JP2004214540A - 多層セラミック基板の製造方法 - Google Patents
多層セラミック基板の製造方法 Download PDFInfo
- Publication number
- JP2004214540A JP2004214540A JP2003002159A JP2003002159A JP2004214540A JP 2004214540 A JP2004214540 A JP 2004214540A JP 2003002159 A JP2003002159 A JP 2003002159A JP 2003002159 A JP2003002159 A JP 2003002159A JP 2004214540 A JP2004214540 A JP 2004214540A
- Authority
- JP
- Japan
- Prior art keywords
- multilayer
- hole
- raw
- material powder
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
- Structure Of Printed Boards (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
【解決手段】生の多層集合基板2に貫通孔19を形成した後、貫通孔19を有機物23によって充填した後、収縮抑制層24を配置した状態でプレス工程を実施する。
【選択図】 図2
Description
【発明の属する技術分野】
この発明は、多層セラミック基板の製造方法に関するもので、特に、複数の多層セラミック基板を取り出すための多層集合基板を製造した後、多層集合基板を分割することによって複数の多層セラミック基板を取り出す、各工程を備える、多層セラミック基板の製造方法に関するものである。
【0002】
【従来の技術】
多層セラミック基板は、複数の積層されたセラミック層を備えている。このような多層セラミック基板には、種々の形態の配線導体が設けられている。配線導体としては、たとえば、多層セラミック基板の内部において、セラミック層間の特定の界面に沿って延びる内部導体膜が形成されたり、特定のセラミック層を貫通するように延びるビアホール導体が形成されたり、また、多層セラミック基板の外表面上において延びる外部導体膜が形成されたりしている。
【0003】
多層セラミック基板は、半導体チップ部品やその他のチップ部品等を搭載し、これらの電子部品を相互に配線するために用いられている。上述した配線導体は、この相互配線のための電気的経路を与えている。
【0004】
また、多層セラミック基板には、たとえばコンデンサ素子やインダクタ素子のような受動部品が内蔵されることがある。この場合には、上述した配線導体としての内部導体膜やビアホール導体の一部によって、これらの受動部品が与えられる。
【0005】
多層セラミック基板は、たとえば、移動体通信端末機器の分野において、LCR複合化高周波部品として用いられたり、コンピュータの分野において、半導体ICチップのような能動素子とコンデンサやインダクタや抵抗のような受動素子とを複合化した部品として、あるいは単なる半導体ICパッケージとして用いられたりしている。
【0006】
このような多層セラミック基板を製造するに際して、その製造効率を高めるため、所定の分割線に沿って分割されることによって複数の多層セラミック基板を取り出すことができるようにされた多層集合基板を作製し、この多層集合基板を上述の分割線に沿って分割することによって、複数の多層セラミック基板を一挙に得ようとする方法、いわゆる多数個取りによる方法が採用されている。
【0007】
また、上述の多数個取りによる方法を用いながら、ビアホール導体またはスルーホール導体のような導体を備える複数のセラミックグリーンシートを積層することによって構成された生の多層集合基板に、貫通孔を設けることにより、導体を分断し、それによって、貫通孔の内周面上に導体の一部を露出させ、この露出した導体の一部を、多層集合基板を分割して得られた多層セラミック基板の側面上に形成される外部電極として使用しようとすることも提案されている(たとえば、特許文献1参照)。
【0008】
上述した製造方法によって得られた多層セラミック基板によれば、その一方主面上での他の電子部品を搭載できる面積を広くとることができるとともに、外部電極の配置ピッチを細かくすることができ、また、外部電極を簡単かつ容易に形成することができ、さらに、製造途中の多層集合基板の段階で個々の多層セラミック基板についての電気的特性の測定が可能である、といった利点を有している。
【0009】
【特許文献1】
特開平8−37251号公報
【0010】
【発明が解決しようとする課題】
上述した多数個取りによる多層セラミック基板の製造方法において作製される生の多層集合基板は、これを焼成する前に、積層方向にプレスされる。この場合において、特許文献1に記載の技術を適用するときには、貫通孔が生の多層集合基板に設けられているので、生の多層集合基板をプレスしたとき、貫通孔が不所望にも変形することがあり、極端な場合には、貫通孔が潰れてしまうことがある。
【0011】
上述のような貫通孔の変形は、得られた多層集合基板の外観を損なうばかりでなく、貫通孔の内周面上に形成される外部電極をも変形させ、外部電極上に、たとえばめっき膜を所望のごとく形成できなかったり、外部電極の機能が失われてしまうことがある。
【0012】
なお、このような問題を解決するためには、プレス工程を実施した後に、貫通孔を形成することも考えられる。しかしながら、後で、この発明の実施の形態として詳細に説明するように、貫通孔を形成した後、プレス工程を実施しなければならない状況もある。
【0013】
そこで、この発明の目的は、上述のような問題を解消し得る、多層セラミック基板の製造方法を提供しようとすることである。
【0014】
【課題を解決するための手段】
この発明は、複数の積層されたセラミック層を備える、多層セラミック基板を製造する方法に向けられ、次のような工程を備えることを特徴としている。
【0015】
まず、セラミック絶縁材料を含みかつ焼成されることによって複数のセラミック層となる複数のセラミックグリーン層を備え、焼成後において所定の分割線に沿ってそれぞれ分割されることによって複数の多層セラミック基板を取り出すことができるようにされている、生の多層集合基板が作製される。
【0016】
次いで、生の多層集合基板を貫通する貫通孔が分割線上に形成される。
【0017】
次いで、貫通孔に有機物が充填される。
【0018】
次いで、生の多層集合基板が積層方向にプレスされる。このとき、貫通孔に充填された有機物は、貫通孔が不所望にも変形したり、潰れたりすることを防止する。
【0019】
次いで、生の多層集合基板が焼成される。これによって、焼結後の多層集合基板が得られる。また、上述の有機物は、この焼成工程において焼失する。
