子とともに基材7の表面に吹付けられて、基材7の表面に酸化物膜を堆積する。
酸化物微粒子の加熱温度は、200〜2000℃とすることが好ましいが、基材表面への酸化物膜の堆積を促進するには、酸化物微粒子の表面が溶融状態となるように1500℃以上にプラズマ等によって加熱することが特に好ましい。
【0011】
本発明の方法では、ラインBのノズル16から噴出される酸化物膜の原料ガスの一部は、ラインAのノズル6から噴出される酸化物微粒子の表面で分解酸化され、酸化物微粒子に付着した状態で基材7の表面に吹付けられて酸化物膜を形成する。同時に、基材7の表面では、従来の大気開放型CVD法と同様に、ノズル16から噴出される酸化物膜の原料ガスの一部が、加熱された基材7の表面で直接空気中の酸素と反応して酸化物膜を形成する。
【0012】
基材7の表面に、高温に加熱された酸化物微粒子のみを吹付けた場合には、基材への付着性が悪く、基材表面での酸化物膜の堆積速度はきわめて遅いものとなる。本発明の方法によれば、酸化物微粒子の表面に分解酸化途中の酸化物膜の原料が付着した状態で基材表面に吹付けられるので、基材への付着性が改善され酸化物膜の堆積速度が大幅に向上する。また、本発明の方法では、酸化物膜を形成する熱源として、高温に加熱された酸化物微粒子と加熱された基材の両者を利用することができるので、反応速度が飛躍的に向上し、膜厚の厚い酸化物膜を短時間で形成することができる。また、得られる酸化物膜も、従来の大気開放型CVD法と同様に、緻密なものであり、溶射法により得られる酸化物膜に比較して、耐食性等が大幅に向上したものとなる。
【0013】
図3は、本発明の基材表面に酸化物膜を形成する方法に使用する装置の他の例を示す模式図、そして図4は、図3の装置で使用するミスト発生器の拡大模式図である。
この装置では、図2の装置のラインAにおける原料気化器3に代えて、酸化物微粒子の原料を溶媒に溶解又は分散させてミスト化するミスト発生器23を使用する。その他の装置の構成は図2の装置と同様である。
【0014】
図4にみられるように、ミスト発生器23内にはピエゾ素子21が設けられ、ミスト発生器23の周囲には冷却管24が配置される。ミスト発生器23内に収容された原料化合物と溶媒からなる混合液(溶液又は分散液)22は、ピエゾ素子21から発振される超音波によりミスト化され、このミスト25は配管26からミスト発生器23内に導入される窒素ガスとともに、配管27から導出される。冷却管24には冷却水を流し、超音波の作用によりミスト発生器23内に収容された原料化合物と溶媒からなる混合液22の温度が上昇するのを防止する。
配管27から導出されたミスト25は、窒素ガスとともにバルブ4を介して高温ヒーター5に供給され、バルブ4を介して供給された酸素と反応して微粒子状の酸化物を形成する。その後の酸化物膜の形成は、図2の装置と同様にして行なわれる。
【0015】
図2及び図3の装置では、酸化物微粒子を噴出するラインAのノズル6と、酸化物膜の原料ガスを噴出するラインBのノズル16を分離して配置したが、ラインAのノズル6とラインBのノズル16を一つにまとめて、酸化物微粒子と酸化物膜の原料ガスの混合器を兼ねたノズルとして、構成することもできる。このような構成とした場合には、酸化物微粒子と酸化物膜の原料ガスを充分に混合させて、基材7の表面への混合された原料の吹きつけの均一性を向上させることが可能となる。
【0016】
本発明の大気開放型CVD法により、表面に酸化物膜を形成する基材としては特に制限はなく、原料吹付け時の加熱に耐えられる材料はいずれも使用可能である。本発明では、酸化物膜を形成する熱源として高温に加熱された酸化物微粒子と加熱された基材の両者を利用することができるので、200℃〜室温といった低温でも基材表面に被膜を形成することが可能となり、金属、金属酸化物、ガラス、陶磁器、セラミックス等の、通常CVD法に用いられる基材のほかに、紙又はプラスチック等の非耐熱性材料をも基材として使用することができる。
基材の種類は、目的とする用途等に応じて選択されるが、好ましい基材としては、紙あるいはプラスチック等の非耐熱性材料、ステンレス鋼や鉄等の導電性材料、酸化亜鉛や酸化チタン等の誘電体多結晶又は単結晶材料、Si半導体材料等が挙げられる。
【0017】
基材表面に形成する酸化物としては特に制限はないが、好ましい酸化物としては、酸化チタン、酸化亜鉛、酸化マグネシウム、酸化イットリウム、サファイア、Sn:In(ITO:Indium Tin Oxide)等の金属酸化物が挙げられる。
酸化物を構成する原料としては、それを揮発させ大気に放出した際に、大気中の酸素あるいは水分等と反応して酸化物を形成するものであれば特に限定されない。その例としては、例えば各種金属のアルキル化合物、アルケニル化合物、フェニルあるいはアルキルフェニル化合物、アルコキシド化合物、ジ−ピバロイルメタン化合物、ハロゲン化合物、アセチルアセトネート化合物、EDTA化合物等が挙げられる。これらの中でも、安全性面等からジ−ピバロイルメタン化合物が好ましい。
