JP2004204264A - リン酸塩皮膜形成用処理液の濃度制御装置、リン酸化成処理装置及びリン酸化成処理方法 - Google Patents

リン酸塩皮膜形成用処理液の濃度制御装置、リン酸化成処理装置及びリン酸化成処理方法 Download PDF

Info

Publication number
JP2004204264A
JP2004204264A JP2002372664A JP2002372664A JP2004204264A JP 2004204264 A JP2004204264 A JP 2004204264A JP 2002372664 A JP2002372664 A JP 2002372664A JP 2002372664 A JP2002372664 A JP 2002372664A JP 2004204264 A JP2004204264 A JP 2004204264A
Authority
JP
Japan
Prior art keywords
concentration
bond
amount
liquid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002372664A
Other languages
English (en)
Other versions
JP3978129B2 (ja
Inventor
Kazunari Fuseya
一成 伏谷
Seiji Sugiyama
誠司 杉山
Takeji Endo
岳二 遠藤
Tadashi Kodama
唯志 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002372664A priority Critical patent/JP3978129B2/ja
Publication of JP2004204264A publication Critical patent/JP2004204264A/ja
Application granted granted Critical
Publication of JP3978129B2 publication Critical patent/JP3978129B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

【課題】亜鉛メッキ鋼板にリン酸塩皮膜を形成する際に、皮膜形成量が連続的に一定量となるようにリン酸塩処理液の濃度を高精度に制御することを目的とする。
【解決手段】亜鉛メッキ鋼板にリン酸塩皮膜を形成するためのリン酸塩皮膜形成用処理液の濃度を、上記リン酸塩処理液を組成する複数の成分物質の物質収支バランスが安定になるようにして制御するようにして、各成分物質の濃度を高精度に制御することができるようにすることにより、亜鉛メッキ鋼板110上に形成するボンデ皮膜230の量を安定させ、高品質のリン酸亜鉛メッキ鋼板200を製造することができるようにする。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明はリン酸塩皮膜形成用処理液の濃度制御装置、リン酸化成処理装置及びリン酸化成処理方法に関し、特に、家電製品、建材、及び土木等の多岐の分野にわたって用いられる亜鉛メッキ鋼板の金属表面にリン酸塩皮膜を形成して、優れた溶接性及び塗装性を有するリン酸亜鉛メッキ鋼板を製造するために用いて好適なものである。
【0002】
【従来の技術】
従来、鋼板は家電製品、建材等の構造部材として使用されており、日常生活で種々の鋼板が身近に存在している。このような身近に使用されている鋼板は、充分な強度を具備しているものの、鋼板が使用される環境によっては錆が生じやすいという欠点を有している。
【0003】
そのため、例えば、従来は鋼板表面に電気亜鉛メッキ(以下、亜鉛メッキと称する)を行って亜鉛メッキ鋼板を生成することにより防錆を行い、鋼板の耐食性を向上させているが、経時変化等により上記亜鉛メッキは腐蝕する。そこで、上記亜鉛メッキの腐食をできるだけ抑制することができれば、亜鉛メッキ鋼板の耐食性をより向上させることができる。
【0004】
ところで、亜鉛メッキの腐食を抑制する方法には、亜鉛メッキ鋼板にリン酸塩化成処理やクロメート処理等を施こす方法が知られている。中でも鋼板リサイクルを容易に実現できるリン酸塩化成処理を施こす方法が主として用いられている。
【0005】
特に、マグネシウムを含有したリン酸塩処理液を用いて、鋼板に形成された亜鉛メッキ層の表面に、さらにリン酸塩皮膜を形成することにより、優れた耐食性効果が生じることがわかっている(例えば、特許文献1参照。)。
【0006】
そこで近年、上記リン酸塩処理液の組成及び成分濃度の適正化を図ることにより、処理液中に適正量のマグネシウムイオンを存在させ、上記亜鉛メッキ鋼板の表面に所定量のマグネシウムが含有されたリン酸塩皮膜を形成するリン酸塩化成処理が行われている。
【0007】
図4は、リン酸塩皮膜の生成を実現するために用いられている従来のリン酸化成処理装置400の概略構成を示す構成図である。図4に示したように、従来のリン酸化成処理装置400は、ボンデ循環タンク420、ボンデ処理スプレー槽430、及び補給液タンク440を備え、上記ボンデ処理スプレー槽430内において亜鉛メッキ鋼板410にリン酸塩化成処理を施して鋼板表面にリン酸塩皮膜を形成した鋼板(以下、ボンデ鋼板という)を生成するようにしている。
【0008】
上記ボンデ循環タンク420は、亜鉛メッキ鋼板410にリン酸塩皮膜(以下、ボンデ皮膜という)を形成するために必要な複数の成分を含有した処理液を収容している。
【0009】
そして、上記ボンデ循環タンク420内に収容している処理液を上記ポンプ450によって上記ボンデ処理スプレー槽430内に送り込み、上記ボンデ処理スプレー槽430内部において、連続的に搬入される亜鉛メッキ鋼板410に対して処理液を吹き付けて、亜鉛メッキ鋼板410上にボンデ皮膜を形成させている。
【0010】
【特許文献1】
特開2001−152356号公報
【0011】
【発明が解決しようとする課題】
しかしながら、上述したような従来のリン酸化成処理装置400には、以下に示すような問題があった。
すなわち、亜鉛メッキ鋼板410上にボンデ皮膜を形成するために用いられるボンデ循環タンク420内の処理液は、ボンデ処理スプレー槽430内で亜鉛メッキ鋼板410に対して吹き付けられた後、ボンデ皮膜を形成するために用いられなかった処理液はボンデ循環タンク420に戻されて元の処理液と合流する。
【0012】
その後、上記ポンプ450によってボンデ処理スプレー430槽に再びポンプアップされて亜鉛メッキ鋼板410に吹き付けられる。このように、処理液はボンデ循環タンク420とボンデ処理スプレー槽430との間を循環しながら、繰返し使用されている。
【0013】
そのため、ボンデ処理スプレー槽内430に亜鉛メッキ鋼板410が連続的に搬入されて、処理液の吹き付けが一定時間以上連続的に行われる場合、処理液を構成する各々の成分は、リン酸塩化成処理が行われる毎に亜鉛メッキ鋼板410の成分とそれぞれ反応する。その結果、処理液を構成する各々の成分濃度のバランスが崩れるといった経時的な変化が生じてくるようになる。
【0014】
上記処理液の成分濃度の変化は、亜鉛メッキ鋼板410上のボンデ皮膜の形成量に影響を与えることになるため、皮膜形成量が連続的に一定値となるような安定したボンデ皮膜を形成することが困難になってしまうことになる。
【0015】
そこで、従来のリン酸化成処理装置400では、ボンデ循環タンク420内の処理液の減少量に対応した量の処理液を補給液タンク440から補給しながら、ボンデ循環タンク420内の処理液の成分濃度を一定に保つようにしていた。
【0016】
しかしながら、図4に示したように、リン酸化成処理装置400で用いられる補給液タンク440は1つであり、ボンデ循環タンク420内の処理液を組成するすべての成分を上記補給液タンク440に収容しているため、処理液を構成する各成分について、個々に濃度を所定の値に制御することが困難であるという問題があった。
【0017】
そこで、本発明は、上記の問題点に鑑みて成されたもので、亜鉛メッキ鋼板にボンデ皮膜(リン酸塩皮膜)を形成する際に、皮膜形成量が連続的に一定量となるように処理液の濃度を高精度に制御することを第1の目的とする。
また、処理液に含有される複数の成分の濃度変化が生じる時間に大きな差異がある場合でも、処理液の濃度を高精度に制御して皮膜形成量が一定量になることを第2の目的とする。
【0018】
【課題を解決するための手段】
本発明のリン酸塩皮膜形成用処理液の濃度制御装置は、亜鉛メッキ鋼板にリン酸塩皮膜を形成するためのリン酸塩皮膜形成用処理液の濃度制御装置であって、リン酸塩処理液を収容しているボンデ循環タンク内に入ってくる流入液の量と、上記ボンデ循環タンクから持ち出される持ち出し液の量とをバランスさせるのに必要な補給量をそれぞれの成分物質毎に求めて、各成分液の補給調整制御を行うことを特徴としている。