【0020】
次いで、焼結後の多層集合基板が分割線に沿って分割される。これによって、分断された貫通孔によって与えられた凹部を側面上に位置させている複数の多層セラミック基板が取り出される。
【0021】
この発明に従って多層セラミック基板を製造するにあたって、焼成工程において多層セラミック基板の主面方向での収縮を実質的に生じさせないようにすることができる、いわゆる無収縮プロセスを採用してもよい。この無収縮プロセスを採用する場合、次のようないくつかの実施態様がある。
【0022】
第1の実施態様では、生の多層集合基板の少なくとも一方の主面上に、セラミック絶縁材料粉末の焼結温度では焼結しない無機材料粉末を含む収縮抑制層を配置する工程がさらに実施される。また、貫通孔を形成する工程、有機物を充填する工程、プレスする工程および焼成する工程は、生の多層集合基板の少なくとも一方の主面上に収縮抑制層が配置された状態にある生の複合積層体に対して実施される。また、焼成する工程は、セラミック絶縁材料粉末が焼結するが無機材料粉末が焼結しない条件下で実施される。そして、焼成する工程の後、収縮抑制層を除去する工程がさらに実施される。
【0023】
第2の実施態様では、生の多層集合基板の一方の主面上に、セラミック絶縁材料粉末の焼結温度では焼結しない無機材料粉末を含む第1の収縮抑制層を配置する工程がさらに実施される。また、貫通孔を形成する工程および有機物を充填する工程は、生の多層集合基板の一方の主面上に第1の収縮抑制層が配置された状態にある生の複合積層体に対して実施される。また、貫通孔を形成する工程は、第1の収縮抑制層側から積層方向に打ち抜くことによって貫通孔を形成するように実施される。有機物を充填する工程の後、生の多層集合基板の他方の主面上に、セラミック絶縁材料粉末の焼結温度では焼結しない無機材料粉末を含む第2の収縮抑制層を配置する工程がさらに実施される。プレスする工程は、生の多層集合基板の一方および他方の主面上に第1および第2の収縮抑制層がそれぞれ配置された状態にある生の複合積層体に対して実施される。焼成する工程は、セラミック絶縁材料粉末が焼結するが無機材料粉末が焼結しない条件下で実施される。そして、焼成する工程の後、第1および第2の収縮抑制層を除去する工程がさらに実施される。
【0024】
第3の実施態様では、生の多層集合基板の一方の主面上に、セラミック絶縁材料粉末の焼結温度では焼結しない無機材料粉末を含む第1の収縮抑制層を配置するとともに、生の多層集合基板の他方の主面上に、セラミック絶縁材料粉末の焼結温度では焼結しない無機材料粉末を含みかつ第1の収縮抑制層より薄い第2の収縮抑制層を配置する工程を工程がさらに実施される。また、貫通孔を形成する工程および有機物を充填する工程は、生の多層集合基板の一方および他方の主面上に第1および第2の収縮抑制層がそれぞれ配置された状態にある生の複合積層体に対して実施される。貫通孔を形成する工程は、第1の収縮抑制層側から積層方向に打ち抜くことによって貫通孔を形成するように実施される。有機物を充填する工程の後、第2の収縮抑制層上に、セラミック絶縁材料粉末の焼結温度では焼結しない無機材料粉末を含む第3の収縮抑制層を配置する工程がさらに実施される。プレスする工程は、生の多層集合基板の一方および他方の主面上に第1ならびに第2および第3の収縮抑制層がそれぞれ配置された状態にある生の複合積層体に対して実施される。焼成する工程は、セラミック絶縁材料粉末が焼結するが無機材料粉末が焼結しない条件下で実施される。そして、焼成する工程の後、第1ならびに第2および第3の収縮抑制層を除去する工程がさらに実施される。
【0025】
この発明において、有機物を充填する工程の後に、分割線の位置に沿って、生の多層集合基板に切り込み溝を設ける工程がさらに実施されてもよい。
【0026】
この発明において、貫通孔を利用して外部電極を形成しようとする場合、好ましくは、次のような実施態様が採用される。
【0027】
すなわち、生の多層集合基板として、得ようとする多層セラミック基板の外部電極となるべき導体を内部に配置したものが用意され、生の複合積層体を作製する工程において、この導体は、その一部が貫通孔の内面上に露出する状態とされる。したがって、多層集合基板を分割することによって得られた複数の多層セラミック基板の側面上であって、分断された貫通孔によって与えられた凹部の内面上には、外部電極を与えるように導体の一部が外部に向かって露出する状態となる。
【0028】
上述した実施態様に係る生の複合積層体を作製する工程では、貫通孔が、導体を分断するように設けられることが好ましい。
【0029】
なお、外部電極を形成するため、焼成工程の後、多層集合基板を分割することによって得られた複数の多層セラミック基板の側面上であって、分断された貫通孔によって与えられた凹部の内面上に、導体を設けるようにしてもよい。
【0030】
この発明において、貫通孔に充填される有機物は、樹脂ペーストであることが好ましく、この樹脂ペーストは、800℃以下の空気中で焼失する有機物粉末とビヒクルとの混合物であることがより好ましい。
【0031】
【発明の実施の形態】
図1ないし図7は、この発明の一実施形態を説明するためのものである。ここで、図1ないし図3は、多層セラミック基板の製造方法に含まれる典型的な工程を示す断面図である。図4ないし図7は、図1ないし図3に示した工程のうちの特定のものを説明するにあたって参照されるものである。
【0032】
図1ないし図3に示した各工程を経て製造される多層セラミック基板1は、図3(3)に示され、このような複数の多層セラミック基板1を取り出すことができる多層集合基板2aが図3(2)に示され、この多層集合基板2aを得るための焼成前の生の多層集合基板2が図1(1)に示されている。これら多層セラミック基板1、焼結後の多層集合基板2aおよび生の多層集合基板2は、いずれも、各々の一部のみが図示されている。
【0033】
多層セラミック基板1は、図3(3)に示すように、複数の積層されたセラミック層3aを備えている。多層セラミック基板1の内部には、相互配線を与え、また、必要に応じて、コンデンサやインダクタのような素子を構成するため、いくつかの内部導体膜4がセラミック層3a間の特定の界面に沿って形成され、また、いくつかの配線用ビアホール導体5が特定のセラミック層3aを貫通するように設けられている。
【0034】
また、多層セラミック基板1の第1の主面6上には、いくつかの外部導体膜7が形成され、第1の主面6と対向する第2の主面8上には、いくつかの外部導体膜9が形成されている。第1の主面6上にある外部導体膜7は、図示しないが、この多層セラミック基板1上に搭載される電子部品との電気的接続を図るために用いられる。第2の主面8上に形成される外部導体膜9は、この多層セラミック基板1が実装されるマザーボード10上の導電ランド11(図8参照)との電気的接続を図るために用いられる。
【0035】