これらの原料は、原料気化器内で60〜300℃程度に加熱気化され、気化された原料は、通常は流量0.5〜4.0l/min程度のキャリヤーガスとともに、ノズルに送られる。
【0018】
キャリヤーガスとしては、加熱下で使用する原料化合物と反応する媒体でなければ、特に限定されないが、例えば、窒素ガス、アルゴンガス等の不活性ガス、炭酸ガス、有機フッ素系ガスあるいはヘキサン、ヘプタン等の有機物等が挙げられる。安全性、経済性の上から不活性ガスが好ましく、この中でも窒素ガスが経済性の面より最も好ましい。
【0019】
【実施例】
つぎに、実施例により本発明をさらに説明するが、以下の具体例は本発明を限定するものではない。
(実施例1)
図2に示す装置において、長さ50cm、径1/4インチのステンレス管に絶縁材を巻きつけ、その上に線状ヒーターを密に巻き、さらに絶縁材を巻きつけることにより、ラインAの高温ヒーター5,15、ノズル6を一体に構成した。ラインAの酸化物微粒子の原料気化器3にトリス(ジーピバロイルメタナート)イットリウム[Y(DPM)]2gをセットし、気化器温度250℃、窒素ガス流量0.5l/minで気化させた。この気化させた原料ガスとともに、酸素ガス供給源9からバルブ14、4を経由して酸素ガスを、流量0.5l/minで900℃に加熱された高温ヒーター5に供給し、酸化反応により酸化イットリウム微粒子を形成し、ノズル6から噴出させた。
【0020】
一方、ラインBにおいては、長さ50cm、径1/4インチのステンレス管にリボンヒーターを巻きつけて、300℃まで加熱可能なノズル16を構成した。ラインBの酸化物膜の原料気化器13に、Y(DPM)2gをセットし、気化器温度250℃、窒素ガス流量0.5l/minで気化させ、温度250℃に加熱したノズル16から噴出させた。
酸化物膜を形成する基材7として10×10mmのシリコンウエハを使用し、加熱台8の温度を380℃にセットした。この基材7の上方10〜15mmでノズル6から噴出させた酸化イットリウム微粒子と、ノズル16から噴出させた酸化物膜の原料ガスが衝突した後に、基材7上に吹付けられるようにノズル6、16の位置を調整し、基材7の表面に酸化イットリウム膜を堆積させた。この時の膜の堆積速度は、0.3μm/10分であった。得られた膜を走査型電子顕微鏡で観察したところ、粒径1μm以下の粒子が重なりあって緻密な膜を形成していた。
【0021】
(比較例1)
実施例1において、ラインBのみを使用し、原料気化器13の温度250℃、窒素ガス流量0.5l/min、ノズル16の温度250℃で、実施例1と同じシリコンウエハ基材7に、ノズル16と基材7間の距離を20mmとして原料ガスを吹付け、酸化イットリウム膜を形成した。この方法は、従来の大気開放型CVD法によるものであるが、膜の堆積速度は0.03μm/10minであった。
【0022】
(比較例2)
実施例1において、ラインAのみを使用し、原料気化器3の温度250℃、ノズル6の温度900℃、基材加熱台8の温度380℃で、ノズル6と基材7間の距離を20mmとし、実施例1と同様にしてシリコンウエハ基材7に、ノズル6内で酸化反応により形成された酸化イットリウム微粒子を吹付けた。この方法では、基材7の表面に酸化イットリウム膜は、殆んど堆積しなかった。
【0023】
通常の大気開放型CVD法では、酸化イットリウム膜は基材の加熱温度500℃以上で形成されているが、本発明の方法によれば、低い基材温度できわめて迅速に、膜厚の厚い緻密な酸化イットリウム膜を得ることができた。
なお、上記実施例1では、ラインAのノズル6から噴出される酸化物微粒子と、ラインBのノズル16から噴出される酸化物膜原料ガスの混合比を略1:1としたが、この混合比は前者:後者=1〜20:1の範囲で変更することが可能である。また、酸化物微粒子の原料及び酸化物膜の原料として同種のものを使用したが、異種の原料を使用することも可能である。
【図面の簡単な説明】
【図1】本発明の方法の1例を示す模式図である。
【図2】図1の方法に使用する装置の1例を示す模式図である。
【図3】本発明の方法の他の例に使用する装置の1例を示す模式図である。
【図4】図3の装置で使用するミスト発生器の拡大模式図である。
【符号の説明】
1,11 乾燥窒素ガス供給源
2,10,12 流量計
3,13 原料気化器
4,14 バルブ
5,15 高温ヒーター
6,16 ノズル
7 基材
8 基材加熱台
9 酸素供給源
21 ピエゾ素子
22 原料混合液
23 ミスト発生器
24 冷却管
25 ミスト
26,27 配管