【0019】
本発明のリン酸化成処理装置は、リン酸塩化成処理に使用するリン酸塩処理液を収容するためのボンデ循環タンクと、上記ボンデ循環タンクに収容されているリン酸塩処理液を亜鉛メッキ鋼板に吹き付けるためのボンデ処理スプレー槽と、上記ボンデ循環タンク内に収容されているリン酸塩処理液を上記ボンデ処理スプレー槽内において上記亜鉛メッキ鋼板に吹き付けるためのリン酸塩処理液吹き付け手段と、上記ボンデ処理スプレー槽から上記ボンデ循環タンクに上記リン酸塩処理液を戻す戻り配管と、上記ボンデ循環タンク内に収容されているリン酸塩処理液の濃度調整を行うための補給液を収容するための複数の補給液収容容器とを有することを特徴としている。
【0020】
本発明のリン酸化成処理方法は、リン酸塩皮膜を形成するためのリン酸塩化成処理に使用するためにボンデ循環タンク内に収容されているリン酸塩処理液を補給するための補給液格納容器を複数個備え、上記リン酸塩処理液を組成する複数の成分物質を補給する際には、上記複数個の補給液格納容器から上記複数の成分物質のそれぞれを個別に補給するようにしたことを特徴としている。
【0021】
【発明の実施の形態】
以下、本発明のリン酸塩皮膜形成用処理液の濃度制御装置、リン酸化成処理装置及びリン酸化成処理方法の実施の形態について図面を用いて説明する。
【0022】
図1は、本発明のリン酸化成処理装置100の実施の形態を示す構成図である。
本実施の形態では、亜鉛メッキ鋼板にボンデ皮膜を形成させたボンデ鋼板を生成するために、複数個の補給液収容容器(例えば、補給液タンク)を備えており、ボンデ循環タンク内の処理液の液量や成分濃度が変化した場合に、上記複数個の補給液タンクのうち、液量や成分濃度の調整に必要な補給液タンクのみのバルブを開放して、必要な成分が必要な量だけボンデ循環タンクに補給されるように構成されている。
【0023】
<リン酸化成処理装置100の全体構成>
図1に示すように、本実施の形態のリン酸化成処理装置100は、ボンデ循環タンク120、ボンデ処理スプレー槽130、第1の補給液タンク141〜第4の補給液タンク144、ポンプ150、自動中和滴定装置160、及びボンデ濃度コントローラ170等によって構成している。
【0024】
ボンデ循環タンク120は、上述したように、亜鉛メッキ鋼板の表面にボンデ皮膜を生成するためのリン酸塩化成処理を行うために必要な複数の成分からなる処理液を収容したタンクである。ボンデ循環タンク120内の処理液は、例えば、特定量、特定比率で配合された亜鉛イオン、リン酸イオン、マグネシウムイオン、硝酸イオン、及びニッケルイオン等を含有したリン酸塩処理液であり、亜鉛メッキ鋼板110の使用用途や使用環境などに対応して、リン酸塩処理液の構成及びその成分濃度を適切に制御するようにしている。
【0025】
図2は、亜鉛メッキ鋼板110の表面にボンデ皮膜が形成された状態の鋼板の断面を模式的に示した図である。例えば、上述した亜鉛イオン、リン酸イオン、マグネシウムイオン、硝酸イオン、及びニッケルイオン等を含有したリン酸塩処理液を用いたリン酸化成処理装置100では、地鉄(Fe)層210の表面に所定量の亜鉛層220を電気メッキにより形成し、さらにリン酸、亜鉛、マグネシウムから構成されるボンデ皮膜230を形成してリン酸亜鉛メッキ鋼板200を製造するようにしている。
このボンデ皮膜230は、具体的には例えば、Zn3(PO42・7H2O、Zn2・Mg(PO42・7H2Oである。
【0026】
ボンデ処理スプレー槽130内には、内部に搬入される亜鉛メッキ鋼板110に所定の厚さのボンデ皮膜230が形成されるようにするために、複数のスプレーノズル131が配設されており、上記複数のスプレーノズル131と上記ボンデ循環タンク120との間がリン酸塩処理液供給配管132によって接続されている。
【0027】
そして、上記リン酸塩処理液供給配管132の中間にはポンプ150が介設されており、上記ポンプ150によって上記ボンデ循環タンク120内に収容されているリン酸塩処理液を汲み上げて上記複数のスプレーノズル131から亜鉛メッキ鋼板110に吹き付けるようにしている。上記複数のスプレーノズル131、リン酸塩処理液供給配管132及びポンプ150によりリン酸塩処理液吹き付け手段が構成されている。
【0028】
また、上記亜鉛メッキ鋼板110に吹き付けられたリン酸塩処理液は、上記ボンデ処理スプレー槽の下部に接続された戻り配管133を通して上記ボンデ循環タンク120に戻されるように構成されている。なお、図示しないスプレー制御装置が、上記リン酸塩処理液の吹き付け時間や吹き付け量を制御している。
【0029】
第1の補給液タンク141〜第4の補給液タンク144は、図4で示した従来のリン酸化成処理装置400では1つの補給液タンク440で構成されていた。
それに対して、本実施の形態のリン酸化成処理装置100では補給液タンクを4個配設した構成にしている。4つの各補給液タンク141〜144は、ボンデ循環タンク120内のリン酸塩処理液を組成するいずれかの成分を単独又は混合して含有しており、所定の濃度でそれぞれ配合されている。
【0030】
例えば、図1に示す第1の補給液タンク141には75%リン酸液(以下、FA補給液ともいう)が収容されており、遊離酸度(FA:Free Acid、単位:ポイント)の調整のために用いられる。ここで、遊離酸度とは、ホールピペットを用いて化成処理液を10mL採取し、ブロムフェノールブルーを指示薬として、0.1Nの水酸化ナトリウム水溶液でpHが3.8になるまで滴定し、これに要した上記水酸化ナトリウム水溶液の容量(mL)のことである。
【0031】
上記遊離酸度(FA)は、リン酸化成処理を施す上で、亜鉛メッキ鋼板表面の初期反応であるリン酸亜鉛結晶核の生成密度および反応過程での皮膜析出速度に大きく影響し、リン酸亜鉛皮膜量を決定する成分である。遊離酸度(FA)は、これら反応により減少するが、鋼板表面性状およびリン酸塩処理液に含まれるスラッジの濃度によりその変化量は異なる。第1の補給液タンク141に収納されているFA補給液は、上記遊離酸度(FA)の濃度を上昇させることを主目的とした液である。
【0032】
第2の補給液タンク142には、リン酸を主として、硝酸ニッケル、フッ酸、及び微少量のマグネシウム等を含んだ混合溶液(以下、TA補給液ともいう)が収容されており、全酸度(TA:Total Acid、単位:ポイント)の調整のために用いられる。ここで、全酸度とは、ホールピペットを用いて化成処理液を10mL採取し、フェノールフタレインを指示薬として、0.1Nの水酸化ナトリウム水溶液でpHが8.3になるまで滴定し、これに要した上記水酸化ナトリウム水溶液の容量(mL)のことである。
【0033】
上記全酸度(TA)は、第一リン酸亜鉛濃度(H2PO4-)と遊離酸度(FA)を足し合わせた因子であり、リン酸亜鉛皮膜(Zn3PO4)のリン酸イオンの源となる成分である第一リン酸亜鉛の濃度を管理するための指標として用いる。第2の補給液タンク142に収納されるTA補給液は、皮膜生成により消費される第一リン酸亜鉛およびフッ酸、ニッケルイオン及びその他微量元素を定常的に補給することを目的として混合された液である。
【0034】
なお、本実施の形態における遊離酸度、全酸度、及び酸比の調整は、特に限定するものではなく、リン酸塩処理液の組成やその濃度はリン酸亜鉛めっき鋼板の用途によって適宜決定されるものである。
また、全酸度及び遊離酸度のポイントを高くするためには、リン酸や硝酸などの酸の割合を多くして酸の濃度を上げることが挙げられる。逆に、全酸度及び遊離酸度のポイントを低くするためには、特に限定するものではないが、例えば、水酸化ナトリウム水溶液もしくは水で希釈することが挙げられる。なお、水酸化ナトリウム水溶液を用いる際には、局所的な中和反応によるリン酸亜鉛スラッジの生成が起こりやすいため、0.01N程度に希釈した溶液を使用するのが望ましい。
【0035】
第3の補給液タンク143には水が充填されている。ボンデ循環タンク120内のリン酸塩処理液は水溶性であるため、ボンデ循環タンク120とボンデ処理スプレー槽130とを循環する間に水分が蒸発することから、その補給用として第3の補給液タンク143を用意している。
第4の補給液タンク144には、防錆効果等に有効なマグネシウム溶液が充填されている。
【0036】
なお、上述した第1の補給液タンク141〜第4の補給液タンク144のように、これらの補給液タンクは必ずしも4個に限定する必要はない。例えば、補給液タンクの個数を2個とし、リン酸塩処理液を構成する成分中で特に濃度変化の起こしやすい成分のみ(例えば、上記第1の補給液タンク141内の75%リン酸など)と、その他の成分とに分けて収容する構成にしてもよい。
