JP2004190513A - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
JP2004190513A
JP2004190513A JP2002356871A JP2002356871A JP2004190513A JP 2004190513 A JP2004190513 A JP 2004190513A JP 2002356871 A JP2002356871 A JP 2002356871A JP 2002356871 A JP2002356871 A JP 2002356871A JP 2004190513 A JP2004190513 A JP 2004190513A
Authority
JP
Japan
Prior art keywords
oil
internal combustion
combustion engine
injection
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002356871A
Other languages
English (en)
Inventor
Hiroyuki Tominaga
浩之 冨永
Takayoshi Suzuki
崇義 鈴木
Hideki Aoki
秀樹 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2002356871A priority Critical patent/JP2004190513A/ja
Publication of JP2004190513A publication Critical patent/JP2004190513A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lubrication Of Internal Combustion Engines (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】筒内噴射型の内燃機関において、副噴射に起因した潤滑オイルの希釈を防止することができる技術を提供する。
【解決手段】主噴射の前後に副噴射が行われる場合に、ECU300によりオイルヒータ26を作動させて、潤滑オイルの温度を上昇させて、潤滑オイルに混入した燃料や潤滑オイルに混入しようとする燃料のうち気化する燃料成分を増やし、潤滑オイルの希釈化を低減させる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、車両などに搭載される内燃機関に関する。
【0002】
【従来の技術】
一般に、内燃機関の潤滑オイルに水分や燃料成分などの不純物が混入すると、潤滑オイルの希釈や劣化が誘発されることが知られている。
【0003】
これに対し、従来では、内燃機関の運転停止後に潤滑オイルを加熱することにより、潤滑オイルから不純物を蒸発及び分離させる技術が提案されている(例えば、特許文献1参照)。
【0004】
【特許文献1】
実開平1−83115号公報
【特許文献2】
特開平5−231119号公報
【特許文献3】
特開平10−131732号公報
【0005】
【発明が解決しようとする課題】
ところで、近年の筒内噴射型の内燃機関では、燃焼改善や排気浄化性能の向上などを目的として、圧縮上死点近傍で気筒内へ燃料を噴射する主噴射に加え、該主噴射の前後に気筒内へ燃料を噴射する副噴射が行われるようになってきている。
【0006】
主噴射はピストンが上死点近傍に位置するときに行われるため、噴射燃料が気筒の内壁面へ付着し難いが、副噴射はピストンが上死点から比較的離れているときに行われるため、噴射燃料が気筒の内壁面に付着し易く、気筒の内壁面に付着した燃料が潤滑オイル中に混入し易い。
【0007】
これに対し、上記したような従来の技術は、内燃機関の運転停止後に潤滑オイルを加熱して潤滑オイル中から不純物を取り除く技術であるため、前述したような副噴射が頻繁に行われた場合には、内燃機関の運転中に潤滑オイルが過剰に希釈し、油膜切れ等が誘発される虞がある。
【0008】
本発明は、こうした実情に鑑みてなされたものであり、筒内噴射型の内燃機関において、副噴射に起因した潤滑オイルの希釈を防止することができる技術を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明は、主噴射の前後に副次的に燃料が噴射される場合に、潤滑オイルの温度を上昇させることによって、潤滑オイルに混入した燃料や潤滑オイルに混入しようとする燃料のうち気化する燃料成分を増やし、潤滑オイルの希釈化を防止させるものである。
【0010】
すなわち、ピストンが圧縮上死点近傍に位置したときに気筒内に燃料を直接噴射する主噴射に加え、該主噴射に対して時期をずらして副次的に燃料を噴射する副噴射を行う燃料噴射手段と、前記燃料噴射手段により副噴射が行われる場合に、前記内燃機関の潤滑オイルの温度を上昇させる温度上昇手段と、を備えることを要旨とする。
【0011】
ここで、副噴射とは、ピストンが上死点近傍に位置したときに燃料噴射弁により気筒内に燃料を直接噴射する主噴射に対して時期をずらして副次的に燃料を噴射することをいい、例えばパイロット噴射やポスト噴射が挙げられる。副噴射は、主噴射に対して時期をずらして副次的に噴射された燃料によって潤滑オイルの希釈が起こる可能性のあるものを全て含むものとする。
【0012】
