JP2004205586A - 液晶配向膜の配向方法及び装置 - Google Patents
液晶配向膜の配向方法及び装置 Download PDFInfo
- Publication number
- JP2004205586A JP2004205586A JP2002371360A JP2002371360A JP2004205586A JP 2004205586 A JP2004205586 A JP 2004205586A JP 2002371360 A JP2002371360 A JP 2002371360A JP 2002371360 A JP2002371360 A JP 2002371360A JP 2004205586 A JP2004205586 A JP 2004205586A
- Authority
- JP
- Japan
- Prior art keywords
- ion beam
- substrate
- liquid crystal
- alignment film
- crystal alignment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Liquid Crystal (AREA)
Abstract
【目的】従来から用いられてきたラビング法に代わる非接触でクリーンな液晶配向膜の配向方法及び装置を提供する。
【構成】配向膜を塗布・焼成した基板を基板ステージにセットし、基板及びイオンビーム照射源の周辺雰囲気を真空状態としてArガスを流しArガスをイオン化し基板に照射する。イオンビームのビーム断面は、基板の液晶配向膜の表面全体を均一に照射できるような径のものとしている。一つの基板についてイオンビームの照射が行われた後は、基板ステージが自動的に回動して、次の基板がイオンビームの照射対象位置にセットされ、連続的なイオンビーム照射処理を可能にしている。
【選択図】 図1
【構成】配向膜を塗布・焼成した基板を基板ステージにセットし、基板及びイオンビーム照射源の周辺雰囲気を真空状態としてArガスを流しArガスをイオン化し基板に照射する。イオンビームのビーム断面は、基板の液晶配向膜の表面全体を均一に照射できるような径のものとしている。一つの基板についてイオンビームの照射が行われた後は、基板ステージが自動的に回動して、次の基板がイオンビームの照射対象位置にセットされ、連続的なイオンビーム照射処理を可能にしている。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、液晶表示装置に使用される液晶配向膜の配向を行うための方法及び装置に関する。
【0002】
【従来の技術】
従来より、液晶配向膜の配向方法として、配向膜表面を布で擦る(接触させる)ことにより液晶配向を行うラビング法が知られている。このラビング法は、接触配向法であるため静電気の発生による基板の電気回路・電子回路の破壊、ゴミ・塵の発生による液晶表示装置の不良、ラビング布の磨耗管理など、いろいろな問題を抱えている。また、最近は、このラビング法以外に、イオンビームを利用する方法や光感応性配向膜に紫外線照射により配向能力をもたせる光配向法などの非接触の配向法も提案されている(例えば、特許文献1参照)。
【特許文献1】
特開2001−296528号公報
【0003】
【発明が解決しようとする課題】
しかしながら、上記の非接触の配向方法の中で、イオンビームによる非接触配向方法については、まだ1〜2社が先行的に手探りでノウハウを取得しようとし始めた段階であり、イオンビームによる非接触配向を効率的に行うなどの実用化に即した研究はまだほとんど行われていない。
【0004】
本発明は、以上のような従来技術の課題に着目してなされたものであって、液晶配向膜のイオンビームによる非接触配向を自動的に且つ効率的に行うための方法及び装置を提供することを目的とする。また、本発明は、従来のラビング法使用時に必要とされたラビング布管理を不要とすると共に、静電気の発生を防ぎ、均一で高精細な液晶配向膜を備えた液晶表示装置を製作する方法及び装置を提供することを目的とする。さらに本発明は、液晶表示装置の製作の効率化を図ること可能にするイオンビーム照射による液晶配向膜の配向方法及び装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
以上のような課題を解決するための本発明における液晶配向膜の配向方法及び装置は、配向膜に不純物イオンを照射することにより配向膜が改質することを防ぐため、周辺環境を5×10−4Pa以下の真空状態とし、その後、周期律表において0族に属し不活性な単原子分子のArをイオン化してイオンビームを照射するものである。
【0006】
また、本発明は、イオン照射による基板(液晶配向膜を塗布・焼成した基板)の帯電を防ぐために、引き出し電極の次段に位置するニュートラライザーから−電子を発生させてイオンビームを中和しながらイオンビームを基板に照射するようにした液晶配向膜の配向方法及び装置である。
【0007】
また、本発明による液晶配向方法及び装置は、真空度が所定の圧力以下になった後にArガスをイオンビーム発生が可能となる流量ほど流し、所定の雰囲気下でイオンビームを照射して液晶配向を行うものである。
【0008】
また、本発明は、液晶表示装置の製造の効率化を図るため、液晶配向膜を塗布・焼成した複数の基板へのイオンビームによる配向処理を連続的且つ自動的に可能とする自動照射工程を含むようにしている。すなわち、本発明においては、前記基板ステージの上方に前記イオンビームを遮断するためのシールドと前記イオンビームを所定時間だけ選択的に通過させるためのシャッターとを備えておき、前記基板ステージは複数の基板を収納した状態で回動できるように構成している。そして、前記基板へのイオンビームの照射が終了したとき、前記基板ステージが、自動的に、次にイオンビームが照射されるべき基板だけが前記シャッターに対向する位置に来るように所定角度だけ回動するように構成している。これにより、本発明では、前記基板ステージに収納された複数の基板に対して、連続的に且つ自動的にイオンビーム照射処理を行えるようにしている。
【0009】
また、本発明による液晶配向方法及び装置は、液晶配向膜に対し、例えば20°〜70°などの所定の照射角度、所定の照射時間、所定のイオンビーム強度を選択可能であり、液晶配向膜に適したパラメータの設定が可能であることを特徴とする。
【0010】
また、本発明による液晶配向方法及び装置においては、イオンビーム照射現象の3種類、すなわち、イオンが基板表面に堆積する堆積現象、イオンが基板表面を削るスパッタ現象、及び、イオンが基板内に侵入する注入現象のうちの、スパッタ現象のエネルギー領域を使用している。
【0011】
また、本発明による液晶配向方法及び装置においては、イオンビームによる配向膜組織の選択的破壊により、一定方向の配向膜組織を残し液晶を配向させることを特徴としている。
【0012】
【発明の実施の形態】
図1は本発明の実施形態のために使用するイオンビーム照射装置を示す正面図、図2は図1のイオンビーム照射装置の中の真空室、イオンビーム発生源、及び、基板ステージを抽出して示す図、図3は図1のイオンビーム照射装置を示す透視平面図、図4は図1の装置の底面図である。
【0013】
図1において、1は真空室である。この真空室1は、詳しくは後述するイオンビーム発生源2、及び、基板ステージ3を格納している。
【0014】
前記真空室1は、真空引きのための排気システム、すなわち、ターボポンプを主排気ポンプとし補助排気としてメカニカルポンプを装備した排気システムを備えている。前記真空室1内の真空度は、真空室1上面のセンサーにより検知し、このセンサーからの信号に基づいて前記排気システムを制御している。前記各ポンプ及び真空室1間にはそれぞれを他と遮断する為のバルブが設けられている。また、前記真空室1は、操作用タッチパネル、ポンプ制御機器、真空計等を収納する制御ラックを備えている。
【0015】
次に、図2において、3は複数の液晶配向膜が塗布・焼成された基板(図3の符号13参照)であって、イオンビームの照射対象となる基板を収納しておくための基板ステージである。また、11は前記基板ステージ3の上方に備えられたシールドであって、前記イオンビーム発生源2からのイオンビームが照射対象の基板以外の基板に照射されることを防ぐためのシールドである。また、12は前記イオンビーム発生源2からのイオンビームを照射対象の基板に所定時間だけ選択的に照射するためのシャッターである。
【0016】
次に、図5に基づいて本実施形態のイオンビーム発生源2の構成についてさらに詳しく説明する。本実施形態の装置は真空室1をもち、イオンビーム発生源2を1機搭載している。イオン照射される基板13のサイズは例えば20mm×20mmである。基板ステージ(回転ステージ)3には最大8枚の基板13が収納可能となっている。本実施形態では、収納された8枚の基板13について、それぞれ単独に照射時間が設定可能となっている。この基板ステージ3には、プロセス中の基板13以外にイオンビームが照射されないようにするためのシールド11が取付られているとともに、イオンビーム起動時に不安定状態でイオン照射されないためにシャッター12が搭載されている。イオン照射は真空室1内にて処理され、照射イオンはArイオンである。イオンビームの照射角度は例えば20°〜70°で可変可能である。
【0017】
また、図6は本実施形態のイオンビーム発生源2として使用されるカウフマン(Kaufman)型イオンビーム発生源を示す模式図である。カウフマン型イオンビーム発生源2は、照射面積が広く比較的弱いエネルギーのイオンを生成することができ、前記基板13の表面を一様に(均一に)処理するには、最適なイオン源と考えられる。
【0018】
図6のイオンビーム発生源2からイオンビームを発生させるときは、予め真空室1内を5×10−4Paまで排気した後、真空度を10−2Pa台となるようArガスを流す。この状態でカソード電流を発生させると熱電子が放出されるとともに、カソード−アノード間にかけられた電圧により、放出された熱電子はマイナス電極側のカソードからプラス電極側のアノードへ向かう。その途中で、熱電子がアルゴン分子とぶつかることによりAr(アルゴン)がイオン化され、プラズマを発生させる。図6中のプラズマ生成室21の外周を囲んだマグネット22は、電子を螺旋運動させることで、さらにプラズマの発生を促すためのものである。
【0019】
発生したイオンは引き出し電極23に印加される電圧の大きさ100〜1000eVをエネルギー強度とし、真空室1内で引き出される。引き出されたArイオンはニュートラライザー24より発生する熱電子により中和されながら、基板13に照射される。本実施形態で用いたイオンビーム発生源2は(例えば、引き出し電極23のイオン通過部の直径を例えば30mm−80mm以上にすることにより)ビーム断面の径が例えば30mm−80mm以上のイオンビームを照射するようにしている。このようなイオンビームのビーム断面は、前記の20×20mmの基板13の液晶配向膜の表面全体に一様に(均一に)Arイオンを照射するのに充分な大きさを有するものである。
【0020】
次に、前記の図1−4に示すイオンビーム照射装置を使用した本実施形態による液晶配向膜の配向方法を、図7のフローチャートに基づいて説明する。本実施形態では、まず、液晶配向膜の塗布、焼成の終わった基板を複数枚、基板ステージ3に収納する(ステップS1)。このときは、真空室1は大気となっている。次に、真空室1を密閉して条件設定し、自動工程を起動する。(ステップS2)。この自動工程の起動により真空排気を開始すると共に基板の位置だしを行い、真空室1内を5×10−4Pa以下の真空状態とする(ステップS3)。
【0021】
この後、Arガスを流しイオンビームを起動する(ステップS4)。その後、シャッター12を開き、前記引出し電極23により対象の基板にイオンビームを照射する。一つの基板について設定時間だけイオンビームを照射した後は、自動的にシャッター12を閉めて基板ステージを所定角度だけ回動させて、シャッター12に対向する基板を新しいものと入れ替える。以後、これらの動作を繰り返して、前記基板ステージ3が収納している複数枚の基板(図3及び図5の符号13参照)の全てにイオンビームを照射する(ステップS5)。照射終了後、イオンビーム、Arガスを停止、真空室1を大気開放し基板を取り出す(ステップS6)。
【0022】
なお、ここで、図8に基づいて、本実施形態におけるArイオンビームの照射効果をそのエネルギー別に説明する。イオンビームの最も顕著で重要な作用としては、イオン源により引き出されたイオンが基板表面に堆積する堆積現象、基板表面の原子をたたきとばすスパッタ現象、及び、イオンが固体内に進入してしまうイオン注入現象の3つが存在する。エネルギーが低い状態、300eV以下の時は、イオンは基板表面に堆積する堆積現象が見られる。エネルギーが100eV〜1MeVの領域ではスパッタ現象がみられる。さらにエネルギーが上昇した10keV以上の領域ではイオン注入が顕著になる。エネルギー領域のまたがった部分においては両方の現象が存在している。
【0023】
また、図9は本実施形態におけるイオンビーム照射による液晶配向膜の配向動作を模式的に示すものである。本実施形態におけるイオンビームの照射効果は液晶配向膜表面の選択的破壊と考えられる。このため、斜め方向から照射することで液晶を配向させられると考えられる。本実施形態では、図9の模式図に示すように、基板表面の原子を叩き飛ばすスパッタ現象のエネルギー領域を用い、基板表面においてポリミド分子を選択的に破壊することで液晶を配向させるようにしている。
【0024】
【発明の効果】
以上説明したように、本発明によれば、イオンビームによる非接触配向法を用いることにより、液晶表示装置を製作するための液晶配向膜の配向工程を自動化・効率化させ、ラビング法使用時のラビング布管理を不要とすると共に、静電気の発生を防ぎ、均一で高精細な液晶表示装置を製作する方法及び装置を提供することが可能となる。
【0025】
すなわち、本発明によれば、周辺環境を5×10−4Pa以下の真空状態とし、その後、周期律表において0族に属し不活性な単原子分子のArをイオン化してイオンビームを照射するようにしているので、液晶配向膜に不純物イオンを照射することにより配向膜が改質することを防ぐことができ、均一で高精細な液晶表示装置を製作することが可能になる。
【0026】
また、本発明によれば、引き出し電極の次段のニュートラライザーから−電子を発生させてイオンビームを中和しながらイオンビームを基板に照射するようにしているので、イオン照射による基板(液晶配向膜を塗布・焼成した基板)の帯電を防ぐことができる。
【0027】
また、本発明によれば、基板ステージに複数の基板を収容可能とし、一つの基板へのイオンビーム照射が終了すると自動的に基板ステージが回動して、次の基板が照射位置にセットされるようにしているので、複数の基板に対して連続的に且つ自動的にイオンビーム照射処理(配向処理)を行うことができ、液晶表示装置の製造工程の大幅な効率化を図ることができる。
【0028】
また、本発明による液晶配向方法及び装置においては、イオンビームによる配向膜組織の選択的破壊により一定方向の配向膜組織を残し液晶を配向させることが可能になる。
【図面の簡単な説明】
【図1】本発明の実施形態のために使用するイオンビーム照射装置を示す正面図。
【図2】図1のイオンビーム照射装置に含まれる真空室、イオンビーム発生源、及び、基板ステージを抽出して示す図。
【図3】図1のイオンビーム照射装置を示す透視平面図。
【図4】図1の装置の底面図。
【図5】本実施形態のために使用するイオンビーム照射装置を示す模式図。
【図6】本実施形態のために使用するイオンビーム発生源を示す模式図。
【図7】本実施形態による液晶配向膜の配向方法を示すフローチャート。
【図8】本実施形態におけるイオンビームのエネルギーと照射効果を説明するための模式図。
【図9】本実施形態においてイオンビームを基板の液晶配向膜の表面に照射したときの作用を説明するための模式図。
【符号の説明】
1 真空室
2 (カウフマン型)イオンビーム発生源
3 基板ステージ
11 シールド
12 シャッター
13 基板
21 プラズマ生成室
22 マグネット
23 引き出し電極
24 ニュートラライザー
【発明の属する技術分野】
本発明は、液晶表示装置に使用される液晶配向膜の配向を行うための方法及び装置に関する。
【0002】
【従来の技術】
従来より、液晶配向膜の配向方法として、配向膜表面を布で擦る(接触させる)ことにより液晶配向を行うラビング法が知られている。このラビング法は、接触配向法であるため静電気の発生による基板の電気回路・電子回路の破壊、ゴミ・塵の発生による液晶表示装置の不良、ラビング布の磨耗管理など、いろいろな問題を抱えている。また、最近は、このラビング法以外に、イオンビームを利用する方法や光感応性配向膜に紫外線照射により配向能力をもたせる光配向法などの非接触の配向法も提案されている(例えば、特許文献1参照)。
【特許文献1】
特開2001−296528号公報
【0003】
【発明が解決しようとする課題】
しかしながら、上記の非接触の配向方法の中で、イオンビームによる非接触配向方法については、まだ1〜2社が先行的に手探りでノウハウを取得しようとし始めた段階であり、イオンビームによる非接触配向を効率的に行うなどの実用化に即した研究はまだほとんど行われていない。
【0004】
本発明は、以上のような従来技術の課題に着目してなされたものであって、液晶配向膜のイオンビームによる非接触配向を自動的に且つ効率的に行うための方法及び装置を提供することを目的とする。また、本発明は、従来のラビング法使用時に必要とされたラビング布管理を不要とすると共に、静電気の発生を防ぎ、均一で高精細な液晶配向膜を備えた液晶表示装置を製作する方法及び装置を提供することを目的とする。さらに本発明は、液晶表示装置の製作の効率化を図ること可能にするイオンビーム照射による液晶配向膜の配向方法及び装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
以上のような課題を解決するための本発明における液晶配向膜の配向方法及び装置は、配向膜に不純物イオンを照射することにより配向膜が改質することを防ぐため、周辺環境を5×10−4Pa以下の真空状態とし、その後、周期律表において0族に属し不活性な単原子分子のArをイオン化してイオンビームを照射するものである。
【0006】
また、本発明は、イオン照射による基板(液晶配向膜を塗布・焼成した基板)の帯電を防ぐために、引き出し電極の次段に位置するニュートラライザーから−電子を発生させてイオンビームを中和しながらイオンビームを基板に照射するようにした液晶配向膜の配向方法及び装置である。
【0007】
また、本発明による液晶配向方法及び装置は、真空度が所定の圧力以下になった後にArガスをイオンビーム発生が可能となる流量ほど流し、所定の雰囲気下でイオンビームを照射して液晶配向を行うものである。
【0008】
また、本発明は、液晶表示装置の製造の効率化を図るため、液晶配向膜を塗布・焼成した複数の基板へのイオンビームによる配向処理を連続的且つ自動的に可能とする自動照射工程を含むようにしている。すなわち、本発明においては、前記基板ステージの上方に前記イオンビームを遮断するためのシールドと前記イオンビームを所定時間だけ選択的に通過させるためのシャッターとを備えておき、前記基板ステージは複数の基板を収納した状態で回動できるように構成している。そして、前記基板へのイオンビームの照射が終了したとき、前記基板ステージが、自動的に、次にイオンビームが照射されるべき基板だけが前記シャッターに対向する位置に来るように所定角度だけ回動するように構成している。これにより、本発明では、前記基板ステージに収納された複数の基板に対して、連続的に且つ自動的にイオンビーム照射処理を行えるようにしている。
【0009】
また、本発明による液晶配向方法及び装置は、液晶配向膜に対し、例えば20°〜70°などの所定の照射角度、所定の照射時間、所定のイオンビーム強度を選択可能であり、液晶配向膜に適したパラメータの設定が可能であることを特徴とする。
【0010】
また、本発明による液晶配向方法及び装置においては、イオンビーム照射現象の3種類、すなわち、イオンが基板表面に堆積する堆積現象、イオンが基板表面を削るスパッタ現象、及び、イオンが基板内に侵入する注入現象のうちの、スパッタ現象のエネルギー領域を使用している。
【0011】
また、本発明による液晶配向方法及び装置においては、イオンビームによる配向膜組織の選択的破壊により、一定方向の配向膜組織を残し液晶を配向させることを特徴としている。
【0012】
【発明の実施の形態】
図1は本発明の実施形態のために使用するイオンビーム照射装置を示す正面図、図2は図1のイオンビーム照射装置の中の真空室、イオンビーム発生源、及び、基板ステージを抽出して示す図、図3は図1のイオンビーム照射装置を示す透視平面図、図4は図1の装置の底面図である。
【0013】
図1において、1は真空室である。この真空室1は、詳しくは後述するイオンビーム発生源2、及び、基板ステージ3を格納している。
【0014】
前記真空室1は、真空引きのための排気システム、すなわち、ターボポンプを主排気ポンプとし補助排気としてメカニカルポンプを装備した排気システムを備えている。前記真空室1内の真空度は、真空室1上面のセンサーにより検知し、このセンサーからの信号に基づいて前記排気システムを制御している。前記各ポンプ及び真空室1間にはそれぞれを他と遮断する為のバルブが設けられている。また、前記真空室1は、操作用タッチパネル、ポンプ制御機器、真空計等を収納する制御ラックを備えている。
【0015】
次に、図2において、3は複数の液晶配向膜が塗布・焼成された基板(図3の符号13参照)であって、イオンビームの照射対象となる基板を収納しておくための基板ステージである。また、11は前記基板ステージ3の上方に備えられたシールドであって、前記イオンビーム発生源2からのイオンビームが照射対象の基板以外の基板に照射されることを防ぐためのシールドである。また、12は前記イオンビーム発生源2からのイオンビームを照射対象の基板に所定時間だけ選択的に照射するためのシャッターである。
【0016】
次に、図5に基づいて本実施形態のイオンビーム発生源2の構成についてさらに詳しく説明する。本実施形態の装置は真空室1をもち、イオンビーム発生源2を1機搭載している。イオン照射される基板13のサイズは例えば20mm×20mmである。基板ステージ(回転ステージ)3には最大8枚の基板13が収納可能となっている。本実施形態では、収納された8枚の基板13について、それぞれ単独に照射時間が設定可能となっている。この基板ステージ3には、プロセス中の基板13以外にイオンビームが照射されないようにするためのシールド11が取付られているとともに、イオンビーム起動時に不安定状態でイオン照射されないためにシャッター12が搭載されている。イオン照射は真空室1内にて処理され、照射イオンはArイオンである。イオンビームの照射角度は例えば20°〜70°で可変可能である。
【0017】
また、図6は本実施形態のイオンビーム発生源2として使用されるカウフマン(Kaufman)型イオンビーム発生源を示す模式図である。カウフマン型イオンビーム発生源2は、照射面積が広く比較的弱いエネルギーのイオンを生成することができ、前記基板13の表面を一様に(均一に)処理するには、最適なイオン源と考えられる。
【0018】
図6のイオンビーム発生源2からイオンビームを発生させるときは、予め真空室1内を5×10−4Paまで排気した後、真空度を10−2Pa台となるようArガスを流す。この状態でカソード電流を発生させると熱電子が放出されるとともに、カソード−アノード間にかけられた電圧により、放出された熱電子はマイナス電極側のカソードからプラス電極側のアノードへ向かう。その途中で、熱電子がアルゴン分子とぶつかることによりAr(アルゴン)がイオン化され、プラズマを発生させる。図6中のプラズマ生成室21の外周を囲んだマグネット22は、電子を螺旋運動させることで、さらにプラズマの発生を促すためのものである。
【0019】
発生したイオンは引き出し電極23に印加される電圧の大きさ100〜1000eVをエネルギー強度とし、真空室1内で引き出される。引き出されたArイオンはニュートラライザー24より発生する熱電子により中和されながら、基板13に照射される。本実施形態で用いたイオンビーム発生源2は(例えば、引き出し電極23のイオン通過部の直径を例えば30mm−80mm以上にすることにより)ビーム断面の径が例えば30mm−80mm以上のイオンビームを照射するようにしている。このようなイオンビームのビーム断面は、前記の20×20mmの基板13の液晶配向膜の表面全体に一様に(均一に)Arイオンを照射するのに充分な大きさを有するものである。
【0020】
次に、前記の図1−4に示すイオンビーム照射装置を使用した本実施形態による液晶配向膜の配向方法を、図7のフローチャートに基づいて説明する。本実施形態では、まず、液晶配向膜の塗布、焼成の終わった基板を複数枚、基板ステージ3に収納する(ステップS1)。このときは、真空室1は大気となっている。次に、真空室1を密閉して条件設定し、自動工程を起動する。(ステップS2)。この自動工程の起動により真空排気を開始すると共に基板の位置だしを行い、真空室1内を5×10−4Pa以下の真空状態とする(ステップS3)。
【0021】
この後、Arガスを流しイオンビームを起動する(ステップS4)。その後、シャッター12を開き、前記引出し電極23により対象の基板にイオンビームを照射する。一つの基板について設定時間だけイオンビームを照射した後は、自動的にシャッター12を閉めて基板ステージを所定角度だけ回動させて、シャッター12に対向する基板を新しいものと入れ替える。以後、これらの動作を繰り返して、前記基板ステージ3が収納している複数枚の基板(図3及び図5の符号13参照)の全てにイオンビームを照射する(ステップS5)。照射終了後、イオンビーム、Arガスを停止、真空室1を大気開放し基板を取り出す(ステップS6)。
【0022】
なお、ここで、図8に基づいて、本実施形態におけるArイオンビームの照射効果をそのエネルギー別に説明する。イオンビームの最も顕著で重要な作用としては、イオン源により引き出されたイオンが基板表面に堆積する堆積現象、基板表面の原子をたたきとばすスパッタ現象、及び、イオンが固体内に進入してしまうイオン注入現象の3つが存在する。エネルギーが低い状態、300eV以下の時は、イオンは基板表面に堆積する堆積現象が見られる。エネルギーが100eV〜1MeVの領域ではスパッタ現象がみられる。さらにエネルギーが上昇した10keV以上の領域ではイオン注入が顕著になる。エネルギー領域のまたがった部分においては両方の現象が存在している。
【0023】
また、図9は本実施形態におけるイオンビーム照射による液晶配向膜の配向動作を模式的に示すものである。本実施形態におけるイオンビームの照射効果は液晶配向膜表面の選択的破壊と考えられる。このため、斜め方向から照射することで液晶を配向させられると考えられる。本実施形態では、図9の模式図に示すように、基板表面の原子を叩き飛ばすスパッタ現象のエネルギー領域を用い、基板表面においてポリミド分子を選択的に破壊することで液晶を配向させるようにしている。
【0024】
【発明の効果】
以上説明したように、本発明によれば、イオンビームによる非接触配向法を用いることにより、液晶表示装置を製作するための液晶配向膜の配向工程を自動化・効率化させ、ラビング法使用時のラビング布管理を不要とすると共に、静電気の発生を防ぎ、均一で高精細な液晶表示装置を製作する方法及び装置を提供することが可能となる。
【0025】
すなわち、本発明によれば、周辺環境を5×10−4Pa以下の真空状態とし、その後、周期律表において0族に属し不活性な単原子分子のArをイオン化してイオンビームを照射するようにしているので、液晶配向膜に不純物イオンを照射することにより配向膜が改質することを防ぐことができ、均一で高精細な液晶表示装置を製作することが可能になる。
【0026】
また、本発明によれば、引き出し電極の次段のニュートラライザーから−電子を発生させてイオンビームを中和しながらイオンビームを基板に照射するようにしているので、イオン照射による基板(液晶配向膜を塗布・焼成した基板)の帯電を防ぐことができる。
【0027】
また、本発明によれば、基板ステージに複数の基板を収容可能とし、一つの基板へのイオンビーム照射が終了すると自動的に基板ステージが回動して、次の基板が照射位置にセットされるようにしているので、複数の基板に対して連続的に且つ自動的にイオンビーム照射処理(配向処理)を行うことができ、液晶表示装置の製造工程の大幅な効率化を図ることができる。
【0028】
また、本発明による液晶配向方法及び装置においては、イオンビームによる配向膜組織の選択的破壊により一定方向の配向膜組織を残し液晶を配向させることが可能になる。
【図面の簡単な説明】
【図1】本発明の実施形態のために使用するイオンビーム照射装置を示す正面図。
【図2】図1のイオンビーム照射装置に含まれる真空室、イオンビーム発生源、及び、基板ステージを抽出して示す図。
【図3】図1のイオンビーム照射装置を示す透視平面図。
【図4】図1の装置の底面図。
【図5】本実施形態のために使用するイオンビーム照射装置を示す模式図。
【図6】本実施形態のために使用するイオンビーム発生源を示す模式図。
【図7】本実施形態による液晶配向膜の配向方法を示すフローチャート。
【図8】本実施形態におけるイオンビームのエネルギーと照射効果を説明するための模式図。
【図9】本実施形態においてイオンビームを基板の液晶配向膜の表面に照射したときの作用を説明するための模式図。
【符号の説明】
1 真空室
2 (カウフマン型)イオンビーム発生源
3 基板ステージ
11 シールド
12 シャッター
13 基板
21 プラズマ生成室
22 マグネット
23 引き出し電極
24 ニュートラライザー
Claims (8)
- イオンビーム発生源と液晶配向膜が形成された基板を格納する基板ステージとを収容する真空室を用意し、この真空室内を5×10−4Pa以下の真空状態とし、この真空室内において、周期律表において0族に属し不活性な単原子分子のArをイオン化し、引き出し電極により、前記Arイオンをイオンビームとして前記基板に所定時間だけ照射する、ことを特徴とする液晶配向膜の配向方法。
- 請求項1において、前記イオンビーム照射工程は、前記イオンビームを照射するための前記引き出し電極のArイオン通過部を所定のサイズ以上に形成しておくことにより、前記基板の液晶配向膜の表面全体に均一にArイオンを照射するのに充分なビーム断面を有するイオンビームを照射するものである、ことを特徴とする液晶配向膜の配向方法。
- 請求項1又は2において、前記引出し電極からのイオンビームを、電子を供給することにより前記イオンビーム中のArイオンを中和させながら、前記基板に照射するようにした、ことを特徴とする液晶配向膜の配向方法。
- 請求項1,2又は3において、
前記基板ステージの上方に、前記イオンビームを遮断するためのシールドと前記イオンビームを所定時間だけ選択的に通過させるためのシャッターと備えるようにし、前記基板へのイオンビームの照射が終了したとき、前記基板ステージを、次にイオンビームが照射されるべき基板だけが前記シャッターに対向する位置に来るように所定角度だけ自動的に回動するようにした、ことを特徴とする液晶配向膜の配向方法。 - 液晶配向膜が形成された基板を格納する基板ステージと、
内部を5×10−4Pa以下の真空状態とすることが可能なように構成された真空室と、
前記真空室内に備えられたイオン発生部であって、周期律表において0族に属し不活性な単原子分子のArをイオン化するためのイオン発生部と、
前記真空室内に備えられ、前記イオン発生部からのArイオンをイオンビームとして前記基板に所定時間だけ照射するための引き出し電極と、
を備えたことを特徴とする液晶配向膜の配向装置。 - 請求項5において、前記引出し電極は、前記基板の液晶配向膜の表面全体に均一にArイオンを照射するのに充分なビーム断面を有するイオンビームを発生させるためのイオン通過部を備えている、ことを特徴とする液晶配向膜の配向装置。
- 請求項5又は6において、さらに、前記真空室内に、前記引出し電極からのイオンビーム中のArイオンを中和させるための電子を前記イオンビームに供給するためのニュートラライザーを備えたことを特徴とする液晶配向膜の配向方法。
- 請求項5,6又は7において、
前記基板ステージの上方には、前記イオンビームを遮断するためのシールドと前記イオンビームを所定時間だけ選択的に通過させるためのシャッターとが備えられており、
前記基板ステージは、複数の基板を収納した状態で回動できるように構成されており、且つ、前記基板へのイオンビームの照射が終了したとき、自動的に、次にイオンビームが照射されるべき基板だけが前記シャッターに対向する位置に来るように所定角度だけ回動するように構成されている、ことを特徴とする液晶配向膜の配向装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002371360A JP2004205586A (ja) | 2002-12-24 | 2002-12-24 | 液晶配向膜の配向方法及び装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002371360A JP2004205586A (ja) | 2002-12-24 | 2002-12-24 | 液晶配向膜の配向方法及び装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004205586A true JP2004205586A (ja) | 2004-07-22 |
Family
ID=32810257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002371360A Pending JP2004205586A (ja) | 2002-12-24 | 2002-12-24 | 液晶配向膜の配向方法及び装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004205586A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101318022B1 (ko) * | 2006-06-28 | 2013-10-14 | 엘지디스플레이 주식회사 | 러빙장치 및 이를 이용한 배향막 러빙 방법 |
US9034151B2 (en) | 2007-08-22 | 2015-05-19 | International Business Machines Corporation | Alignment film forming apparatus and method |
-
2002
- 2002-12-24 JP JP2002371360A patent/JP2004205586A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101318022B1 (ko) * | 2006-06-28 | 2013-10-14 | 엘지디스플레이 주식회사 | 러빙장치 및 이를 이용한 배향막 러빙 방법 |
US9034151B2 (en) | 2007-08-22 | 2015-05-19 | International Business Machines Corporation | Alignment film forming apparatus and method |
US9869014B2 (en) | 2007-08-22 | 2018-01-16 | International Business Machines Corporation | Formation of an alignment film for a liquid crystal on a substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201442077A (zh) | 用於處理基底的系統與方法 | |
TW200830390A (en) | Method and apparatus for manufacturing cleaned substrates or clean substrates which are further processed | |
CN103237918A (zh) | 用于离子注入的方法和装置 | |
JP2014507074A (ja) | イオンアシストによる三次元構造のプラズマ処理方法 | |
EP2607516B1 (en) | Method for forming a gas blocking layer | |
JP2000068227A (ja) | 表面処理方法および装置 | |
JP2004205586A (ja) | 液晶配向膜の配向方法及び装置 | |
CN107435135A (zh) | 溅射装置及使用该溅射装置的溅射方法 | |
JP5501457B2 (ja) | 太陽電池製造装置及び太陽電池製造方法 | |
JP2005533391A (ja) | ターゲットの移動をともなうプラズマ注入システムおよび方法 | |
JP2012185953A (ja) | イオンビーム照射方法とその装置 | |
JPH07122136B2 (ja) | イオンビームスパッタ装置および運転方法 | |
JPH02303371A (ja) | 超音波モータ用圧電素子の電極パターンの形成方法 | |
KR101737909B1 (ko) | 도전 산화물층의 증착 방법 | |
US20130224400A1 (en) | Apparatus for treating an object, more particularly the surface of an object made of polymer | |
JP2007224335A (ja) | 成膜方法および成膜装置 | |
JP2007046124A (ja) | マグネトロンスパッタリング装置および薄膜形成方法 | |
KR20120091643A (ko) | 스퍼터링 장비 | |
JPH11195397A (ja) | 低エネルギー重イオン立体照射法 | |
JP2001020068A (ja) | イオンビーム処理装置 | |
JP3815580B2 (ja) | プラズマ処理装置 | |
KR101368573B1 (ko) | 선형 이온빔 발생장치를 이용한 융복합 표면처리장치 | |
JPS6017070A (ja) | 薄膜形成方法及びその装置 | |
KR102243549B1 (ko) | 중이온 빔 발생 장치 및 방법 | |
JPS6320450A (ja) | 基板のクリ−ニング装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050628 |
|
A977 | Report on retrieval |
Effective date: 20070817 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070828 |
|
A02 | Decision of refusal |
Effective date: 20071225 Free format text: JAPANESE INTERMEDIATE CODE: A02 |