【0037】
また、上記第3の補給液タンク143に収容されている水を第2の補給液タンク142の混合溶液と一緒に収容して、合計3個の補給液タンクで構成してもよい。
【0038】
或いは、複数の成分が一緒に収容されている第2の補給液タンク142について、それぞれの成分ごとに独立した補給液タンクを設けて、各成分毎に収容する構成などのように、補給液タンクは任意個数で構成するようにしてもよい。
【0039】
自動中和滴定装置160は、ボンデ循環タンク120内の処理液の成分濃度を分析するための分析装置である。具体的には、一定量の処理液に重量ビュレットを使って所定の溶液(NaOH)を順次滴下していったときの液中のpH変動を検出して、処理液のpHが特定値に到達した時点までに要した上記所定の溶液(NaOH)量から、処理液の濃度を決定している。濃度分析の処理を開始する時間間隔をあらかじめ設定しておくことにより、自動中和滴定装置160は設定した時間毎に処理液の成分濃度の分析を自動的に行う。
【0040】
ボンデ濃度コントローラ170は、自動中和滴定装置160が分析した処理液の成分濃度の分析結果に基づき、ボンデ循環タンク120内のリン酸塩処理液の補給調整を行うことが必要となる成分を特定したり、その補給量を算出したりする。
【0041】
さらに、所定の補給液タンク(特定した成分が収容された補給液タンク)141〜144からボンデ循環タンク120内に、上記算出した量の補給液が補給されるように、ボンデ濃度コントローラ170は所定の補給液タンク141〜144のバルブを開放するための制御指令を出力する。本実施の形態においては、上記ボンデ濃度コントローラ170及び上記自動中和滴定装置160により、リン酸塩皮膜形成用処理液の濃度制御装置180を構成している。
【0042】
<リン酸化成処理装置100の全体動作>
亜鉛メッキ鋼板110上にボンデ皮膜230を形成するためのリン酸化成処理装置100の全体動作を図3のフローチャートを参照しながら説明する。
【0043】
リン酸化成処理装置100の動作は大きく2つに分かれており、第1の補給液タンク141〜第4の補給液タンク144に収容された各補給液を、(1)定常的に補給する処理、(2)所定時間ごとの濃度計測に基づいて補給する処理、を行っている。以下、それぞれの動作について説明する。
【0044】
(1)定常的に補給する処理
ボンデ皮膜の形成によってリン酸塩処理液が消費されるので、ボンデ循環タンク120内のリン酸塩処理液はボンデ処理開始前と比較して徐々に減少してくる。このため、ボンデ循環タンク120内のリン酸塩処理液の総量を一定量に維持すべく、一定時間が経過するごとに補給液タンク141〜144より補給液を定常的に補給している。
【0045】
図1に示すように、上記定常補給によって、ボンデ循環タンク120内に収容しきれないオーバーフロー量がボンデ循環タンク120外へ流出するようになっている。すなわち、定常補給によって処理液の一部がボンデ循環タンク120外へ流出して、ボンデ循環タンク120内の処理液量は常に一定に保たれている。
【0046】
いま、ボンデ循環タンク120からのオーバーフロー量をq0、ボンデ循環タンク120に入ってくる液量(流入液量と称する)をq1、蒸発量をq2、ボンデ循環タンク120から持ち出される液量(持ち出し液量と称する)をq3、TA補給液量をqta、Mg補給液量をqmg、及び水補給量をqwとする。
【0047】
上述したような、ボンデ循環タンク120内の処理液量の一定を図るためには、以下に示す流量バランス式が成立することが必要である。
q0=q1−q2−q3+qta+qmg+qw …………(1)
なお、上式(1)については、後述するボンデ濃度コントローラ170による濃度調整において詳述する。
【0048】
上式(1)のパラメータのうち、算出する液量は、TA補給液量qta、Mg補給液量qmg、水補給液量qw、及びオーバーフロー液量q0である。上記流入液量q1及び持ち出し液量q3は、鋼板の板幅(W)と鋼板走行速度(LS)とに基づいて設定され、又蒸発量q2は定数として適宜設定される。
【0049】
また、定常補給では、上式(1)による流量バランス式の他に、定常補給前と定常補給後とでリン酸の濃度がバランスされていることが必要である。すなわち、リン酸イオン濃度をバランスさせるために、(ボンデ循環タンク内のリン酸イオン総量)−(反応で消費されるリン酸イオン量)―(オーバーフローでボンデ循環タンク外へ流出するリン酸イオン量)+(TA補給溶液より補給するリン酸イオン量)−(スラッジ生成により消費されるリン酸イオン量)=(微小時間当たりのリン酸イオン変化量)=0となるようにする。なお、上記考え方はMg量やZn量についても同様である。
【0050】
そこで、下式(2)によるリン酸濃度バランス式を成立させるようにする。
Δt時間後のボンデ循環タンク120内のリン酸イオン量をPtとすると、
t=F1(q0×P×Δt、 qta×p×Δt、 Const) …………(2)
とあらわされる。
【0051】
上式(2)のF1は所定の関数式を意味しており、リン酸イオン濃度Ptは括弧内のパラメータより構成される関数F1の値であらわされることを示している。ここで、上記関数式における括弧内のq0×P×Δtは、微小時間(Δt)におけるオーバーフローで流出するリン酸イオン量である。また、上記qta×p×Δtは、TA補給溶液により微小時間(Δt)あたりに補給されるリン酸イオン量である。
【0052】
上記パラメータConstは関数式F1における定数項成分であり、ボンデ循環タンク120内における初期のリン酸イオン量、ボンデ反応により消費されるΔt時間あたりのリン酸イオン量、通板で持ち出されるΔt時間あたりのリン酸イオン量、及びスラッジとして析出されるΔt時間あたりのリン酸イオン量から決定される。
【0053】
また、同様に、定常補給では、定常補給前後でZn濃度がバランスされていることが必要である。そこで、下式(3)によるZn濃度バランス式を成立させるようにする。
Δt時間後のボンデ循環タンク120内のZn量をZtとすると、
t=F2(q0×Z×Δt、Const) …………(3)
であらわされる。
【0054】
上式(3)のF2は所定の関数式を意味しており、Zn濃度Ztは括弧内のパラメータより構成される関数F2の値であらわされることを示している。
ここで、上記関数式における括弧内の上記q0×Z×Δtは、微小時間(Δt)におけるオーバーフローで流出するZn量である。
【0055】
上記パラメータConstは、関数式F2における定数項成分であり、ボンデ循環タンク120内における初期のZn量、亜鉛溶出によるΔt時間あたりのZn量、通板で持ち出されるΔt時間あたりのZn量、及びスラッジとして析出されるΔt時間あたりのZn量から決定される。
【0056】
また、同様に、定常補給では、定常補給前後でMg濃度がバランスされていることが必要である。そこで、下式(4)によるMg濃度バランス式を成立させるようにする。
Δt時間後のボンデ循環タンク120内のMg量をMtとすると、
t=F3(q0×M×Δt、qmg×m×Δt、Const) …………(4)
であらわされる。
【0057】
上式(4)のF3は所定の関数式を意味しており、Mg濃度Mtは括弧内のパラメータより構成される関数F3の値であらわされることを示している。
ここで、上記関数式における括弧内のq0×M×Δtは、微小時間(Δt)におけるオーバーフローで流出するMg量である。また、上記qmg×m×Δtは、Mg補給溶液により微小時間(Δt)あたりに補給されるMg量である。
【0058】
上記パラメータConstは関数式F3における定数項成分であり、ボンデ循環タンク120内における初期のMg量、ボンデ反応により消費されるΔt時間あたりのMg量、通板で持ち出されるΔt時間あたりのMg量、及びスラッジとして析出されるΔt時間あたりのMg量から決定される。
【0059】
次に、上記TA補給液量qta、Mg補給液量qmg、水補給液量qw、オーバーフロー液量q0を変数として、上述した4つのバランス式(1)〜(4)の4元1次の連立方程式を解くと、次のようになる。
【0060】
TA補給液量 qta=A´ta×W×LS+B´ta
Mg補給液量 qmg=A´mg×W×LS+B´mg
水補給量 qw=A´w×W×LS+B´w
オーバーフロー量 q0=q1−q2−q3+qta+qmg+qw
【0061】
ここで、A´ta、B´ta、A´mg、B´mg、A´w、及びB´wは、それぞれ定数をあらわしている。
【0062】
このようにして、リン酸化成処理装置100における定常補給では、上述した量のTA補給液量qta、Mg補給液量qmg、水補給液量qwをそれぞれの補給液タンクより供給するようにしている。
【0063】
(2)所定時間ごとの濃度計測に基づいて補給する処理