また、多層セラミック基板1の側面には、凹部12が設けられ、この凹部12の内面上には、外部電極13が形成されている。この外部電極13の機能については、図8および図9を参照して後述する。
【0036】
このような多層セラミック基板1を製造するため、まず、図1(1)に示すような生の多層集合基板2が作製される。生の多層集合基板2は、図4に平面図でも示されている。生の多層集合基板2は、焼成後において所定の分割線14に沿ってそれぞれ分割されることによって複数の多層セラミック基板1を取り出すことができるようにされている。分割線14は、たとえば、格子状に配列されている。
【0037】
生の多層集合基板2は、セラミック絶縁材料を含みかつ焼成されることによって前述したセラミック層3aとなる複数のセラミックグリーン層3を備えている。また、生の多層集合基板2は、多層セラミック基板1において設けられていた内部導体膜4、配線用ビアホール導体5ならびに外部導体膜7および9を備えている。また、生の多層集合基板2は、多層セラミック基板1において設けられていた外部電極13を与えるための導体15を備えている。導体15は、分割線14上に位置している。また、導体15は、この実施形態では、生の多層集合基板2を積層方向に貫通するように設けられている。
【0038】
なお、図4では、図1に示した外部導体膜7の図示が省略されている。
【0039】
生の多層集合基板2におけるセラミックグリーン層3の積層構造は、通常、セラミックグリーンシートを積層することによって得られる。セラミックグリーンシートは、たとえば、セラミック絶縁材料粉末に、バインダ、可塑剤および溶剤等を加えて、ボールミルまたはアトラクタ等によって混合することによってスラリーとし、このスラリーをドクターブレード法等の方法によってシート状に成形することによって得られる。セラミックグリーンシートの厚みについては、特に制限はないが、たとえば25〜200μm程度であることが好ましい。
【0040】
上述のセラミック絶縁材料粉末としては、従来の多層セラミック基板においても用いられている通常のセラミック絶縁材料粉末を用いることができる。セラミック絶縁材料粉末としては、たとえば、アルミナ粉末を用いることができ、さらに、軟化点600〜800℃の非晶質ガラス、結晶化温度600〜1000℃の結晶化ガラス等を含有させることにより、焼結温度を低下させることが好ましい。また、セラミック絶縁材料として、アルミナのほか、ジルコン、ムライト、コージェライト、アノーサイト、シリカ等を用いてもよい。
【0041】
セラミックグリーンシートには、積層前の段階で、前述した内部導体膜4、配線用ビアホール導体5ならびに外部導体膜7および9が形成される。導体膜4、7および9の形成にあたっては、たとえば導電性ペーストのスクリーン印刷等が適用される。また、配線用ビアホール導体5の形成にあたっては、セラミックグリーンシートに貫通孔を設け、この貫通孔に導電性ペーストを充填するようにされる。
【0042】
また、導体15についても、好ましくは、導電性ペーストによって与えられる。すなわち、セラミックグリーンシートに、積層前の段階で、貫通孔が設けられ、この貫通孔に導電性ペーストを充填することによって、セラミックグリーンシートを積層したとき、一連の導体15が形成されるようにされる。なお、セラミックグリーンシートを積層した後、そこに一連の貫通孔を設け、この貫通孔に導電性ペーストを充填するようにしてもよい。
【0043】
上述した導電性ペーストに含まれる導電成分としては、好ましくは、Ag、Ag−Pt合金、Ag−Pd合金、Cu、AuおよびNiから選ばれた少なくとも1種が用いられる。
【0044】
次に、生の多層集合基板2を積層方向に挟むように、第1および第2の収縮抑制層16および17が配置され、それによって、図1(2)に示すような生の複合積層体18が作製される。第1および第2の収縮抑制層16および17は、前述したセラミックグリーン層3に含まれるセラミック絶縁材料粉末の焼結温度では焼結しない無機材料粉末を含んでいる。
【0045】
たとえば、セラミックグリーン層3に含まれるセラミック絶縁材料粉末として、その焼結温度が1100℃以下のものを用いる場合には、収縮抑制層16および17に含まれる無機材料粉末としては、たとえば、アルミナ、酸化ジルコニア、窒化アルミニウム、窒化ホウ素、ムライト、酸化マグネシウム、炭化珪素等の粉末を用いることができる。なお、これらの無機材料粉末の粒度が粗すぎると、得られた多層セラミック基板1の表面粗さが粗くなるため、平均粒径0.5〜4μm程度であることが好ましい。
【0046】
収縮抑制層16および17は、通常、上述のような無機材料粉末を含む無機材料グリーンシートを積層することによって得られる。無機材料グリーンシートの作製方法は、前述したセラミックグリーンシートの場合と実質的に同様である。無機材料グリーンシートの厚みは、特に制限がないが、10〜200μm程度とされ、第1および第2の収縮抑制層16および17の各々の厚みは、たとえば、積層される無機材料グリーンシートの積層数によって調整される。
【0047】
図1(2)には、第1の収縮抑制層16においては、3枚の無機材料グリーンシートが積層され、第2の収縮抑制層17においては、1枚の無機材料グリーンシートが積層されているように図示されているが、これらは、第1の収縮抑制層16と第2の収縮抑制層17との間で厚みの差があることを明確に図示するためのもので、無機材料グリーンシートの積層数については一例にすぎない。
【0048】
上述した無機材料グリーンシートの積層数を変えることなどによって、第1の収縮抑制層16の厚みは、たとえば400μm程度と比較的厚くされるのに対し、第2の収縮抑制層17の厚みは、300μm以下、好ましくは200μm以下、一例として、50μm程度というように比較的薄くされる。
【0049】
ここで、第1の収縮抑制層16の厚みは、後述する焼成工程において、それによる収縮抑制効果が十分に発揮されるように選ばれ、他方、第2の収縮抑制層17の厚みは、これが接する生の多層集合基板2の主面上に形成された外部導体膜9を損傷等から保護するのに十分なように選ばれる。
【0050】
生の複合積層体18は、次いで、積層方向にプレスされることが好ましい。このプレスは、生の複合積層体18を、以後の工程において取り扱う際、セラミックグリーン層3相互間、収縮抑制層16および17に備える無機材料グリーンシート相互間ならびに生の多層集合基板2と収縮抑制層16および17の各々との間のずれを生じにくくすることを目的とするものであり、たとえば、面圧30MPa以下の圧力が適用される。
【0051】
上述したプレスは、グリーンシートを積層する毎に実施されるプレスに置き換えられても、あるいは、グリーンシートを積層する毎にプレスを実施した上で、さらに実施されてもよい。
【0052】