そして、燃料噴射手段により副噴射が行われると、潤滑オイルに燃料が混入してしまう可能性がある。このような場合に、温度上昇手段により積極的に潤滑オイルの温度を上昇させることにより、潤滑オイルに混入している燃料を気化させることができるので、潤滑オイルの希釈化を低減させることが可能となる。また、潤滑オイルの温度を上昇させることにより、気筒内を潤滑する潤滑オイルの温度も上昇することとなり、この状態で副噴射が行われれば、噴射された燃料のうち気化する燃料成分を増やすことができ、潤滑オイルに混入する燃料を低減させることが可能となり、潤滑オイルの希釈化を低減させることが可能となる。従って、潤滑オイルの粘性が低下することを抑制することができ、油膜切れの発生を抑制することが可能となる。
【0013】
温度上昇手段が潤滑オイルの温度を上昇させるタイミングは、燃料噴射手段により副噴射が行われる場合であれば特に限定されるものではなく、燃料噴射手段により副噴射が行われるタイミングと同時であってもよく、燃料噴射手段により副噴射が行われた後であってもよい。
【0014】
本発明に係る内燃機関において、温度上昇手段は、潤滑オイルの循環経路に設けられて潤滑オイルを加熱するオイルヒータを備え、燃料噴射手段が副噴射を行う場合に、オイルヒータが潤滑オイルを加熱する構成であってもよい。
【0015】
この場合、燃料噴射手段により副噴射が行われる場合にオイルヒータが作動することにより、潤滑オイルの温度が上昇する。
【0016】
オイルヒータは、潤滑オイルの温度を上昇させるものであればよい。例えば電気によるものであると好ましく、燃焼式ヒータの燃焼ガスと熱交換するものであってもよい。
【0017】
また、本発明に係る内燃機関において、温度上昇手段は、潤滑オイルの循環経路に設けられたオイルクーラをバイパスするバイパス経路と、オイルクーラとバイパス経路の何れか一方を導通させる切換弁と、を備え、燃料噴射手段が副噴射を行う場合に、切換弁がバイパス経路を導通させる構成であってもよい。
【0018】
この場合、燃料噴射手段により副噴射が行われる場合に切換弁が切り換わり、潤滑オイルの循環経路がオイルクーラ側からバイパス経路側へ切り換わるので、オイルクーラによって潤滑オイルが冷却されなくなり、潤滑オイルの温度が上昇することとなる。
【0019】
また、本発明に係る内燃機関において、温度上昇手段は、潤滑オイルの循環経路に設けられたオイルクーラをバイパスするバイパス経路と、バイパス経路に設けられて潤滑オイルを加熱するオイルヒータと、オイルクーラとバイパス経路の何れか一方を導通させる切換弁と、を備え、燃料噴射手段が副噴射を行う場合に、切換弁がバイパス経路を導通させるとともにオイルヒータが潤滑オイルを加熱する構成であってもよい。
【0020】
この場合、燃料噴射手段により副噴射が行われる場合に切換弁が切り換わるとともにオイルヒータが作動することにより、潤滑オイルの循環経路がオイルクーラ側からバイパス経路側へ切り換わり、オイルヒータが潤滑オイルを加熱する。
【0021】
また、本発明に係る内燃機関において、温度上昇手段により潤滑オイルの温度が上昇させられたときに、潤滑オイルから蒸発した燃料成分を内燃機関の吸気通路へ導く誘導手段を更に備えていてもよい。ここで、誘導手段は、内燃機関のクランクケース内から吸気通路へ至るブローバイガス還流通路であると好ましい。
【0022】
これにより、気化された燃料成分は、吸気側に戻されて再燃焼される。さらに、誘導手段によって気化された燃料成分が換気されるので、温度上昇手段による燃料の気化が促進されることとなる。例えば誘導手段として、クランクケース内から吸気通路へ至る通路が設けられていれば、気化された燃料成分がクランクケース内で飽和状態となることはないので、温度上昇手段による燃料の気化が促進されることとなる。
【0023】
【発明の実施の形態】
以下、本発明に係る内燃機関の具体的な実施の形態について図面に基づいて説明する。
【0024】
(実施の形態1)
図1は、本発明の実施の形態1に係る内燃機関の概略構成を示す図である。
【0025】
図1に示す内燃機関1は、4ストローク・サイクルの内燃機関である。この内燃機関1は、気筒100が形成されたシリンダブロック1aと、このシリンダブロック1aの上部に固定されたシリンダヘッド1bとを備えている。
【0026】
シリンダブロック1aの気筒100内には、ピストン2が往復自在に装填されている。シリンダブロック1aの下部にはクランクケース1cが設けられ、このクランクケース1c内には機関出力軸としてのクランクシャフト3が回転自在に支持されている。
【0027】
ピストン2は、コネクティングロッド4を介してクランクシャフト3と連結され、ピストン2の往復運動がクランクシャフト3の回転運動へ変換されるようになっている。
【0028】
ピストン2の上方には、ピストン2の頂面とシリンダヘッド1bの壁面と気筒100の壁面とに囲まれた燃焼室5が形成されている。
【0029】
シリンダヘッド1bには、シリンダヘッド1bの一側の側壁に設けられた開口部から燃焼室5へ至る吸気ポート6aが形成されるとともに、シリンダヘッド1bの他側の側壁に設けられた開口部から燃焼室5へ至る排気ポート6bが形成されている。
【0030】
シリンダヘッド1bには、吸気ポート6aを開閉するための吸気弁7と、排気ポート6bを開閉するための排気弁8とが設けられるとともに、これら吸気弁7及び排気弁8を開閉駆動するインテークカムシャフト70及びエキゾーストカムシャフト80が回転自在に支持されている。
【0031】
また、シリンダヘッド1bの上部には、上記したような動弁機構を覆うシリンダヘッドカバー1eが取り付けられている。
【0032】
また、シリンダヘッド1bの一側の側壁には吸気ポート6aと連通する吸気管9が接続され、シリンダヘッド1bの他側の側壁には排気ポート6bと連通する排気管10が接続されている。
【0033】
吸気管9は、エアクリーナボックス11に接続されている。この吸気管9の途中には、吸気管9内を流れる吸気量を調節するスロットル弁12が設けられている。一方、排気管10は、下流にて図示しない排気浄化触媒を介して消音器へ接続されている。
【0034】
クランクケース1cの下面はオイルパン1dによって覆われており、オイルパン1dには内燃機関1の潤滑オイルとしてのエンジンオイルが貯留されている。
【0035】
また、内燃機関1には、エンジンオイルを循環させるためのオイルポンプ201が設置されており、オイルパン1d内には、オイル循環経路25を介してオイルポンプ201に接続されたオイルストレーナ200が設けられている。そして、オイルポンプ201の下流側には、オイル循環経路23を介してオイルヒータ26が設けられており、オイルパン1dから吸い込まれたエンジンオイルは必ずオイルヒータ26を通るように設けられている。
【0036】
そして、オイルヒータ26は、オイルパン1dからオイルストレーナ200により吸い込まれ不純物を除去されて、オイルポンプ201で昇圧されたエンジンオイルを加熱してエンジンオイルの温度を上昇させるものである。
【0037】
ここで、オイルヒータ26は温度上昇手段を構成するもので、エンジンオイルの温度を上昇させるものであれば特に限定されるものではなく、例えば電気によるものであると好ましく、燃焼式ヒータの燃焼ガスと熱交換するものであってもよい。
【0038】
次に、エンジンオイルの循環経路について説明する。図2は本実施の形態に係る内燃機関のオイル循環経路の構成を示すブロック図である。
【0039】
オイルパン1dに貯留されたエンジンオイルは、オイルストレーナ200から吸い込まれ不純物を除去されて、オイルポンプ201で昇圧されて内燃機関1内を循環し、再びオイルパン1dに戻る。
【0040】
すなわち、内燃機関1のオイル循環経路は、図2に示すように、オイルパン1d→オイルストレーナ200→オイルポンプ201→オイルヒータ26→オイルフィルタ202→シリンダブロック・オイル通路203の順にエンジンオイルが流れ、次いで、シリンダブロック・オイル通路203内のエンジンオイルがクランクジャーナル204、クランクピン205、コネクティングロッド206、ピストン207、シリンダヘッド・オイル通路208、カムシャフトジャーナル209、或いは動弁系210等の各摺動部へ分配されるよう構成される。
【0041】
また、内燃機関1には、圧縮行程時や膨張行程時に燃焼室5内からクランクケース1c内の第1の空間部50へ吹き抜けた未燃ガス成分(ブローバイガス)を前記第1の空間部50から掃気するためのPCV(Positive Crankcase Ventilation)システムが設けられている。
【0042】
PCVシステムは、クランクケース1c内の第1の空間部50からシリンダブロック1a及びシリンダヘッド1bを経由してシリンダヘッドカバー1e内の第2の空間部51へ至るブローバイガス通路60と、前記第2の空間部51からスロットル弁12上流の吸気管9へ至る第1の還流通路61と、前記第2の空間部51からスロットル弁12下流の吸気管9へ至る第2の還流通路62と、第2の還流通路62の途中に設けられ第2の空間部51内の圧力がスロットル弁12下流の吸気管9内の圧力より高くなった時にのみ開弁するPCVバルブ63とを備えている。
【0043】
このように構成されたPCVシステムでは、内燃機関1が低負荷運転状態(スロットル弁12の開度が小さくなる運転状態)にある場合は、燃焼室5から第1の空間部50へ吹き抜けるブローバイガスの量が少なくなり、それに応じて第1の空気間50から第2の空間部51へ導かれるブローバイガス量も少なくなる。このため、第2の空間部51の圧力が比較的低くなるが、スロットル弁12下流の吸気管9内に吸気管負圧が発生するため、第2の空間部51内の圧力がスロットル弁12下流の吸気管9内の圧力より高くなる。
【0044】
この場合、PCVバルブ63が開弁してスロットル弁12下流の吸気管9と第2の空間部51とを導通させることになる。そして、第2の空間部51内のブローバイガスがスロットル弁12下流の吸気管9内へ吸い込まれる。第2の空間部51からスロットル弁12下流の吸気管9内へ吸い込まれたブローバイガスは、スロットル弁12の上流から流れてくる新気とともに内燃機関1へ吸入されて再燃焼される。
【0045】
更に、スロットル弁12下流の吸気管9内で発生した吸気管負圧が第2の空間部51へ印加されることにより第2の空間部51内が負圧になると、第1の空間部50内のブローバイガスが第2の空間部51内へ吸い込まれるとともに、スロットル弁12上流の吸気管9内を流れる新気が第1の還流通路61を介して第2の空間部51へ吸い込まれることになる。
【0046】
この結果、第1の空間部50内のブローバイガスが掃気されると同時に第2の空間部51内のブローバイガスが新気によって換気されることになる。
【0047】
一方、内燃機関1が高負荷運転状態(スロットル弁12の開度が大きくなる運転状態)にある場合は、スロットル弁12下流の吸気管9内が略大気圧となるが、燃焼室5から第1の空間部50へ吹き抜けるブローバイガスの量が多くなり、それに応じて第1の空気間50から第2の空間部51へ導かれるブローバイガス量も多くなるため、第2の空間部51内の圧力はスロットル弁12下流の吸気管9内の圧力より高くなる。
【0048】
この場合、PCVバルブ63が開弁してスロットル弁12下流の吸気管9と第2の空間部51とを導通させることになる。そして、第2の空間部51内のブローバイガスがスロットル弁12下流の吸気管9内へ流入する。第2の空間部51からスロットル弁12下流の吸気管9内へ流入したブローバイガスは、スロットル弁12の上流から流れてくる新気とともに内燃機関1へ吸入されて再燃焼される。