上記(1)では、定常的に補給するための補給液量の算出方法について説明した。次に、上記定常補給液量に対してさらに補正を加えるための補正方法について説明する。
【0064】
まず始めに、上述した第1の補給液タンク141〜第4の補給液タンク144に収容された各補給液の特徴について説明をする。所定時間ごとの濃度計測に基づく補給液の補正については、各補給液の特徴に応じて行うようにしているためである。
【0065】
本実施の形態において、ボンデ循環タンク120内に収容されているリン酸塩処理液が含有する成分には、濃度変化が大きいものと、濃度変化が比較的小さなものとがある。
【0066】
例えば、第1の補給液タンク141内に収容されている75%リン酸液(FA補給液)によって補給調整されるリン酸液(以下、FA液と称する)は、短時間で成分濃度の変化が生じやすい特徴を有している。
【0067】
また、第2の補給液タンク142内に収容されている混合溶液(TA補給液)、すなわち、リン酸を主とする、硝酸ニッケル、フッ酸、及び微少量のマグネシウム等を含んだ混合溶液(以下、TA液と称する)も、比較的短時間で成分濃度の変化が生じやすい特徴を有している。
【0068】
それに対して、第4の補給液タンク144内に収容されているマグネシウム溶液(Mg補給液)、及び亜鉛メッキ鋼板110表面からリン酸塩処理液中に溶出される亜鉛は、上述したFA液及びTA液に比べて短時間では濃度変化が生じ難い。このため、ある程度の長時間が経過してもボンデ皮膜230を形成する量に対する影響度は小さいという特徴を有している。
【0069】
したがって、ボンデ皮膜を形成する際に行われる亜鉛メッキ鋼板の化成処理装置100の動作制御を、濃度変化が生じやすい成分を含有する補給液の補給量調整と、濃度変化が生じ難い成分を含有する補給液の補給量調整とに分けて行うようにしている。
【0070】
(A)濃度変化が生じやすい成分を含有する補給液の補給量調整
上述したように、処理液中のFA成分及びTA成分は、濃度変化が生じやすいため、自動中和滴定装置160によって短時間毎に(例えば、15分に1回毎に)、濃度測定する。そして、この測定結果に基づいて、ボンデ濃度コントローラ170は、第1の補給液タンク(FA補給液タンク)141または第2の補給液タンク(TA補給液タンク)142のバルブを所定時間開放して、ボンデ循環タンク120内のリン酸塩処理液の液量制御、及び上記リン酸塩処理液を構成する各成分の濃度制御をオンラインで自動的に行うように構成にしている。
【0071】
図3に示した破線領域A内の処理ステップは、FA補給液及びTA補給液を対象としたオンライン濃度制御を行うための処理ステップである。
図3に示すように、まず、ボンデ処理スプレー槽130内へ亜鉛メッキ鋼板110が搬入されると(ステップS300)、亜鉛メッキ鋼板110に対する処理液の吹き付けが開始される(ステップS301)。なお、上記ステップS300とステップS301の順序を逆にし、処理液の吹き付けがあらかじめ開始された後に(ステップS301)、亜鉛メッキ鋼板がボンデスプレー槽内へ搬入されるように(ステップS300)、動作制御されるようにしてもよい。
【0072】
図3のフローチャートの破線領域A内に示したように、オンラインによる濃度制御では、上述した処理液の吹き付けが所定時間(例えば、15分)経過か否かを監視しており(ステップS302)、上記所定の時間が経過すると自動中和滴定装置160によって全酸度(TA)及び遊離酸度(FA)各々の測定が行われる(ステップS303及びステップS304)。
【0073】
これらの測定により、ボンデ循環タンク120とボンデ処理スプレー槽130との間を循環する処理液のFA成分濃度及びTA成分濃度の実際値が、自動中和滴定装置160による分析結果として出力される。なお、自動中和滴定装置160による濃度測定方法の詳細については後述する。
【0074】
次に、ボンデ濃度コントローラ170には、自動中和滴定装置160から15分毎に出力されるFA及びTA成分の濃度値(現在のFA及びTA成分の濃度値)が入力され、上記入力された現在のFA成分及びTA成分の濃度値と、所定の厚さのボンデ皮膜230を形成するために適切なFA成分及びTA成分の濃度値(目標のFA成分及びTA成分の濃度値)とを比較する。そして、この比較により、ボンデ濃度コントローラ170は、現在のFA成分及びTA成分の濃度値が目標のFA成分及びTA成分の濃度値に対して、どの程度の増減を示しているのかを算出する。
【0075】
上記算出した各成分における濃度値の増減が、濃度一定値とみなせる所定の変動範囲を越えている場合には、現在のボンデ循環タンク120内に存在するリン酸塩処理液量、ボンデ処理スプレー槽130内で吹き付けに使用しているリン酸塩処理液量、及びポンプ150で循環途中にあるリン酸塩処理液量を考慮して、現在のFA成分及びTA成分の濃度が目標の濃度値になるためには、どのくらいの補給量が必要となるのかを、TA成分及びFA成分、水、マグネシウム溶液のそれぞれについて、ボンデ濃度コントローラ170により算出する(ステップS305及びステップS306)。
【0076】
次に、上記算出した補給量の補給液を、FA補給液タンク141及びTA補給液タンク142からボンデ循環タンク120内へ投入するために、ボンデ濃度コントローラ170は、上記第1の補給液タンク141と上記ボンデ循環タンク120との間を接続している第1の液補給用管141bに介設されている第1の開閉バルブ141a、及び上記第2の補給液タンク142と上記ボンデ循環タンク120との間を接続している第2の液補給用管142bに介設されている第2の開閉バルブ142aの開放量と開放時間とを設定する(ステップS307)。
【0077】
そして、ボンデ濃度コントローラ170から上記第1の補給液タンク141、及び第2の補給液タンク142へ上記設定に基づくバルブ開放の制御指令が出力されると、上記第1の開閉バルブ141a及び第2の開閉バルブ142aを開動作して、実際の補給液の供給が行われる(ステップS308)。
【0078】
なお、図1に示した亜鉛メッキ鋼板の化成処理装置100は、ボンデ濃度コントローラ170が上記第1の開閉バルブ141a及び第2の開閉バルブ142aの開閉動作を制御するように構成しているが、上記ボンデ濃度コントローラ170とは独立したバルブの開閉制御装置を設けるようにしてもよい。
【0079】
また、本実施の形態では、説明を簡略化するために、FA成分及びTA成分の濃度測定を15分間隔でそれぞれ同様に行い、このFA成分及びTA成分の濃度制御をまとめてオンライン濃度制御として扱ったが、短時間で濃度変化を起こす複数の成分をまとめて同一の時間間隔で濃度測定することに必ずしも限らない。例えば、FA成分の濃度変化が極めて短時間(数分など)で生じるような場合には、FA成分とTA成分の濃度測定は独立した適切な時間間隔で行うように設定することが望ましい。
【0080】
(B)濃度変化が生じ難い成分を含有する補給液の補給量調整
ボンデ循環タンク120内のリン酸塩処理液中のマグネシウム成分については濃度変化が生じ難いので、長時間(例えば、約8時間)に1回程度濃度測定を行うようにしている。そして、その測定結果に基づいて試薬を投入し、リン酸塩処理液中のマグネシウム量を一定量に保持するように制御するようにしている。
【0081】
また、リン酸塩処理液中に溶出している亜鉛についても、約8時間に1回の頻度でボンデ循環タンク120よりオペレータが循環溶液を汲み取りオフラインでの濃度測定を行い、亜鉛濃度が一定値となるためのリン酸塩処理液水分量を補正して、第3の補給液(以下、水分補給液と称する)タンク143から計算量の水をボンデ循環タンク120内に補給調整してリン酸塩処理液を希釈するようにしている。
【0082】
このように、マグネシウム、亜鉛、及び蒸発水分量に関しては、上記FA補給液またはTA補給液についてのオンライン濃度制御とは独立した時間間隔での濃度制御を行い、水分補給液タンク143またはMg補給液タンク144のバルブ開閉制御が実行されるように構成している。
【0083】
図3のフローチャートに示す破線領域B内の処理ステップは、水分補給液(水)及びMg補給液を対象とした濃度制御のための処理ステップを示している。
ボンデ処理スプレー槽130内へ亜鉛メッキ鋼板110が搬入されて、亜鉛メッキ鋼板110に対するリン酸塩処理液の吹き付け動作が開始される点については、上述したFA成分及びTA成分の濃度制御の場合と同様である(ステップS300及びステップS301)。
【0084】
図3のフローチャートの破線領域Bに示す濃度制御では、先ず、リン酸塩処理液の吹き付けが所定時間(例えば、8時間)経過したか否かを判断して(ステップS309)、所定時間の経過後にリン酸塩処理液中のマグネシウム及び亜鉛の各々の濃度測定を行う(ステップS310及びステップS311)。なお、上記所定時間が経過していない場合、本ボンデ皮膜形成処理が終了するか否かを判断する(ステップS316)。その結果、終了しないときはステップS302へ戻り、上述した処理を繰り返す。
【0085】
上記マグネシウム及び亜鉛の濃度測定の実施にあたり、本実施の形態では蛍光X線分析等を用いて所定時間(8時間)毎に自動測定を行うこととしているが、人手によって測定を行うように構成してもよい。
【0086】
次に、上記測定によって得られた濃度値を自動または人手によってボンデ濃度コントローラ170に入力する。これにより、FA成分及びTA成分のオンライン濃度制御で説明した場合と同様に、ボンデ循環タンク120等のリン酸塩処理液量に基づき、ボンデ濃度コントローラ170はマグネシウム濃度を一定値にするための試薬量、及び亜鉛濃度を一定値にするための希釈用水量を決定する(ステップS312及びステップS313)。
【0087】
濃度コントローラ170は、上記のように決定した量の補給液をボンデ循環タンク120に投入するように、上記第3の補給液タンク143と上記ボンデ循環タンク120との間を接続している第3の液補給用管143bに介設されている第3の開閉バルブ143a、及び上記第4の補給液タンク144と上記ボンデ循環タンク120との間を接続している第4の液補給用管144bに介設されている第4の開閉バルブ144aを、設定した開度で所定の時間だけ開放する(ステップS314)。この結果、水及びMgの供給が実際に行われることになる(ステップS315)。その後、ステップS316でボンデ皮膜形成処理の終了を判断して、終了しない場合はステップS302へ戻り、上述した処理を繰り返す。
【0088】
なお、本実施の形態では、説明を簡略化するために、マグネシウム及び亜鉛の濃度測定を8時間間隔でそれぞれ同様に行うようにして、このマグネシウム及び亜鉛の濃度制御をまとめて行うようにした。上記濃度測定間隔は8時間ごとに限らず任意な時間に設定することができ、また、長時間経過後に濃度変化を起こす複数の成分をまとめて同一の時間間隔で濃度測定することに必ずしも限らない。例えば、各成分の濃度変化が生じる時間に対応した適当な測定時間間隔を、成分ごとに独立して設定するようにしてもよい。
【0089】
<ボンデ濃度コントローラ170による濃度調整方法>
ここでは、亜鉛メッキ鋼板110に対して皮膜量一定のボンデ皮膜230を連続的に形成することができるようにするため、ボンデ循環タンク120内のリン酸塩処理液を、所定時間(例えば、15分)毎に採取して特定成分の濃度分析を行い、その分析結果に基づいて所定の補給液タンク141〜144から所定量の補給液の供給を制御するように構成されたボンデ濃度コントローラ170の濃度調整方法について説明する。
【0090】
ボンデ濃度コントローラ170によるリン酸塩処理液濃度の調整方法は、ボンデ循環タンク120内のリン酸塩処理液を組成する複数の成分物質の物質収支バランスを安定に維持するという考え方に基づいている。以下、この物質収支バランスの制御について、具体的に説明する。
【0091】
上述したように、亜鉛メッキ鋼板110の表面に形成されるボンデ皮膜230の形成量は、ボンデ循環タンク120内に収容されているリン酸塩処理液の液成分濃度に依存し、この液成分濃度の変化に伴ってボンデ皮膜230の形成量が変化する。
【0092】
上記ボンデ循環タンク120内のリン酸塩処理液は複数の成分液から組成されているが、各成分液の濃度は、ボンデ循環タンク120内の総液量に対する各成分液の成分量で表される。このため、各成分液の濃度を一定にするには、ボンデ循環タンク120の総液量に対する各成分液の成分量を制御する必要がある。
【0093】
上述したように、ボンデ循環タンク120内の総液量は、ボンデ循環タンク120内に入ってくる液(流入液)の量と、ボンデ循環タンク120から持ち出される液(持ち出し液)の量で決定される。したがって、リン酸塩処理液の各成分の濃度が一定となるように制御することを高精度に、かつ迅速に行うようにするためには、上記流入液と持ち出し液とのバランスが維持される状態で、各成分液の補給調整を行うようにすることが重要である。
そこで以下に、ボンデ循環タンク120への流入液量と持ち出し液量とを考慮したリン酸塩処理液濃度の調整方法の考え方を示す。
【0094】
まず、ボンデ循環タンク120内へ流入される液量には、次の4種類がある。
▲1▼ボンデ処理スプレー槽130に搬入される亜鉛メッキ鋼板110の表面に形成している前処理工程における前処理液量(q1)。
▲2▼リン酸塩処理液中のTA濃度を制御するために、ボンデ循環タンク120内へ補給されるTA補給液量(qta)。
【0095】
▲3▼リン酸塩処理液中のMg濃度を制御するために、ボンデ循環タンク120内へ補給されるMg補給液量(qmg)。
▲4▼リン酸塩処理液と亜鉛メッキ鋼板110とが反応することでリン酸塩処理液中に上昇する2価の亜鉛イオン(Zn2+)量を一定値に制御するために、ボンデ循環タンク120内へ補給される希釈補給水量(qw)。
【0096】
なお、TA補給液には遊離酸(FA)も含まれており、TA補給液により遊離酸(FA)も一定の割合で供給される。ただし、遊離酸(FA)は循環液中のスラッジや亜鉛濃度により、一定割合で変化しない。このため、15分に1回の周期的測定により濃度を確認し、不足した量をFA補給液で供給し補正する。よって、FA補給液は非定常に補給され、上記定常補給のバランス計算では無視される。
【0097】
一方、ボンデ循環タンク120から持ち出される液量には、次の3種類がある。
▲5▼ボンデ循環タンク120への流入液量と持ち出し液量とのバランスを維持するために、ボンデ循環タンク120からオーバーフローしてしまうオーバーフロー量(q0)。
▲6▼ボンデ循環タンク120とボンデ処理スプレー槽130内でリン酸塩処理液が繰返し循環される間に、リン酸塩処理液中の水分が蒸発するが、その水分蒸発量(q2)。
▲7▼亜鉛メッキ鋼板110の表面にボンデ皮膜230が形成されることによってリン酸塩処理液は消費されていくので、ボンデ処理スプレー槽130からの持ち出し液量(q3)。
【0098】
ボンデ循環タンク120内のリン酸塩処理液の濃度を一定にするためのタンク総液量は、上述したボンデ循環タンク120内への流入液量と、上記ボンデ循環タンク120外への持ち出し液量とのバランスが維持された状態である。この関係を式に表すと上述した式(1)のようになる。
【0099】
この場合、リン酸塩処理液中における各q0〜q3、qta、qmg、及びqwの成分量は、それぞれの液量にそれぞれの濃度を積算することで算出される。このことは、ボンデ循環タンク120に補給される成分量と、ボンデ循環タンク120から消費されていく成分量とは同じであって、ボンデ循環タンク120内の物質収支は一定に制御されていることを示している。
【0100】
なお、上式(1)では便宜上リン酸イオン濃度が一定となるよう物質収支バランスを計算しているが、TA補給液には遊離酸(FA)も含まれており、TA補給液により遊離酸(FA)も一定の割合で供給される。ただし、遊離酸(FA)は循環液中のスラッジ、亜鉛濃度により、一定割合で変化しないため、不足した分をFA補給液で供給し補正するようにしている。
【0101】
次に、上述した物質収支バランスによるリン酸塩処理液の濃度調整方法を、実際の操業ラインに適用する場合に、亜鉛メッキ鋼板110の板幅及び鋼板走行速度との関係で補給液量をどのように設定するかについて説明する。これは、上述した4元1次の連立方程式の解であるTA補給液量qta、Mg補給液量qmg、水補給液量qw、オーバーフロー液量q0を求めることである。
【0102】
補給液量を具体的な式で表せば、以下のようになる。
全酸(TA)の補給液量をqta、マグネシウム(Mg)の補給液量をqmgとすると、
ta=k1×W×LS+k2 ………式(5)
mg=k3×W×LS+k4 ………式(6)
となる。
【0103】
ここで、Wは亜鉛メッキ鋼板110の板幅であり、LSはボンデ処理スプレー槽130内を亜鉛メッキ鋼板110が搬入されているときの鋼板走行速度であり、さらに、k1〜k4は演繹的に求められる所定の定数である。
【0104】
また、上述したように、亜鉛はボンデ循環タンク120内のリン酸塩処理液中にある所定量含有する成分であるが、亜鉛メッキ鋼板110がボンデ処理スプレー槽130内でリン酸塩処理液が吹き付けられていく過程で鋼板表面の亜鉛は化学反応を起こし、リン酸塩処理液中に亜鉛イオン成分が溶出してくる。そのため、リン酸塩処理液中に溶出してくる2価の亜鉛イオン(Zn2+)を一定値に制御するために水分を補給して希釈させる必要がある。
【0105】
この希釈補給水量をはqwとすると、
w=k5×W×LS+k6―QTA ………式(7)
と表すことができる。
ここで、Wは亜鉛メッキ鋼板110の板幅、LSはボンデ処理スプレー槽130内を亜鉛メッキ鋼板110が搬入されているときの鋼板走行速度、k5及びk6は演繹的に求められる所定の定数である。
