JP2004207352A - Module comprising built-in electronic components - Google Patents

Module comprising built-in electronic components Download PDF

Info

Publication number
JP2004207352A
JP2004207352A JP2002372227A JP2002372227A JP2004207352A JP 2004207352 A JP2004207352 A JP 2004207352A JP 2002372227 A JP2002372227 A JP 2002372227A JP 2002372227 A JP2002372227 A JP 2002372227A JP 2004207352 A JP2004207352 A JP 2004207352A
Authority
JP
Japan
Prior art keywords
electronic component
insulating resin
wiring board
solder
electronic components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002372227A
Other languages
Japanese (ja)
Other versions
JP4350366B2 (en
Inventor
Eiji Kawamoto
英司 川本
Masaaki Hayama
雅昭 葉山
Masaaki Katsumata
雅昭 勝又
Hiroki Yabe
裕城 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002372227A priority Critical patent/JP4350366B2/en
Priority to CN2003801001779A priority patent/CN1692685B/en
Priority to US10/500,539 priority patent/US6998532B2/en
Priority to PCT/JP2003/016427 priority patent/WO2004060034A1/en
Publication of JP2004207352A publication Critical patent/JP2004207352A/en
Application granted granted Critical
Publication of JP4350366B2 publication Critical patent/JP4350366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10152Auxiliary members for bump connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/10175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81136Aligning involving guiding structures, e.g. spacers or supporting members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that solder is re-fused and electrodes are shorted during reflow connection with a mother substrate in a module comprising built-in electronic components which has a structure of resin mold by mounting electronic components using the existing solder. <P>SOLUTION: In a module comprising built-in electronic components wherein at least one or more electronic components 4, a wiring substrate 2 including at least one or more wiring layers and electronic components 4 are connected with an electrode 3 of the wiring substrate 2 and solder 5, these elements are covered with a first insulation resin 7, and an electromagnetic shield layer of metal film 15 is provided at the surface layer of the first insulation resin 7, only the electrode 3 of the wiring substrate 2 is surrounded by solder resist 6. Accordingly, while the areas just under the electronic components are surely filled with the insulation resin, thick insulation resin can be formed covering the electronic components by forming the solder resist only in the periphery of the electrode at the surface layer of the wiring substrate to form a constant space between the electronic components and wiring substrate, setting the contents of inorganic filler included in the first insulation resin to 50wt.% to 95wt.%, and setting the particle size to a value smaller than the interval between the wiring substrate not including the solder resist and electronic components. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電子部品内蔵モジュールに関し、特に、配線基板の上部に電子部品が配置され、これを絶縁樹脂で覆った電子部品内蔵モジュールに関するものである。
【0002】
【従来の技術】
近年、基板上に複数の電子部品を搭載しその電子部品を樹脂モールドして構成した電子部品内蔵モジュールを用いる小型の電子機器が急激に普及してきた。図13に従来の樹脂モールドされた電子部品内蔵モジュール101を示す。
【0003】
図13の断面図に示すように配線パターン111や電極103を配線基板102の表面に形成し、その表面をソルダーレジスト106で覆っている。
【0004】
この配線基板102の内層にはインナービア110を形成し、このインナービア110により配線パターン112や前記配線基板102の裏面に形成した裏面電極113を電気的に接続している。この裏面電極113にはマザー基板(図示せず)と接続するためのはんだ114を設けている。
【0005】
そして、電子部品104と電極103とをはんだ105で接続した後、電子部品104を包み込むように配線基板102の表面上を絶縁樹脂107で覆い、表層に金属めっき電磁界シールド層115を設けた電子部品内蔵モジュールである。
【0006】
なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。
【0007】
【特許文献1】
特開2001−24312号公報
【0008】
【発明が解決しようとする課題】
しかしながら、従来の樹脂モールドされた電子部品内蔵モジュールでは、電子部品を配線基板上に実装する材料として、はんだやワイヤボンドが用いられている。
【0009】
ワイヤボンド方式はワイヤで接合するために電子部品の面積以上の広い面積が必要となり、電子機器の小型化には不向きである。それに対してはだんだで接合する場合は一部電極端部のフィレットは必要であるが、殆ど電子部品と同等の面積で電子部品を実装することが可能で電子機器の小型化には有利である。しかし、電子部品をはんだで実装する場合はんだショート防止のため配線基板の表面の電極以外の部分をソルダーレジストで覆っている。
【0010】
また、実装時の電極間のはんだショート防止のため、使用するはんだ量は非常に少ない。それ故、実装後の電子部品とソルダーレジストで覆われた配線基板との隙間が約10μm程度しかなく絶縁樹脂で電子部品をモールドする場合、電子部品と配線基板との隙間部分に絶縁樹脂が十分入りきらずに空間ができる。
【0011】
この電子部品と配線基板との隙間部分に空間ができた状態の電子部品内蔵モジュールをマザー基板とはんだ接合を行うと上記はんだが電子部品内蔵モジュール内で再溶融した時に、溶融したはんだが電子部品と配線基板の隙間部分へ流出する。その結果、電極間でショート不良を起こし電子部品内蔵モジュールの機能を害するものとなっていた。
【0012】
また、この電子部品と配線基板の隙間に絶縁樹脂を充填する方法として、真空印刷工法を用いることが提案されている。しかしんながら、通常絶縁樹脂にはSiO2等の無機フィラーが配合されており、これらの無機フィラーの粒径は数十μmの大きさで、仮に真空印刷工法を用いた場合でも、ソルダーレジストで覆われた配線基板と電子部品の間隔は10μm程度しかないため、物理的に電子部品と配線基板の隙間に絶縁樹脂を充填することは不可能である。
【0013】
また、10μm以下のフィラー径を有するアンダーフィルを用いることで電子部品と配線基板の隙間を埋めることは可能であるが、これらのアンダーフィルは細かく分級した無機フィラーを用いているため、非常に高価でコストアップにつながるという問題点を有していた。
【0014】
本発明は上記従来の問題を解決し、接続信頼性及び量産性に優れた電子部品内蔵モジュールを提供することを目的としている。
【0015】
【課題を解決するための手段】
上記課題を解決するために本発明の請求項1に記載の発明は、少なくとも1つ以上の電子部品と、少なくとも一層以上の配線層を有する配線基板と、前記電子部品をこの配線基板の電極にはんだで接続し、これらを第1の絶縁樹脂で覆い、この第1の絶縁樹脂の表層に金属膜による電磁界シールド層を設けた電子部品内蔵モジュールにおいて、前記配線基板に前記電子部品をはんだで接続する電極の周囲のみにソルダーレジストの囲いを形成した電子部品内蔵モジュールとしたものであり、電子部品を配線基板上に実装する際に、電極外へのはんだの流出を防止するとともに、電子部品と配線基板との隙間をソルダーレジストの厚み分だけ大きく開けることが可能となり、その隙間に第1の絶縁樹脂を良好に充填することができる。また、第1の絶縁樹脂の多くが配線基板のソルダーレジスト以外の樹脂部分と密着できるため、配線基板と第1の絶縁樹脂との密着強度を高くすることができる。以上により、電子部品内蔵モジュールをマザー基板へ実装する際に起こるはんだの再溶融時にも、第1の絶縁樹脂が防護壁となり、はんだの電極外への流出を防止することができるという作用を有する。
【0016】
請求項2に記載の発明は、ソルダーレジストの囲い部分が1つの電子部品の電極間でそれぞれ独立する構成とした請求項1記載の電子部品内蔵モジュールとしたものであり、電子部品と配線基板の間隔を確実に大きく形成することができるため、第1の絶縁樹脂または第2の絶縁樹脂を容易に電子部品と配線基板の間に充填することが可能となる。そのため、電子部品内蔵モジュールをマザー基板へ実装する際に起こるはんだの再溶融時にも、第1の絶縁樹脂または第2の絶縁樹脂が防護壁となり、はんだの電極外への流出を確実に防止することができるという作用を有する。
【0017】
請求項3に記載の発明は、前記電子部品と前記配線基板の間に第2の絶縁樹脂が存在する請求項1記載の電子部品内蔵モジュールとしたものであり、電子部品と配線基板との隙間に樹脂を充填することのみを目的に第2の絶縁樹脂を形成できるので、さらに良好に電子部品と配線基板の間に樹脂を充填することが可能となる。そのため、電子部品内蔵モジュールをマザー基板へ実装する際に起こるはんだの再溶融時にも、第2の絶縁樹脂が防護壁となり、はんだの電極外への流出を確実に防止することができるという作用を有する。
【0018】
請求項4に記載の発明は、複数個の電子部品と少なくとも一層以上の配線層を有する配線基板と、前記電子部品をこの配線基板の電極にはんだで接続し、これらを第1の絶縁樹脂で覆い、この第1の絶縁樹脂の表層に金属めっきによる電磁界シールド層を設けた電子部品内蔵モジュールにおいて、能動部品からなる電子部品と前記配線基板の間に第3の絶縁樹脂を形成した請求項2記載の電子部品内蔵モジュールとしたものであり、能動部品からなる電子部品と配線基板との熱膨張係数を緩和し電気的接続の信頼性を確保する作用を有する。
【0019】
請求項5に記載の発明は、能動部品からなる電子部品とそれ以外の電子部品の間にソルダーレジストの壁を形成した請求項4記載の電子部品内蔵モジュールとしたものであり、ソルダーレジストの壁により第2の絶縁樹脂を必要としない電子部品への塗布を制御することが可能であるという作用を有する。
【0020】
請求項6に記載の発明は、前記一部の電子部品が実装される配線基板の表面の電極以外の部分をソルダーレジストで覆われている請求項4記載の電子部品内蔵モジュールとしたものであり、配線基板の表層に電極以外に配線パターンが形成されている構造においても、電極と配線パターンのショートを防止することができるという作用を有する。
【0021】
請求項7に記載の発明は、第1の絶縁樹脂が熱硬化性樹脂及び無機フィラーを含む混合物からなり、無機フィラーの配合比率が50重量%〜95重量%、無機フィラーの粒径が前記ソルダーレジストを除く配線基板と前記電子部品の間隔より小さい粒径とした請求項1記載の電子部品内蔵モジュールとしたものであり、電子部品と配線基板との間に第1の絶縁樹脂を確実に充填できるとともに、第1の絶縁樹脂の厚さを内蔵する電子部品の高さより肉厚に形成することが容易であるという作用を有する。
【0022】
請求項8に記載の発明は、第2の絶縁樹脂が熱硬化性樹脂及び無機フィラーを含む混合物からなり、無機フィラーの配合比率が10重量%〜70重量%、無機フィラーの粒径が前記ソルダーレジストを含む配線基板と前記電子部品の間隔より小さい粒径とした請求項2記載の電子部品内蔵モジュールとしたものであり、電子部品と配線基板との間に第2の絶縁樹脂を確実に充填できるという作用を有する。
【0023】
請求項9に記載の発明は、第1の絶縁樹脂の曲げ弾性率が20GPa以下とした請求項1または2記載の電子部品内蔵モジュールとしたものであり、柔軟性のある樹脂を用いることではんだの再溶融時の体積膨張を吸収緩和して電子部品の電極外へのはんだの流出を防止することが可能であるという作用を有する。
【0024】
請求項10に記載の発明は、第2の絶縁樹脂の曲げ弾性率が20GPa以下とした請求項2記載の電子部品内蔵モジュールとしたものであり、柔軟性のある樹脂を用いることではんだの再溶融時の体積膨張を吸収緩和して電子部品の電極外へのはんだの流出を防止することが可能であるという作用を有する。
【0025】
請求項11に記載の発明は、第3の絶縁樹脂の熱膨張係数が第1の絶縁樹脂の熱膨張係数より大きくした請求項4記載の電子部品内蔵モジュールであり、電子部品の接続信頼性を確保するという作用を有する。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0027】
(実施の形態1)
図1は本発明の実施の形態1による電子部品内蔵モジュールの断面図、図2は本発明の実施の形態1による配線基板の上面図、図3は本発明の実施の形態1による複数個の電子部品を内蔵する場合の配線基板の上面図を示す。
【0028】
図1において、配線基板2は表面の電極3や配線パターン11、内部の配線パターン12やインナービア10、裏面に裏面電極13、ソルダーレジスト6が形成された多層配線基板である。
【0029】
配線基板2の表面の電極3の周囲にソルダーレジスト6の囲いを形成している。ソルダーレジスト6は電極3の周囲にのみ形成され、2つの電極3の周囲に形成しているソルダーレジスト6はそれぞれ独立しており、電子部品4の下部で連結していない。ただし、複数の電子部品4の電極3の間ではソルダーレジスト6が連結している。このように必ず電子部品4と配線基板2の間に十分な間隔を形成することが重要である。そして、この十分な間隔を確保することにより第1の絶縁樹脂7が容易に電子部品4と配線基板2の間に充填されるのである。
【0030】
更に、第1の絶縁樹脂7と配線基板2の基材部分とが直接密着することで密着力の弱いソルダーレジスト6の表面と密着する第1の絶縁樹脂7の面積を小さくでき、第1の絶縁樹脂7と配線基板2との密着をより強固にすることが可能となる。
【0031】
配線パターン11、12はたとえば、Cu箔や導電性樹脂組成物などからなる電気導電性を有する物質で構成している。本発明において配線パターン11、12はCu箔を用いている。
【0032】
インナービア10は、たとえば、熱硬化性の導電性物質からなる。熱硬化性の導電性物質としては、たとえば、金属粒子と熱硬化性樹脂とを混合した導電性樹脂組成物を用いることができる。金属粒子としては、Au、AgまたはCuなどを用いることができる。Au、AgまたはCuは導電性が高いために好ましく、Cuは導電性が高くマイグレーションも少なく、また、低コストであるため特に好ましい。熱硬化性樹脂としては、たとえば、エポキシ樹脂、フェノール樹脂またはシアネート樹脂を用いることができる。エポキシ樹脂は耐熱性が高いために特に好ましい。
【0033】
この配線基板2上の所定の位置にはんだ5を用いて電子部品4を実装している。
【0034】
電子部品4は、面実装タイプの受動部品からなる。受動部品としては、抵抗、コンデンサまたはインダクタなどのチップ状部品や振動子、フィルタ等が用いられる。
【0035】
はんだ5にはPb−Sn系の共晶はんだやPbフリーはんだ(例えばSn−Ag−Cu系、Au−Sn系またはSn−Zn系)を用いることができる。また、電子部品4を実装するためのはんだ5と電子部品内蔵モジュール1をマザー基板(図示せず)へ実装するためのはんだ14は同一材料であってもかまわないし、異なる材料を用いてもかまわない。しかしながら、近年の環境問題への配慮を考えるとPbフリーはんだを用いる方が望ましい。
【0036】
次に、第1の絶縁樹脂7は電子部品4を完全に覆うように形成している。第1の絶縁樹脂7は、無機フィラーと熱硬化性樹脂とを含む混合物からなる。無機フィラーには、たとえば、Al23、MgO、BN、AlN、SiO2およびBaTiO3などを用いることができる。無機フィラーの配合比率は、50重量%〜95重量%の範囲内であることが重要である。この範囲内において第1の絶縁樹脂7を電子部品4の高さ以上に肉厚(本発明では1mm)に形成することができるのであるが、この範囲以下になると第1の絶縁樹脂7の流動性が大きくなり電子部品4の高さ以上に肉厚を形成することができない。