Claims (12)

  1. 気化させた酸化物膜の原料とキャリヤーガスの混合物、及び加熱された酸化物微粒子を、大気開放下に加熱された基材表面に同時に吹付けることを特徴とする基材表面に酸化物膜を形成する方法。
  2. 酸化物膜の原料が有機金属錯化合物であることを特徴とする請求項1に記載の基材表面に酸化物膜を形成する方法。
  3. 酸化物微粒子の粒径が10〜10000nmであることを特徴とする請求項1又は2に記載の基材表面に酸化物膜を形成する方法。
  4. 酸化物微粒子の加熱温度が200〜2000℃であることを特徴とする請求項1〜3のいずれかに記載の基材表面に酸化物膜を形成する方法。
  5. 酸化物微粒子の表面が溶融状態となるように加熱されたものであることを特徴とする請求項4に記載の基材表面に酸化物膜を形成する方法。
  6. 酸化物微粒子の原料を気化させた後に酸素と加熱反応させて酸化物微粒子を生成させることを特徴とする請求項1〜5のいずれかに記載の基材表面に酸化物膜を形成する方法。
  7. 酸化物微粒子の原料を溶媒に溶解又は分散させた後にミスト状とし、酸素と加熱反応させて酸化物微粒子を生成させることを特徴とする請求項1〜5のいずれかに記載の基材表面に酸化物膜を形成する方法。
  8. 基材表面の加熱温度が常温〜600℃であることを特徴とする請求項1〜7のいずれかに記載の基材表面に酸化物膜を形成する方法。
  9. 基材が金属、金属酸化物、ガラス、陶磁器、セラミックス、プラスチック又は紙から選択されたものであることを特徴とする請求項1〜8のいずれかに記載の基材表面に酸化物膜を形成する方法。
  10. 第1のキャリヤーガス供給手段、酸化物膜の原料気化器、気化した酸化物膜原料の吹付け手段、第2のキャリヤーガス供給手段、酸化物微粒子の生成手段、酸化物微粒子の吹付け手段及び基材の加熱手段を具備することを特徴とする請求項1〜9のいずれかに記載の基材表面に酸化物膜を形成する方法に使用する装置。
  11. 酸化物微粒子の生成手段が酸化物微粒子の原料気化器及び気化した酸化物微粒子の原料の加熱手段により構成されたものであることを特徴とする請求項10に記載の装置。
  12. 酸化物微粒子の生成手段が溶媒に溶解又は分散させた酸化物微粒子の原料のミスト化手段及びミスト化された原料の加熱手段により構成されたものであることを特徴とする請求項10に記載の装置。
JP2003015587A 2003-01-24 2003-01-24 基材表面に酸化物膜を形成する方法及び該方法に使用する装置 Pending JP2004225123A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003015587A JP2004225123A (ja) 2003-01-24 2003-01-24 基材表面に酸化物膜を形成する方法及び該方法に使用する装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015587A JP2004225123A (ja) 2003-01-24 2003-01-24 基材表面に酸化物膜を形成する方法及び該方法に使用する装置

Publications (1)

Publication Number Publication Date
JP2004225123A true JP2004225123A (ja) 2004-08-12

Family

ID=32903292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015587A Pending JP2004225123A (ja) 2003-01-24 2003-01-24 基材表面に酸化物膜を形成する方法及び該方法に使用する装置

Country Status (1)

Country Link
JP (1) JP2004225123A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534282A (ja) * 2006-04-19 2009-09-24 ベネク・オサケユキテュア ガラスをコーティングするための方法と装置
JP2009228022A (ja) * 2008-03-19 2009-10-08 Nihon Ceratec Co Ltd 酸化物膜形成方法および酸化物被膜部材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534282A (ja) * 2006-04-19 2009-09-24 ベネク・オサケユキテュア ガラスをコーティングするための方法と装置
JP2009228022A (ja) * 2008-03-19 2009-10-08 Nihon Ceratec Co Ltd 酸化物膜形成方法および酸化物被膜部材

Similar Documents

Publication Publication Date Title
TW469492B (en) Method and apparatus of producing thin film of metal or metal compound
JP5419027B2 (ja) マイクロプラズマ法による薄膜作製方法及びその装置
Crick et al. CVD of copper and copper oxide thin films via the in situ reduction of copper (ii) nitrate—a route to conformal superhydrophobic coatings
CN101665918B (zh) 成膜方法和成膜装置
TW201137170A (en) Process for producing indium oxide-containing layers, indium oxide-containing layers produced by the process and use thereof
JP2005511894A (ja) 化学蒸着用ベーパライザ
TW200540291A (en) Precursors for deposition of silicon nitride, silicon oxynitride and metal silicon oxynitrides
JP2003286017A (ja) 配向性カーボンナノチューブ膜の転写方法
Struppert et al. The use of silver (I)-2-[2-(2-methoxyethoxy) ethoxy] acetate as precursor in the deposition of thin silver layers on float glass by the atmospheric pressure combustion chemical vapor deposition process
Matsuzaki et al. Growth of yttria stabilized zirconia thin films by metallo-organic, ultrasonic spray pyrolysis
KR100212906B1 (ko) 산화물박막의 제조방법 및 그것에 사용되는 화학증착장치
JPH06330326A (ja) シリカ薄膜の製造方法
JP2007239083A (ja) 基材表面に金属酸化物膜を形成する方法及び該方法に使用する大気開放型cvd装置のノズル
JP2009167522A (ja) 銅膜の形成方法
JP2004225123A (ja) 基材表面に酸化物膜を形成する方法及び該方法に使用する装置
Uchida et al. Low-temperature deposition of polycrystalline titanium oxide thin film on Si substrate using supercritical carbon dioxide fluid
TW202137278A (zh) 在零部件上形成耐等離子體塗層的方法、零部件和等離子體處理裝置
JP2004168641A (ja) 金属酸化物微粒子の製造方法および金属酸化物微粒子
JP5378631B2 (ja) 気相成長結晶薄膜製造方法
JP2007126349A (ja) Y2o3皮膜およびその製造方法
JP2005298874A (ja) Cvd原料及びそれを用いた気化供給方法並びに成膜方法
TW200912029A (en) Method and apparatus for production of metal oxide thin film
JP2012062527A (ja) 金属酸化物薄膜の製造方法およびその方法を用いる金属酸化物薄膜形成装置
JPH01298168A (ja) 金属化合物の形成装置
JP2004196618A (ja) 酸化チタン膜の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051228

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118