【0106】
上式(7)における末尾のマイナス項―QTAは、ボンデ濃度コントローラ170によって求まるTA補給液量を示している。これは、自動中和滴定装置160によってTAイオンの濃度が測定され、TA補給液タンク142から混合溶液であるTA補給液がQTA量分補給されることから、全体の水量バランスをとる必要が生じる。このため、亜鉛イオンZn2+を希釈するための補給水量からQTA量分差し引くためのマイナス量(―QTA)を追加している。
【0107】
ここで、上式(5)〜(7)における亜鉛メッキ鋼板110の板幅Wと鋼板走行速度LSとの代数積(W×LS)は、単位時間当りのボンデ皮膜形成をおこす反応面積である。この反応面積(W×LS)に対する、全酸(TA)、マグネシウム(Mg)、及び希釈水量の消費量の関係を実験的に求めていけば、消費量から逆算して各補給量qTA、qmg、qwを把握できるので、上式(5)〜(7)における定数k1〜k6を演繹的に決定することができる。
【0108】
このため定数k1〜k6を求めておけば、亜鉛メッキ鋼板110の板幅(W)と鋼板走行速度(LS)の値が設定された場合、式(5)〜(7)により、補給するための補給液量qTA、qmg、qwを求めることが可能となる。
【0109】
上述したリン酸塩処理液の濃度調整方法によって、ボンデ濃度コントローラ170がリン酸塩処理液の濃度調整を行った実施例の内容を以下に示す。
板幅(W)=1600mm、板厚=0.8mm、鋼板走行速度(LS)=30mpmの場合で、ボンデ循環タンク120内のリン酸塩処理液について濃度調整の目標値を以下のように設定した。
TA=9〜13(ポイント)
FA=0.45〜0.7(ポイント)
Mg2+=11〜13(g/L)
Zn2+=0.6〜0.9(g/L)
【0110】
実際のボンデ循環タンク120への流入液量は、
▲1▼前処理液量q1=0.58L/min (前処理液量=6g/m2片面(測定値))
▲2▼TA補給量q5=qTA=0.384L/min(ここで、k1=0.008、k2=0、W=1.6、LS=30mpm)
▲3▼Mg補給量q6=qmg=3.36L/min(ここで、k3=0.07、k4=0、W=1.6、LS=30mpm)
▲4▼希釈補給水量q7=qw=19.08L/min(ここで、k5=0.31、k6=5、W=1.6、LS=30mpm、QTA=0.8L/min)
であった。
【0111】
また、実際のボンデ循環タンク120外への持ち出し液量は、
▲5▼水分蒸発量q2=2.3L/min
▲6▼持ち出し液量q3=0.096L/min (持ち出し液量=1g/m2片面(測定値))
▲7▼オーバーフロー量q4=21.008L/min
であった。
【0112】
上述したボンデ循環タンク120への流入液量、及びボンデ循環タンク120外への持ち出し液量の場合で、ボンデ循環タンク120内のリン酸塩処理液の各成分濃度は以下のとおりであった。
TA=12(ポイント)
FA=0.5(ポイント)
Mg2+=12(g/L)
Zn2+=0.7(g/L)
【0113】
各補給液の濃度は設定した目標濃度範囲内にあり、このことから、本実施の形態の亜鉛メッキ鋼板の化成処理装置100における物質収支の一定制御に基づくリン酸塩処理液濃度調整の有効性を確認できた。
【0114】
このように本実施の形態によれば、リン酸塩処理液の濃度調整を行うにあたり、第1に、定常補給として、流量バランス式、リン酸イオンバランス式、Znイオンバランス式、及びMgイオンバランス式より4元連立1次方程式を作成して、各濃度を一定とするために必要な補給液量を求めて補給する。
【0115】
第2に、各成分濃度の変化に緩急の差があることを利用して、濃度測定結果に基づいて補給液量の補正を行うようにしている。具体的には、濃度変化が急に生じる成分(FA成分、TA成分)については短時間毎の濃度測定を行い、その都度、上記測定結果に対応するオンラインの濃度制御を行うようにしている。
一方、濃度変化が緩やかに生じる成分(マグネシウム成分、亜鉛成分など)については長時間毎の濃度測定を行いながら上記測定結果に基づく定常的な補給で対応するというような濃度制御を行うようにした。
【0116】
このため、リン酸塩処理液に含有される成分の組成にあわせて、例えば、4つの補助液(▲1▼FA補給液(75%リン酸液)、▲2▼TA補給液(リン酸を主とする、硝酸ニッケル、フッ酸、及び微少量のマグネシウム等を含んだ混合溶液)、▲3▼水、▲4▼マグネシウム溶液)を収容した溶液用タンク141〜144を備えるようにして、各補給液タンク141〜144から濃度制御に必要となる成分のみを、濃度一定に要する液量だけ補給することができるようになり、ボンデ循環タンク120内のリン酸塩処理液の濃度を高精度に安定して制御することができるようになった。
【0117】
また、ボンデ循環タンク120に収容されたリン酸塩処理液を、ボンデ循環タンク120に入ってくる液とタンクから出ていく持ち出し液に分けて考え、リン酸塩処理液の濃度調整方法は、この流入液量と流出液量の収支バランスが維持された状態で各成分液の補給調整を行うように構成したので、リン酸塩処理液の各成分の濃度を高精度かつ迅速に一定制御することができるようになった。
【0118】
さらに、亜鉛メッキ鋼板110の板幅、及び亜鉛メッキ鋼板110がボンデ処理スプレー槽130に搬入される時の鋼板走行速度に対して、各補給液量を決定するための算出式の係数を実験的に求めておくことにより、実際の操業ラインで、上記物質収支バランスによるリン酸塩処理液の濃度調整方法を有効に適用することができる。
【0119】
【発明の効果】
上述したように、本発明によれば、亜鉛メッキ鋼板にリン酸塩皮膜を形成するためのリン酸塩皮膜形成用処理液の濃度を、上記リン酸塩処理液を組成する複数の成分物質の物質収支バランスを安定に維持するようにしたので、各成分物質の濃度を高精度に制御することができるようになり、亜鉛メッキ鋼板上に形成するボンデ皮膜量を安定させて高品質のリン酸亜鉛メッキ鋼板を製造することができる。
【0120】
また、本発明の他の特徴によれば、亜鉛メッキ鋼板にリン酸塩皮膜を形成するためのリン酸塩化成処理に使用するリン酸塩処理液を補給するための補給液収容容器を複数個備えるようにしたので、リン酸塩処理液に含有される成分物質の中で、濃度調整に必要な成分物質のみを必要な量だけ補給することが可能となり、リン酸塩処理液の濃度制御を高精度かつ迅速に行うようにすることができる。これにより、亜鉛メッキ鋼板に形成されるリン酸塩の皮膜量を連続的に一定量にすることが可能となる。
【0121】
また、本発明のその他の特徴によれば、リン酸塩処理液を組成する成分中に、短時間で濃度変化を起こす成分が含有されている場合に、上記濃度変化しやすい成分物質のみ、或いは上記濃度変化しやすい成分物質の割合が高い補給液を収容するための補給液収容容器を独立して備えるようにしたので、リン酸塩処理液の濃度変化に大きな影響を与える上記濃度変化しやすい成分のみを迅速に補給しながら、その他の成分は補給しないようにすることが可能となるので、リン酸塩処理液の濃度調整を効果的に行うことができる。
【0122】
また、本発明のその他の特徴によれば、亜鉛メッキ鋼板にリン酸塩皮膜を形成するためのリン酸塩化成処理に必要なリン酸塩処理液の濃度調整を、上記リン酸塩処理液に含有される成分の濃度変化が生じやすい成分の濃度調整と濃度変化が生じにくい成分の濃度調整とに分けて行うようにするとともに、上記それぞれの濃度調整では所定の時間の経過ごとに成分濃度の測定を行って、その測定結果からリン酸塩処理液の濃度を調整するようにしたので、リン酸塩処理液に含有される複数の成分の濃度変化が生じる時間に大きな差異がある場合でも、リン酸塩処理液の濃度を高精度に制御して皮膜形成量を一定量にすることができる。
【図面の簡単な説明】
【図1】本発明のリン酸亜鉛メッキ鋼板の製造装置の実施の形態を示し、主要部の構成を示す構成図である。
【図2】亜鉛メッキ鋼板の表面にボンデ皮膜が形成された状態の鋼板の断面を模式的に示した図である。
【図3】亜鉛メッキ鋼板上にボンデ皮膜を形成するための手順を説明するためのフローチャートである。
【図4】従来のリン酸亜鉛メッキ鋼板の製造装置の概略構成を示す構成図である。
【符号の説明】
100 リン酸亜鉛メッキ鋼板の製造装置
110 電気亜鉛メッキ鋼板
120 ボンデ循環タンク
130 ボンデ処理スプレー槽
131 スプレーノズル
132 リン酸塩処理液供給配管
133 戻り配管
141 第1の補給液タンク(FA補給液タンク)
142 第2の補給液タンク(TA補給液タンク)
143 第3の補給液タンク(水分補給液タンク)
144 第4の補給液タンク(マグネシウム補給液タンク)
150 ポンプ
160 自動中和滴定装置
170 ボンデ濃度コントローラ
180 濃度制御装置

Claims (13)

  1. 亜鉛メッキ鋼板にリン酸塩皮膜を形成するためのリン酸塩皮膜形成用処理液の濃度制御装置であって、
    リン酸塩処理液を収容しているボンデ循環タンク内に入ってくる流入液の量と、上記ボンデ循環タンクから持ち出される持ち出し液の量とをバランスさせるのに必要な補給量をそれぞれの成分物質毎に求めて、各成分液の補給調整制御を行うことを特徴とするリン酸塩皮膜形成用処理液の濃度制御装置。
  2. 上記ボンデ循環タンク内に収容されているリン酸塩処理液の成分濃度を分析するための分析装置として、一定量のリン酸塩処理液に所定の溶液を順次滴下していきながら液中のpH変動を検出して、上記pHが中和した時点までに要した上記所定の溶液量から上記リン酸塩処理液の成分濃度を決定する自動中和滴定装置を有することを特徴とする請求項1に記載のリン酸塩皮膜形成用処理液の濃度制御装置。
  3. 上記自動中和滴定装置により所定時間毎に検出されるリン酸塩処理液のpH値を基にして、上記リン酸塩処理液の全酸度(TA)と遊離酸度(FA)を測定し、全酸度および遊離酸度を一定に維持すべく、補給に必要なTA補給液量とFA補給液量を算出することを特徴とする請求項2に記載のリン酸塩皮膜形成用処理液の濃度制御装置。
  4. 上記リン酸塩処理液のMg濃度を測定してMg濃度を一定に維持すべくMg補給液量を算出することを特徴とする請求項3に記載のリン酸塩皮膜形成用処理液の濃度制御装置。
  5. 上記リン酸塩処理液のZn濃度を測定してZn濃度を一定に維持すべく希釈用水量を算出することを特徴とする請求項3または4に記載のリン酸塩皮膜形成用処理液の濃度制御装置。
  6. 上記リン酸塩処理液を収容しているボンデ循環タンク内に入ってくる流入液の量と、上記ボンデ循環タンクから持ち出される持ち出し液との量をバランスさせるのに必要な補給量とを、上記亜鉛メッキ鋼板の板幅及び上記リン酸塩皮膜を形成する際の亜鉛メッキ鋼板の走行速度を基にして、上記リン酸塩処理液を組成する複数の成分物質の物質収支から計算すること特徴とする請求項1に記載のリン酸塩皮膜形成用処理液の濃度制御装置。
  7. 亜鉛メッキ鋼板にリン酸塩皮膜を形成するためのリン酸化成処理装置であって、
    リン酸塩化成処理に使用するリン酸塩処理液を収容するためのボンデ循環タンクと、
    上記ボンデ循環タンクに収容されているリン酸塩処理液を亜鉛メッキ鋼板に吹き付けるためのボンデ処理スプレー槽と、
    上記ボンデ循環タンク内に収容されているリン酸塩処理液を上記ボンデ処理スプレー槽内において上記亜鉛メッキ鋼板に吹き付けるためのリン酸塩処理液吹き付け手段と、
    上記ボンデ処理スプレー槽から上記ボンデ循環タンクに上記リン酸塩処理液を戻す戻り配管と、
    上記ボンデ循環タンク内に収容されているリン酸塩処理液の濃度調整を行うための補給液を収容するための複数の補給液収容容器とを有することを特徴とするリン酸化成処理装置。
  8. 上記補給液収容容器が全酸度(TA)補給液容器と遊離酸度(FA)補給液容器とからなり、上記TA補給液容器と上記FA補給液容器とは各独立した流量制御手段を経由して上記ボンデ循環タンクに接続されていることを特徴とする請求項7に記載のリン酸化成処理装置。
  9. 上記補給液収容容器の一種がMg補給液容器であり、上記Mg補給液容器は独立した流量制御手段を経由して上記ボンデ循環タンクに接続されていることを特徴とする請求項7または8に記載のリン酸化成処理装置。
  10. 上記補給液収容容器の一種が希釈水補給液容器であり、上記希釈水補給液容器は独立した流量制御手段を経由して上記ボンデ循環タンクに接続されていることを特徴とする請求項7〜9の何れか1項に記載のリン酸化成処理装置。
  11. 亜鉛メッキ鋼板にリン酸塩皮膜を形成するためのリン酸化成処理方法であって、
    上記リン酸塩皮膜を形成するためのリン酸塩化成処理に使用するためにボンデ循環タンク内に収容されているリン酸塩処理液を補給するための補給液格納容器を複数個備え、上記リン酸塩処理液を組成する複数の成分物質を補給する際には、上記複数個の補給液格納容器から上記複数の成分物質のそれぞれを個別に補給するようにしたことを特徴とするリン酸化成処理方法。
  12. 上記補給液格納容器の少なくともいずれか1つは、上記リン酸塩処理液に含有される成分物質の中で濃度変化が生じやすい成分物質を補給するために用いて、上記濃度変化が生じやすい成分物質を濃度変化が生じにくい成分物質とは分離して上記ボンデ循環タンク内に補給するようにしたことを特徴とする請求項11に記載のリン酸化成処理方法。
  13. 上記リン酸塩処理液の濃度調整は、上記リン酸塩処理液に含有される成分物質の濃度変化が生じやすい成分物質の濃度調整と濃度変化が生じにくい成分物質の濃度調整とに分けて行い、上記それぞれの濃度調整で所定の時間の経過ごとに上記成分物質の濃度測定を行い、上記濃度測定の結果に基づいて上記各成分物質の濃度を一定にするように制御することを特徴とする請求項11または12に記載のリン酸化成処理方法。
JP2002372664A 2002-12-24 2002-12-24 リン酸塩皮膜形成用処理液の濃度制御装置及びその方法 Expired - Fee Related JP3978129B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002372664A JP3978129B2 (ja) 2002-12-24 2002-12-24 リン酸塩皮膜形成用処理液の濃度制御装置及びその方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372664A JP3978129B2 (ja) 2002-12-24 2002-12-24 リン酸塩皮膜形成用処理液の濃度制御装置及びその方法

Publications (2)

Publication Number Publication Date
JP2004204264A true JP2004204264A (ja) 2004-07-22
JP3978129B2 JP3978129B2 (ja) 2007-09-19

Family

ID=32811208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372664A Expired - Fee Related JP3978129B2 (ja) 2002-12-24 2002-12-24 リン酸塩皮膜形成用処理液の濃度制御装置及びその方法

Country Status (1)

Country Link
JP (1) JP3978129B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169572A (ja) * 2004-12-14 2006-06-29 Nippon Steel Corp 鋼板のボンデ処理装置及びボンデ処理装置における水洗廃水の再利用方法
JP2006193809A (ja) * 2005-01-17 2006-07-27 Kobe Steel Ltd 表面改質層を有するZn系めっき鋼板の連続製造方法
KR20170051661A (ko) * 2015-10-30 2017-05-12 주식회사 포스코 강판의 후처리 검사 장치 및 방법
CN112630284A (zh) * 2020-12-18 2021-04-09 湖南航天天麓新材料检测有限责任公司智能检测装备分公司 一种磷化槽液在线检测及自动补给系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169572A (ja) * 2004-12-14 2006-06-29 Nippon Steel Corp 鋼板のボンデ処理装置及びボンデ処理装置における水洗廃水の再利用方法
JP4585300B2 (ja) * 2004-12-14 2010-11-24 新日本製鐵株式会社 ボンデ処理装置における水洗廃水の再利用方法
JP2006193809A (ja) * 2005-01-17 2006-07-27 Kobe Steel Ltd 表面改質層を有するZn系めっき鋼板の連続製造方法
JP4523846B2 (ja) * 2005-01-17 2010-08-11 株式会社神戸製鋼所 表面改質層を有するZn系めっき鋼板の連続製造方法
KR20170051661A (ko) * 2015-10-30 2017-05-12 주식회사 포스코 강판의 후처리 검사 장치 및 방법
KR101858793B1 (ko) * 2015-10-30 2018-06-29 주식회사 포스코 강판의 후처리 검사 장치 및 방법
CN112630284A (zh) * 2020-12-18 2021-04-09 湖南航天天麓新材料检测有限责任公司智能检测装备分公司 一种磷化槽液在线检测及自动补给系统

Also Published As

Publication number Publication date
JP3978129B2 (ja) 2007-09-19

Similar Documents

Publication Publication Date Title
JP5462467B2 (ja) 金属材料用化成処理液および処理方法
US5976272A (en) No-rinse phosphating process
CA2774418C (en) Replenishing compositions and methods of replenishing pretreatment compositions
EP1988189B1 (en) Process for producing hot-dip galvanized steel sheet with zinc phosphate coat
CA1308338C (en) Process of producing phosphate coatings on metal surfaces
JP3978129B2 (ja) リン酸塩皮膜形成用処理液の濃度制御装置及びその方法
US20080160199A1 (en) High peroxide autodeposition bath
CA2864754C (en) Replenishing compositions and methods of replenishing pretreatment compositions
SI20645A (sl) Postopek za krmiljenje obdelovalne linije
CN101006202A (zh) 磷酸盐处理镀锌钢板
WO1998032894A1 (en) Aqueous phosphating composition and process for metal surfaces
CA1224390A (en) Process for controlling zinc phosphating treating solutions
US10458022B2 (en) Optimized process control in the anti-corrosive metal pretreatment based on fluoride-containing baths
JP3807388B2 (ja) プレフォスフェイト鋼板の製造方法および装置
CA2413646C (en) Improved phosphating operation
US20040025972A1 (en) Method of controlling a treatment line
JPS5993883A (ja) 亜鉛系めつき鋼板のクロメ−ト処理方法
US3731653A (en) Coating rate cell
JPS6024182B2 (ja) 金属表面処理液の自動制御装置
JPH0375379A (ja) 塗装製品、その製造方法、濃厚リン酸塩処理剤および補充用濃厚処理剤
JP2005248248A (ja) 表面外観に優れた有機複合被覆鋼板の製造方法
US20040011430A1 (en) Phosphating operation
Galeas Jr et al. The Pretreatment System: Chemistry & Controls
MXPA01005717A (en) Method of controlling a treatment line
JPH0432578A (ja) リン酸塩化成処理液の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041217

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Effective date: 20060922

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A131 Notification of reasons for refusal

Effective date: 20070306

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees