JP2004198116A - ブラッググレーティング方式の光導波路型センサおよびその製造方法 - Google Patents

ブラッググレーティング方式の光導波路型センサおよびその製造方法 Download PDF

Info

Publication number
JP2004198116A
JP2004198116A JP2002363346A JP2002363346A JP2004198116A JP 2004198116 A JP2004198116 A JP 2004198116A JP 2002363346 A JP2002363346 A JP 2002363346A JP 2002363346 A JP2002363346 A JP 2002363346A JP 2004198116 A JP2004198116 A JP 2004198116A
Authority
JP
Japan
Prior art keywords
optical waveguide
silicon
bragg grating
diaphragm
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002363346A
Other languages
English (en)
Inventor
Katsumi Taniguchi
克己 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002363346A priority Critical patent/JP2004198116A/ja
Publication of JP2004198116A publication Critical patent/JP2004198116A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】素材ウェハを厚くでき、且つ感度ばらつきの少ないブラッググレーティング方式の光導波路型センサおよびその製造方法を提供する。
【解決手段】素材ウェハとしてSOIウェハを用い、SOIウェハの酸化シリコン膜62によるストップエッチングによって、ベースシリコン部61aに凹部64を形成し、酸化シリコン膜62の一部および生成シリコン膜63、または酸化シリコン膜62の一部および生成シリコン膜63と光導波路5のアンダークラッド層51およびオーバークラッド層54と、でダイアフラム66を構成する。また、素材ウェハとしてシリコンウェハを用い、光導波路5のアンダークラッド層51でストップエッチングすることも有効である。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、ダイアフラムをセンシング部とし、その変形をそこに形成された光導波路のブラッググレーティングのブラッグ波長で検出することによって、圧力や加速度等を測定するブラッググレーティング方式の光導波路型センサの構成および製造方法に関する。
【0002】
【従来の技術】
光ファイバを用い、光を信号媒体として圧力等を計測する方法は、光ファイバが軽量であり且つ細径であるため、狭い空間での使用が可能であること、材料が絶縁体であるため、電磁ノイズに強く高電圧領域での計測が容易に可能であること、素材が石英ガラスであるため、高温や可燃性ガス雰囲気中でも使用可能であること、という特徴を有している。このような特徴を生かして、光ファイバを用いた様々なセンサが開発されている。それらのセンサの中に、ダイアフラムをセンシング部として、そこに光ファイバを接着し、ダイアフラムに印加された圧力や加速度等(以下では、圧力等という)を、ダイアフラムの変形による光ファイバの変形に置き換えて計測するセンサがある。
【0003】
図6はこのようなセンサの一例の構造を示す断面図である。
以下の説明においては、板状の素材を「ウェハ」と呼び、ウェハに所定の加工が施されてチップ化されたものを「基板」と呼んで区別する。
シリコン基板1には、センシング部であるダイアフラム13が周辺保持部12に保持された状態で形成されている。ダイアフラム13は、リソグラフィおよび異方性エッチングによる加工で凹部11がエッチングされて形成される。シリコン基板1の上面には、測定用光ファイバ2が、ダイアフラム13の最も変形の大きい部分を通過するように配置されて接着され、光源光量の経時変化等を補償するための参照用光ファイバ3が、圧力等で殆ど変形しない周辺保持部12上に接着されている。
【0004】
圧力等によるダイアフラム13の変形に伴って測定用光ファイバ2が変形すると、測定用光ファイバ2の伝播光量が減少する。一方、参照用光ファイバ3は、圧力等によっては殆ど変形しないので、その伝播光量は圧力等によっては殆んど変化しない。したがって、両方の光ファイバ2および3の伝播光量を比較することによって、光源光量の経時変化等を補償してダイアフラム13に印加された圧力等を測定することができる。
しかし、このセンサの場合には、シリコン基板1と2つの光ファイバ2および3とを別々に準備し、光ファイバ2および3をそれぞれの所定の位置に正確に位置合わせして接着しなければならないので、手間のかかる工程が必要であり、且つセンサの小型化が困難である。更に、接着層の塑性変形や熱変形に伴い、感度が低下したり変動したりする。
【0005】
この問題点を解消するために、シリコン基板上に半導体プロセス技術を適用して光導波路を形成したセンサが、「光導波路型センサ」であり、「文献1」に詳しく説明されている。
以上に説明したセンサは、光ファイバや光導波路の変形に伴う光量変化を検出するものであり、複数の測定点を測定するためには、測定点と同じ数のセンサと、光源および測定器等で構成される同数の測定セットまたはセンサ毎に光路を切り換えるための光路切り替えスイッチおよび1組の測定セットと、を必要とし、光源としても安定性の優れたものを必要とするので、コストが高くなってしまう。