なお、図1(2)に示した生の複合積層体18を得るため、上述したように、生の多層集合基板2をまず得た後、これに収縮抑制層16および17を積層する方法を採用するのではなく、たとえば、第2の収縮抑制層17となるべき無機材料グリーンシートの上に、セラミックグリーン層3となるべき複数のセラミックグリーンシートを順次積層し、次いで、第1の収縮抑制層16となるべき無機材料グリーンシートを積層するようにしてもよい。
【0053】
次に、図1(3)に示すように、生の複合積層体18を積層方向に貫通する貫通孔19が分割線14上に形成される。この貫通孔19を形成した後の生の複合積層体18が、図5に平面図でも示されている。なお、図5において、第1の収縮抑制層16の一部は破断され、その下にある生の多層集合基板2の一部が図示されている。
【0054】
上述した貫通孔19の形成工程について、図6を参照して説明する。
【0055】
図6(1)に示すように、生の複合積層体18は金型20上に置かれ、第1の収縮抑制層16側から矢印21で示すように積層方向に打ち抜くことによって、貫通孔19が形成される。このとき、貫通孔19を規定する壁部において、生の複合積層体18を構成する材料の流動が打ち抜き方向21に生じ、セラミックグリーン層3ならびに収縮抑制層16および17において垂れ部22が形成される。
【0056】
しかしながら、金型20に対して、たとえば50μm程度の厚みしか有していない第2の収縮抑制層17を介在させて配置されている最も下のセラミックグリーン層3にあっては、垂れ部22はそれほど大きく形成されない。
【0057】
図6では、導体15の図示が省略されているが、貫通孔19は、図1(3)に示すように、導体15を貫通する位置に設けられる。これによって、導体15は、その一部が貫通孔19の内面上に露出する状態とされる。また、この実施形態では、貫通孔19を設けることによって、導体15は分断される。
【0058】
貫通孔19の平面形状すなわち断面形状については、図5に示されている。この実施形態では、貫通孔19は、長方形の断面形状を有していて、この断面形状の長手方向は、分割線14の延びる方向に向けられている。このようにすることによって、後述する分割工程において、複数の多層セラミック基板1を取り出すための多層集合基板2aの分割をより円滑に進めることができる。
【0059】
なお、貫通孔19の断面形状は、たとえば、正方形、円形、楕円形等の他の形状に変更されてもよい。
【0060】
次に、図2(1)に示すように、貫通孔19に有機物23が充填される。有機物23としては、樹脂ペーストが好適に用いられ、より好ましくは、800℃以下の空気中で焼失する有機物粉末とビヒクルとの混合物が用いられる。一例として、有機物23として、ポリプロピレンの粉末をエチルセルロース系のビヒクルに分散させたものが用いられ、貫通孔19への充填には、スキージングが適用される。
【0061】
上述のように、貫通孔19に有機物23が充填された状態にある生の複合積層体18は、図7に平面図でも示されている。
【0062】
次に、図2(2)に示すように、生の複合積層体18における分割線14の位置に沿って、切り込み溝24が設けられる。この切り込み溝24は、分割線14の場合と同様、格子状に配列される。切り込み溝24の形成には、たとえば、カッター刃を生の複合積層体18の表面に押し当てたり、回転刃で切り込む方法等を採用することができる。
【0063】
切り込み溝24は、第1および第2の収縮抑制層16および17のいずれか一方を厚み方向に貫通しかつ生の多層集合基板2の厚みの一部にまで届く深さをもって設けられる。この深さは、たとえば、生の多層集合基板2の厚みの1/10〜4/10程度まで届くようにされる。また、好ましくは、図2(2)に示したように、切り込み溝24は、第2の収縮抑制層17側に設けられる。
【0064】
なお、有機物23は、このような切り込み溝24を形成する際にも、貫通孔19の変形を防止するように作用する。しかしながら、このような利点を特に望まないならば、図2(1)に示した貫通孔19に有機物23を充填する工程は、図2(2)に示した切り込み溝24を形成する工程の後に実施されてもよい。また、貫通孔19を設ける工程と切り込み溝24を設ける工程とを逆の順序で実施してもよい。
【0065】
次に、図2(3)に示すように、生の複合積層体18の第2の収縮抑制層17上に、第3の収縮抑制層25が配置される。第3の収縮抑制層25は、第1および第2の収縮抑制層16および17と同様、セラミックグリーン層3に含まれるセラミック絶縁材料粉末の焼結温度では焼結しない無機材料粉末を含むものである。この実施形態では、第3の収縮抑制層25は、第1および第2の収縮抑制層16および17と同様の材料から構成され、かつ無機材料粉末を含む無機材料グリーンシートを積層することによって形成される。
【0066】
第3の収縮抑制層25は、比較的薄い第2の収縮抑制層17による焼成工程における収縮抑制効果の不足を補うためのものである。焼成工程において、生の多層集合基板2に及ぼされる収縮抑制効果については、生の多層集合基板2の一方主面側と他方主面側とで均等であることが、焼結後の多層集合基板2aの反りを防止するためには好ましい。そのため、上述のように、第3の収縮抑制層25が配置される場合には、第2および第3の収縮抑制層17および25の合計厚みと第1の収縮抑制層16の厚みとの差は、200μm以下とされることが好ましい。
【0067】
次に、第3の収縮抑制層25が追加された生の複合積層体18が積層方向にプレスされる。このプレスに際しては、たとえば面圧50MPa以上といった比較的高い圧力が適用される。また、このプレス工程において、40〜90℃の温度が付与されることが好ましい。
【0068】
このプレス工程は、第3の収縮抑制層25を積層した後に実施されるものであるので、貫通孔19を形成した後にプレス工程を実施しなければならない状況の典型的な例の1つである。
【0069】
上述のプレス工程において、貫通孔19が有機物23によって充填されているので、貫通孔19が不所望にも変形したり、潰れたりすることを防止することができる。
【0070】
また、プレスされる生の複合積層体18にあっては、切り込み溝24が第3の収縮抑制層25によって覆われた状態となっている。この状態は、切り込み溝24の形状を維持するのに効果的であるとともに、焼成工程において、切り込み溝24の存在のために生じ得る生の多層集合基板2の反りを抑制するのに効果的である。
【0071】
次に、生の複合積層体18は、焼成工程に付される。これによって、図3(1)に示すように、生の多層集合基板2が焼結されて、焼結後の多層集合基板2aとなる。この焼成工程においては、セラミックグリーン層3に含まれるセラミック絶縁材料粉末が焼結し、セラミック層3aとなるが、収縮抑制層16、17および25に含まれる無機材料粉末が焼結しない条件が適用される。また、この焼成工程においては、生の複合積層体18をトレーに載せて焼成することが行なわれるが、トレーとしては、たとえば、通常のアルミナ板からなるものを用いることができる。また、トレーとして、通気性の良好な気孔率の高いアルミナ板からなるものを使用してもよい。
