JP4341321B2 - Electronic component built-in module - Google Patents

Electronic component built-in module Download PDF

Info

Publication number
JP4341321B2
JP4341321B2 JP2003199254A JP2003199254A JP4341321B2 JP 4341321 B2 JP4341321 B2 JP 4341321B2 JP 2003199254 A JP2003199254 A JP 2003199254A JP 2003199254 A JP2003199254 A JP 2003199254A JP 4341321 B2 JP4341321 B2 JP 4341321B2
Authority
JP
Japan
Prior art keywords
electronic component
electrode
solder
wiring board
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003199254A
Other languages
Japanese (ja)
Other versions
JP2005039007A (en
Inventor
英司 川本
雅昭 葉山
雅昭 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003199254A priority Critical patent/JP4341321B2/en
Priority to US10/500,539 priority patent/US6998532B2/en
Priority to PCT/JP2003/016427 priority patent/WO2004060034A1/en
Priority to CN2003801001779A priority patent/CN1692685B/en
Publication of JP2005039007A publication Critical patent/JP2005039007A/en
Application granted granted Critical
Publication of JP4341321B2 publication Critical patent/JP4341321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, at the time of reflow connection with a mother board, solder is remelt, causing short-circuiting between the electrodes in a conventional module with built-in electronic components which uses solder for mounting the electronic components and is molded with resin. <P>SOLUTION: The module 1 with built-in electronic components includes at least one electronic component 4 and a wiring board 2 having at least one interconnection layer. The electronic component 4 is connected to electrodes 3 of the wiring board 2 by solder 5, and all these are covered with insulating resin 7, and an electromagnetic shield layer 15 which consists of a metal plating film is formed on the surface of the insulating resin 7. In such module 1 with built-in electronic components, S<SB>C</SB>&ge;S<SB>S</SB>is satisfied, where S<SB>C</SB>is an interval between electrodes 6 of the electronic component 4 and S<SB>S</SB>is an interval between the electrodes 3 of the wiring board 2 for mounting the electronic component. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電子部品内蔵モジュールに関し、特に、配線基板の上部に電子部品が配置され、これを絶縁樹脂で覆った電子部品内蔵モジュールに関するものである。
【0002】
【従来の技術】
近年、基板上に複数の電子部品を搭載してなる小型の電子機器が急速に普及してきた。この種の電子機器は従来、電磁界ノイズからの保護の目的で金属ケースで部品を覆ったものや金属ケースに収納されたものが存在していた。また、これら金属ケースに代わる技術として最近では絶縁樹脂でモールドされた電子部品内蔵モジュールが提案されている。
【0003】
図5に従来の絶縁樹脂でモールドされた電子部品内蔵モジュールを示す。
【0004】
図5に示すように配線パターン111や電極103を配線基板102の表面に形成し、その表面をソルダーレジスト116で覆っている。さらに、配線基板102の内部はインナービア110、配線パターン112が設けられている。配線基板102の裏面には裏面電極113、はんだ114が設けられている。そして、電子部品104の電極106と配線基板102の電極103とをはんだ105で接続した後、電子部品104を包み込むように配線基板102の表面上を絶縁樹脂107で覆い、表層に金属めっき膜115による電磁界シールド層を設けた電子部品内蔵モジュール100である。
【0005】
なお、この出願に関する先行技術文献情報としては、例えば、特許文献1が知られている。
【0006】
【特許文献1】
特開2001−168493号公報
【0007】
【発明が解決しようとする課題】
しかしながら、従来の絶縁樹脂107でモールドされた電子部品内蔵モジュール100では、はんだ実装により電子部品104を内蔵する場合、通常の表面実装方式における電子部品と配線基板の電極構造の位置関係を、そのまま内蔵する電子部品のはんだ実装構造へ流用している。この通常の表面実装方式における電子部品と配線基板の電極構造の位置関係は、図6(a)の電子部品104の正面図に示すように電子部品104の電極106の間隔をSC1、図6(b)の配線基板102の断面図に示すように配線基板102の電極103の間隔をSS1とすると、特に0603サイズ及び1005サイズの電子部品104に対しては、各電子部品製造メーカーは、リフローによるはんだ実装の場合、SC1<SS1を推奨している。そして、実際に電子部品104を配線基板102にはんだ実装する場合には、電子部品104の電極106間でのショートを避けるため、できるだけ配線基板102の電極間隔を広く設計し、推奨通りSC1<SS1としている。この電極構造の位置関係を、電子部品内蔵モジュールにおける内蔵する電子部品104のはんだ実装に用いた場合、電子部品内蔵モジュールは、後にリフローによりマザー基板上へはんだを用いて実装されるのであるが、その際、電子部品内蔵モジュール内のはんだ105は再溶融し、この時同時にはんだ105は体積膨張を伴う。電極の位置関係がSC1<SS1であると、電子部品104の下面側において、はんだ105が鋭角構造となるため、はんだ105の体積膨張による応力により、電子部品104の下面と配線基板102との間に存在する絶縁樹脂107に対して、電子部品104の下面と絶縁樹脂107を引き剥がすような力が働く。そのため、電子部品104と絶縁樹脂107の界面にはんだ105が流出しやすくなり、電極間ショートを引き起こすこととなる。