【0006】
この問題点を解消するために開発されたセンサが、光ファイバや光導波路の圧力等の検出部にブラッググレーティングを備え、ブラッググレーティングで反射された光の波長(ブラッグ波長)λBを計測して、検出部の変形をブラッグ波長の変化として検出する方式のセンサである。この方式のセンサを用いて複数の測定点を測定する場合には、それぞれの測定点に対応するブラッグ波長を、変形に伴う変化分を含めて互いに区別できる値に設定しておけば、波長によって測定点を区別することができる。したがって、上記の条件を満たしている複数のセンサの光ファイバや光導波路を直列に接続して1つの光導波路を構成し、1組の測定セットを用いて一連のブラッグ波長を測定すれば、それぞれのセンサに対応する測定点の測定値を得ることができる。しかも、測定値をブラッグ波長の変化分として検出するので、測定値が光源光量の変動の影響をそれほど受けない。
【0007】
図7は、このようなブラッググレーティング方式の光導波路型センサの一例の構成を示す断面図である。
シリコン基板1aには、センシング部であるダイアフラム13aが周辺保持部12aに保持された状態で形成されている。ダイアフラム13aは、リソグラフィおよびプラズマエッチングによる凹部11aの選択エッチングで形成される。シリコン基板1aの上面には、酸化シリコンからなるアンダークラッド層51と、酸化シリコンに添加物を添加してアンダークラッド層51より大きい屈折率をもたせた材料からなるコア部53と、アンダークラッド層51と同じ酸化シリコンからなるオーバークラッド層54と、で構成される光導波路5が形成されている。コア部53には、ダイアフラム13aの中央部に相当する部分および周辺保持部12aに相当する部分に、それぞれ圧力測定用ブラッググレーティング55および温度測定用ブラッググレーティング56が形成されており、圧力測定用ブラッググレーティング55のピッチおよび温度測定用ブラッググレーティング56のピッチは、それぞれの変形分を含めて互いに区別できるピッチに設定されている。
【0008】
このようなピッチ設定によって、両ブラッググレーティング55および56を同じ光導波路5に形成しても、圧力測定用ブラッググレーティング55のブラッグ波長λBPと温度測定用ブラッググレーティング56のブラッグ波長λBTとを区別できるので、光導波路5を戻ってくる光信号のブラッグ波長を検出することによって、それぞれの測定値を得ることが可能となる。
このようなブラッググレーティング方式のセンサについては、「文献2」に詳しく開示されている。
【0009】
【文献1】
特開平8−43227号公報
【文献2】
特開2000−221085号公報
【文献3】
特開2002−75836号公報
【文献4】
特開平5−340828号公報
【0010】
【発明が解決しようとする課題】
しかし、ブラッググレーティング方式のセンサであっても、図6のように光ファイバを接着剤で接着するものでは、接着層の塑性変形や熱変形による感度の低下やゼロ点および感度の経時変化等が問題である。一方、図7のような、ダイアフラム13a上にアンダークラッド層51等を直接形成する構成の光導波路型センサの場合には、光ファイバを用いる場合のような問題は無くなる。しかし、ダイアフラム13aの厚さを高精度に製作するために、シリコン基板1aの素材となるシリコンウェハを薄くすると、光導波路5の形成工程において、アンダークラッド層51等が発生する応力でシリコンウェハが割れる、という問題が発生する。この問題を避けようとして厚いシリコンウェハを使用すると、凹部11aを形成するためのエッチング量が多くなって、ダイアフラム13aの厚さの均一性が悪くなり、その結果として、感度のばらつきが大きくなって、光導波路型センサの良品率が低下する。特に、低い圧力を測定する高感度の圧力センサにおいては、この傾向が顕著となる。
【0011】
一方、前述したように、ブラッググレーティング方式の光導波路型センサは、複数の測定点の場合でも、それぞれの測定点のブラッグ波長を、変形に伴う変化分を含めて互いに区別できる値に設定しておけば、波長によって測定点を区別できる。したがって、このような条件を満たしているセンサを用いると、それらの光導波路を直列に接続して1つの光導波路を構成して、1組の測定セットで複数の測定点を測定することができる。1組の測定セットで測定できる測定点の数は、各測定点に対応させて別々に設定されるブラッグ波長の差分の余裕を小さくできればできるほど、多くすることができるので、変形に伴う変化分のばらつきが小さいほど、言い換えれば、ダイアフラムを高精度に作成できて感度のばらつきが少ないほど、1つの光導波路として接続できる測定点の数を多くすることが可能となる。
【0012】
この発明の課題は、上記の問題点および観点に基づくものであって、投入素材ウェハの直行率を低下させない厚い基板を有し、且つダイアフラムの厚さ精度が高くて感度のばらつきが少ないブラッググレーティング方式の光導波路型センサおよびその製造方法を提供することである。
【0013】
【課題を解決するための手段】
請求項1の発明は、周辺部を保持され、印加された圧力や加速度等で変位するダイアフラムをセンシング部とし、少なくともこのセンシング部にブラッググレーティングを備えた光導波路を有し、このブラッググレーティングのブラッグ波長によって圧力等を測定するブラッググレーティング方式の光導波路型センサであって、前記光導波路を設ける基板として、シリコンウェハの一方の主面上に酸化シリコン膜を介して生成シリコン膜を生成されてなるSOIウェハを用い、前記ダイアフラムをSOIウェハの酸化シリコン膜の一部および生成シリコン膜で構成する。
【0014】
SOIウェハを構成する酸化シリコン膜および生成シリコン膜の厚さは、それぞれに高精度で制御され、それらの膜が所望の厚さを有するものを容易に入手することができる。また、プラズマエッチングやアルカリエッチングによってSOIウェハのシリコンウェハ部をエッチングして、SOIウェハにダイアフラムを形成する場合には、生成シリコン膜に比べてはるかに薄い酸化シリコン膜によって、後述するように、エッチングの進行を実質上停止させることができる(以下では、このようなエッチングをストップエッチングという)ので、SOIウェハの酸化シリコン膜の一部および生成シリコン膜をダイアフラムとすれば、厚さ精度の高いダイアフラムを得ることができる。更に、ストップエッチングが可能となるので、SOIウェハのベース層であるシリコンウェハを厚くすることが可能となり、光導波路の形成工程におけるSOIウェハの割れが回避できる。
【0015】
請求項2の発明は、周辺部を保持され、印加された圧力や加速度等で変位するダイアフラムをセンシング部とし、少なくともこのセンシング部にブラッググレーティングを備えた光導波路を有し、このブラッググレーティングのブラッグ波長によって圧力等を測定するブラッググレーティング方式の光導波路型センサであって、前記光導波路を設ける基板として、シリコンウェハの一方の主面上に酸化シリコン膜を介して生成シリコン膜を生成されてなるSOIウェハを用い、光導波路として、生成シリコン膜の全面に広がるアンダークラッド層およびオーバークラッド層と、両層に内包されるコア部と、からなる光導波路を備え、前記ダイアフラムを、SOIウェハの酸化シリコン膜の一部および生成シリコン膜と、光導波路のアンダークラッド層およびオーバークラッド層と、で構成する。
【0016】
この発明においても、請求項1の発明と同様に、SOI基板の酸化シリコン膜によって、ストップエッチングすることができる。また、SOIウェハ上に生成されるアンダークラッド層およびオーバークラッド層の厚さを高精度で制御することは十分に可能であるので、SOIウェハの酸化シリコン膜の一部および生成シリコン膜と、光導波路のアンダークラッド層およびオーバークラッド層と、でダイアフラムを構成すれば、厚さ精度の高いダイアフラムを得ることができる。更に、ストップエッチングが可能となるので、SOIウェハのベース層であるシリコンウェハを厚くすることが可能となり、光導波路の形成工程におけるSOIウェハの割れが回避できる。
【0017】
請求項3の発明は、請求項1または請求項2に記載のブラッググレーティング方式の光導波路型センサの製造方法であって、前記SOIウェハの生成シリコン膜上に光導波路を形成する光導波路形成工程と、SOIウェハのベース層であるシリコンウェハの前記ダイアフラムに相当する部分を、酸化シリコン膜のエッチング速度に対するシリコンのエッチング速度の比が大きいエッチング方法で酸化シリコン膜に到達するまでエッチングし、且つ酸化シリコン膜の一部および生成シリコン膜を残すダイアフラム形成工程と、を有する。
SOIウェハのベース層であるシリコンウェハのエッチング方法として、SF6
を含むガス等によるプラズマエッチングやアルカリ溶液を用いるウェットエッチングを採用すると、そのエッチング条件によっては、シリコンのエッチング速度に比べて、酸化シリコン膜のエッチング速度を大幅に小さく、例えば500分の1程度に、することができる。したがって、シリコンのエッチング速度にばらつきがあっても、薄い酸化シリコン膜でエッチングの進行を実質的に止め、シリコンの部分をダイアフラム部全面にわたって完全に除去することができ、且つ酸化シリコン膜の一部および生成シリコン膜を残して、その部分をダイアフラムまたはダイアフラムの一部とすることができる。
【0018】
このようなストップエッチングを開示した文献としては、プラズマエッチングに関しては「文献3」、アルカリ溶液を用いるウェットエッチングに関しては「文献4」がある。
【0019】
請求項4の発明は、周辺部を保持され、印加された圧力や加速度等で変位するダイアフラムをセンシング部とし、少なくともこのセンシング部にブラッググレーティングを備えた光導波路を有し、このブラッググレーティングのブラッグ波長によって圧力等を測定するブラッググレーティング方式の光導波路型センサであって、前記光導波路を設ける基板としてシリコンウェハを用い、光導波路として、シリコンウェハの一方の主面全面に広がるアンダークラッド層およびオーバークラッド層と、両層に内包されるコア部と、からなる光導波路を備え、前記ダイアフラムを、光導波路のアンダークラッド層の大部分およびオーバークラッド層で構成する。
【0020】
光導波路のアンダークラッド層およびオーバークラッド層は、酸化シリコン等の酸化物からなるので、ダイアフラムを形成するためにシリコンウェハをエッチングするエッチング方法を選択すれば、請求項1の発明で説明したように、アンダークラッド層でエッチングを実質上停止させることができ、アンダークラッド層の大部分を残すことができる。その結果、ダイアフラムをアンダークラッド層の大部分およびオーバークラッド層で構成すれば、薄くて厚さ精度の高いダイアフラムを得ることができる。
請求項5の発明は、請求項4に記載のブラッググレーティング方式の光導波路型センサの製造方法であって、前記シリコンウェハ上に光導波路を形成する光導波路形成工程と、シリコンウェハの前記ダイアフラムに相当する部分を、光導波路のアンダークラッド層のエッチング速度に対するシリコンのエッチング速度の比が大きいエッチング方法でアンダークラッド層に到達するまでエッチングし、且つアンダークラッド層の大部分およびオーバークラッド層を残すダイアフラム形成工程と、を有する。
【0021】
光導波路のアンダークラッド層は、前述したように、酸化シリコン等からなり、請求項3の発明で説明したのと同様に、シリコンのエッチング速度にばらつきがあっても、アンダークラッド層を僅かにエッチングさせるだけで、シリコンウェハのダイアフラムに対応する部分をダイアフラム部全面にわたって完全に除去することができる。
【0022】
【発明の実施の形態】
この発明の特徴は、光導波路の形成工程において、ベースとなるウェハが割れることを避けるために、そのウェハを厚くしたいという条件と、「従来の技術」の項で説明した、ブラッググレーティング方式の光導波路型センサの長所、すなわち、複数の測定点のセンサのそれぞれの光導波路を直列に接続して1つの光導波路を構成することによって、1組の測定セットで複数の測定点の測定値を得ることができるという長所、を最大限に活用するために、センサの感度ばらつきをできるだけ少なくするという条件と、を両立させていることである。
【0023】
このために、センサの構成をストップエッチングが活用できる構成として、ベースとなるウェハの厚さを厚くし、ストップエッチングによってダイアフラムの厚さばらつきを少なくしている。
以下において、この発明の実施の形態について、実施例を用いてより詳しく説明する。なお、従来技術と同じ機能の部分には、同じ符号をつける。また、説明の煩雑さを避けるために、実施例の説明においては、「ブラッググレーティング方式の光導波路型センサ」を単に「センサ」と呼ぶ。
〔第1の実施例〕
図1は、この発明によるセンサの第1の実施例の構成を示し,(a)は光導波路に沿った方向の断面図,(b)は光導波路に垂直な方向の断面図であり、図3は、この実施例の製造工程を示す光導波路に垂直な方向の断面図である。
【0024】
この実施例のセンサは、SOI基板6とその上に形成された光導波路5とで構成されている。
SOI基板6は、リソグラフィおよびプラズマエッチングによる選択エッチングで形成された凹部64およびその周辺を囲む周辺保持部65とを有するベースシリコン部(図1および図3ではベースSi部)61aと、前記の選択エッチングで下側の一部をエッチングされた酸化シリコン膜 (図1および図3ではSiO膜) 62と、生成シリコン膜 (図1および図3では生成Si膜) 63とで構成されている。
光導波路5は、SOI基板6の上面に積層された、酸化シリコンを主成分とするアンダークラッド層51と、酸化シリコンに添加物を添加してアンダークラッド層51より大きい屈折率をもたせた材料からなるコア部53と、アンダークラッド層51と同じ組成のオーバークラッド層54と、で構成されている。コア部53には、ダイアフラム66の中央部に相当する部分および周辺保持部65に相当する部分に、それぞれ圧力測定用ブラッググレーティング55および温度測定用ブラッググレーティング56が形成されており、圧力測定用ブラッググレーティング55のピッチおよび温度測定用ブラッググレーティング56のピッチは、それぞれの変形分を含めて互いに区別できるピッチに設定されている。
【0025】
この実施例が図7に示した従来例と異なる点は、光導波路5を形成するベース素材にSOIウェハ60を用いていることであり、それに伴って、センシング部であるダイアフラムを、SOI基板6の酸化シリコン膜62および生成シリコン膜63と、光導波路5のアンダークラッド層51およびオーバークラッド層54と、で構成していることである。
ここで、この実施例の製造工程を図3にしたがって説明する。
ベース素材は、前述したように、シリコンウェハ61の1主面上に酸化シリコン膜62を介して生成された生成シリコン膜63を有するSOIウェハ60である[図3(a)]。酸化シリコン膜62の厚さは、凹部64を形成するためのシリコンエッチング工程で、エッチング部のシリコンを完全にエッチングするまで、エッチングの進行を実質的に止めるのに必要な厚さであればよく、例えば0.5μmとする。生成シリコン膜63の厚さは、このセンサに求められている感度によって、光導波路5のアンダークラッド層51およびオーバークラッド層54の厚さを加味して決められ、例えば、1気圧を測定レンジとする場合には、50μm程度とする。
【0026】
SOIウェハ60の生成シリコン膜63の上に、CVD法等によって、酸化シリコンを主成分とする、厚さ10〜15μmのアンダークラッド層51を形成し[図3(b)]、続いて、酸化シリコンにゲルマニウムなどの酸化物を添加されて屈折率をより高くされた材料からなる、厚さ4〜7μmのコア層52を形成し[図3(c)]、フォトリソグラフィおよびドライエッチングによって、断面形状が正方形または矩形のコア部53を形成する[図3(d)]。更に、その上に、CVD法等によって、酸化シリコンを主成分とする、厚さ10〜15μmのオーバークラッド層54を形成し[図3(e)]、これらの層の応力を緩和させるために、例えば800~1000℃の熱処理を施す。以上で光導波路5が完成する。
【0027】
次に、SOIウェハ60のシリコンウェハ61側をフォトリソグラフィおよびドライエッチングによって選択エッチングして、シリコンウェハ61に凹部64を形成する[図3(f)]。この際には、ドライエッチングの条件として、酸化シリコン膜62のエッチング速度がシリコンのエッチング速度に比べてはるかに遅い条件を選定し、酸化シリコン膜62で実質的なエッチングを停止させて、ダイアフラム66となる部分のシリコンを完全にエッチングして凹部64を形成する。このようにして、周辺保持部65に保持されたダイアフラム66が形成される。このようにして形成されたダイアフラム66は、SOIウェハ60の酸化シリコン膜62の一部および生成シリコン膜63と、光導波路5のアンダークラッド層51およびオーバークラッド層54と、で構成される。しかも、一部がエッチングされた酸化シリコン膜62は、上述したように、エッチング前の状態でも例えば0.5μmと薄く、これ以外の膜や層は、酸化シリコン膜62に比べるとはるかに厚く、且つそれぞれに高い厚さ精度で形成されるものであるから、ダイアフラム66は、高い厚さ精度で形成される。
【0028】
続いて、光導波路5のダイアフラム66の中央部に相当する部分および周辺保持部65に相当する部分に、フェーズマスクを用いたレーザー光(例えばアルゴンレーザー)の照射によって、それぞれ圧力測定用ブラッググレーティング55および温度測定用ブラッググレーティング56を形成する。圧力測定用ブラッググレーティング55のピッチおよび温度測定用ブラッググレーティング56のピッチは、それぞれの変形分を含めて互いに区別できるピッチに設定される。
このようなピッチ設定によって、両ブラッググレーティング55および56を同じ光導波路5に形成しても、圧力測定用ブラッググレーティング55のブラッグ波長λBPと温度測定用ブラッググレーティング56のブラッグ波長λBTとを区別できるので、光導波路5を戻ってくる光信号のブラッグ波長を検出することによって、それぞれの測定値を得ることが可能となる。
【0029】
以上の工程は複数のセンサを有するウェハ状態で実行されるので、最後に、このウェハをチップ化してセンサとする。
〔第2の実施例〕
図2は、第2の実施例の構成を示す光導波路に垂直な方向の断面図である。光導波路に沿った方向の断面図は示していないが、図1(a)と同様である。
この実施例は、第1の実施例におけるアンダークラッド層51およびオーバークラッド層54を、それぞれにフォトリソグラフィおよびドライエッチングによって、光導波路として必要最小限度の幅のアンダークラッド層51aおよびオーバークラッド層54aとしたものである。
【0030】
したがって、この実施例のダイアフラム66aはSOI基板6の酸化シリコン膜62の一部および生成シリコン膜63で構成され、圧力等の検出部である圧力測定用ブラッググレーティングがダイアフラム66a の表面に配置された構成となるので、圧力等によるダイアフラムの変形が同じである場合において、この実施例は第1の実施例より高い感度を得ることができる。
〔第3の実施例〕
図4は、第3の実施例の構成を示し,(a)は光導波路に沿った方向の断面図,(b)は光導波路に垂直な方向の断面図であり、図5は、この実施例の製造工程を示す光導波路に垂直な方向の断面図である。
【0031】
この実施例は、第1の実施例のSOIウェハ60をシリコンウェハ10に置き換えて、シリコンウェハ10上に光導波路5を形成し、光導波路5のアンダークラッド層51でシリコンウェハ10をストップエッチングしてシリコンウェハ10に除去部14を形成し、ダイアフラム57を光導波路5のアンダークラッド層51およびオーバークラッド層54で構成したものである。前述したように、光導波路5のアンダークラッド層51およびオーバークラッド層54は、その厚さが10〜15μmであり、且つ高い精度で厚さを制御できるので、ダイアフラム57は薄く且つ厚さ精度の高いダイアフラムとなる。
【0032】
したがって、この実施例によれば、従来技術では製作が困難であった高感度で且つ特性の揃ったセンサを得ることができる。
なお、この実施例の製造工程も、第1の実施例とほぼ同じあるので、その説明を省略する。
【0033】
【発明の効果】
請求項1の発明においては、光導波路を設ける基板として、シリコンウェハの一方の主面上に酸化シリコン膜を介して生成シリコン膜を生成されてなるSOIウェハを用い、ダイアフラムをSOIウェハの酸化シリコン膜の一部および生成シリコン膜で構成する。SOIウェハを構成する酸化シリコン膜および生成シリコン膜の厚さは、それぞれに高精度で制御され、所望の厚さを有するものを容易に入手することができ、且つ酸化シリコン膜の厚さは生成シリコン膜の厚さに比べてはるかに薄くてよいので、SOIウェハの酸化シリコン膜の一部および生成シリコン膜をダイアフラムとすれば、厚さ精度の高いダイアフラムを得ることができる。更に、ストップエッチングが可能となるので、SOIウェハのベース層であるシリコンウェハを厚くすることが可能となり、光導波路の形成工程におけるSOIウェハの割れが回避できる。
【0034】
したがって、この発明によれば、投入素材ウェハの直行率を低下させない厚い基板を有し、且つダイアフラムの厚さ精度が高くて感度のばらつきが少ないブラッググレーティング方式の光導波路型センサを提供することができる。
請求項2の発明においては、光導波路を設ける基板として、シリコンウェハの一方の主面上に酸化シリコン膜を介して生成シリコン膜を生成されてなるSOIウェハを用い、光導波路として、生成シリコン膜の全面に広がるアンダークラッド層およびオーバークラッド層と、両層に内包されるコア部と、からなる光導波路を備え、ダイアフラムを、SOIウェハの酸化シリコン膜の一部および生成シリコン膜と、光導波路のアンダークラッド層およびオーバークラッド層と、で構成する。このような構成においても、請求項1の発明と同様に、SOI基板の酸化シリコン膜によって、ストップエッチングすることができる。また、SOIウェハ上に生成されるアンダークラッド層およびオーバークラッド層の厚さを高精度で制御することは十分に可能であるので、SOIウェハの酸化シリコン膜の一部および生成シリコン膜と、光導波路のアンダークラッド層およびオーバークラッド層と、でダイアフラムを構成すれば、厚さ精度の高いダイアフラムを得ることができる。更に、ストップエッチングが可能となるので、SOIウェハのベース層であるシリコンウェハを厚くすることが可能となり、光導波路の形成工程におけるSOIウェハの割れが回避できる。
【0035】
したがって、この発明によっても、投入素材ウェハの直行率を低下させない厚い基板を有し、且つダイアフラムの厚さ精度が高くて感度のばらつきが少ないブラッググレーティング方式の光導波路型センサを提供することができる。
請求項3の発明においては、SOIウェハの生成シリコン膜上に光導波路を形成する光導波路形成工程と、SOIウェハのベース層であるシリコンウェハのダイアフラムに相当する部分を、酸化シリコン膜のエッチング速度に対するシリコンのエッチング速度の比が大きいエッチング方法、すなわちストップエッチング、で酸化シリコン膜に到達するまでエッチングし、且つ酸化シリコン膜の一部および生成シリコン膜を残すダイアフラム形成工程と、を有する。ダイアフラム形成工程がストップエッチングによるので、SOIウェハとしては、ベース層であるシリコンウェハの厚さを厚くすることが可能となり、しかも、ダイアフラムの厚さを高い精度で形成することができる。
【0036】
したがって、この発明によれば、請求項1または請求項2に記載のブラッググレーティング方式の光導波路型センサを製造できる製造方法を提供することができる。
請求項4の発明においては、光導波路を設ける基板としてシリコンウェハを用い、光導波路として、シリコンウェハの一方の主面全面に広がるアンダークラッド層およびオーバークラッド層と、両層に内包されるコア部と、からなる光導波路を備え、ダイアフラムを、光導波路のアンダークラッド層の大部分およびオーバークラッド層で構成する。光導波路のアンダークラッド層およびオーバークラッド層は、酸化シリコン等の酸化物からなるので、請求項1の発明で説明したのと同様に、ダイアフラムを形成するためのシリコンウェハのエッチングにおいて、アンダークラッド層でエッチングを実質的に停止させることができ、且つアンダークラッド層の大部分を残すことができる。したがって、ダイアフラムをアンダークラッド層の大部分およびオーバークラッド層で構成するのであるから、得られるダイアフラムは薄くて厚さ精度の高いものとなる。更に、ストップエッチングが可能となるので、シリコンウェハを厚くすることが可能となり、光導波路の形成工程におけるシリコンウェハの割れが回避できる。
【0037】
したがって、この発明によっても、投入素材ウェハの直行率を低下させない厚い基板を有し、且つダイアフラムの厚さが薄く且つその厚さ精度が高くて、感度が高く且つ感度のばらつきが少ないブラッググレーティング方式の光導波路型センサを提供することができる。
請求項5の発明においては、シリコンウェハ上に光導波路を形成する光導波路形成工程と、シリコンウェハのダイアフラムに相当する部分を、光導波路のアンダークラッド層のエッチング速度に対するシリコンのエッチング速度の比が大きいエッチング方法でアンダークラッド層に到達するまでエッチングし、且つアンダークラッド層の大部分およびオーバークラッド層を残すダイアフラム形成工程と、を有する。ダイアフラム形成工程がストップエッチングによるので、シリコンウェハの厚さを厚くすることが可能となり、しかも、ダイアフラムの厚さを高い精度で形成することができる。
【0038】
したがって、この発明によれば、請求項4に記載のブラッググレーティング方式の光導波路型センサを製造できる製造方法を提供することができる。
【図面の簡単な説明】
【図1】この発明によるブラッググレーティング方式の光導波路型センサの第1の実施例の構成を示し,(a)は光導波路に沿った方向の断面図,(b)は光導波路に垂直な方向の断面図
【図2】第2の実施例の構成を示す光導波路に垂直な方向の断面図
【図3】第1の実施例の製造工程を示す光導波路に垂直な方向の断面図
【図4】第3の実施例の構成を示し,(a)は光導波路に沿った方向の断面図,(b)は光導波路に垂直な方向の断面図
【図5】第3の実施例の製造工程を示す光導波路に垂直な方向の断面図
【図6】光ファイバを用いた圧力等測定用センサの一例の構成を示す断面図
【図7】従来技術によるブラッググレーティング方式の光導波路型センサの一例の構成を示す断面図
【符号の説明】
1, 1a, 1b シリコン基板
10 シリコンウェハ 11, 11a 凹部
12, 12a, 12b 周辺保持部 13, 13a ダイアフラム
14 除去部
2 測定用光ファイバ
3 参照用光ファイバ
4 接着剤
5 光導波路
51, 51a アンダークラッド層 52 コア層
53 コア部 54, 54a オーバークラッド層
55 圧力測定用ブラッググレーティング
56 温度測定用ブラッググレーティング
57 ダイアフラム
6 SOI基板
60 SOIウェハ 61 シリコンウェハ
61a ベースシリコン部 62 酸化シリコン膜
63 生成シリコン膜 64 凹部
65 周辺保持部 66, 66a ダイアフラム

Claims (5)

  1. 周辺部を保持され、印加された圧力や加速度等で変位するダイアフラムをセンシング部とし、少なくともこのセンシング部にブラッググレーティングを備えた光導波路を有し、このブラッググレーティングのブラッグ波長によって圧力等を測定するブラッググレーティング方式の光導波路型センサであって、前記光導波路を設ける基板として、シリコンウェハの一方の主面上に酸化シリコン膜を介して生成シリコン膜を生成されてなるSOIウェハを用い、前記ダイアフラムをSOIウェハの酸化シリコン膜の一部および生成シリコン膜で構成する、ことを特徴とするブラッググレーティング方式の光導波路型センサ。