【0037】
また、95重量%以上の無機フィラーを含有した第1の絶縁樹脂7を用いた場合は流動性が悪く図1に示すように電子部品4を覆うことができない。また、無機フィラーの粒径はソルダーレジスト6を除く配線基板2と電子部品4の間隔より小さい粒径とすることが重要である。粒径を小さくすることで電子部品4と配線基板2の間に容易に第1の絶縁樹脂を充填することが可能となる。また、第1の絶縁樹脂に含有する熱硬化性樹脂は、エポキシ樹脂、フェノール樹脂、またはシアネート樹脂が好ましい。エポキシ樹脂は、耐熱性が高いために特に好ましい。
【0038】
次に、第1の絶縁樹脂7の表層にめっきによる金属膜15を形成し、電磁界シールド層として作用させている。めっきによる金属膜15は、Au、Ag、Cu、Ni、Cr、Zn、Ti、Al等の材料を少なくとも1種類以上用いて形成している。
【0039】
また、図2、図3において、配線基板2上の電極3の周囲に形成したソルダーレジスト6の構造を示している。
【0040】
図1〜3に示すように、本発明の電子部品内蔵モジュール1においては、電極3の周囲にのみソルダーレジスト6を形成している。
【0041】
このソルダーレジスト6は、電子部品4を配線基板2上にはんだ5で実装する際に、はんだ流出によるショート不良を防止する効果を有するとともに、電極3の周囲にのみ存在しているため、電子部品4と配線基板2との空間を広くすることが可能となる。
【0042】
すなわちソルダーレジスト6の厚みと電子部品4がはんだ5で実装されたときに生じる電子部品4の浮き量により約50μmの空間ができる。そして、第1の絶縁樹脂7に含有される無機フィラーの粒径を、電子部品4と配線基板2の間隔より小さく(本実施の形態の場合、50μm以下)することで、容易に電子部品4と配線基板2との間に第1の絶縁樹脂7を充填することが可能とともに、10μm以下の粒径に限定した無機フィラーを用いる必要がないため、第1の絶縁樹脂7を電子部品4の高さ以上の肉厚(例えば1mm)にすることが可能となる。
【0043】
また、50μm程度まで大きな粒径の無機フィラーを使用できるのでコスト増になることは無い。
【0044】
更に第1の絶縁樹脂7と配線基板2の基材部分とが直接密着するため、密着力の弱いソルダーレジスト6の表面と密着する第1の絶縁樹脂7の面積を小さくでき、第1の絶縁樹脂7と配線基板2との密着をより強固にすることが可能である。
【0045】
以上の構造により、従来、はんだ再溶融時のはんだ流出によるショート不良という問題点を有していた電子部品内蔵モジュールに対して、第1の絶縁樹脂7を充填することが困難であった電子部品4と配線基板2の隙間に、容易に第1の絶縁樹脂7を充填することが可能となり、そのため電子部品内蔵モジュール1をマザー基板(図示せず)へ実装する際に起こるはんだ5の再溶融に際しても、電極3間に第1の絶縁樹脂7が充填されているため、はんだ5の流出防止壁となり電極3間でのショートを防止することができる。
【0046】
また、この時、第1の絶縁樹脂7の曲げ弾性率は20GPa以下とすることが重要である。第1の絶縁樹脂7に20GPa以上の曲げ弾性率を持つ材料を用いた場合、はんだ5の再溶融時の体積膨張により第1の絶縁樹脂7に応力が働くが曲げ弾性率が高いため、はんだ5の体積膨張を押さえつけようとする応力も働く。この応力は釣り合いをとることができず、結果的に第1の絶縁樹脂7にクラックが発生し、このクラック部へ溶融したはんだ5が流出して特性劣化を招くことになる。しかしながら、曲げ弾性率を20GPa以下とすることで、はんだ5の溶融時の体積膨張に対して、第1の絶縁樹脂7が変形して追従することができる。そのため第1の絶縁樹脂7にクラックを発生することがなく、溶融したはんだ5の流出を防止することができる。その結果、はんだショートを起こすことがなく、電子部品内蔵モジュール1の特性を劣化させることがない。
【0047】
以上に示すように、本発明の実施の形態1においては、配線基板2上の電子部品4を実装する電極3の周囲にのみソルダーレジスト6を形成し、電子部品4と配線基板2との空間を広げ、電子部品4と配線基板2の間隔以下の粒径を有する無機フィラーを含有した第1の絶縁樹脂7を用いることで、容易に電子部品4と配線基板2との間へ第1の絶縁樹脂7を充填することが可能となる。この第1の絶縁樹脂7を確実に電子部品4と配線基板2との間に存在させることで、電子部品内蔵モジュール1をマザー基板へ実装する際に再溶融したはんだ5が所定の電極外へ流出することを防止することができる。また、第1の絶縁樹脂7には20GPa以下の曲げ弾性率を有する材料を用いることで再溶融したはんだの体積膨張に追従することができ、第1の絶縁樹脂7にクラックを発生させることなくはんだの流出を防止することが可能となる。
【0048】
(実施の形態2)
図4は本発明の実施の形態2による電子部品内蔵モジュールの断面図を示し、実施の形態1と同一の構造については、同一番号を付与して説明を省略する。
【0049】
図4に示すように、実施の形態1と同様に電極3の周囲にのみソルダーレジスト6を形成し、電子部品4と配線基板2との間を大きくする。そして、この電子部品4と配線基板2との間に第2の絶縁樹脂8を充填し、電子部品4、第2の絶縁樹脂8及び配線基板2を覆うように第1の絶縁樹脂7を形成する。その後、第1の絶縁樹脂7の表層にはめっきによる金属膜15を形成し、電磁界シールド層として作用させている。
【0050】
第2の絶縁樹脂8は、無機フィラーと熱硬化性樹脂とを含む混合物からなる。無機フィラーには、たとえば、Al23、MgO、BN、AlN、SiO2およびBaTiO3などを用いることができる。無機フィラーの配合比率は、10重量%〜70重量%の範囲内であることが重要である。第2の絶縁樹脂8は、電子部品4と配線基板2との間に充填することが目的であるため、できるだけ流動性の良いものでなければならない。また、第1の絶縁樹脂7のように肉厚にする必要もない。それ故、第1の絶縁樹脂7より無機フィラーの配合比率が低く設定されている。
【0051】
しかしながら、第2の絶縁樹脂8は、電子部品4と配線基板2との間に存在して、はんだ再溶融時のはんだ流出防止壁としての役割を果たさなければならない。そのため、第2の絶縁樹脂8内に無機フィラーが全く含有されていない状態では、その流動性は非常に高いのではあるが、容易にはんだ流出が起こり防止壁としての効果を得ることができない。そのため必ず無機フィラーの含有は必要であり、流動性及びはんだ流出防止壁としての両方の効果を満足するために、無機フィラーの含有量が10重量%〜70重量%に設定されている。その結果、電子部品4と配線基板2との間に、容易に第2の絶縁樹脂8を充填することが可能となる。
【0052】
また、実施の形態1と同様に第2の絶縁樹脂8と配線基板2の基材部分が直接密着するため、強固な密着力を得ることが可能である。
【0053】
更に、第1の絶縁樹脂7と同様に第2の絶縁樹脂8も曲げ弾性率が20GPa以下であることが重要である。実施の形態1と同様に、第2の絶縁樹脂8に20GPa以上の曲げ弾性率を持つ材料を用いた場合、はんだ5の再溶融時の体積膨張により第2の絶縁樹脂8に応力が働くが、曲げ弾性率が高いため、はんだ5の体積膨張を押さえつけようとする応力も働く。この応力は釣り合いをとることができず、結果的に第2の絶縁樹脂8にクラックが発生し、このクラック部へ溶融したはんだ5が流出して特性劣化を招くことになる。
【0054】
しかしながら、曲げ弾性率を20GPa以下とすることで、はんだ5の溶融時の体積膨張に対して、第2の絶縁樹脂8が変形して追従することができる。そのため第2の絶縁樹脂8にクラックを発生することがなく、溶融したはんだ5の流出を防止することができるため、はんだショートを起こすことがなく、電子部品内蔵モジュール1の特性を劣化させることがない。
【0055】
以上に示すように、本発明の実施の形態2においては、電子部品4と配線基板2との間に充填する樹脂材料と、電子部品4全体を覆う樹脂材料とを分けることで、電子部品4と配線基板2との間への充填性をより確実に行うことができ、若干流動性を低くしている第1の絶縁樹脂7を電子部品4を覆うための封止材料としてのみ作用させることができる。そのため、より信頼性の高い電子部品内蔵モジュールとすることができる。
【0056】
(実施の形態3)
図5は本発明の実施の形態3による電子部品内蔵モジュールの断面図、図6は本発明の実施の形態3による配線基板の上面図、図7は本発明の実施の形態3による他の電子部品内蔵モジュールの断面図、図8は本発明の実施の形態3による他の配線基板の上面図を示し、実施の形態1と同一の構造については、同一番号を付与して説明を省略する。
【0057】
図5、図6に示すように、実施の形態1と同様に、配線基板2の表面の電極3の周囲にのみソルダーレジスト6を形成し、はんだ5により電子部品4が実装されており、更に、はんだ25により電子部品24が実装されている電子部品内蔵モジュール1である。
【0058】
電子部品24は、面実装型の能動部品からなる。能動部品としては、たとえば、トランジスタ、IC、LSIなどの半導体素子が用いられる。この電子部品24と配線基板2との間に、実施の形態1と同様に第1の絶縁樹脂7を充填するとともに、電子部品4、24の高さ以上に肉厚に第1の絶縁樹脂7を形成している。電子部品24と配線基板2との間隔は、受動部品である電子部品4と配線基板2との間隔に比べて、元々広く形成されている。電子部品24の電極23は電子部品24の面内に存在し、電子部品4のようにはんだ5のフィレットが形成されない。そのため、はんだ25があたかも柱のように存在して電子部品24と配線基板2との間隔を広くしている。従って、電子部品24が実装される位置の配線基板2の表面は、電極3以外の部分をソルダーレジスト6で覆っていても良い。また、図7、図8に示すように電子部品24が実装される位置においても、電極3の周囲にのみソルダーレジスト6を形成する構造としても良い。
【0059】
以上の構成により、能動部品及び受動部品を備えた電子部品内蔵モジュール1とすることができ、1つのシステムを兼ね備えた装置とすることが可能となる。
【0060】
(実施の形態4)
図9は本発明の実施の形態4による電子部品内蔵モジュールの断面図、図10は本発明の実施の形態4による配線基板の上面図、図11は本発明の実施の形態4による電子部品内蔵モジュールの断面図、図12は本発明の実施の形態4による配線基板の上面図を示し、実施の形態1〜3と同一の構造については、同一番号を付与して説明を省略する。
【0061】
本実施の形態4は、実施の形態3の特性安定化を目的とするものである。能動部品である電子部品24の実装に対しては、受動部品である電子部品4に比べて注意を払う必要がある。それは、電子部品24の面積が電子部品4に対して非常に大きいものであり、この大面積が影響して特に熱膨張係数差による接続不良が起こりやすい。そこで、図9に示すように、熱膨張係数差緩和のために電子部品24と配線基板2との間に電子部品24や配線基板2より熱膨張係数を大きくした第3の絶縁樹脂9を充填している。
【0062】
しかしながら、電子部品4ははんだフィレットを有しているため、熱膨張係数の大きい第3の絶縁樹脂9を電子部品4と配線基板2との間に充填した場合、電子部品内蔵モジュール1をマザー基板に実装するリフロー工程時にはんだの融点以上の温度に達すると、第3の絶縁樹脂9の大きな熱膨張係数によりはんだ5が配線基板2上の電極3と引き剥がされる。
【0063】
次に、はんだ5は融点以下の温度に冷却され体積収縮するが第3の絶縁樹脂9の体積膨張は大きいままであるために、はんだ5は電極3と引き剥がされたまま固体化する。すなわち、リフロー工程を経ることではんだ5と電極3間で断線が起こることになる。従って、第3の絶縁樹脂9を電子部品4と配線基板2との間に充填してはならない。
【0064】
そこで、図9、図10に示すように熱膨張係数が第3の絶縁樹脂9より小さい第1の絶縁樹脂7を用いて電子部品4を覆っている。さらに第3の絶縁樹脂9の塗布範囲を制御するために、電子部品24と電子部品4との間に第3の絶縁樹脂9の流出を防止するソルダーレジスト26の壁を形成し、ソルダーレジスト6の段差部分で第3の絶縁樹脂9の流出を防止している。
【0065】
また、実施の形態4においても実施の形態3と同様に、電子部品24が実装される位置の配線基板2の表面は、電極3以外の部分をソルダーレジスト6で覆っていても良い。また、図11、図12に示すように電子部品24が実装される位置においても、電極3の周囲にのみソルダーレジスト6を形成する構造としても良い。
【0066】
以上の構造により、能動部品及び受動部品を備えた電子部品内蔵モジュール1とすることができ、1つのシステムを兼ね備えた装置とすることが可能となる。
【0067】
【発明の効果】
以上のように本発明によれば、配線基板の表層にある電極の周囲にのみソルダーレジストを形成して電子部品と配線基板間に一定の空間を形成し、第1の絶縁樹脂に含有される無機フィラーの含有率を50重量%〜95重量%、粒径をソルダーレジストを除く配線基板と電子部品との間隔より小さくすることで、電子部品の真下に確実に絶縁樹脂を充填しながら、電子部品を覆いかぶるように絶縁樹脂を肉厚に形成することができる。この絶縁樹脂を確実に電子部品と配線基板間へ存在させることで、電子部品内蔵モジュールをマザー基板へ実装する際に再溶融したはんだが、所定の電極外へ流出することを防止することができる。また、絶縁樹脂には20GPa以下の曲げ弾性率を有する材料を用いることが重要であり、こうすることで、再溶融したはんだの体積膨張に追従することができ、絶縁樹脂にクラックを発生させることなく、はんだの流出を防止することが可能となる。
【0068】
また、含有率が10重量%〜70重量%、粒径がソルダーレジストを含む配線基板と電子部品との間隔より小さい無機フィラーを含有する第2の絶縁樹脂を用いることで、電子部品と配線基板との間に、より確実に絶縁樹脂を充填することが可能となり、高信頼性を得ることができる。
【0069】
また、能動部品と受動部品を配置した電子部品内蔵モジュールを形成することが可能となり、接続信頼性も安定化させることができるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態1による電子部品内蔵モジュールの断面図
【図2】本発明の実施の形態1による配線基板の要部の上面図
【図3】本発明の実施の形態1による配線基板の要部の上面図
【図4】本発明の実施の形態2による電子部品内蔵モジュールの断面図
【図5】本発明の実施の形態3による電子部品内蔵モジュールの断面図
【図6】本発明の実施の形態3による配線基板の上面図
【図7】本発明の実施の形態3による電子部品内蔵モジュールの断面図
【図8】本発明の実施の形態3による配線基板の上面図
【図9】本発明の実施の形態4による電子部品内蔵モジュールの断面図
【図10】本発明の実施の形態4による配線基板の上面図
【図11】本発明の実施の形態4による電子部品内蔵モジュールの断面図
【図12】本発明の実施の形態4による配線基板の上面図
【図13】従来の電子部品内蔵モジュールの断面図
【符号の説明】
1 電子部品内蔵モジュール
2 配線基板
3 電極
4 電子部品
5 はんだ
6 ソルダーレジスト
7 第1の絶縁樹脂
8 第2の絶縁樹脂
9 第3の絶縁樹脂
10 インナービア
11 配線パターン
12 配線パターン
13 裏面電極
14 はんだ
15 金属膜
23 電極
24 電子部品
25 はんだ
26 ソルダーレジスト
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a module with a built-in electronic component, and more particularly to a module with a built-in electronic component in which an electronic component is disposed on an upper portion of a wiring board and is covered with an insulating resin.
[0002]
[Prior art]
In recent years, small electronic devices using an electronic component built-in module in which a plurality of electronic components are mounted on a substrate and the electronic components are resin-molded have rapidly become widespread. FIG. 13 shows a conventional resin-molded electronic component built-in module 101.
[0003]
As shown in the cross-sectional view of FIG. 13, a wiring pattern 111 and an electrode 103 are formed on the surface of a wiring substrate 102, and the surface is covered with a solder resist 106.
[0004]
An inner via 110 is formed in an inner layer of the wiring board 102, and the wiring pattern 112 and a back electrode 113 formed on the back surface of the wiring board 102 are electrically connected by the inner via 110. This back electrode 113 is provided with solder 114 for connecting to a mother substrate (not shown).
[0005]
After connecting the electronic component 104 and the electrode 103 with the solder 105, the surface of the wiring board 102 is covered with an insulating resin 107 so as to surround the electronic component 104, and the metal plating electromagnetic shielding layer 115 is provided on the surface. This is a component built-in module.
[0006]
As prior art document information relating to the invention of this application, for example, Patent Document 1 is known.
[0007]
[Patent Document 1]
JP 2001-24312 A
[0008]
[Problems to be solved by the invention]
However, in a conventional resin-molded electronic component built-in module, solder or wire bond is used as a material for mounting an electronic component on a wiring board.
[0009]
The wire bonding method requires an area larger than the area of the electronic component in order to join with a wire, and is not suitable for miniaturization of an electronic device. On the other hand, in the case of jointing, it is necessary to partially fillet the end of the electrode, but it is possible to mount the electronic component with almost the same area as the electronic component, which is advantageous for miniaturization of electronic equipment. is there. However, when electronic components are mounted with solder, portions other than the electrodes on the surface of the wiring board are covered with a solder resist in order to prevent solder shorts.
[0010]
Also, the amount of solder used is very small in order to prevent solder shorts between the electrodes during mounting. Therefore, when the gap between the electronic component after mounting and the wiring board covered with the solder resist is only about 10 μm and the electronic component is molded with the insulating resin, the gap between the electronic component and the wiring board is sufficiently filled with the insulating resin. Space is created without entering.
[0011]
When the electronic component built-in module with a space in the gap between the electronic component and the wiring board is soldered to the mother board, when the solder is re-melted in the electronic component built-in module, the molten solder And flows out into the gap between the wiring boards. As a result, short-circuit failure occurs between the electrodes, impairing the function of the electronic component built-in module.
[0012]
In addition, as a method for filling the gap between the electronic component and the wiring board with an insulating resin, use of a vacuum printing method has been proposed. However, usually the insulating resin is SiO Two These inorganic fillers are compounded, and the particle size of these inorganic fillers is several tens of μm.Even if the vacuum printing method is used, the distance between the wiring board covered with the solder resist and the electronic component is still small. Since it is only about 10 μm, it is impossible to physically fill the gap between the electronic component and the wiring board with the insulating resin.
[0013]
Although it is possible to fill the gap between the electronic component and the wiring board by using an underfill having a filler diameter of 10 μm or less, these underfills use finely classified inorganic fillers, which is very expensive. This leads to an increase in cost.
[0014]
An object of the present invention is to solve the above-mentioned conventional problems and to provide an electronic component built-in module excellent in connection reliability and mass productivity.
[0015]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention provides at least one or more electronic components, a wiring board having at least one or more wiring layers, and the electronic component is formed on an electrode of the wiring board. In the electronic component built-in module, which is connected with solder, covered with a first insulating resin, and provided with an electromagnetic field shield layer of a metal film on the surface of the first insulating resin, the electronic component is soldered on the wiring board. It is a module with built-in electronic components that has a solder resist enclosure formed only around the electrodes to be connected.When mounting electronic components on a wiring board, it prevents solder from flowing out of the electrodes and It is possible to make a gap between the substrate and the wiring board as large as the thickness of the solder resist, and the gap can be filled with the first insulating resin satisfactorily. Further, since most of the first insulating resin can adhere to the resin portion of the wiring board other than the solder resist, the adhesive strength between the wiring board and the first insulating resin can be increased. As described above, even when the solder is re-melted when the electronic component built-in module is mounted on the motherboard, the first insulating resin serves as a protective wall, and the solder can be prevented from flowing out of the electrode. .
[0016]
According to a second aspect of the present invention, there is provided the electronic component built-in module according to the first aspect, wherein the surrounding portions of the solder resist are independent of each other between electrodes of one electronic component. Since the large gap can be reliably formed, the first insulating resin or the second insulating resin can be easily filled between the electronic component and the wiring board. Therefore, even when the solder is re-melted when the electronic component built-in module is mounted on the mother board, the first insulating resin or the second insulating resin serves as a protective wall, and reliably prevents the solder from flowing out of the electrode. It has the effect of being able to.
[0017]
According to a third aspect of the present invention, there is provided the electronic component built-in module according to the first aspect, wherein a second insulating resin exists between the electronic component and the wiring board, and a gap between the electronic component and the wiring board is provided. Since the second insulating resin can be formed only for the purpose of filling the resin, the resin can be more preferably filled between the electronic component and the wiring board. Therefore, even when the solder is re-melted when the electronic component built-in module is mounted on the motherboard, the second insulating resin serves as a protective wall, and the solder can be reliably prevented from flowing out of the electrode. Have.
[0018]
According to a fourth aspect of the present invention, there is provided a wiring board having a plurality of electronic components and at least one or more wiring layers, and the electronic components are connected to electrodes of the wiring board by soldering, and these are connected with a first insulating resin. The third insulating resin is formed between the electronic component comprising an active component and the wiring board in the electronic component built-in module having an electromagnetic field shield layer formed by metal plating on a surface layer of the first insulating resin. 2. The electronic component built-in module according to item 2, wherein the module has a function of reducing the coefficient of thermal expansion between the electronic component including the active component and the wiring board to ensure the reliability of the electrical connection.
[0019]
According to a fifth aspect of the present invention, there is provided the electronic component built-in module according to the fourth aspect, wherein a wall of a solder resist is formed between an electronic component comprising an active component and another electronic component. Accordingly, it is possible to control application to an electronic component that does not require the second insulating resin.
[0020]
According to a sixth aspect of the present invention, there is provided the electronic component built-in module according to the fourth aspect, wherein portions other than the electrodes on the surface of the wiring board on which the part of the electronic components are mounted are covered with a solder resist. Also, even in a structure in which a wiring pattern other than the electrode is formed on the surface layer of the wiring board, the short circuit between the electrode and the wiring pattern can be prevented.
[0021]
The invention according to claim 7, wherein the first insulating resin comprises a mixture containing a thermosetting resin and an inorganic filler, the compounding ratio of the inorganic filler is 50% by weight to 95% by weight, and the particle size of the inorganic filler is the solder. 2. The electronic component built-in module according to claim 1, wherein the particle size is smaller than the distance between the wiring board and the electronic component excluding the resist, and the first insulating resin is reliably filled between the electronic component and the wiring substrate. In addition to this, it has an effect that the thickness of the first insulating resin can be easily formed to be thicker than the height of the built-in electronic component.
[0022]
The invention according to claim 8, wherein the second insulating resin is composed of a mixture containing a thermosetting resin and an inorganic filler, the compounding ratio of the inorganic filler is 10% by weight to 70% by weight, and the particle size of the inorganic filler is the solder. 3. The electronic component built-in module according to claim 2, wherein the particle size is smaller than the distance between the wiring board including the resist and the electronic component, and the second insulating resin is reliably filled between the electronic component and the wiring board. Has the effect of being able to.
[0023]
According to a ninth aspect of the present invention, there is provided the electronic component built-in module according to the first or second aspect, wherein the flexural modulus of the first insulating resin is 20 GPa or less. Has the effect of absorbing and mitigating the volume expansion during remelting to prevent solder from flowing out of the electrodes of the electronic component.
[0024]
According to a tenth aspect of the present invention, there is provided the electronic component built-in module according to the second aspect, wherein a bending elastic modulus of the second insulating resin is set to 20 GPa or less. It has the effect of absorbing and mitigating volume expansion during melting to prevent solder from flowing out of the electrodes of the electronic component.
[0025]
An eleventh aspect of the present invention is the electronic component built-in module according to the fourth aspect, wherein a thermal expansion coefficient of the third insulating resin is larger than a thermal expansion coefficient of the first insulating resin. It has the effect of securing.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0027]
(Embodiment 1)
FIG. 1 is a cross-sectional view of an electronic component built-in module according to Embodiment 1 of the present invention, FIG. 2 is a top view of a wiring board according to Embodiment 1 of the present invention, and FIG. FIG. 3 shows a top view of a wiring board in which electronic components are incorporated.
[0028]
In FIG. 1, a wiring board 2 is a multilayer wiring board in which electrodes 3 and wiring patterns 11 on the surface, wiring patterns 12 and inner vias 10 on the inside, a back electrode 13 and a solder resist 6 on the back surface are formed.
[0029]
An enclosure of the solder resist 6 is formed around the electrode 3 on the surface of the wiring board 2. The solder resist 6 is formed only around the electrode 3, and the solder resists 6 formed around the two electrodes 3 are independent of each other and are not connected below the electronic component 4. However, the solder resist 6 is connected between the electrodes 3 of the plurality of electronic components 4. It is important to always form a sufficient space between the electronic component 4 and the wiring board 2 as described above. Then, by securing this sufficient space, the first insulating resin 7 is easily filled between the electronic component 4 and the wiring board 2.
[0030]
Further, since the first insulating resin 7 and the substrate portion of the wiring board 2 are directly in close contact with each other, the area of the first insulating resin 7 which is in close contact with the surface of the solder resist 6 having a weak adhesive force can be reduced. The adhesion between the insulating resin 7 and the wiring board 2 can be further strengthened.
[0031]
The wiring patterns 11 and 12 are made of, for example, a material having electrical conductivity such as a Cu foil or a conductive resin composition. In the present invention, the wiring patterns 11 and 12 use Cu foil.
[0032]
The inner via 10 is made of, for example, a thermosetting conductive material. As the thermosetting conductive material, for example, a conductive resin composition obtained by mixing metal particles and a thermosetting resin can be used. Au, Ag, Cu, or the like can be used as the metal particles. Au, Ag or Cu is preferable because of high conductivity, and Cu is particularly preferable because of high conductivity and low migration and low cost. As the thermosetting resin, for example, an epoxy resin, a phenol resin, or a cyanate resin can be used. Epoxy resins are particularly preferred because of their high heat resistance.
[0033]
The electronic component 4 is mounted at a predetermined position on the wiring board 2 using the solder 5.
[0034]
The electronic component 4 is made of a surface-mounted passive component. As the passive component, a chip component such as a resistor, a capacitor or an inductor, a vibrator, a filter, or the like is used.
[0035]
As the solder 5, a Pb-Sn-based eutectic solder or a Pb-free solder (for example, Sn-Ag-Cu-based, Au-Sn-based or Sn-Zn-based) can be used. The solder 5 for mounting the electronic component 4 and the solder 14 for mounting the electronic component built-in module 1 on a motherboard (not shown) may be the same material or different materials. Absent. However, in consideration of recent environmental issues, it is desirable to use Pb-free solder.
[0036]
Next, the first insulating resin 7 is formed so as to completely cover the electronic component 4. The first insulating resin 7 is made of a mixture containing an inorganic filler and a thermosetting resin. As the inorganic filler, for example, Al Two O Three , MgO, BN, AlN, SiO Two And BaTiO Three Etc. can be used. It is important that the compounding ratio of the inorganic filler is in the range of 50% by weight to 95% by weight. Within this range, the first insulating resin 7 can be formed to be thicker than the height of the electronic component 4 (1 mm in the present invention). Therefore, the thickness of the electronic component 4 cannot be increased beyond the height of the electronic component 4.
[0037]
When the first insulating resin 7 containing 95% by weight or more of the inorganic filler is used, the flowability is poor and the electronic component 4 cannot be covered as shown in FIG. It is important that the particle size of the inorganic filler be smaller than the distance between the wiring board 2 and the electronic component 4 excluding the solder resist 6. By reducing the particle size, the space between the electronic component 4 and the wiring board 2 can be easily filled with the first insulating resin. Further, the thermosetting resin contained in the first insulating resin is preferably an epoxy resin, a phenol resin, or a cyanate resin. Epoxy resins are particularly preferred because of their high heat resistance.
[0038]
Next, a metal film 15 is formed on the surface layer of the first insulating resin 7 by plating and serves as an electromagnetic field shield layer. The metal film 15 by plating is formed using at least one kind of material such as Au, Ag, Cu, Ni, Cr, Zn, Ti, and Al.
[0039]
2 and 3, the structure of the solder resist 6 formed around the electrode 3 on the wiring board 2 is shown.
[0040]
As shown in FIGS. 1 to 3, in the electronic component built-in module 1 of the present invention, the solder resist 6 is formed only around the electrodes 3.
[0041]
When the electronic component 4 is mounted on the wiring board 2 with the solder 5, the solder resist 6 has an effect of preventing short-circuit failure due to solder outflow, and exists only around the electrode 3. 4 and the wiring board 2 can be widened.
[0042]
That is, a space of about 50 μm is formed by the thickness of the solder resist 6 and the floating amount of the electronic component 4 generated when the electronic component 4 is mounted with the solder 5. By making the particle size of the inorganic filler contained in the first insulating resin 7 smaller than the distance between the electronic component 4 and the wiring board 2 (50 μm or less in the present embodiment), the electronic component 4 can be easily formed. And the wiring board 2 can be filled with the first insulating resin 7 and there is no need to use an inorganic filler limited to a particle size of 10 μm or less. It is possible to make the thickness greater than the height (for example, 1 mm).
[0043]
Further, since an inorganic filler having a large particle size up to about 50 μm can be used, there is no increase in cost.
[0044]
Further, since the first insulating resin 7 and the base portion of the wiring board 2 are directly in close contact with each other, the area of the first insulating resin 7 which is in close contact with the surface of the solder resist 6 having low adhesion can be reduced, and the first insulating resin It is possible to further strengthen the adhesion between the resin 7 and the wiring board 2.
[0045]
With the above structure, it has been difficult to fill the first insulating resin 7 into the electronic component built-in module, which has conventionally had a problem of short-circuit failure due to solder outflow during remelting of the solder. The gap between the wiring board 2 and the wiring board 2 can be easily filled with the first insulating resin 7, so that the solder 5 remelted when the electronic component built-in module 1 is mounted on a mother board (not shown). In this case, since the first insulating resin 7 is filled between the electrodes 3, the first insulating resin 7 serves as a wall for preventing the outflow of the solder 5, and a short circuit between the electrodes 3 can be prevented.
[0046]
At this time, it is important that the flexural modulus of the first insulating resin 7 is 20 GPa or less. When a material having a bending elastic modulus of 20 GPa or more is used for the first insulating resin 7, stress acts on the first insulating resin 7 due to volume expansion at the time of remelting the solder 5, but the bending elastic modulus is high. 5 also acts to suppress the volume expansion. This stress cannot be balanced, and as a result, cracks occur in the first insulating resin 7, and the melted solder 5 flows out into the cracks to cause characteristic deterioration. However, by setting the flexural modulus to 20 GPa or less, the first insulating resin 7 can deform and follow the volume expansion of the solder 5 at the time of melting. Therefore, cracks do not occur in the first insulating resin 7 and the outflow of the molten solder 5 can be prevented. As a result, a solder short circuit does not occur, and the characteristics of the electronic component built-in module 1 do not deteriorate.
[0047]
As described above, in the first embodiment of the present invention, the solder resist 6 is formed only around the electrode 3 on which the electronic component 4 is mounted on the wiring board 2, and the space between the electronic component 4 and the wiring board 2 is formed. And the first insulating resin 7 containing an inorganic filler having a particle size equal to or smaller than the distance between the electronic component 4 and the wiring board 2 is used to easily insert the first insulating resin 7 between the electronic component 4 and the wiring board 2. The insulating resin 7 can be filled. By ensuring that the first insulating resin 7 is present between the electronic component 4 and the wiring board 2, the solder 5 re-melted when the electronic component built-in module 1 is mounted on the motherboard moves out of the predetermined electrode. Outflow can be prevented. Further, by using a material having a bending elastic modulus of 20 GPa or less for the first insulating resin 7, it is possible to follow the volume expansion of the re-melted solder, without causing cracks in the first insulating resin 7. It is possible to prevent the outflow of solder.
[0048]
(Embodiment 2)
FIG. 4 is a cross-sectional view of an electronic component built-in module according to a second embodiment of the present invention. The same structures as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
[0049]
As shown in FIG. 4, the solder resist 6 is formed only around the electrode 3 as in the first embodiment, and the space between the electronic component 4 and the wiring board 2 is increased. Then, a second insulating resin 8 is filled between the electronic component 4 and the wiring board 2, and a first insulating resin 7 is formed so as to cover the electronic component 4, the second insulating resin 8 and the wiring board 2. I do. Thereafter, a metal film 15 is formed on the surface layer of the first insulating resin 7 by plating, and functions as an electromagnetic field shield layer.
[0050]
The second insulating resin 8 is made of a mixture containing an inorganic filler and a thermosetting resin. As the inorganic filler, for example, Al Two O Three , MgO, BN, AlN, SiO Two And BaTiO Three Etc. can be used. It is important that the mixing ratio of the inorganic filler is in the range of 10% by weight to 70% by weight. The purpose of the second insulating resin 8 is to fill the space between the electronic component 4 and the wiring board 2, and therefore, the second insulating resin 8 must be as fluid as possible. Further, it is not necessary to increase the wall thickness unlike the first insulating resin 7. Therefore, the mixing ratio of the inorganic filler is set lower than that of the first insulating resin 7.
[0051]
However, the second insulating resin 8 must be present between the electronic component 4 and the wiring board 2 and play a role as a solder outflow preventing wall when the solder is re-melted. Therefore, in a state where the inorganic filler is not contained in the second insulating resin 8 at all, although the fluidity thereof is very high, the outflow of the solder easily occurs and the effect as the preventing wall cannot be obtained. Therefore, the content of the inorganic filler is necessarily required, and the content of the inorganic filler is set to 10% by weight to 70% by weight in order to satisfy both the effects of the fluidity and the solder outflow preventing wall. As a result, the space between the electronic component 4 and the wiring board 2 can be easily filled with the second insulating resin 8.
[0052]
Further, as in the first embodiment, since the second insulating resin 8 and the base portion of the wiring board 2 directly adhere to each other, it is possible to obtain a strong adhesive force.
[0053]
Further, it is important that the bending elastic modulus of the second insulating resin 8 is not more than 20 GPa, like the first insulating resin 7. As in the first embodiment, when a material having a bending elastic modulus of 20 GPa or more is used for the second insulating resin 8, stress acts on the second insulating resin 8 due to volume expansion when the solder 5 is remelted. Since the flexural modulus is high, a stress acts to suppress the volume expansion of the solder 5. This stress cannot be balanced, and as a result, cracks are generated in the second insulating resin 8, and the melted solder 5 flows out to the cracks to cause deterioration of characteristics.
[0054]
However, by setting the flexural modulus to 20 GPa or less, the second insulating resin 8 can deform and follow the volume expansion of the solder 5 at the time of melting. Therefore, cracks do not occur in the second insulating resin 8 and the outflow of the molten solder 5 can be prevented, so that a short circuit of the solder does not occur and the characteristics of the electronic component built-in module 1 can be deteriorated. Absent.
[0055]
As described above, in the second embodiment of the present invention, the resin material filled between the electronic component 4 and the wiring board 2 is separated from the resin material covering the entire electronic component 4 so that the electronic component 4 The first insulating resin 7 having a slightly lower fluidity can be used only as a sealing material for covering the electronic component 4, because the filling property between the first insulating resin 7 and the wiring board 2 can be more reliably performed. Can be. Therefore, a more reliable electronic component built-in module can be obtained.
[0056]
(Embodiment 3)
5 is a cross-sectional view of an electronic component built-in module according to Embodiment 3 of the present invention, FIG. 6 is a top view of a wiring board according to Embodiment 3 of the present invention, and FIG. 7 is another electronic device according to Embodiment 3 of the present invention. FIG. 8 is a cross-sectional view of a component built-in module, and FIG. 8 is a top view of another wiring board according to Embodiment 3 of the present invention. The same structures as those in Embodiment 1 are given the same reference numerals and description thereof is omitted.
[0057]
As shown in FIGS. 5 and 6, as in the first embodiment, a solder resist 6 is formed only around the electrodes 3 on the surface of the wiring board 2, and the electronic components 4 are mounted with the solder 5. And the electronic component built-in module 1 on which the electronic component 24 is mounted by the solder 25.
[0058]
The electronic component 24 is made of a surface-mount type active component. As the active component, for example, a semiconductor element such as a transistor, an IC, and an LSI is used. The first insulating resin 7 is filled between the electronic component 24 and the wiring board 2 in the same manner as in the first embodiment, and the first insulating resin 7 is thicker than the height of the electronic components 4 and 24. Is formed. The distance between the electronic component 24 and the wiring board 2 is originally wider than the distance between the electronic component 4 that is a passive component and the wiring board 2. The electrode 23 of the electronic component 24 exists in the plane of the electronic component 24, and the fillet of the solder 5 is not formed unlike the electronic component 4. For this reason, the solder 25 exists as if it were a pillar, thereby increasing the distance between the electronic component 24 and the wiring board 2. Therefore, the surface of the wiring board 2 at the position where the electronic component 24 is mounted may be covered with the solder resist 6 except for the electrode 3. Also, as shown in FIGS. 7 and 8, a structure in which the solder resist 6 is formed only around the electrode 3 at the position where the electronic component 24 is mounted may be adopted.
[0059]
With the above configuration, the electronic component built-in module 1 including the active component and the passive component can be provided, and the device can be provided as a single system.
[0060]
(Embodiment 4)
9 is a cross-sectional view of an electronic component built-in module according to Embodiment 4 of the present invention, FIG. 10 is a top view of a wiring board according to Embodiment 4 of the present invention, and FIG. FIG. 12 is a cross-sectional view of a module, and FIG. 12 is a top view of a wiring board according to a fourth embodiment of the present invention.
[0061]
The fourth embodiment aims at stabilizing the characteristics of the third embodiment. It is necessary to pay more attention to the mounting of the electronic component 24 as the active component than to the electronic component 4 as the passive component. This is because the area of the electronic component 24 is very large with respect to the electronic component 4, and this large area affects the connection failure particularly due to the difference in thermal expansion coefficient. Therefore, as shown in FIG. 9, a third insulating resin 9 having a larger thermal expansion coefficient than that of the electronic component 24 or the wiring board 2 is filled between the electronic component 24 and the wiring board 2 to reduce the difference in thermal expansion coefficient. are doing.
[0062]
However, since the electronic component 4 has a solder fillet, when the third insulating resin 9 having a large coefficient of thermal expansion is filled between the electronic component 4 and the wiring board 2, the electronic component built-in module 1 is mounted on the mother board. When the temperature reaches a temperature equal to or higher than the melting point of the solder during the reflow step of mounting the solder, the solder 5 is peeled off from the electrode 3 on the wiring board 2 due to the large thermal expansion coefficient of the third insulating resin 9.
[0063]
Next, the solder 5 is cooled to a temperature equal to or lower than the melting point and contracts in volume, but since the volume expansion of the third insulating resin 9 remains large, the solder 5 solidifies while being peeled off from the electrode 3. That is, disconnection occurs between the solder 5 and the electrode 3 through the reflow process. Therefore, the third insulating resin 9 must not be filled between the electronic component 4 and the wiring board 2.
[0064]
Therefore, as shown in FIGS. 9 and 10, the electronic component 4 is covered with the first insulating resin 7 having a smaller coefficient of thermal expansion than the third insulating resin 9. Further, in order to control the application range of the third insulating resin 9, a wall of the solder resist 26 for preventing the outflow of the third insulating resin 9 is formed between the electronic component 24 and the electronic component 4, and the solder resist 6 is formed. Of the third insulating resin 9 is prevented from flowing out.
[0065]
Also, in the fourth embodiment, as in the third embodiment, the surface of the wiring board 2 at the position where the electronic component 24 is mounted may be covered with a solder resist 6 except for the electrodes 3. Also, as shown in FIGS. 11 and 12, a structure in which the solder resist 6 is formed only around the electrode 3 even at the position where the electronic component 24 is mounted may be adopted.
[0066]
With the above structure, the electronic component built-in module 1 including the active component and the passive component can be obtained, and the device having one system can be obtained.
[0067]
【The invention's effect】
As described above, according to the present invention, a solder resist is formed only around the electrodes on the surface layer of the wiring board to form a certain space between the electronic component and the wiring board, and is contained in the first insulating resin. By setting the content of the inorganic filler to 50% by weight to 95% by weight and the particle size to be smaller than the distance between the wiring board and the electronic component excluding the solder resist, it is possible to securely fill the insulating resin directly under the electronic component with the electronic resin. The insulating resin can be formed thick so as to cover the component. By ensuring that the insulating resin is present between the electronic component and the wiring board, it is possible to prevent the re-melted solder from flowing out of the predetermined electrode when the electronic component built-in module is mounted on the mother board. . In addition, it is important to use a material having a bending elastic modulus of 20 GPa or less for the insulating resin, and by doing so, it is possible to follow the volume expansion of the re-melted solder and to generate cracks in the insulating resin. Therefore, it is possible to prevent the outflow of solder.
[0068]
In addition, by using the second insulating resin containing inorganic filler having a content of 10% by weight to 70% by weight and a particle size smaller than the distance between the wiring board including the solder resist and the electronic component, the electronic component and the wiring board can be used. In this way, it is possible to more reliably fill the insulating resin, and high reliability can be obtained.
[0069]
In addition, an electronic component built-in module in which active components and passive components are arranged can be formed, and connection reliability can be stabilized.
[Brief description of the drawings]
FIG. 1 is a sectional view of an electronic component built-in module according to a first embodiment of the present invention.
FIG. 2 is a top view of a main part of the wiring board according to the first embodiment of the present invention;
FIG. 3 is a top view of a main part of the wiring board according to the first embodiment of the present invention;
FIG. 4 is a sectional view of an electronic component built-in module according to a second embodiment of the present invention.
FIG. 5 is a sectional view of an electronic component built-in module according to a third embodiment of the present invention.
FIG. 6 is a top view of a wiring board according to a third embodiment of the present invention.
FIG. 7 is a sectional view of an electronic component built-in module according to a third embodiment of the present invention.
FIG. 8 is a top view of the wiring board according to the third embodiment of the present invention;
FIG. 9 is a sectional view of an electronic component built-in module according to a fourth embodiment of the present invention.
FIG. 10 is a top view of a wiring board according to a fourth embodiment of the present invention.
FIG. 11 is a sectional view of an electronic component built-in module according to a fourth embodiment of the present invention.
FIG. 12 is a top view of a wiring board according to a fourth embodiment of the present invention.
FIG. 13 is a cross-sectional view of a conventional electronic component built-in module.
[Explanation of symbols]
1 Electronic component built-in module
2 Wiring board
3 electrodes
4 Electronic components
5 Solder
6 Solder resist
7 First insulating resin
8 Second insulating resin
9 Third insulating resin
10 Inner Via
11 Wiring pattern
12 Wiring pattern
13 Back electrode
14 Solder
15 Metal film
23 electrodes
24 Electronic components
25 Solder
26 Solder resist

Claims (11)

少なくとも1つ以上の電子部品と、少なくとも一層以上の配線層を有する配線基板と、前記電子部品をこの配線基板の電極にはんだで接続し、これらを第1の絶縁樹脂で覆い、この第1の絶縁樹脂の表層に金属膜による電磁界シールド層を設けた電子部品内蔵モジュールにおいて、前記配線基板に前記電子部品をはんだで接続する電極の周囲のみにソルダーレジストの囲いを形成した電子部品内蔵モジュール。At least one or more electronic components, a wiring board having at least one or more wiring layers, and the electronic components are connected to electrodes of the wiring board by solder, and these are covered with a first insulating resin. An electronic component built-in module in which an electromagnetic field shielding layer made of a metal film is provided on a surface layer of an insulating resin, wherein a solder resist enclosure is formed only around electrodes for connecting the electronic component to the wiring board by soldering. ソルダーレジストの囲い部分が1つの電子部品の電極間でそれぞれ独立する構成とした請求項1記載の電子部品内蔵モジュール。2. The electronic component built-in module according to claim 1, wherein the surrounding portions of the solder resist are independent of each other between electrodes of one electronic component. 少なくとも1つ以上の電子部品と配線基板の間に第2の絶縁樹脂を設けた請求項1記載の電子部品内蔵モジュール。The electronic component built-in module according to claim 1, wherein a second insulating resin is provided between at least one or more electronic components and the wiring board. 複数個の電子部品と少なくとも一層以上の配線層を有する配線基板と、前記電子部品をこの配線基板の電極にはんだで接続し、これらを第1の絶縁樹脂で覆い、この第1の絶縁樹脂の表層に金属めっきによる電磁界シールド層を設けた電子部品内蔵モジュールにおいて、能動部品からなる電子部品と前記配線基板の間に第3の絶縁樹脂を形成した請求項2記載の電子部品内蔵モジュール。A wiring board having a plurality of electronic components and at least one or more wiring layers; and connecting the electronic components to electrodes of the wiring board by soldering, covering these with a first insulating resin, 3. The electronic component built-in module according to claim 2, wherein a third insulating resin is formed between the electronic component formed of an active component and the wiring board in the electronic component built-in module having an electromagnetic field shield layer formed by metal plating on a surface layer. 能動部品からなる電子部品とそれ以外の電子部品の間にソルダーレジストの壁を形成した請求項4記載の電子部品内蔵モジュール。5. The electronic component built-in module according to claim 4, wherein a solder resist wall is formed between the electronic component comprising the active component and the other electronic component. 能動部品からなる電子部品が実装される配線基板の表面の電極以外の部分をソルダーレジストで覆った構成とした請求項4記載の電子部品内蔵モジュール。5. The electronic component built-in module according to claim 4, wherein a portion other than the electrodes on the surface of the wiring board on which the electronic component comprising the active component is mounted is covered with a solder resist. 第1の絶縁樹脂が熱硬化性樹脂及び無機フィラーを含む混合物からなり、無機フィラーの配合比率が50重量%〜95重量%、無機フィラーの粒径が前記ソルダーレジストを除く配線基板と前記電子部品の間隔より小さい粒径とした請求項1記載の電子部品内蔵モジュール。The first insulating resin is composed of a mixture containing a thermosetting resin and an inorganic filler, the mixing ratio of the inorganic filler is 50% by weight to 95% by weight, and the particle size of the inorganic filler is the wiring board excluding the solder resist and the electronic component. The electronic component built-in module according to claim 1, wherein the particle size is smaller than the interval of: 第2の絶縁樹脂が熱硬化性樹脂及び無機フィラーを含む混合物からなり、無機フィラーの配合比率が10重量%〜70重量%、無機フィラーの粒径が前記ソルダーレジストを含む配線基板と前記電子部品の間隔より小さい粒径とした請求項2記載の電子部品内蔵モジュール。The second insulating resin is composed of a mixture containing a thermosetting resin and an inorganic filler, the compounding ratio of the inorganic filler is 10% by weight to 70% by weight, and the particle size of the inorganic filler is the wiring board containing the solder resist; 3. The electronic component built-in module according to claim 2, wherein the particle size is smaller than the interval. 第1の絶縁樹脂の曲げ弾性率が20GPa以下とした請求項1または2記載の電子部品内蔵モジュール。3. The electronic component built-in module according to claim 1, wherein the first insulating resin has a flexural modulus of 20 GPa or less. 第2の絶縁樹脂の曲げ弾性率が20GPa以下とした請求項2記載の電子部品内蔵モジュール。The electronic component built-in module according to claim 2, wherein the flexural modulus of the second insulating resin is 20 GPa or less. 第3の絶縁樹脂の熱膨張係数が第1の絶縁樹脂の熱膨張係数より大きくした請求項4記載の電子部品内蔵モジュール。5. The electronic component built-in module according to claim 4, wherein a thermal expansion coefficient of the third insulating resin is larger than a thermal expansion coefficient of the first insulating resin.
JP2002372227A 2002-12-24 2002-12-24 Electronic component built-in module Expired - Lifetime JP4350366B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002372227A JP4350366B2 (en) 2002-12-24 2002-12-24 Electronic component built-in module
CN2003801001779A CN1692685B (en) 2002-12-24 2003-12-22 Module comprising built-in electronic components
US10/500,539 US6998532B2 (en) 2002-12-24 2003-12-22 Electronic component-built-in module
PCT/JP2003/016427 WO2004060034A1 (en) 2002-12-24 2003-12-22 Electronic component-built-in module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372227A JP4350366B2 (en) 2002-12-24 2002-12-24 Electronic component built-in module

Publications (2)

Publication Number Publication Date
JP2004207352A true JP2004207352A (en) 2004-07-22
JP4350366B2 JP4350366B2 (en) 2009-10-21

Family

ID=32810884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372227A Expired - Lifetime JP4350366B2 (en) 2002-12-24 2002-12-24 Electronic component built-in module

Country Status (2)

Country Link
JP (1) JP4350366B2 (en)
CN (1) CN1692685B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278993A (en) * 2005-03-30 2006-10-12 Sumitomo Bakelite Co Ltd Wiring board
JP2007142355A (en) * 2005-10-18 2007-06-07 Matsushita Electric Ind Co Ltd Module with built-in electronic components
KR100737098B1 (en) 2006-03-16 2007-07-06 엘지이노텍 주식회사 Shield device of electromagnetic inteference and production progress thereof
KR100844790B1 (en) * 2006-11-29 2008-07-07 엘지이노텍 주식회사 Electromagnetic wave shielding apparatus, high-frequency module with thereof and manufacturing method thereof
WO2010007969A1 (en) * 2008-07-18 2010-01-21 株式会社 村田製作所 Method for manufacturing module having built-in component, and module having built-in component
JP2010073911A (en) * 2008-09-19 2010-04-02 Jtekt Corp Multilayer circuit board, and motor driving circuit board
WO2011007519A1 (en) * 2009-07-16 2011-01-20 パナソニック株式会社 Module component and mehtod for manufacturing same
US8053872B1 (en) 2007-06-25 2011-11-08 Rf Micro Devices, Inc. Integrated shield for a no-lead semiconductor device package
US8062930B1 (en) 2005-08-08 2011-11-22 Rf Micro Devices, Inc. Sub-module conformal electromagnetic interference shield
US8061012B2 (en) 2007-06-27 2011-11-22 Rf Micro Devices, Inc. Method of manufacturing a module
JP2013157576A (en) * 2012-02-01 2013-08-15 Nec Corp Circuit element packaging structure
US8835226B2 (en) 2011-02-25 2014-09-16 Rf Micro Devices, Inc. Connection using conductive vias
US8959762B2 (en) 2005-08-08 2015-02-24 Rf Micro Devices, Inc. Method of manufacturing an electronic module
US9137934B2 (en) 2010-08-18 2015-09-15 Rf Micro Devices, Inc. Compartmentalized shielding of selected components
US9472428B2 (en) 2013-08-26 2016-10-18 Tdk Corporation Manufacturing method of module components
US9627230B2 (en) 2011-02-28 2017-04-18 Qorvo Us, Inc. Methods of forming a microshield on standard QFN package
US9756718B2 (en) 2013-01-22 2017-09-05 Murata Manufacturing Co., Ltd. Module board
US9807890B2 (en) 2013-05-31 2017-10-31 Qorvo Us, Inc. Electronic modules having grounded electromagnetic shields
US11058038B2 (en) 2018-06-28 2021-07-06 Qorvo Us, Inc. Electromagnetic shields for sub-modules
US11114363B2 (en) 2018-12-20 2021-09-07 Qorvo Us, Inc. Electronic package arrangements and related methods
US11127689B2 (en) 2018-06-01 2021-09-21 Qorvo Us, Inc. Segmented shielding using wirebonds
US11515282B2 (en) 2019-05-21 2022-11-29 Qorvo Us, Inc. Electromagnetic shields with bonding wires for sub-modules

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829981B2 (en) * 2008-07-21 2010-11-09 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
CN103180943B (en) * 2010-11-04 2016-04-13 阿尔卑斯电气株式会社 Electronic component module
CN103299410B (en) * 2011-01-26 2016-01-27 株式会社村田制作所 Electronic component module and electronic devices and components unit
US9237686B2 (en) * 2012-08-10 2016-01-12 Panasonic Intellectual Property Management Co., Ltd. Method and system for producing component mounting board
JP2015115558A (en) * 2013-12-13 2015-06-22 株式会社東芝 Semiconductor device
JP6858642B2 (en) * 2017-05-25 2021-04-14 三菱電機株式会社 Power module
JP6908127B2 (en) 2017-11-02 2021-07-21 株式会社村田製作所 Circuit module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW392315B (en) * 1996-12-03 2000-06-01 Nippon Electric Co Boards mounting with chips, mounting structure of chips, and manufacturing method for boards mounting with chips
TW511422B (en) * 2000-10-02 2002-11-21 Sanyo Electric Co Method for manufacturing circuit device
CN1216420C (en) * 2001-12-14 2005-08-24 矽品精密工业股份有限公司 Chip support capable of setting passive element

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278993A (en) * 2005-03-30 2006-10-12 Sumitomo Bakelite Co Ltd Wiring board
JP4687196B2 (en) * 2005-03-30 2011-05-25 住友ベークライト株式会社 Wiring board
US9661739B2 (en) 2005-08-08 2017-05-23 Qorvo Us, Inc. Electronic modules having grounded electromagnetic shields
US8959762B2 (en) 2005-08-08 2015-02-24 Rf Micro Devices, Inc. Method of manufacturing an electronic module
US8062930B1 (en) 2005-08-08 2011-11-22 Rf Micro Devices, Inc. Sub-module conformal electromagnetic interference shield
JP2007142355A (en) * 2005-10-18 2007-06-07 Matsushita Electric Ind Co Ltd Module with built-in electronic components
KR100737098B1 (en) 2006-03-16 2007-07-06 엘지이노텍 주식회사 Shield device of electromagnetic inteference and production progress thereof
KR100844790B1 (en) * 2006-11-29 2008-07-07 엘지이노텍 주식회사 Electromagnetic wave shielding apparatus, high-frequency module with thereof and manufacturing method thereof
US8349659B1 (en) 2007-06-25 2013-01-08 Rf Micro Devices, Inc. Integrated shield for a no-lead semiconductor device package
US8053872B1 (en) 2007-06-25 2011-11-08 Rf Micro Devices, Inc. Integrated shield for a no-lead semiconductor device package
US8409658B2 (en) 2007-06-27 2013-04-02 Rf Micro Devices, Inc. Conformal shielding process using flush structures
US8614899B2 (en) 2007-06-27 2013-12-24 Rf Micro Devices, Inc. Field barrier structures within a conformal shield
US8220145B2 (en) 2007-06-27 2012-07-17 Rf Micro Devices, Inc. Isolated conformal shielding
US8296941B2 (en) 2007-06-27 2012-10-30 Rf Micro Devices, Inc. Conformal shielding employing segment buildup
US8296938B2 (en) 2007-06-27 2012-10-30 Rf Micro Devices, Inc. Method for forming an electronic module having backside seal
US8186048B2 (en) 2007-06-27 2012-05-29 Rf Micro Devices, Inc. Conformal shielding process using process gases
US8061012B2 (en) 2007-06-27 2011-11-22 Rf Micro Devices, Inc. Method of manufacturing a module
US8359739B2 (en) 2007-06-27 2013-01-29 Rf Micro Devices, Inc. Process for manufacturing a module
US8720051B2 (en) 2007-06-27 2014-05-13 Rf Micro Devices, Inc. Conformal shielding process using process gases
US8434220B2 (en) 2007-06-27 2013-05-07 Rf Micro Devices, Inc. Heat sink formed with conformal shield
WO2010007969A1 (en) * 2008-07-18 2010-01-21 株式会社 村田製作所 Method for manufacturing module having built-in component, and module having built-in component
JP2010073911A (en) * 2008-09-19 2010-04-02 Jtekt Corp Multilayer circuit board, and motor driving circuit board
WO2011007519A1 (en) * 2009-07-16 2011-01-20 パナソニック株式会社 Module component and mehtod for manufacturing same
JPWO2011007519A1 (en) * 2009-07-16 2012-12-20 パナソニック株式会社 Module parts and manufacturing method thereof
US9137934B2 (en) 2010-08-18 2015-09-15 Rf Micro Devices, Inc. Compartmentalized shielding of selected components
US9420704B2 (en) 2011-02-25 2016-08-16 Qorvo Us, Inc. Connection using conductive vias
US9942994B2 (en) 2011-02-25 2018-04-10 Qorvo Us, Inc. Connection using conductive vias
US8835226B2 (en) 2011-02-25 2014-09-16 Rf Micro Devices, Inc. Connection using conductive vias
US9627230B2 (en) 2011-02-28 2017-04-18 Qorvo Us, Inc. Methods of forming a microshield on standard QFN package
JP2013157576A (en) * 2012-02-01 2013-08-15 Nec Corp Circuit element packaging structure
US9756718B2 (en) 2013-01-22 2017-09-05 Murata Manufacturing Co., Ltd. Module board
US9807890B2 (en) 2013-05-31 2017-10-31 Qorvo Us, Inc. Electronic modules having grounded electromagnetic shields
US9472428B2 (en) 2013-08-26 2016-10-18 Tdk Corporation Manufacturing method of module components
US11127689B2 (en) 2018-06-01 2021-09-21 Qorvo Us, Inc. Segmented shielding using wirebonds
US11058038B2 (en) 2018-06-28 2021-07-06 Qorvo Us, Inc. Electromagnetic shields for sub-modules
US11219144B2 (en) 2018-06-28 2022-01-04 Qorvo Us, Inc. Electromagnetic shields for sub-modules
US11114363B2 (en) 2018-12-20 2021-09-07 Qorvo Us, Inc. Electronic package arrangements and related methods
US11515282B2 (en) 2019-05-21 2022-11-29 Qorvo Us, Inc. Electromagnetic shields with bonding wires for sub-modules

Also Published As

Publication number Publication date
CN1692685A (en) 2005-11-02
JP4350366B2 (en) 2009-10-21
CN1692685B (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4350366B2 (en) Electronic component built-in module
JP4357817B2 (en) Module with built-in circuit components
US6998532B2 (en) Electronic component-built-in module
US6396136B2 (en) Ball grid package with multiple power/ground planes
US9226400B2 (en) Multilayer ceramic electronic device and method for manufacturing the same
KR101140518B1 (en) Wiring b0ard and semic0nduct0r device
KR100629826B1 (en) Compound and circuit device using the same
US7834443B2 (en) Semiconductor device with molten metal preventing member
KR20080060167A (en) Electronic component contained substrate
JP2004111897A (en) Electronic apparatus
JP4341321B2 (en) Electronic component built-in module
US7928559B2 (en) Semiconductor device, electronic component module, and method for manufacturing semiconductor device
JP3492025B2 (en) Circuit board structure
JP2005183430A (en) Module comprising electronic component
US20070138632A1 (en) Electronic carrier board and package structure thereof
US6677522B1 (en) Package for electronic component
JP2004014870A (en) Circuit module and its producing method
JPH0773110B2 (en) Semiconductor integrated circuit device
JP2004095815A (en) Modular component
WO2015004952A1 (en) Circuit board
JP4963890B2 (en) Resin-sealed circuit device
JP2004095864A (en) Electronic part
KR100230919B1 (en) Semiconductor package
JP2014103382A (en) Solder ball, printed circuit board using the same, and semiconductor package
JP2008022016A (en) Circuit module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070710

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4350366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

EXPY Cancellation because of completion of term