【0049】
更に、スロットル弁12上流の吸気管9内の圧力も略大気圧となるため、第2の空間部51内の圧力がスロットル弁12上流の吸気管9内の圧力よりも高くなる。この場合、第2の空間部51内のブローバイガスが第1の還流通路61を介してスロットル弁12上流の吸気管9内に流入するようになる。第2の空間部51から第1の還流通路61を介して吸気管9内へ流入したブローバイガスは前記吸気管9の上流から流れてくる新気とともに内燃機関1へ吸入されて再燃焼される。
【0050】
この結果、内燃機関1が高負荷運転状態にある場合のようにブローバイガスの発生量が多くなる場合には、第1の空間部50及び第2の空間部51内のブローバイガスが第2の還流通路62に加え第1の還流通路61を介して吸気管9へ還流されることとなり、第1の空間部50内及び第2の空間部51内の多量のブローバイガスを確実に掃気することが可能となる。
【0051】
内燃機関1においては、内燃機関1の運転状態を制御する制御手段である電子制御ユニットECU(Electronic Control Unit)300が併設されている。ECU300は、CPU,ROM,RAM,バックアップRAMなどから構成される論理演算回路である。
【0052】
以下、ECU300の制御について述べる。
【0053】
ECU300は、燃料噴射装置の制御を行っており、運転状況に応じて適宜主噴射の前後に副次的に燃料を噴射させて副噴射を行う。例えば、内燃機関の運転騒音の低減及び排気ガス中のNOxの低減を目的として、燃料噴射サイクル毎に、最初短時間内に少量のパイロット噴射を行い、休止時間を置いた後、相対的に長い時間にわたり多量の主噴射を行う噴射パターンを採用している。また、内燃機関の性能改善のため、主噴射の後、休止時間を置いた後、少量の燃料を噴射するポスト噴射を行う。
【0054】
さらに、このECU300には、上述したオイルヒータ26が電気的に接続されており、ECU300は温度上昇手段としてオイルヒータ26を制御することが可能となっている。
【0055】
そして、本実施の形態の特徴として、ECU300は、主噴射の前後に副噴射が行われる場合に、オイルヒータ26を作動させて、エンジンオイルの温度を上昇させるものである。ここで、ECU300がオイルヒータ26を作動させるタイミングは特に限定されるものではなく、副噴射と同時であっても、副噴射後であってもよい。
【0056】
そして、エンジンオイルの温度が上昇することにより、エンジンオイルに混入している燃料のうち気化する燃料成分が増えることとなり、エンジンオイルの燃料希釈を低減させることが可能となる。
【0057】
また、温度が上昇したエンジンオイルが、気筒100の壁面を潤滑するようになれば、副噴射時に噴射された燃料の気化を促進させることとなる。また、温度が上昇したエンジンオイルによって気筒100内の温度が上昇すれば、さらに燃料の気化が促進される。また、噴射された燃料が気筒100の壁面に付着した場合でも、壁面に付着した燃料のうち気化する燃料成分が増えることとなるので、燃料によりエンジンオイルが希釈されるのを防止することができる。
【0058】
また、気筒100の壁面に付着した燃料がエンジンオイルに混入してオイルパン1dに落ちた場合でも、オイルパン1d内のエンジンオイルの温度が所定温度以上に上昇していれば、エンジンオイルに混入した燃料のうち気化する燃料成分を増やすことができ、燃料によりエンジンオイルが希釈されるのを防止することができる。
【0059】
本実施の形態に係る内燃機関1においては、PCVシステムが設けられているので、気化した燃料は、ブローバイガス通路60を介してシリンダヘッドカバー1e内の第2の空間部51に導かれることとなり、その後、上述したように内燃機関1へ吸引されて再燃焼される。
【0060】
なお、エンジンオイルのオイル循環経路、例えばシリンダブロック・オイル通路203やシリンダヘッド・オイル通路208と、上述したブローバイガス通路60やシリンダヘッドカバー1e内の第2の空間部51と、を連通させる連通路が設けられていてもよい。これにより、オイルパン1dから吸引されたエンジンオイルがオイル循環経路を循環する過程で気化した燃料をシリンダヘッドカバー1e内の第2の空間部51に導くことができる。
【0061】
ここで、エンジンオイルのみの場合、エンジンオイルに燃料が混入した場合、燃料が混入したエンジンオイルで走行(5000km)した場合において、それぞれ成分分析を行った試験結果を図3に示す。
【0062】
図3において、横軸はエンジンオイルにおける炭化水素の炭素数の大きさを表すもので、縦軸は成分量を表している。そして図3において、Aはエンジンオイルのみ、Bは燃料が混入したエンジンオイル、Cは燃料が混入したエンジンオイルで走行(5000km)後のものを示している。
【0063】
図3からわかるように、エンジンオイルに燃料が混入した場合、エンジンオイルには含まれていない炭素数の小さい(軽い)成分(C〜C15 ,但し、1分子中の炭素数がn個である炭化水素をCnで表すものとする)が多く存在する(図3に示すB)。そして、走行することによって燃料成分は蒸発していき、炭素数の小さい(軽い)成分はほとんど蒸発し、炭素数の大きい(重い)成分(C16〜)は多少残留することとなる。
【0064】
副噴射が行われた場合には、エンジンオイルに燃料が混入して図3に示すBのような状態になると推定される。このような場合に、エンジンオイルの温度を積極的に上昇させて、エンジンオイルに混入している燃料を気化させることにより、図3のCに示す走行後のような状態に、より早くすることができる。
【0065】
従来のような、エンジンオイルの温度を積極的に上昇させない場合においては、エンジンオイルに混入している燃料成分のうち炭素数の大きい(重い)成分(C16〜)は気化せず残存し、また、炭素数の小さい(軽い)成分(C〜C15 )であってもエンジンオイルの温度が上昇して燃料成分が気化するような機関の運転条件となるまではエンジンオイルに残存する可能性がある。
【0066】
本実施の形態によれば、温度上昇手段によってエンジンオイルの温度を上昇させることにより、エンジンオイルに混入した燃料を気化させることができるので、特に副噴射が行われる場合に、ボアフラッシングを防止することができ、噴射された燃料がエンジンオイルに混入することによりエンジンオイルが希釈されてしまうことを低減させることができる。
【0067】
特に本実施の形態においては、オイルヒータを用いることにより、確実かつ迅速にエンジンオイルの温度を上昇させることができるので、噴射された燃料がエンジンオイルに混入することによりエンジンオイルが希釈されてしまうことを確実に低減させることができる。
【0068】
また、温度上昇手段によってエンジンオイルの温度を上昇させることにより、気筒100の壁面を潤滑するエンジンオイルの温度が上昇した場合や、気筒100内の温度が上昇した場合には、噴射された燃料の気化を促進させることができるので、すなわち、噴射された燃料がエンジンオイルに混入することを低減させることとなり、燃料によりエンジンオイルが希釈されてしまう期間を短くすることにもなる。
【0069】
従って、潤滑オイルの粘性が低下することを抑制することができ、油膜切れの発生を抑制することが可能となる。
【0070】
(実施の形態2)
図4は、本発明の実施の形態2に係る内燃機関の概略構成を示す図である。本実施の形態においては、オイルクーラが設けられた内燃機関について説明するものである。
【0071】
オイルクーラは、内燃機関にとって安定した潤滑オイル温度を保つために、内燃機関からの熱負荷を受けて高温となったエンジンオイルを冷却するものである。このオイルクーラは、冷却方式によって空冷式と水冷式とに大別される。冷却媒体としてエンジン冷却水を利用した水冷式では、エンジン冷却水とオイルとの間で熱交換を行うオイルクーラと、エンジンオイル中の異物を除去するオイルフィルタとを、一体に組付けたものも知られている。
【0072】
実施の形態1に係る内燃機関1では、エンジンオイルの温度を上昇させる温度上昇手段をオイルヒータ26とECU300とにより構成していたが、本実施の形態に係る内燃機関1Aでは、このオイルクーラをバイパスさせることによってオイルヒータを設けることなくエンジンオイルの温度を上昇させるものである。
【0073】
すなわち、エンジンオイルの温度を上昇させる温度上昇手段を、オイルクーラ20をバイパスさせるバイパス経路21と、エンジンオイルの循環経路をオイルクーラ20側かバイパス経路21側かに切り換える三方切換弁22と、ECU300とにより構成するものである。その他の構成及び作用については実施の形態1と同様であり、同様の構成については同一の符号を付して説明は省略する。
【0074】
本実施の形態に係る内燃機関1Aにおいては、図に示すように、オイルポンプ201の下流側にオイルクーラ20が設けられている。
【0075】
そして、内燃機関1Aのオイル循環経路において、オイルクーラ20をバイパスするバイパス経路21が設けられている。
【0076】
バイパス経路21は、オイルポンプ201の下流側であってオイルクーラ20の上流側に設けられた三方切換弁22に接続されており、また、オイルクーラ20の下流側のオイル循環経路に合流するように設けられている。ここで、バイパス経路21と、三方切換弁22とは、潤滑オイルの温度を上昇させる温度上昇手段を構成している。
【0077】
三方切換弁22には、バイパス経路21と、オイルポンプ201の下流側に接続されているオイル循環経路23と、オイルクーラ20の上流側に接続されているオイル循環経路24と、が接続されている。そして、三方切換弁22が、バイパス経路21とオイル循環経路24との何れか一方を遮断することにより、バイパス経路21とオイル循環経路24との何れか一方をオイル循環経路23と導通させることが可能となっている。
【0078】
次に、エンジンオイルの循環経路について説明する。図5は本実施の形態に係る内燃機関1Aのオイル循環経路の構成を示すブロック図である。
【0079】
オイルパン1dに貯留されたエンジンオイルは、オイルストレーナ200から吸い込まれ不純物を除去されて、オイルポンプ201で昇圧されて内燃機関1A内を循環し、再びオイルパン1dに戻る。
【0080】
すなわち、内燃機関1Aのオイル循環経路は、オイル循環経路23とオイル循環経路24とが導通されている場合、図5において、オイルパン1d→オイルストレーナ200→オイルポンプ201→オイルクーラ20→オイルフィルタ202→シリンダブロック・オイル通路203の順にエンジンオイルが流れ、次いで、シリンダブロック・オイル通路203内のエンジンオイルがクランクジャーナル204、クランクピン205、コネクティングロッド206、ピストン207、シリンダヘッド・オイル通路208、カムシャフトジャーナル209、或いは動弁系210等の各摺動部へ分配されるよう構成される。
【0081】
ここで、三方切換弁22が切り換えられて、オイル循環経路24が遮断されると、オイル循環経路23とバイパス経路21とが導通する。この場合のエンジンオイルのオイルパン1dからシリンダブロック・オイル通路203までのオイルの流れは、図5において、オイルパン1d→オイルストレーナ200→オイルポンプ201→バイパス経路21→オイルフィルタ202→シリンダブロック・オイル通路203の順となる。
【0082】
次に、本実施の形態の制御について説明する。ECU300には、上述した三方切換弁22が電気的に接続されており、ECU300は三方切換弁22を制御することが可能となっている。
【0083】
そして、本実施の形態の特徴として、ECU300は、主噴射の前後に副噴射が行われる場合に、三方切換弁22を切り換えて、バイパス経路21とオイル循環経路23と導通させることにより、オイルクーラ20をバイパスさせるものである。
【0084】
すなわち、副噴射が行われる場合、オイルパン1dから吸引されたエンジンオイルは、三方切換弁22が切り換えられることによってオイルクーラ20に導かれずにバイパス経路21に導かれることとなり、これによりオイルクーラ20によって冷却されることはなくなり、温度が上昇することとなる。
【0085】
そして、エンジンオイルの温度が上昇することにより、エンジンオイルに混入している燃料のうち気化する燃料成分が増えることとなり、エンジンオイルの燃料希釈を低減させることが可能となる。
【0086】
以上のように、エンジンオイルを冷却する機能(オイルクーラ)を有する内燃機関においては、実施の形態1で説明したようなオイルヒータを備えることなく、オイルクーラをバイパスすることによってエンジンオイルの温度を上昇させることができるので、エンジンオイルに混入した燃料を気化させることが可能となる。従って、実施の形態1と同様に、潤滑オイルの粘性が低下することを抑制することができ、油膜切れの発生を抑制することが可能となる。
【0087】
(実施の形態3)
実施の形態2では、エンジンオイルの温度を上昇させるために、オイルクーラをバイパスさせる構成について説明したが、内燃機関の負荷が低く若しくは外気温度が低い等の理由により、オイルクーラをバイパスさせてもエンジンオイルの温度が上昇し難い場合が考えられる。実施の形態3では、このような場合を想定し、オイルクーラのバイパス経路にオイルヒータを設けることにより、エンジンオイルの温度を強制的に上昇させるものである。
【0088】
図6は、本発明の実施の形態3に係る内燃機関の概略構成を示す図である。
【0089】
本実施の形態に係る内燃機関1Bは、実施の形態2で説明したようなオイルクーラ20とバイパス経路21と三方切換弁22とを備えており、バイパス経路21に実施の形態1で説明したようなオイルヒータ26を備えるものである。すなわち、エンジンオイルの温度を上昇させる温度上昇手段を三方切換弁22とバイパス経路21とオイルヒータ26とECU300とにより構成するものである。その他の構成及び作用については実施の形態1,2と同様であり、同様の構成については同一の符号を付して説明は省略する。
【0090】
本実施の形態に係る内燃機関1Bのエンジンオイル循環経路は、実施の形態2で説明した図5において、オイルクーラ20をバイパスするバイバス経路21にオイルヒータ26が設けられたものとなる。
【0091】
オイルパン1dからシリンダブロック・オイル通路203までの内燃機関1Bのオイル循環経路を示すと、オイル循環経路23とオイル循環経路24とが導通されている場合は実施の形態2と同様、オイルパン1d→オイルストレーナ200→オイルポンプ201→オイルクーラ20→オイルフィルタ202→シリンダブロック・オイル通路203の順となる。そして、三方切換弁22が切り換えられてオイル循環経路24が遮断され、オイル循環経路23とバイパス経路21とが導通した場合には、オイルパン1d→オイルストレーナ200→オイルポンプ201→バイパス経路21→オイルヒータ26→オイルフィルタ202→シリンダブロック・オイル通路203の順となる。
【0092】
そして、本実施の形態においては、ECU300は、主噴射の前後に副噴射が行われる場合に、三方切換弁22を切り換えて、バイパス経路21とオイル循環経路23と導通させることにより、オイルクーラ20をバイパスさせ、かつ、オイルヒータ26を作動させることにより、エンジンオイルの温度を上昇させるものである。
【0093】
本実施の形態によれば、エンジンオイルを冷却する機能(オイルクーラ)を有する内燃機関においても、オイルクーラをバイパスさせ、かつオイルクーラをバイパスさせたバイパス経路にオイルヒータを設けることにより、内燃機関の負荷や外気温度などに左右されることなく確実かつ迅速にエンジンオイルの温度を上昇させることができ、噴射された燃料がエンジンオイルに混入することによりエンジンオイルが希釈されてしまうことを確実に低減させることができる。
【0094】
【発明の効果】
以上説明したように、本発明によれば、副噴射に起因した潤滑オイルの希釈を効果的に低減させることができ、潤滑オイルの粘性の低下、そして油膜切れの発生を抑制することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る内燃機関の概略構成を模式的に示す略図。
【図2】本発明の実施の形態1に係る内燃機関のオイル循環経路の構成を示すブロック図。
【図3】エンジンオイルのみの場合、エンジンオイルに燃料が混入した場合、燃料が混入したエンジンオイルで走行した場合において、それぞれ成分分析を行った試験結果を説明するための図。
【図4】本発明の実施の形態2に係る内燃機関の概略構成を模式的に示す略図。
【図5】本発明の実施の形態2に係る内燃機関のオイル循環経路の構成を示すブロック図。
【図6】本発明の実施の形態3に係る内燃機関の概略構成を模式的に示す略図。
【符号の説明】
1,1A,1B 内燃機関
1a シリンダブロック
1b シリンダヘッド
1c クランクケース
1d オイルパン
1e シリンダヘッドカバー
2 ピストン
3 クランクシャフト
4 コネクティングロッド
5 燃焼室
6a 吸気ポート
6b 排気ポート
7 吸気弁
8 排気弁
9 吸気管
10 排気管
11 エアクリーナボックス
12 スロットル弁
20 オイルクーラ
21 バイパス経路
22 三方切換弁
23 オイル循環経路
24 オイル循環経路
25 オイル循環経路
26 オイルヒータ
50 第1の空間部
51 第2の空間部
60 ブローバイガス通路
61 第1の還流通路
62 第2の還流通路
63 PCVバルブ
70 インテークカムシャフト
80 エキゾーストカムシャフト
100 気筒
200 オイルストレーナ
201 オイルポンプ
300 ECU

Claims (6)

  1. ピストンが圧縮上死点近傍に位置したときに気筒内に燃料を直接噴射する主噴射に加え、該主噴射に対して時期をずらして副次的に燃料を噴射する副噴射を行う燃料噴射手段と、
    前記燃料噴射手段により副噴射が行われる場合に、内燃機関の潤滑オイルの温度を上昇させる温度上昇手段と、
    を備えることを特徴とする内燃機関。
  2. 前記温度上昇手段は、前記潤滑オイルの循環経路に設けられて前記潤滑オイルを加熱するオイルヒータを備え、
    前記燃料噴射手段が副噴射を行う場合に、前記オイルヒータが前記潤滑オイルを加熱することを特徴とする請求項1に記載の内燃機関。
  3. 前記温度上昇手段は、前記潤滑オイルの循環経路に設けられたオイルクーラをバイパスするバイパス経路と、前記オイルクーラと前記バイパス経路との何れか一方を導通させる切換弁と、を備え、
    前記燃料噴射手段が副噴射を行う場合に、前記切換弁が前記バイパス経路を導通させることを特徴とする請求項1に記載の内燃機関。
  4. 前記温度上昇手段は、前記潤滑オイルの循環経路に設けられたオイルクーラをバイパスするバイパス経路と、該バイパス経路に設けられて潤滑オイルを加熱するオイルヒータと、前記オイルクーラと前記バイパス経路の何れか一方を導通させる切換弁と、を備え、
    前記燃料噴射手段が副噴射を行う場合に、前記切換弁が前記バイパス経路を導通させるとともに前記オイルヒータが前記潤滑オイルを加熱することを特徴とする請求項1に記載の内燃機関。
  5. 前記温度上昇手段により前記潤滑オイルの温度が上昇させられたときに、前記潤滑オイルから蒸発した燃料成分を前記内燃機関の吸気通路へ導く誘導手段を更に備えることを特徴とする請求項1乃至4のいずれか1項に記載の内燃機関。
  6. 前記誘導手段は、前記内燃機関のクランクケース内から前記吸気通路へ至るブローバイガス還流通路であることを特徴とする請求項5に記載の内燃機関。
JP2002356871A 2002-12-09 2002-12-09 内燃機関 Pending JP2004190513A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356871A JP2004190513A (ja) 2002-12-09 2002-12-09 内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356871A JP2004190513A (ja) 2002-12-09 2002-12-09 内燃機関

Publications (1)

Publication Number Publication Date
JP2004190513A true JP2004190513A (ja) 2004-07-08

Family

ID=32757084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356871A Pending JP2004190513A (ja) 2002-12-09 2002-12-09 内燃機関

Country Status (1)

Country Link
JP (1) JP2004190513A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2444265A (en) * 2006-11-29 2008-06-04 Ford Global Tech Llc Reducing the contamination of engine lubricating oil by fuel
JP2009257136A (ja) * 2008-04-14 2009-11-05 Toyota Boshoku Corp 内燃機関の油中希釈燃料処理装置
JP2009257137A (ja) * 2008-04-14 2009-11-05 Toyota Boshoku Corp 内燃機関の油中希釈燃料分離装置
JP2010084533A (ja) * 2008-09-29 2010-04-15 Toyota Boshoku Corp 分離器
JP2010084534A (ja) * 2008-09-29 2010-04-15 Toyota Boshoku Corp 内燃機関の油中希釈燃料分離装置
JP2010106776A (ja) * 2008-10-30 2010-05-13 Toyota Boshoku Corp 油中希釈燃料分離装置
WO2010089890A1 (ja) 2009-02-09 2010-08-12 トヨタ自動車株式会社 オイル希釈抑制装置及び方法
US9512751B2 (en) 2014-09-22 2016-12-06 Hyundai Motor Company Device and method for reducing fuel dilution of diesel engine
WO2019082387A1 (ja) * 2017-10-27 2019-05-02 三菱重工エンジン&ターボチャージャ株式会社 エンジンオイル状態制御装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2444265B (en) * 2006-11-29 2012-09-12 Ford Global Tech Llc A method and apparatus for reducing oil contamination
GB2444265A (en) * 2006-11-29 2008-06-04 Ford Global Tech Llc Reducing the contamination of engine lubricating oil by fuel
JP2009257136A (ja) * 2008-04-14 2009-11-05 Toyota Boshoku Corp 内燃機関の油中希釈燃料処理装置
JP2009257137A (ja) * 2008-04-14 2009-11-05 Toyota Boshoku Corp 内燃機関の油中希釈燃料分離装置
US8322322B2 (en) 2008-04-14 2012-12-04 Toyota Boshoku Kabushiki Kaisha Diluting fuel-in-oil treating apparatus of internal combustion engine
US8312847B2 (en) 2008-04-14 2012-11-20 Toyota Boshoku Kabushiki Kaisha Diluting fuel-in-oil treating apparatus of internal combustion engine
JP2010084533A (ja) * 2008-09-29 2010-04-15 Toyota Boshoku Corp 分離器
JP2010084534A (ja) * 2008-09-29 2010-04-15 Toyota Boshoku Corp 内燃機関の油中希釈燃料分離装置
JP2010106776A (ja) * 2008-10-30 2010-05-13 Toyota Boshoku Corp 油中希釈燃料分離装置
WO2010089890A1 (ja) 2009-02-09 2010-08-12 トヨタ自動車株式会社 オイル希釈抑制装置及び方法
US9512751B2 (en) 2014-09-22 2016-12-06 Hyundai Motor Company Device and method for reducing fuel dilution of diesel engine
WO2019082387A1 (ja) * 2017-10-27 2019-05-02 三菱重工エンジン&ターボチャージャ株式会社 エンジンオイル状態制御装置
US11530631B2 (en) 2017-10-27 2022-12-20 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Engine oil state control device

Similar Documents

Publication Publication Date Title
US4392463A (en) Diesel engine having a dual lubrication system
JP2016000963A (ja) 過給エンジンのオイル冷却システム
EP1179676A1 (en) In-cylinder injection engine
US8474417B2 (en) Lubricating system for air-cooled general-purpose engine
RU2583475C1 (ru) Устройство управления и способ управления для двигателя внутреннего сгорания с нагнетателем
KR101673328B1 (ko) 통합된 최단 경로 균등 분배 배기가스 재순환 시스템
JP2012137016A (ja) エンジンのオイル循環装置
JP2010071194A (ja) オイル供給制御装置
JP4033046B2 (ja) V型エンジン
Shibata et al. New 1.0 L I3 turbocharged gasoline direct injection engine
JP2004190513A (ja) 内燃機関
JPH07166835A (ja) 内燃機関のpcv装置
US9103271B2 (en) Exhaust leakage management
JP2005299592A (ja) 内燃機関の潤滑装置
CN109441656B (zh) 一种多回路冷却的气缸盖
JPH033048B2 (ja)
JP7421033B2 (ja) ブローバイガス処理装置およびブローバイガス処理装置を備えるエンジン
JP2009079552A (ja) 内燃機関
JP2019138155A (ja) 電動過給エンジンの吸気構造
JP5077071B2 (ja) 内燃機関の排気還流装置
JP2006046244A (ja) ブローバイガス還流装置
JP2017172565A (ja) エンジン暖機装置
JP2009030447A (ja) 内燃機関
JP2001082156A (ja) 4サイクル内燃エンジン
JP2022034371A (ja) ブローバイガス処理装置およびブローバイガス処理装置を備えるエンジン