  2. 周辺部を保持され、印加された圧力や加速度等で変位するダイアフラムをセンシング部とし、少なくともこのセンシング部にブラッググレーティングを備えた光導波路を有し、このブラッググレーティングのブラッグ波長によって圧力等を測定するブラッググレーティング方式の光導波路型センサであって、前記光導波路を設ける基板として、シリコンウェハの一方の主面上に酸化シリコン膜を介して生成シリコン膜を生成されてなるSOIウェハを用い、光導波路として、前記生成シリコン膜の全面に広がるアンダークラッド層およびオーバークラッド層と、両層に内包されるコア部と、からなる光導波路を備え、前記ダイアフラムを、SOIウェハの酸化シリコン膜の一部および生成シリコン膜と、光導波路のアンダークラッド層およびオーバークラッド層と、で構成する、ことを特徴とするブラッググレーティング方式の光導波路型センサ。
  3. 請求項1または請求項2に記載のブラッググレーティング方式の光導波路型センサの製造方法であって、前記SOIウェハの生成シリコン膜上に光導波路を形成する光導波路形成工程と、SOIウェハのベース層であるシリコンウェハの前記ダイアフラムに相当する部分を、酸化シリコン膜のエッチング速度に対するシリコンのエッチング速度の比が大きいエッチング方法で酸化シリコン膜に到達するまでエッチングし、且つ酸化シリコン膜の一部および生成シリコン膜を残すダイアフラム形成工程と、を有する、ことを特徴とするブラッググレーティング方式の光導波路型センサの製造方法。
  4. 周辺部を保持され、印加された圧力や加速度等で変位するダイアフラムをセンシング部とし、少なくともこのセンシング部にブラッググレーティングを備えた光導波路を有し、このブラッググレーティングのブラッグ波長によって圧力等を測定するブラッググレーティング方式の光導波路型センサであって、前記光導波路を設ける基板としてシリコンウェハを用い、光導波路として、シリコンウェハの一方の主面全面に広がるアンダークラッド層およびオーバークラッド層と、両層に内包されるコア部と、からなる光導波路を備え、前記ダイアフラムを、光導波路のアンダークラッド層の大部分およびオーバークラッド層で構成する、ことを特徴とするブラッググレーティング方式の光導波路型センサ。
  5. 請求項4に記載のブラッググレーティング方式の光導波路型センサの製造方法であって、前記シリコンウェハ上に光導波路を形成する光導波路形成工程と、シリコンウェハの前記ダイアフラムに相当する部分を、光導波路のアンダークラッド層のエッチング速度に対するシリコンのエッチング速度の比が大きいエッチング方法でアンダークラッド層に到達するまでエッチングし、且つアンダークラッド層の大部分およびオーバークラッド層を残すダイアフラム形成工程と、を有する、ことを特徴とするブラッググレーティング方式の光導波路型センサの製造方法。
JP2002363346A 2002-12-16 2002-12-16 ブラッググレーティング方式の光導波路型センサおよびその製造方法 Withdrawn JP2004198116A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002363346A JP2004198116A (ja) 2002-12-16 2002-12-16 ブラッググレーティング方式の光導波路型センサおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002363346A JP2004198116A (ja) 2002-12-16 2002-12-16 ブラッググレーティング方式の光導波路型センサおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2004198116A true JP2004198116A (ja) 2004-07-15

Family

ID=32761515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002363346A Withdrawn JP2004198116A (ja) 2002-12-16 2002-12-16 ブラッググレーティング方式の光導波路型センサおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2004198116A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078395A (ja) * 2005-09-12 2007-03-29 Denso Corp 光学装置およびその製造方法
CN100529701C (zh) * 2006-12-21 2009-08-19 中国科学院半导体研究所 基于膜片挠度的光纤压强传感器
JP2011099878A (ja) * 2011-02-25 2011-05-19 Denso Corp 光学装置およびその製造方法
JP2011149874A (ja) * 2010-01-22 2011-08-04 Institute Of National Colleges Of Technology Japan 波長検波型ファイバセンサシステム
WO2019179466A1 (en) * 2018-03-21 2019-09-26 Huawei Technologies Co., Ltd. Enabling thermal efficiency on a silicon-on-insulator (soi) platform
CN114965303A (zh) * 2022-07-27 2022-08-30 天津工业大学 一种基于soi的波导布拉格光栅葡萄糖传感器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078395A (ja) * 2005-09-12 2007-03-29 Denso Corp 光学装置およびその製造方法
CN100529701C (zh) * 2006-12-21 2009-08-19 中国科学院半导体研究所 基于膜片挠度的光纤压强传感器
JP2011149874A (ja) * 2010-01-22 2011-08-04 Institute Of National Colleges Of Technology Japan 波長検波型ファイバセンサシステム
JP2011099878A (ja) * 2011-02-25 2011-05-19 Denso Corp 光学装置およびその製造方法
WO2019179466A1 (en) * 2018-03-21 2019-09-26 Huawei Technologies Co., Ltd. Enabling thermal efficiency on a silicon-on-insulator (soi) platform
US10768365B2 (en) 2018-03-21 2020-09-08 Futurewei Technologies, Inc. Enabling thermal efficiency on a silicon-on-insulator (SOI) platform
CN114965303A (zh) * 2022-07-27 2022-08-30 天津工业大学 一种基于soi的波导布拉格光栅葡萄糖传感器
CN114965303B (zh) * 2022-07-27 2022-11-01 天津工业大学 一种基于soi的波导布拉格光栅葡萄糖传感器

Similar Documents

Publication Publication Date Title
US7054011B2 (en) Optical fiber pressure and acceleration sensor fabricated on a fiber endface
US6925213B2 (en) Micromachined fiber optic sensors
JP6796048B2 (ja) Siフォトニクス光回路及びその製造方法
CN109387902B (zh) 一种热补偿光波复用与解复用芯片及其制备方法
CN106289570A (zh) 光纤法珀温度传感器
US7308162B2 (en) Intrinsic Fabry-Perot optical fiber sensors and their multiplexing
JP2004198116A (ja) ブラッググレーティング方式の光導波路型センサおよびその製造方法
Volkov et al. Miniature fiber-optic sensor based on Si microresonator for absolute temperature measurements
KR20170095891A (ko) 스트레스에 동조된 평면 광파회로 및 이를 위한 방법
Vadekar et al. Analysis and design of an integrated silicon ARROW Mach-Zehnder micromechanical interferometer
JP4654901B2 (ja) 光導波路型デバイス、温度計測装置および温度計測方法
Chen et al. Novel Fabry-Perot fiber optic sensor with multiple applications
CN206291985U (zh) 斜抛光纤低压传感器
JP6892963B1 (ja) 光回路素子、モニタリングシステム及びモニタリング方法
JP2003156396A (ja) 絶縁層上シリコン結晶体光学導波マイケルソン干渉式温度センサ
WO2024009457A1 (ja) 光導波路デバイスおよびその製造方法
Pandraud et al. PDL free plasma enhanced chemical vapor deposition SiC optical waveguides and devices
Ceyssens et al. An optical absolute pressure sensor for high-temperature applications, fabricated directly on a fiber
Che et al. A spatially non-overlapping dual-wavelength 2D FBG for the measurement of temperature and strain
Pandraud et al. Polarization-insensitive PECVD SiC waveguides for sensor platform
JP2009052964A (ja) 光ファイバ温度センサおよびそれを用いた温度検知システム
JP2003149479A (ja) 石英系ガラス光導波路及びそれを用いた光モジュール
JPH0843227A (ja) 光導波路型圧力センサ
TW593985B (en) Planar optical waveguide sensing apparatus with grating and its application method
Tilmans et al. MEMS-above CMOS and novel optical MEMS sensor concepts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070625