【0072】
焼成工程において、収縮抑制層16、17および25に含まれる無機材料粉末は実質的に焼結しないため、収縮抑制層16、17および25においては、収縮が実質的に生じない。そのため、収縮抑制層16、17および25が生の多層集合基板2を拘束し、それによって、生の多層集合基板2は、厚み方向にのみ実質的に収縮するが、主面方向での収縮が抑制される。その結果、焼結後の多層集合基板2aにおいて不均一な変形等がもたらされにくくなる。
【0073】
また、上述の焼成工程において、貫通孔19内の有機物23は焼失する。
【0074】
次に、収縮抑制層16、17および25が、たとえばブラシ等を用いて除去され、それによって、図3(2)に示すように、焼結後の多層集合基板2aが取り出される。
【0075】
図3(2)に示した焼結後の多層集合基板2aにおける貫通孔19を規定する壁部でのセラミック層3aの変形状態が図6(2)に示されている。
【0076】
図6(2)に示すように、焼結後の多層集合基板2aにおける貫通孔19の周囲には、バリ26が形成される。このバリ26は、図6(1)に示すように、前述した貫通孔19を形成する工程において最も下のセラミックグリーン層3に形成された垂れ部22に由来するものである。前述したように、生の複合積層体18を金型20上に置き、矢印21方向への打ち抜きによって貫通孔19を形成するとき、最も下のセラミックグリーン層3にあっては、金型20に対して、比較的薄い第2の収縮抑制層17を介在させた状態で位置しているので、それほど大きな垂れ部22が形成されない。したがって、バリ26の突出寸法27は、小さく抑えられることができる。たとえば、第2の収縮抑制層17の厚みが5μmである場合には、バリ26の突出寸法27は5μm以下に抑えることができる。
【0077】
次に、焼結後の多層集合基板2aに対して、必要に応じて、無電解めっきのような湿式めっきが施され、それによって、貫通孔19の内面に露出する導体15の表面にめっき膜を析出させる工程が実施される。より具体的には、無電解めっきによって、導体15の表面に、たとえば、ニッケルめっきが膜が形成され、その上に、金めっき膜が形成される。
【0078】
次に、焼結後の多層集合基板2aが、切り込み溝24に沿ってチョコレートブレイク態様で分割され、それによって、図3(3)に示すように、複数の多層セラミック基板1が取り出される。
【0079】
この多層セラミック基板1の側面には、貫通孔19の分断によって与えられた凹部12が形成され、この凹部12の内面上には、導体15の一部が露出し、外部電極13を与えている。
【0080】
次に、この発明による貫通孔19への有機物23の充填の効果を確認するために実施した実験例について説明する。
【0081】
この実験例では、貫通孔19を、0.2mm×1.0mmの断面寸法を有する長方形とし、ここに有機物23を充填した場合と充填しない場合とにおいて、得られた焼結後の多層集合基板2aでの貫通孔の形状変化を評価するとともに、導体15へのめっき付与性を評価した。貫通孔19の形状変化については、貫通孔19の開口面積を、その上面と下面とで測定し、また、貫通孔19の変形率を、その上面と下面とで求めた。
【0082】
以上の結果が表1に示されている。
【0083】
【表1】
【0084】
表1からわかるように、「有機物充填あり」によれば、「有機物充填なし」に比べて、貫通孔19の開口面積が十分に維持され、また、変形率も低く抑えられている。その結果、「めっき付与性」については、「有機物充填なし」ではめっき膜の「付着なし」であったのに対し、「有機物充填あり」ではめっき膜の「付着あり」であり、良好なめっき付与性を与え得ることがわかる。
【0085】
次に、多層セラミック基板1において貫通孔19を分断することによって形成された凹部12およびその内面上に形成された外部電極13の使用方法について説明する。
【0086】
図8は、多層セラミック基板1がマザーボード10上に実装された状態を示している。この実装状態において、外部電極13は、マザーボード10上に設けられた導電ランド28に半田29を介して電気的に接続される。すなわち、図8に示した使用方法では、外部電極13は、多層セラミック基板1の第2の主面8上に形成された外部導体膜9と同様、マザーボード10に対する電気的接続を図るために用いられる。
【0087】
図9は、多層セラミック基板1にキャップ30が装着された状態を示している。キャップ30は、脚部31を備え、この脚部31が凹部12内に位置されることによって、キャップ30が多層セラミック基板1に対して位置合わせされる。そして、脚部31が、たとえば半田32によって、外部電極13に接合されることにより、キャップ30が多層セラミック基板1に対して機械的に固定される。この場合、キャップ30が導電性金属から構成されるとき、外部電極13とキャップ30とは電気的に接続された状態となる。
【0088】
以上、この発明を図示した実施形態に関連して説明したが、この発明の範囲内において、その他、種々の変形例が可能である。
【0089】
たとえば、図示の実施形態では、導体15は、生の多層集合基板2の積層方向に貫通するように配置されていたが、これに代えて、生の多層集合基板2の積層方向の一部においてのみ延びるように配置されていてもよい。この場合には、得られた多層セラミック基板1の側面に形成された凹部12内において、外部電極13が、多層セラミック基板1の厚み方向寸法の一部においてのみ延びることになる。この構成によれば、多層セラミック基板1を、図8に示すように、マザーボード10上に実装するとき、消費される半田29の量を低減することができるばかりでなく、半田29によって形成される半田フィレットの高さをより低くすることができ、かつ、一定にすることが容易である。したがって、多層セラミック基板1が高周波用途に向けられるとき、半田フィレットによって与えられるインダクタンス成分のばらつきを低減することができる。
【0090】
また、生の多層集合基板2の内部に、導体15が配置されていなくてもよい。この場合であっても、貫通孔19の存在は、焼結後の多層集合基板2aの分割線14に沿う分割を円滑に行なえるという効果を発揮させることができる。また、分割後において、分断された貫通孔19によって与えられた凹部12は、たとえば図9に示すようにキャップ30が装着される場合の脚部31の位置決めを可能にし、あるいは、マザーボード等に対する位置合わせのために用いられることができる。
【0091】
上述の場合において、凹部12内に外部電極13を設ける必要があるならば、凹部12の内面上に、外部電極13となる導電性ペーストのような導体を付与すればよい。このように導電性ペーストが付与される場合には、その後、導電性ペーストを焼き付けるための工程および必要なめっき工程が実施されることになる。
【0092】
また、図示の実施形態では、切り込み溝24は、焼成前の生の複合積層体18に対してこれを設けるようにしたが、焼結後の多層集合基板2aに切り込み溝を設け、この切り込み溝に沿って多層集合基板2aを分割するようにしてもよい。この場合、通常は、収縮抑制層16、17および25を除去した後の多層集合基板2aに切り込み溝が設けられることになるが、焼成後であって、収縮抑制層16、17および25が除去される前の段階で切り込み溝を設ける工程を実施してもよい。
【0093】
また、図示の実施形態では、生の複合積層体18を作製するにあたって、セラミックグリーン層3となるセラミックグリーンシートならびに収縮抑制層16、17および25となる無機材料グリーンシートをそれぞれ用意し、これらを積層する工程を採用したが、セラミックグリーンシートや無機材料グリーンシートを予め用意することなく、セラミックグリーン層3となるべきセラミックスラリーや収縮抑制層16、17および25となるべき無機材料スラリーを、印刷等の方法によって付与することを繰り返して、生の複合積層体18のための積層構造を得るようにしてもよい。
【0094】
また、図示の実施形態では、貫通孔19は、導体15を分断するように設けられたが、必ずしも導体15を分断する必要はなく、たとえば、貫通孔19が導体15の中心からずれた位置に設けられるなどして、単に、貫通孔19の内面上に導体15の一部が露出するように設けられてもよい。
【0095】
また、図示の実施形態では、生の複合積層体18を焼成する前に、比較的薄い第2の収縮抑制層17の厚みを補うため、第2の収縮抑制層17上に第3の収縮抑制層25を配置するようにしたが、第2の収縮抑制層17のみで必要とする収縮抑制効果が得られる場合には、第3の収縮抑制層25が配置されない状態で焼成工程が実施されてもよい。
【0096】
また、図示の実施形態では、生の多層集合基板2の一方の主面上に第1の収縮抑制層16を配置し、他方の主面上に第2の収縮抑制層17を配置した状態にある、生の複合積層体18に対し、貫通孔19を形成する工程を実施したが、たとえば第1の収縮抑制層16のみが配置された生の多層集合基板2に対して、貫通孔19を形成し、その後、第2および/または第3の収縮抑制層17および/または25を配置するようにしてもよい。
【0097】
また、図示の実施形態では、焼成される生の複合積層体18が、生の多層集合基板2の一方および他方の主面上に第1ならびに第2および第3の収縮抑制層16ならびに17および25が配置された状態を有していたが、たとえば、焼成時の反りの問題を無視することができるならば、第1の収縮抑制層16のみというように、生の多層集合基板2の一方の主面上にのみ収縮抑制層が配置された状態にある生の複合積層体を焼成するようにしてもよい。
【0098】
さらに、この発明は、いわゆる無収縮プロセスではない方法、すなわち、収縮抑制層を備えない生の多層集合基板を焼成する場合にも、適用することができる。
【0099】
上述の場合、および、前述のように、貫通孔が形成される段階で、生の多層集合基板2の少なくとも一方の主面上に収縮抑制層が配置されない場合には、貫通孔19を打ち抜きによって形成したとしても、得られた多層セラミック基板1において、バリ26が生じるという問題に遭遇することはない。
【0100】
また、図面では、多層セラミック基板1において、別のチップ部品を収容するためのキャビティが図示されなかったが、多層セラミック基板1は、このようなキャビティを備えていてもよい。
【0101】
【発明の効果】
以上のように、この発明によれば、多数個取りによって多層セラミック基板を製造しようとする方法において、分割線上に形成された貫通孔に有機物を充填した状態で、生の多層集合基板を積層方向にプレスするようにしているので、このプレス工程において、貫通孔が不所望にも変形したり、潰れたりすることを防止することができる。したがって、生の多層集合基板に貫通孔を形成した後に、生の多層集合基板をプレスする、といった工程順を問題なく採用することができる。
【0102】
このようなことから、たとえば図示した実施形態のように、貫通孔19を形成した後に第3の収縮抑制層25を配置したり、あるいは、生の多層集合基板の少なくとも一方の主面上には収縮抑制層を配置しない段階で貫通孔を形成し、その後に収縮抑制層を配置したりする場合には、後で配置された収縮抑制層と貫通孔が形成された収縮抑制層または生の多層集合基板との間での密着性を高めるため、プレス工程を実施しなければならないが、このプレス工程において、貫通孔が不所望にも変形したり、潰れたりすることを有利に防止することができる。
【0103】
また、上述のように、貫通孔が潰れてしまうことを防止できるので、貫通孔の形成によって、生の多層集合基板の内部に配置されていた導体を露出させる場合には、この露出した導体に対するめっき処理を適正に行なうことができる。
【0104】
また、貫通孔に有機物が充填された状態でプレス工程が実施されるので、貫通孔の内周面が有機物によってより平滑化されるという効果も期待することができる。
【0105】
この発明において、いわゆる無収縮プロセスを適用して、貫通孔を形成する工程および有機物を充填する工程を、生の多層集合基板の一方の主面上に第1の収縮抑制層が配置された状態にある生の複合積層体に対して実施し、貫通孔を、第1の収縮抑制層側から積層方向に打ち抜くことによって形成し、有機物を充填した後、生の多層集合基板の他方の主面上に、第2の収縮抑制層を配置するようにすれば、収縮抑制層の存在にも関らず、貫通孔の形成によってバリが生じることを防止することができる。
【0106】
また、この発明において、無収縮プロセスを適用して、貫通孔を形成する工程および有機物を充填する工程を、生の多層集合基板の一方の主面上に第1の収縮抑制層が配置されかつ第2の主面上に第1の収縮抑制層より薄い第2の収縮抑制層が配置された状態にある生の複合積層体に対して実施し、貫通孔を第1の収縮抑制層側から積層方向に打ち抜くことによって形成し、有機物を充填した後、第2の収縮抑制層上に第3の収縮抑制層を配置するようにすれば、貫通孔を形成する際には比較的薄い第2の収縮抑制層しかバリの形成に寄与しないため、このようなバリの突出度合いを小さくすることができる。
【0107】
上述の実施形態の場合、生の複合積層体において、生の多層集合基板の、第1および第2の収縮抑制層の各々に接する主面上に、それぞれ、導体膜が形成されていても、この導体膜を第1および第2の収縮抑制層によって覆った状態とすることができるので、貫通孔を形成する工程において、導体膜が擦れて損傷するという不都合には遭遇しない。
【0108】
生の多層集合基板が、得ようとする多層セラミック基板の外部電極となるべき導体を内部に配置しており、貫通孔を形成する工程において、この導体の一部が貫通孔の内面上に露出する状態とされ、多層集合基板を分割することによって得られた複数の多層セラミック基板の側面上であって、分断された貫通孔によって与えられた凹部の内面上に、外部電極を与えるように導体の一部が外部に向かって露出するようにされると、外部電極を形成するための特別な工程が不要となるとともに、外部電極が凹部の内面上に位置されるので、その位置および幅に関して高い精度を得ることができ、多層セラミック基板の小型化および配線の高密度化に有利に対応することができる。また、外部電極に対してめっきを施す場合、めっき膜の異常析出が生じても、隣り合う外部電極間で電気的短絡がもたらされにくくなる。