【0008】
本発明は上記従来の問題を解決し、接続信頼性及び量産性に優れた電子部品内蔵モジュールを提供することを目的としている。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明の請求項1に記載の発明は、表面の実装用電極と、内部の配線パターンと、を有する配線基板と、前記実装用電極に、はんだで実装された部品電極を有する電子部品と、前記配線基板上で前記電子部品を覆うと共に、前記電子部品と前記配線基板との間に設けた空間に充填された絶縁樹脂と、前記絶縁樹脂の表面に形成された電磁界シールド層と、を有する電子部品内蔵モジュールであって、前記部品電極の電極間隔をSc、前記実装用電極の電極間隔をSsとするとき、Sc≧Ssの関係を満足すると共に、前記はんだが、前記実装用電極と前記部品電極との間と、前記部品電極の側面部分の、両方に形成されて、かつ、前記部品電極と接続している前記はんだの形状が前記部品電極の下面の内側部分において90°以上の角度を有し、前記電磁界シールドが、前記配線基板の側面で、前記配線パターンと接続している電子部品内蔵モジュールとしたものであり、電子部品内蔵モジュール内のはんだが再溶融した際に、溶融による体積膨張で発生した応力が、電子部品と配線基板間に存在する絶縁樹脂を電子部品側に押しつけるように作用するため、電子部品と絶縁樹脂との間にはんだの流出が起こらないという作用を有する。
【0010】
本発明の請求項2に記載の発明は、表面の実装用電極と、内部の配線パターンと、ソルダーレジストと、を有する配線基板と、前記実装用電極に、はんだで実装された部品電極を有する電子部品と、前記配線基板上で前記電子部品を覆うと共に、前記電子部品と前記配線基板との間に設けた空間に充填された絶縁樹脂と、前記絶縁樹脂の表面に形成された電磁界シールド層と、を有する電子部品内蔵モジュールであって、前記部品電極の電極間隔をSc、前記実装用電極の電極間隔をSsとするとき、Sc≧Ssの関係を満足すると共に、前記はんだが、前記実装用電極と前記部品電極との間と、前記部品電極の側面部分の、両方に形成されて、かつ、前記部品電極と接続している前記はんだの形状が前記部品電極の下面の内側部分において90°以上の角度を有し、前記ソルダーレジストは、前記実装用電極の周囲にのみ形成され、前記電磁界シールドが、前記配線基板の側面で、前記配線パターンと接続している電子部品内蔵モジュールとしたものであり、電子部品内蔵モジュール内のはんだが再溶融した際に、溶融による体積膨張で発生した応力が、電子部品と配線基板間に存在する絶縁樹脂を電子部品側に押しつけるように作用するため、電子部品と絶縁樹脂との間にはんだの流出が起こらないという作用を有する。
【0011】
【発明の実施の形態】
以下、本発明の一実施の形態について説明する。
【0012】
(実施の形態1)
図1は本発明の実施の形態1による電子部品内蔵モジュールの断面図を示す。図2は本発明の実施の形態1による電子部品の電極構造及び配線基板の電極構造を示す。
【0015】
図1において、配線基板2は、表面の電極3や配線パターン12やインナービア10、裏面に裏面電極13が形成された多層配線基板である。
【0013】
電極3,13や配線パターン12は、電気導電性を有する物質から成り、例えば、Cu箔や導電性樹脂組成物から成る。本発明においてはCu箔を用いている。インナービア10は、例えば熱硬化性の導電性物質から成る。熱硬化性の導電性物質としては、例えば、金属粒子と熱硬化性樹脂とを混合した導電性樹脂組成物を用いることができる。金属粒子としては、Au,AgまたはCuなどを用いることができる。Au,AgまたはCuは導電性が高いために好ましく、Cuは導電性が高くマイグレーションも少なく、また、低コストであるため特に好ましい。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂またはシアネート樹脂を用いることができる。エポキシ樹脂は耐熱性が高いために特に好ましい。
【0014】
この配線基板2上の所定の位置にはんだ5を用いて両端に電極6を設けた電子部品4を実装している。電子部品4は、例えば、能動部品および受動部品から成る。能動部品としては、例えば、トランジスタ、IC、LSIなどの半導体素子が用いられる。受動部品としては、抵抗、コンデンサ、インダクタ、振動子及びフィルタ等の面実装型部品が用いられる。
【0015】
はんだ5にはPb−Sn系の共晶はんだやPbフリーはんだ(例えばSn−Ag−Cu系、Au−Sn系またはSn−Zn系)を用いることができるが、何れの場合も融点が230℃以下であって非耐熱性部品であっても使用することが可能である。また、電子部品4を実装するためのはんだ5と電子部品内蔵モジュール1をマザー基板(図示せず)へ実装するためのはんだ14は同一材料であっても構わないし、異なる材料を用いても構わない。しかしながら、近年の環境問題への配慮を考えるとPbフリーはんだを用いる方が望ましい。
【0016】
絶縁樹脂7は電子部品4を完全に覆い、且つ電子部品4と配線基板2の間にも完全に入り込むように形成されている。絶縁樹脂7は、無機フィラーと熱硬化性樹脂とを含む混合物からなる。無機フィラーには、たとえば、Al23,MgO,BN,AlN,SiO2およびBaTiO3などを用いることができる。無機フィラーの配合比率は、50重量%〜95重量%の範囲内であることが重要である。この範囲内において絶縁樹脂7を電子部品4の高さ以上に肉厚(例えば1mm)に形成することができるのであるが、この範囲以下になると絶縁樹脂7の流動性が大きくなり、肉厚に形状を維持することができない。また、95重量%以上の無機フィラーを含有して絶縁樹脂7を形成することは不可能である。また、無機フィラーの粒径は配線基板2と電子部品4の間隔より小さい粒径とすることが重要である。粒径を小さくすることで電子部品4と配線基板2の間に絶縁樹脂7を充填することが可能となる。また、絶縁樹脂7に含有する熱硬化性樹脂は、エポキシ樹脂、フェノール樹脂、またはシアネート樹脂が好ましい。エポキシ樹脂は、耐熱性が高いために特に好ましい。
【0017】
また、絶縁樹脂7の表層にめっきによる金属膜を形成し、電磁界シールド層15として作用させている。金属めっき膜による電磁界シールド層15は、Au,Ag,Cu,Ni,Cr,Zn,Ti,Al等の材料を少なくとも1種類以上用いて形成している。
【0018】
図1及び図2に示すように、本発明の電子部品内蔵モジュール1においては、電子部品4の電極6の間隔をSC、配線基板2の電極3の間隔をSSとする時、SC≧SSとなる関係を満足させることが重要である。これは電子部品内蔵モジュール1内のはんだ5が再溶融した際に、はんだ5が溶融による体積膨張で発生した応力が、電子部品4と配線基板2との間に存在する絶縁樹脂7を電子部品4に押しつけるように作用するため、電子部品4と絶縁樹脂7との間にはんだの流出が起こらず、はんだ5の再溶融による電極間ショートが発生しない。
【0019】
更に、電子部品4の電極6と接続しているはんだ5の形状が、電子部品4の下面の電極6の内側部分における角度αが90°以上の角度(鈍角)とすることが重要である。
【0020】
この関係を満足させることで、はんだ5の再溶融時の膨張に対して、電子部品4の下に存在するはんだ5が、電子部品4と配線基板2の間に存在する絶縁樹脂7を電子部品4側へ押しつけるように膨張するため、電子部品4と絶縁樹脂7の界面は確実に密着することとなり、はんだ5が流出すべき経路が遮断されることになる。従って、電子部品4と絶縁樹脂7の界面へのはんだ5の流出は起こらないのである。また、逆に、はんだ5と配線基板2の電極3との接続部において、はんだ5の角度βが90°以下(鋭角)の形状となる部分が存在することになる。しかしながら、絶縁樹脂7と配線基板2とは、互いに樹脂同士であるため、絶縁樹脂7を硬化させる際に配線基板2と絶縁樹脂7を強固に接着させることができる。そのため、はんだ5の膨張による応力に対しても、十分接着し続けることが可能で、両者の界面へのはんだ5の流出は発生しない。
【0021】
すなわち、電子部品4と絶縁樹脂7の界面の接着力が弱いためにはんだ5の流出はこの電子部品4と絶縁樹脂7の界面で起こるのである。
【0022】
そのため、電子部品4の下側ではんだ5が鋭角にならない構造にすることが重要である。
【0023】
ただし、いずれの場合においても、はんだ5の膨張を緩和するために絶縁樹脂7には曲げ弾性率が20GPaの低弾性率材料でなければならない。
【0024】
以上に示すように、本発明の実施の形態1においては電子部品4の電極間隔SCと配線基板2の電極間隔SSとの関係をSC≧SSとし、更に、電子部品4の電極6と接続しているはんだ5の形状が、電子部品4の下面の電極6の内側部分において90°以上の角度とすることで、電子部品内蔵モジュール内のはんだ5が再溶融しても、はんだ5の膨張がはんだ自らの流出経路(電子部品下側の絶縁樹脂との界面)を遮断してはんだ流出を回避することが可能となる。
【0025】
(実施の形態2)
図3は、本発明の実施の形態2による電子部品内蔵モジュールの断面図を示し、実施の形態1と同一の構造については、同一番号を付与して説明を省略する。
【0026】
図3に示すように、実施の形態1と同様に電子部品4の電極6の間隔SCと配線基板2の電極3の間隔SSとの関係をSC≧SSとし、更に、電子部品4の電極6と接続しているはんだ5の形状が電子部品4の下面の電極6の内側部分において角度αを90°以上の角度としている。そして、配線基板2の上面にソルダーレジスト17を形成するとともに、電子部品4の真下に位置する配線基板2上の電極3以外の部分にソルダーレジスト17の未形成部分を設けている。こうすることで、電子部品4と配線基板2との間に確実に空間を形成することができる。従ってこの空間により、容易に電子部品4の真下へ絶縁樹脂7を充填することが可能となる。
【0027】
更に、配線基板2側に形成されている角度βが鋭角な形状のはんだ5の構造に対して再溶融によりはんだ5が膨張してもこのソルダーレジスト17がはんだ5の流出に対する防止壁の役割を果たすことができる。
【0028】
以上のような構造を有するソルダーレジスト17の存在により、絶縁樹脂7を確実に電子部品4と配線基板2間に充填することができるとともに、はんだ流出防止壁としての役割を果たすため、はんだ5の再溶融時の膨張に対しても、電子部品4と配線基板2との間のはんだ5の流出によるショート不良を防止することが可能である。
【0029】
(実施の形態3)
図4は、本発明の実施の形態3による電子部品内蔵モジュールの断面図を示し、実施の形態1と同一の構造については、同一番号を付与して説明を省略する。
【0030】
図4に示すように、実施の形態1と同様に電子部品4の電極6の間隔SCと配線基板2の電極3の間隔SSとの関係をSC≧SSとし、更に、電子部品4の電極6と接続しているはんだ5の形状が電子部品4の下面の電極6の内側部分において角度αが90°以上の角度としている。
【0031】
そして、電極3の周囲にのみソルダーレジスト27を形成している。このソルダーレジスト27は電子部品4を配線基板2上にはんだ5で実装する際に、はんだ5の流出によるショート不良を防止する効果を有するとともに、電極3の周囲にのみ存在しているため、電子部品4と配線基板2との空間を広くすることが可能となる。
【0032】
こうすることで、電子部品4と配線基板2との間に確実に空間を形成することができる。従ってこの空間により、容易に電子部品4の真下へ絶縁樹脂7を充填することが可能となる。
【0033】
更に、配線基板2側に形成されている角度βが鋭角形状のはんだ5の構造に対してはんだ5が再溶融し膨張してもこのソルダーレジスト27がはんだ5の流出に対する防止壁の役割を果たすことができる。
【0034】
以上のような構造を有するソルダーレジスト27の存在により、絶縁樹脂7を確実に電子部品4と配線基板2間に充填することができるとともに、はんだ流出防止壁としての役割を果たすため、はんだ5の再溶融時の膨張に対しても、電子部品4と配線基板2との間のはんだ5の流出によるショート不良を防止することが可能である。
【0035】
【発明の効果】
以上のように本発明によれば、電子部品の電極間隔SCと配線基板の電極間隔SSとの関係をSC≧SSとし、更に、電子部品の電極と接続しているはんだの形状を、電子部品の下面の電極の内側部分において角度αを90°以上の角度とすることで、電子部品内蔵モジュール内のはんだが再溶融して体積膨張が起こっても、電子部品と絶縁樹脂の界面にはんだが流出することが無いため、はんだショート不良が起こらず良好な接続信頼性を確保することができるものである。
【図面の簡単な説明】
【図1】 本発明の実施の形態1による電子部品内蔵モジュールの断面図
【図2】 (a)本発明の電子部品の正面図
(b)本発明の電子部品内蔵モジュールに使用している配線基板の断面図
【図3】 本発明の実施の形態2による電子部品内蔵モジュールの断面図
【図4】 本発明の実施の形態3による電子部品内蔵モジュールの断面図
【図5】 従来の電子部品内蔵モジュールの断面図
【図6】 (a)従来の電子部品の正面図
(b)従来の電子部品内蔵モジュールに使用している配線基板の断面図
【符号の説明】
1 電子部品内蔵モジュール
2 配線基板
3 電極
4 電子部品
5 はんだ
6 電極
7 絶縁樹脂
10 インナービア
12 配線パターン
13 裏面電極
14 はんだ
15 シールド層
17 ソルダーレジスト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic component built-in module, and more particularly to an electronic component built-in module in which an electronic component is disposed on an upper part of a wiring board and covered with an insulating resin.
[0002]
[Prior art]
In recent years, small electronic devices in which a plurality of electronic components are mounted on a substrate have rapidly spread. Conventionally, there are electronic devices of this type in which components are covered with a metal case or stored in a metal case for the purpose of protection from electromagnetic field noise. In addition, recently, an electronic component built-in module molded with an insulating resin has been proposed as a technique to replace these metal cases.
[0003]
FIG. 5 shows a conventional electronic component built-in module molded with an insulating resin.
[0004]
As shown in FIG. 5, a wiring pattern 111 and an electrode 103 are formed on the surface of the wiring substrate 102, and the surface is covered with a solder resist 116. Furthermore, an inner via 110 and a wiring pattern 112 are provided inside the wiring substrate 102. A back electrode 113 and solder 114 are provided on the back surface of the wiring substrate 102. Then, after connecting the electrode 106 of the electronic component 104 and the electrode 103 of the wiring board 102 with the solder 105, the surface of the wiring board 102 is covered with an insulating resin 107 so as to wrap the electronic component 104, and the metal plating film 115 is formed on the surface layer. This is an electronic component built-in module 100 provided with an electromagnetic field shielding layer.
[0005]
As prior art document information relating to this application, for example, Patent Document 1 is known.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-168493
[Problems to be solved by the invention]
However, in the electronic component built-in module 100 molded with the conventional insulating resin 107, when the electronic component 104 is built in by solder mounting, the positional relationship between the electronic component and the electrode structure of the wiring board in the normal surface mounting method is incorporated as it is. It is diverted to solder mounting structures for electronic components. As shown in the front view of the electronic component 104 in FIG. 6A, the positional relationship between the electronic component and the electrode structure of the wiring board in this normal surface mounting method is such that the distance between the electrodes 106 of the electronic component 104 is S C1 . the spacing of the electrodes 103 of the wiring board 102 as shown in the sectional view of the wiring substrate 102 (b) When S S1, with respect to the electronic component 104, especially 0603 and the size 1005, the electronic component manufacturing manufacturers are In the case of solder mounting by reflow, S C1 <S S1 is recommended. When the electronic component 104 is actually solder mounted on the wiring board 102, in order to avoid a short circuit between the electrodes 106 of the electronic component 104, the electrode interval of the wiring board 102 is designed as wide as possible, and S C1 < S S1 is set. When this positional relationship of the electrode structure is used for solder mounting of the electronic component 104 incorporated in the electronic component built-in module, the electronic component built-in module is later mounted on the mother board by reflow using solder. At that time, the solder 105 in the electronic component built-in module is remelted, and at the same time, the solder 105 is accompanied by volume expansion. When the positional relationship of the electrodes is S C1 <S S1 , the solder 105 has an acute angle structure on the lower surface side of the electronic component 104, and therefore the lower surface of the electronic component 104 and the wiring substrate 102 are affected by the stress due to the volume expansion of the solder 105. A force that peels off the lower surface of the electronic component 104 and the insulating resin 107 acts on the insulating resin 107 existing between them. Therefore, the solder 105 is likely to flow out to the interface between the electronic component 104 and the insulating resin 107, causing a short circuit between the electrodes.
[0008]
An object of the present invention is to solve the above-described conventional problems and provide an electronic component built-in module excellent in connection reliability and mass productivity.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention includes a wiring board having a surface mounting electrode and an internal wiring pattern, and a component mounted on the mounting electrode with solder. An electronic component having an electrode, an insulating resin that covers the electronic component on the wiring board, is filled in a space provided between the electronic component and the wiring board, and is formed on the surface of the insulating resin met electronic component built-in module having an electromagnetic field shield layer, and the electrode spacing of the component electrodes Sc, when the Ss electrode spacing of the mounting electrode, as well as satisfy the relation Sc ≧ Ss, the solder However, the shape of the solder formed between both the mounting electrode and the component electrode and on the side surface portion of the component electrode and connected to the component electrode is lower than the lower surface of the component electrode. In the inner part An angle of 90 ° or more Te, the electromagnetic shield is a side of the wiring board is obtained by the electronic component built-in module that is connected to the wiring pattern, the re-solder the electronic component built-in module When melted, the stress generated by the volume expansion due to melting acts to press the insulating resin existing between the electronic component and the wiring board against the electronic component, so that the solder flows out between the electronic component and the insulating resin. Has the effect that does not occur.
[0010]
The invention described in claim 2 of the present invention has a wiring board having a mounting electrode on the surface, an internal wiring pattern, and a solder resist, and a component electrode mounted on the mounting electrode with solder. An electronic component, an insulating resin that covers the electronic component on the wiring board and is filled in a space provided between the electronic component and the wiring board, and an electromagnetic field shield formed on the surface of the insulating resin met electronic component built-in module having a layer, and when the electrode spacing of the component electrodes Sc, and Ss electrode spacing of the mounting electrode, as well as satisfy the relation Sc ≧ Ss, the solder, the The shape of the solder formed on both the mounting electrode and the component electrode and on the side surface portion of the component electrode and connected to the component electrode is in the inner portion of the lower surface of the component electrode. Has an angle of 0 ° or more, the solder resist is formed only around the mounting electrode, the electromagnetic shield is a side of the wiring board, an electronic component built-in module that is connected to the wiring pattern When the solder in the electronic component built-in module is remelted, the stress generated by volume expansion due to melting acts to press the insulating resin existing between the electronic component and the wiring board against the electronic component side. Therefore, there is an effect that solder does not flow out between the electronic component and the insulating resin.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described.
[0012]
(Embodiment 1)
FIG. 1 is a sectional view of an electronic component built-in module according to Embodiment 1 of the present invention. FIG. 2 shows an electrode structure of an electronic component and an electrode structure of a wiring board according to Embodiment 1 of the present invention.
[0015]
In FIG. 1, a wiring board 2 is a multilayer wiring board in which a front electrode 3, a wiring pattern 12, an inner via 10, and a back electrode 13 are formed on the back surface.
[0013]
The electrodes 3 and 13 and the wiring pattern 12 are made of a material having electrical conductivity, for example, Cu foil or a conductive resin composition. In the present invention, Cu foil is used. The inner via 10 is made of, for example, a thermosetting conductive material. As the thermosetting conductive material, for example, a conductive resin composition in which metal particles and a thermosetting resin are mixed can be used. As the metal particles, Au, Ag, Cu, or the like can be used. Au, Ag, or Cu is preferable because of its high conductivity, and Cu is particularly preferable because of its high conductivity, low migration, and low cost. As the thermosetting resin, for example, an epoxy resin, a phenol resin, or a cyanate resin can be used. Epoxy resins are particularly preferred because of their high heat resistance.
[0014]
An electronic component 4 provided with electrodes 6 at both ends is mounted using solder 5 at predetermined positions on the wiring board 2. The electronic component 4 includes, for example, an active component and a passive component. For example, a semiconductor element such as a transistor, IC, or LSI is used as the active component. As the passive components, surface mount components such as resistors, capacitors, inductors, vibrators, and filters are used.
[0015]
Pb—Sn eutectic solder or Pb-free solder (for example, Sn—Ag—Cu, Au—Sn, or Sn—Zn) can be used for the solder 5, but in any case, the melting point is 230 ° C. Even the following non-heat resistant parts can be used. The solder 5 for mounting the electronic component 4 and the solder 14 for mounting the electronic component built-in module 1 on the mother board (not shown) may be the same material or different materials. Absent. However, in consideration of recent environmental problems, it is preferable to use Pb-free solder.
[0016]
The insulating resin 7 is formed so as to completely cover the electronic component 4 and completely enter between the electronic component 4 and the wiring board 2. The insulating resin 7 is made of a mixture containing an inorganic filler and a thermosetting resin. As the inorganic filler, for example, Al 2 O 3 , MgO, BN, AlN, SiO 2 and BaTiO 3 can be used. It is important that the blending ratio of the inorganic filler is in the range of 50% by weight to 95% by weight. Within this range, the insulating resin 7 can be formed with a thickness (for example, 1 mm) that is higher than the height of the electronic component 4. However, when the thickness is less than this range, the fluidity of the insulating resin 7 increases and the thickness increases. The shape cannot be maintained. Further, it is impossible to form the insulating resin 7 containing 95% by weight or more of an inorganic filler. It is important that the particle size of the inorganic filler is smaller than the distance between the wiring board 2 and the electronic component 4. By reducing the particle size, the insulating resin 7 can be filled between the electronic component 4 and the wiring board 2. Moreover, the thermosetting resin contained in the insulating resin 7 is preferably an epoxy resin, a phenol resin, or a cyanate resin. Epoxy resins are particularly preferred because of their high heat resistance.
[0017]
Further, a metal film by plating is formed on the surface layer of the insulating resin 7 to act as the electromagnetic field shield layer 15. The electromagnetic field shielding layer 15 made of a metal plating film is formed using at least one material such as Au, Ag, Cu, Ni, Cr, Zn, Ti, and Al.
[0018]
As shown in FIGS. 1 and 2, in the electronic component built-in module 1 of the present invention, when the distance between the electrodes 6 of the electronic component 4 is S C and the distance between the electrodes 3 of the wiring board 2 is S S , S C It is important to satisfy the relationship of ≧ S S. This is because when the solder 5 in the electronic component built-in module 1 is remelted, the stress generated by the volume expansion due to the melting of the solder 5 causes the insulating resin 7 present between the electronic component 4 and the wiring board 2 to 4, the solder does not flow out between the electronic component 4 and the insulating resin 7, and the short circuit between the electrodes due to remelting of the solder 5 does not occur.
[0019]
Further, it is important that the shape of the solder 5 connected to the electrode 6 of the electronic component 4 is an angle (obtuse angle) of 90 ° or more at the inner portion of the electrode 6 on the lower surface of the electronic component 4.
[0020]
By satisfying this relationship, the solder 5 existing under the electronic component 4 replaces the insulating resin 7 existing between the electronic component 4 and the wiring board 2 against the expansion when the solder 5 is remelted. Since it expands so as to press against the side 4, the interface between the electronic component 4 and the insulating resin 7 is surely adhered, and the path through which the solder 5 should flow out is blocked. Therefore, the solder 5 does not flow out to the interface between the electronic component 4 and the insulating resin 7. Conversely, there is a portion where the angle β of the solder 5 is 90 ° or less (acute angle) at the connection portion between the solder 5 and the electrode 3 of the wiring board 2. However, since the insulating resin 7 and the wiring substrate 2 are made of resin, the wiring substrate 2 and the insulating resin 7 can be firmly bonded when the insulating resin 7 is cured. Therefore, it is possible to continue to sufficiently adhere to the stress due to the expansion of the solder 5, and the outflow of the solder 5 to the interface between the two does not occur.
[0021]
That is, since the adhesive force at the interface between the electronic component 4 and the insulating resin 7 is weak, the solder 5 flows out at the interface between the electronic component 4 and the insulating resin 7.
[0022]
Therefore, it is important to have a structure in which the solder 5 does not form an acute angle below the electronic component 4.
[0023]
However, in any case, the insulating resin 7 must be a low elastic modulus material having a bending elastic modulus of 20 GPa in order to alleviate the expansion of the solder 5.
[0024]
As shown above, the relationship between the electrode spacing S S of the electrode spacing S C between the wiring board 2 of the electronic component 4 in the first embodiment of the present invention the S C ≧ S S, further, the electronic component 4 electrodes 6, the shape of the solder 5 connected to the inner part of the electrode 6 on the lower surface of the electronic component 4 is set to an angle of 90 ° or more, so that even if the solder 5 in the electronic component built-in module is remelted, the solder The expansion of 5 can block the solder's own outflow path (interface with the insulating resin below the electronic component) and avoid the solder outflow.
[0025]
(Embodiment 2)
FIG. 3 shows a cross-sectional view of the electronic component built-in module according to the second embodiment of the present invention, and the same structure as that of the first embodiment is given the same number and the description thereof is omitted.
[0026]
As shown in FIG. 3, as in the first embodiment, the relationship between the spacing S C between the electrodes 6 of the electronic component 4 and the spacing S S between the electrodes 3 on the wiring board 2 is S C ≧ S S. The shape of the solder 5 connected to the four electrodes 6 has an angle α of 90 ° or more in the inner portion of the electrode 6 on the lower surface of the electronic component 4. Then, a solder resist 17 is formed on the upper surface of the wiring board 2, and a portion where the solder resist 17 is not formed is provided in a portion other than the electrode 3 on the wiring board 2 located immediately below the electronic component 4. By so doing, a space can be reliably formed between the electronic component 4 and the wiring board 2. Therefore, this space makes it possible to easily fill the insulating resin 7 directly below the electronic component 4.
[0027]
Further, even if the solder 5 expands due to remelting with respect to the structure of the solder 5 having an acute angle β formed on the wiring board 2 side, the solder resist 17 serves as a barrier for preventing the solder 5 from flowing out. Can fulfill.
[0028]
The presence of the solder resist 17 having the above-described structure allows the insulating resin 7 to be reliably filled between the electronic component 4 and the wiring board 2 and serves as a solder outflow prevention wall. Even with expansion during remelting, it is possible to prevent a short circuit failure due to the outflow of the solder 5 between the electronic component 4 and the wiring board 2.
[0029]
(Embodiment 3)
FIG. 4 shows a cross-sectional view of the electronic component built-in module according to the third embodiment of the present invention, and the same structure as that of the first embodiment is given the same number and its description is omitted.
[0030]
As shown in FIG. 4, as in the first embodiment, the relationship between the spacing S C between the electrodes 6 of the electronic component 4 and the spacing S S between the electrodes 3 on the wiring board 2 is S C ≧ S S. The shape of the solder 5 connected to the four electrodes 6 is such that the angle α is 90 ° or more in the inner portion of the electrode 6 on the lower surface of the electronic component 4.
[0031]
A solder resist 27 is formed only around the electrode 3. The solder resist 27 has an effect of preventing a short circuit failure due to the outflow of the solder 5 when the electronic component 4 is mounted on the wiring board 2 with the solder 5, and is present only around the electrode 3. It becomes possible to widen the space between the component 4 and the wiring board 2.
[0032]
By so doing, a space can be reliably formed between the electronic component 4 and the wiring board 2. Therefore, this space makes it possible to easily fill the insulating resin 7 directly below the electronic component 4.
[0033]
Further, even if the solder 5 is remelted and expanded with respect to the structure of the solder 5 having an acute angle β formed on the wiring board 2 side, the solder resist 27 serves as a barrier for preventing the solder 5 from flowing out. be able to.
[0034]
Due to the presence of the solder resist 27 having the above-described structure, the insulating resin 7 can be reliably filled between the electronic component 4 and the wiring board 2 and also serves as a solder outflow prevention wall. Even with expansion during remelting, it is possible to prevent a short circuit failure due to the outflow of the solder 5 between the electronic component 4 and the wiring board 2.
[0035]
【The invention's effect】
According to the present invention as described above, the relationship between the electrode spacing S C of the electronic component and the electrode spacing S S of the wiring board and S C ≧ S S, further, the solder connecting the electronic component electrode shape By setting the angle α to 90 ° or more at the inner part of the electrode on the lower surface of the electronic component, even if the solder in the electronic component built-in module is remelted and volume expansion occurs, the electronic component and the insulating resin Since solder does not flow out to the interface, it is possible to ensure good connection reliability without causing a solder short circuit defect.
[Brief description of the drawings]
1 is a cross-sectional view of an electronic component built-in module according to Embodiment 1 of the present invention. FIG. 2 (a) a front view of the electronic component of the present invention. (B) wiring used in the electronic component built-in module of the present invention. Cross-sectional view of substrate [FIG. 3] Cross-sectional view of module with built-in electronic component according to Embodiment 2 of the present invention [FIG. 4] Cross-sectional view of module with built-in electronic component according to Embodiment 3 of the present invention [FIG. Cross-sectional view of built-in module [Fig. 6] (a) Front view of conventional electronic component (b) Cross-sectional view of wiring board used in conventional module with built-in electronic component [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electronic component built-in module 2 Wiring board 3 Electrode 4 Electronic component 5 Solder 6 Electrode 7 Insulation resin 10 Inner via 12 Wiring pattern 13 Back surface electrode 14 Solder 15 Shield layer 17 Solder resist

Claims (2)

表面の実装用電極と、内部の配線パターンと、を有する配線基板と、
前記実装用電極に、はんだで実装された部品電極を有する電子部品と、
前記配線基板上で前記電子部品を覆うと共に、前記電子部品と前記配線基板との間に設けた空間に充填された絶縁樹脂と、
前記絶縁樹脂の表面に形成された電磁界シールド層と、
を有する電子部品内蔵モジュールであって、
前記部品電極の電極間隔をSc、前記実装用電極の電極間隔をSsとするとき、Sc≧Ssの関係を満足すると共に、
前記はんだが、前記実装用電極と前記部品電極との間と、前記部品電極の側面部分の、両方に形成されて、かつ、前記部品電極と接続している前記はんだの形状が前記部品電極の下面の内側部分において90°以上の角度を有し、
前記電磁界シールドが、前記配線基板の側面で、前記配線パターンと接続している電子部品内蔵モジュール。
A wiring board having a surface mounting electrode and an internal wiring pattern;
An electronic component having a component electrode mounted with solder on the mounting electrode;
Covering the electronic component on the wiring board, and an insulating resin filled in a space provided between the electronic component and the wiring board;
An electromagnetic shielding layer formed on the surface of the insulating resin;
It met electronic component built-in module having a,
When the electrode interval between the component electrodes is Sc and the electrode interval between the mounting electrodes is Ss, the relationship Sc ≧ Ss is satisfied.
The solder is formed between both the mounting electrode and the component electrode and on the side surface portion of the component electrode, and the shape of the solder connected to the component electrode is the shape of the component electrode. Having an angle of 90 ° or more in the inner part of the lower surface,
The electronic component built-in module in which the electromagnetic field shield is connected to the wiring pattern on a side surface of the wiring board .
表面の実装用電極と、内部の配線パターンと、ソルダーレジストと、を有する配線基板と、
前記実装用電極に、はんだで実装された部品電極を有する電子部品と、
前記配線基板上で前記電子部品を覆うと共に、前記電子部品と前記配線基板との間に設けた空間に充填された絶縁樹脂と、
前記絶縁樹脂の表面に形成された電磁界シールド層と、
を有する電子部品内蔵モジュールであって、
前記部品電極の電極間隔をSc、前記実装用電極の電極間隔をSsとするとき、Sc≧Ssの関係を満足すると共に、
前記はんだが、前記実装用電極と前記部品電極との間と、前記部品電極の側面部分の、両方に形成されて、かつ、前記部品電極と接続している前記はんだの形状が前記部品電極の下面の内側部分において90°以上の角度を有し、
前記電子部品の直下の前記配線基板の電極以外の部分にソルダーレジスト未形成部が設けられ、
前記電磁界シールドが、前記配線基板の側面で、前記配線パターンと接続している電子部品内蔵モジュール。
A wiring board having a surface mounting electrode, an internal wiring pattern, and a solder resist;
An electronic component having a component electrode mounted with solder on the mounting electrode;
Covering the electronic component on the wiring board, and an insulating resin filled in a space provided between the electronic component and the wiring board;
An electromagnetic shielding layer formed on the surface of the insulating resin;
It met electronic component built-in module having a,
When the electrode interval between the component electrodes is Sc and the electrode interval between the mounting electrodes is Ss, the relationship Sc ≧ Ss is satisfied.
The solder is formed between both the mounting electrode and the component electrode and on the side surface portion of the component electrode, and the shape of the solder connected to the component electrode is the shape of the component electrode. Having an angle of 90 ° or more in the inner part of the lower surface,
Solder resist non-formed part is provided in a part other than the electrode of the wiring board directly under the electronic component,
The electronic component built-in module in which the electromagnetic field shield is connected to the wiring pattern on a side surface of the wiring board .
JP2003199254A 2002-12-24 2003-07-18 Electronic component built-in module Expired - Lifetime JP4341321B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003199254A JP4341321B2 (en) 2003-07-18 2003-07-18 Electronic component built-in module
US10/500,539 US6998532B2 (en) 2002-12-24 2003-12-22 Electronic component-built-in module
PCT/JP2003/016427 WO2004060034A1 (en) 2002-12-24 2003-12-22 Electronic component-built-in module
CN2003801001779A CN1692685B (en) 2002-12-24 2003-12-22 Module comprising built-in electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199254A JP4341321B2 (en) 2003-07-18 2003-07-18 Electronic component built-in module

Publications (2)

Publication Number Publication Date
JP2005039007A JP2005039007A (en) 2005-02-10
JP4341321B2 true JP4341321B2 (en) 2009-10-07

Family

ID=34208766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199254A Expired - Lifetime JP4341321B2 (en) 2002-12-24 2003-07-18 Electronic component built-in module

Country Status (1)

Country Link
JP (1) JP4341321B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8959762B2 (en) 2005-08-08 2015-02-24 Rf Micro Devices, Inc. Method of manufacturing an electronic module
US8062930B1 (en) 2005-08-08 2011-11-22 Rf Micro Devices, Inc. Sub-module conformal electromagnetic interference shield
US20090000815A1 (en) 2007-06-27 2009-01-01 Rf Micro Devices, Inc. Conformal shielding employing segment buildup
US8053872B1 (en) 2007-06-25 2011-11-08 Rf Micro Devices, Inc. Integrated shield for a no-lead semiconductor device package
US9137934B2 (en) 2010-08-18 2015-09-15 Rf Micro Devices, Inc. Compartmentalized shielding of selected components
US8835226B2 (en) 2011-02-25 2014-09-16 Rf Micro Devices, Inc. Connection using conductive vias
US9627230B2 (en) 2011-02-28 2017-04-18 Qorvo Us, Inc. Methods of forming a microshield on standard QFN package
JP5974428B2 (en) * 2011-07-14 2016-08-23 三菱電機株式会社 Semiconductor device
JP5751245B2 (en) * 2012-11-30 2015-07-22 Tdk株式会社 Chip component mounting structure and module product using the same
US9807890B2 (en) 2013-05-31 2017-10-31 Qorvo Us, Inc. Electronic modules having grounded electromagnetic shields
US11817239B2 (en) * 2017-12-15 2023-11-14 Qualcomm Incorporated Embedded vertical inductor in laminate stacked substrates
US11127689B2 (en) 2018-06-01 2021-09-21 Qorvo Us, Inc. Segmented shielding using wirebonds
US11219144B2 (en) 2018-06-28 2022-01-04 Qorvo Us, Inc. Electromagnetic shields for sub-modules
US11114363B2 (en) 2018-12-20 2021-09-07 Qorvo Us, Inc. Electronic package arrangements and related methods
US11515282B2 (en) 2019-05-21 2022-11-29 Qorvo Us, Inc. Electromagnetic shields with bonding wires for sub-modules

Also Published As

Publication number Publication date
JP2005039007A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
JP4357817B2 (en) Module with built-in circuit components
JP4350366B2 (en) Electronic component built-in module
US6998532B2 (en) Electronic component-built-in module
JP4341321B2 (en) Electronic component built-in module
US7569925B2 (en) Module with built-in component
US7488896B2 (en) Wiring board with semiconductor component
JP2541781B2 (en) Semiconductor chip package
CN104681520A (en) Embedded semiconductor device package and method of manufacturing thereof
TW200539406A (en) Circuit carrier and manufacturing process thereof
EP1988574A1 (en) Semiconductor device
JP2006203086A (en) Electronic part package and manufacturing method thereof
JP2005095977A (en) Circuit device
JP2004111897A (en) Electronic apparatus
US7928559B2 (en) Semiconductor device, electronic component module, and method for manufacturing semiconductor device
JP3492025B2 (en) Circuit board structure
US8785787B2 (en) Metal-based circuit board
JP2005183430A (en) Module comprising electronic component
KR101167453B1 (en) A printed circuit board comprising embeded electronic component within and a method for manufacturing
JP4463139B2 (en) Three-dimensional electronic circuit device
JP2006147747A (en) Module with built-in electronic component
JP2003046216A (en) Surface-mounted electronic component, circuit board, and surface-mounted electronic component mounting structure
WO2015004952A1 (en) Circuit board
JP2004095815A (en) Modular component
JP3914478B2 (en) LSI chip mounting flexible wiring board
JP2004095864A (en) Electronic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4341321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

EXPY Cancellation because of completion of term