【0109】
上述の場合において、貫通孔が、導体を分断するように設けられると、1つの貫通孔の形成によって、2つの外部電極、すなわち2つの多層セラミック基板のための外部電極を形成することができる。
【0110】
また、多層セラミック基板の側面上であって、分断された貫通孔によって与えられた凹部の内面上に、外部電極を形成するための導体を設けるようにしても、外部電極に対して、その位置および幅に関して高い精度を与えることができる。
【図面の簡単な説明】
【図1】この発明の一実施形態による多層セラミック基板1の製造方法に含まれるいくつかの典型的な工程を順次示す断面図である。
【図2】図1に示した工程に続いて実施されるいくつかの典型的な工程を順次示す断面図である。
【図3】図2に示した工程に続いて実施されるいくつかの典型的な工程を順次示す断面図である。
【図4】図1(1)に示した段階にある生の多層集合基板2を示す平面図である。
【図5】図1(3)に示した段階にある生の複合積層体18を示す平面図である。
【図6】(1)は、図1(3)に示した貫通孔19を形成する工程において生じ得る生の複合積層体18の挙動を図解的に示す断面図であり、(2)は、(1)に示した生の複合積層体18から得られた焼結後の多層集合基板2aを図解的に示す断面図である。
【図7】図2(1)に示した段階にある生の複合積層体18を示す平面図である。
【図8】図3(3)に示した多層セラミック基板1がマザーボード10上に実装された状態を示す断面図である。
【図9】図3(3)に示した多層セラミック基板1にキャップ30を装着した状態を一部断面で示す正面図である。
【符号の説明】
1 多層セラミック基板
2 生の多層集合基板
2a 焼結後の多層集合基板
3 セラミックグリーン層
3a セラミック層
7,9 外部導体膜
12 凹部
13 外部電極
14 分割線
15 導体
16 第1の収縮抑制層
17 第2の収縮抑制層
18 生の複合積層体
19 貫通孔
21 打ち抜き方向を示す矢印
22 垂れ部
23 有機物
24 切り込み溝
25 第3の収縮抑制層
Claims (10)
- 複数の積層されたセラミック層を備える、多層セラミック基板を製造する方法であって、
セラミック絶縁材料粉末を含みかつ焼成されることによって複数の前記セラミック層となる複数のセラミックグリーン層を備え、焼成後において所定の分割線に沿ってそれぞれ分割されることによって複数の前記多層セラミック基板を取り出すことができるようにされている、生の多層集合基板を作製する工程と、
生の前記多層集合基板を貫通する貫通孔を前記分割線上に形成する工程と、
前記貫通孔に有機物を充填する工程と、
次いで、生の前記多層集合基板を積層方向にプレスする工程と、
次いで、生の前記多層集合基板を焼成し、焼結後の前記多層集合基板を得る工程と、
焼結後の前記多層集合基板を前記分割線に沿って分割し、それによって、分断された前記貫通孔によって与えられた凹部を側面上に位置させている複数の前記多層セラミック基板を取り出す工程と
を備える、多層セラミック基板の製造方法。 - 生の前記多層集合基板の少なくとも一方の主面上に、前記セラミック絶縁材料粉末の焼結温度では焼結しない無機材料粉末を含む収縮抑制層を配置する工程をさらに備え、
前記貫通孔を形成する工程、前記有機物を充填する工程、前記プレスする工程および前記焼成する工程は、生の前記多層集合基板の少なくとも一方の主面上に前記収縮抑制層が配置された状態にある生の複合積層体に対して実施され、
前記焼成する工程は、前記セラミック絶縁材料粉末が焼結するが前記無機材料粉末が焼結しない条件下で実施され、
前記焼成する工程の後、前記収縮抑制層を除去する工程をさらに備える、請求項1に記載の多層セラミック基板の製造方法。 - 生の前記多層集合基板の一方の主面上に、前記セラミック絶縁材料粉末の焼結温度では焼結しない無機材料粉末を含む第1の収縮抑制層を配置する工程をさらに備え、
前記貫通孔を形成する工程および前記有機物を充填する工程は、生の前記多層集合基板の一方の主面上に前記第1の収縮抑制層が配置された状態にある生の複合積層体に対して実施され、
前記貫通孔を形成する工程は、前記第1の収縮抑制層側から積層方向に打ち抜くことによって前記貫通孔を形成するように実施され、
前記有機物を充填する工程の後、生の前記多層集合基板の他方の主面上に、前記セラミック絶縁材料粉末の焼結温度では焼結しない無機材料粉末を含む第2の収縮抑制層を配置する工程をさらに備え、
前記プレスする工程は、生の前記多層集合基板の一方および他方の主面上に前記第1および第2の収縮抑制層がそれぞれ配置された状態にある生の複合積層体に対して実施され、
前記焼成する工程は、前記セラミック絶縁材料粉末が焼結するが前記無機材料粉末が焼結しない条件下で実施され、
前記焼成する工程の後、前記第1および第2の収縮抑制層を除去する工程をさらに備える、請求項1に記載の多層セラミック基板の製造方法。 - 生の前記多層集合基板の一方の主面上に、前記セラミック絶縁材料粉末の焼結温度では焼結しない無機材料粉末を含む第1の収縮抑制層を配置するとともに、生の前記多層集合基板の他方の主面上に、前記セラミック絶縁材料粉末の焼結温度では焼結しない無機材料粉末を含みかつ前記第1の収縮抑制層より薄い第2の収縮抑制層を配置する工程を工程をさらに備え、
前記貫通孔を形成する工程および前記有機物を充填する工程は、生の前記多層集合基板の一方および他方の主面上に前記第1および第2の収縮抑制層がそれぞれ配置された状態にある生の複合積層体に対して実施され、
前記貫通孔を形成する工程は、前記第1の収縮抑制層側から積層方向に打ち抜くことによって前記貫通孔を形成するように実施され、
前記有機物を充填する工程の後、前記第2の収縮抑制層上に、前記セラミック絶縁材料粉末の焼結温度では焼結しない無機材料粉末を含む第3の収縮抑制層を配置する工程をさらに備え、
前記プレスする工程は、生の前記多層集合基板の一方および他方の主面上に前記第1ならびに第2および第3の収縮抑制層がそれぞれ配置された状態にある生の複合積層体に対して実施され、
前記焼成する工程は、前記セラミック絶縁材料粉末が焼結するが前記無機材料粉末が焼結しない条件下で実施され、
前記焼成する工程の後、前記第1ならびに第2および第3の収縮抑制層を除去する工程をさらに備える、請求項1に記載の多層セラミック基板の製造方法。 - 前記有機物を充填する工程の後に、前記分割線の位置に沿って、生の前記多層集合基板に切り込み溝を設ける工程をさらに備える、請求項1ないし4のいずれかに記載の多層セラミック基板の製造方法。
- 前記生の多層集合基板は、得ようとする前記多層セラミック基板の外部電極となるべき導体を内部に配置しており、前記貫通孔を形成する工程において、前記導体は、その一部が前記貫通孔の内面上に露出する状態とされ、前記多層集合基板を分割する工程によって得られた複数の前記多層セラミック基板の側面上であって、分断された前記貫通孔によって与えられた前記凹部の内面上には、前記外部電極を与えるように前記導体の一部が外部に向かって露出するようにされる、請求項1ないし5のいずれかに記載の多層セラミック基板の製造方法。
- 前記貫通孔を形成する工程において、前記貫通孔は、前記導体を分断するように設けられる、請求項6に記載の多層セラミック基板の製造方法。
- 前記多層集合基板を分割する工程によって得られた複数の前記多層セラミック基板の側面上であって、分断された前記貫通孔によって与えられた前記凹部の内面上に、外部電極を形成するための導体を設ける工程をさらに備える、請求項1ないし5のいずれかに記載の多層セラミック基板の製造方法。
- 前記有機物は、樹脂ペーストである、請求項1ないし8のいずれかに記載の多層セラミック基板の製造方法。
- 前記樹脂ペーストは、800℃以下の空気中で焼失する有機物粉末とビヒクルとの混合物である、請求項9に記載の多層セラミック基板の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003002159A JP4228701B2 (ja) | 2003-01-08 | 2003-01-08 | 多層セラミック基板の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003002159A JP4228701B2 (ja) | 2003-01-08 | 2003-01-08 | 多層セラミック基板の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004214540A true JP2004214540A (ja) | 2004-07-29 |
JP4228701B2 JP4228701B2 (ja) | 2009-02-25 |
Family
ID=32819982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003002159A Expired - Fee Related JP4228701B2 (ja) | 2003-01-08 | 2003-01-08 | 多層セラミック基板の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4228701B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100455162C (zh) * | 2004-11-05 | 2009-01-21 | 日月光半导体制造股份有限公司 | 电路板的制造方法 |
CN115157713A (zh) * | 2022-07-14 | 2022-10-11 | 西安微电子技术研究所 | 一种微波盲槽外形铣切方法 |
-
2003
- 2003-01-08 JP JP2003002159A patent/JP4228701B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100455162C (zh) * | 2004-11-05 | 2009-01-21 | 日月光半导体制造股份有限公司 | 电路板的制造方法 |
CN115157713A (zh) * | 2022-07-14 | 2022-10-11 | 西安微电子技术研究所 | 一种微波盲槽外形铣切方法 |
Also Published As
Publication number | Publication date |
---|---|
JP4228701B2 (ja) | 2009-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6938332B2 (en) | Method for manufacturing multilayer ceramic substrates | |
JP3687484B2 (ja) | セラミック基板の製造方法および未焼成セラミック基板 | |
JP5734434B2 (ja) | 配線基板、電子装置および電子モジュール | |
JP3547327B2 (ja) | セラミック多層基板の製造方法 | |
JP2002141248A (ja) | セラミック電子部品およびその製造方法 | |
JP2010087266A (ja) | 複合基板及びその製造方法 | |
JP2003229669A (ja) | 多層セラミック基板、その製造方法および製造装置 | |
WO2006040941A1 (ja) | 積層セラミック部品とその製造方法 | |
KR101175412B1 (ko) | 적층형 세라믹 전자부품의 제조방법 | |
JP4284782B2 (ja) | 多層セラミック基板およびその製造方法 | |
JP4581903B2 (ja) | セラミック電子部品の製造方法 | |
JP3591437B2 (ja) | 多層セラミック基板およびその製造方法ならびに電子装置 | |
JP2004247334A (ja) | 積層型セラミック電子部品およびその製造方法ならびにセラミックグリーンシート積層構造物 | |
JP4826253B2 (ja) | セラミック多層基板の製造方法およびセラミック多層基板 | |
JP4038616B2 (ja) | 多層セラミック基板の製造方法 | |
JP4228701B2 (ja) | 多層セラミック基板の製造方法 | |
JP5314370B2 (ja) | セラミック部品の製造方法 | |
JP2010080866A (ja) | 多層配線板及びその製造方法 | |
JP3330104B2 (ja) | 多数個取りセラミック配線基板の製造方法 | |
JP4595199B2 (ja) | 多層セラミック基板の製造方法 | |
JP4089356B2 (ja) | 多層セラミック基板の製造方法 | |
JP2004165343A (ja) | 積層型セラミック電子部品およびその製造方法 | |
JP3898653B2 (ja) | ガラスセラミック多層配線基板の製造方法 | |
JP5289874B2 (ja) | セラミック部品の製造方法 | |
JP2004288939A (ja) | 低温焼成多層セラミック配線基板の製法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081124 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131212 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |