JP2004189501A - グラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法及び製造装置 - Google Patents

グラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法及び製造装置 Download PDF

Info

Publication number
JP2004189501A
JP2004189501A JP2002355540A JP2002355540A JP2004189501A JP 2004189501 A JP2004189501 A JP 2004189501A JP 2002355540 A JP2002355540 A JP 2002355540A JP 2002355540 A JP2002355540 A JP 2002355540A JP 2004189501 A JP2004189501 A JP 2004189501A
Authority
JP
Japan
Prior art keywords
anode electrode
carbon
electrode
cathode electrode
graphene sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002355540A
Other languages
English (en)
Other versions
JP3885719B2 (ja
Inventor
Hitoshi Serizawa
仁 芹澤
Yasuhiko Nishi
泰彦 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2002355540A priority Critical patent/JP3885719B2/ja
Publication of JP2004189501A publication Critical patent/JP2004189501A/ja
Application granted granted Critical
Publication of JP3885719B2 publication Critical patent/JP3885719B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】先端部のグラフェンシート筒の一部又は全部が破れているカーボンナノチューブを効率よく製造する製造方法及びその装置を提供する。
【解決手段】中空陽極電極11と、中空陽極電極11に対向するカーボン基板からなる陰極電極2との間でアーク放電させる工程と、アーク放電済み又はアーク放電中の位置を大気雰囲気又は酸化雰囲気にさらす工程とを有する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、カーボンナノチューブの製造方法及びその装置に関し、特に電界放出電子源材料等に有効である、グラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造に関する。
【0002】
【従来の技術】
カーボンナノチューブ(CNT)とは、黒鉛を基本構造とした炭素元素からなるナノメータサイズの極微細円筒構造(ナノチューブ)であり、グラフェンシートを継ぎ目なく円筒形状に丸めたものである。グラフェンシートの筒が1重で構成されているものが単層カーボンナノチューブ(SWCNT)であり、グラフェンシートの筒が同心円筒状に積層されたものは多層カーボンナノチューブ(MWCNT)である。SWCNTの直径は0.7nmから通常1〜3nm程度であり、MWCNTは2層から30層程度で、同心円筒状に積層された直径は4〜50nm程度である。また、これらCNTの先端部では、フラーレンと同様に5員環が6個含まれることにより閉じられた構造となっている(図4参照)。
【0003】
CNTの製造方法としては、アーク放電法、CVD法、レーザ法等が知られており、CNTの機械的特性、電気伝導性、熱伝導特性等においてナノスケールによる新たな特性が示されているが、そのなかで、極微細円筒形状で大きなアスペクト比を有することより電界放出電子源としても良好な電子放出材料として知られている(例えば特許文献1)。
【0004】
例えば特許文献1においては、アーク放電法を用いて密閉容器内を減圧し、H2ガス雰囲気により電極を相対的に移動することにより、先端部の破れたグラフェンシートが筒中央部まで密に積層したグラファイト質ナノ繊維を合成し、その後、密閉容器を大気圧に開放し熱処理を行い純度を向上させることにより、従来の先端部が破れていないCNTよりも、電子放出のしきい値電圧が低く、高い電流密度を得ることのできる電解放出電子源材料の合成を実施している。
【0005】
【特許文献1】
特開2000−327317号公報
【0006】
【発明が解決しようとする課題】
従来技術(特許文献1)においては、上述のように、先端部のグラフェンシートが筒中央部まで密に積層したカーボンナノチューブを得るためには、密閉容器を製作し、減圧制御及びH2ガスの雰囲気の制御をすることが必要であったため、装置も大型化し設備費用がかさむこととなってしまっている。更に、CNT純度を向上させるために大気圧下にして熱処理工程を行うという、複数の工程を必要とするものであるため、このようなカーボンナノチューブを効率よく製造することできなかった。
【0007】
本発明は、このような背景のもとでなされたものであり、グラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブを効率よく製造する製造方法及びその装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明に係るグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法は、陽極電極と、該陽極電極に対向する炭素基板からなる陰極電極との間でアーク放電させる工程と、アーク放電済み又はアーク放電中の位置を大気雰囲気又は酸化雰囲気にさらす工程とを有する。
【0009】
また、本発明に係るグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法は、大気雰囲気又は酸化雰囲気の下で、陽極電極と、該陽極電極に対向する炭素基板からなる陰極電極との間でアーク放電させる。
【0010】
また、本発明に係るグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法は、前記陽極電極と前記陰極電極とを相対的に移動させつつ、両電極間でアーク放電させる。
【0011】
また、本発明に係るグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法は、陽極電極から陰極電極に向けて不活性ガスのガス流を発生させる。
【0012】
また、本発明に係るグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法において、陽極電極は、筒状に構成され、当該筒の中空部に不活性ガスを陰極電極に向けて流す。
【0013】
また、本発明に係るグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法において、前記カーボンナノチューブは、▲1▼複数のグラフェーンシート筒からなり、筒中心部が中空であるカーボンナノチューブ、▲2▼複数のグラフェンシート筒が同心状に筒中心部まで密に積層しているもの、及び、▲3▼筒長さ方向において一部が前記カーボンナノチューブで構成され一部が前記密に積層しているものの内の何れかである。
【0014】
また、本発明に係るグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造装置は、陽極電極と、該陽極電極に対向して配置され、炭素基板からなる陰極電極と、前記陽極電極から前記陰極電極に向けて不活性ガスのガス流れを発生させる手段と、陽極電極と陰極電極との間に電圧を印加してアーク放電させる電源とを備え、前記アーク放電を大気雰囲気又は酸化雰囲気の下で行わせるものである。
【0015】
また、本発明に係るグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造装置は、陽極電極と、該陽極電極に対向して配置された円柱状の炭素陰極電極と、陽極電極から炭素陰極電極に向けて不活性ガスのガス流を発生させる手段と、前記陽極電極と前記陰極電極との間に電圧を印加してアーク放電させる電源と、前記炭素陰極電極を回転させながら、前記陽極電極を前記炭素陰極電極の軸方向に移動させる駆動手段とを備えたものである。
【0016】
【発明の実施の形態】
実施形態1.
本発明の実施形態1においては、先ず、カーボンナノチューブの製造方法の基本原理を説明し(図1、図2)、続いて、グラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造原理について説明する(図3)。
【0017】
図1は本発明の実施形態1に係るカーボンナノチューブの製造方法の基本原理を示した説明図である。本実施形態においては、炭素材料からなる陽極電極として、軸心部に孔11aを有する中空の中空陽極電極11を用い、陰極電極2として平板状の炭素材料を用いている。開放空間(大気圧下・大気雰囲気中)において、中空陽極電極11内部の孔11aからアーク3(又は陰極電極2)に向けて例えば少量のアルゴンガスを送給すると、アーク3がガス流経路に沿って発生し、その陰極点も常にガス噴出口に対向する位置に発生するアーク形態となる。これは、アーク放電による高温下で、アルゴンガスの電離度が上がり、導電性が周辺部に比し大きくなったためにアルゴンガス流経路に沿ってアークが発生するためであると考えられる。
【0018】
また、中空陽極電極11の孔11aの内周面は不活性ガスと接しているため、陽極点が安定して形成しやすくなるためであると考えられる。また、アルゴン等の不活性ガスは、電子との衝突による電離能率が高く、アークを発生しやすい空間を提供する。したがって、中空陽極電極11の孔11aから例えば板状の炭素材料からなる陰極電極2に向けてアルゴンガスの送給を開始してからアーク3を発生させるようにすれば、アーク発生初期からアーク発生経路を拘束することができ、陰極電極2上のアークの陰極点の不規則な移動を防止することができる。その結果、アーク発生初期から固定された陰極点の発生位置(アークの中心部)で、カーボンナノチューブを優先的に合成することができ、この固定された陰極点の発生位置(アークの中心部)で高純度の多層カーボンナノチューブの合成物を製造することができる。
【0019】
この中空陽極電極11による静止アーク放電で得られた陰極堆積物を走査型電子顕微鏡(SEM)により観察すると、その中心部である陰極点位置では、長時間アークにおいても高純度のカーボンナノチューブが合成されていることが判明している。中空陽極電極11による静止アーク放電では、陰極電極2から発生した炭素蒸気はアーク柱と重なる位置に噴出しているものと考えられ、アーク中での炭素原子の濃度を上昇させることによって、カーボンナノチューブの合成効率をも向上させているものと推察される。なお、中空陽極電極11は炭素材料に限らず、水冷銅電極などの非消耗電極を用いても良い。
【0020】
また、陽極電極から陰極電極に向けて流す不活性ガス又は不活性ガスを含む混合ガスは、必ずしも中空陽極電極11の孔11aから流す必要はなく、例えば図2に示されるように棒状の陽極電極111を用い、棒状の陽極電極111に沿わせて別途配置したガスノズル112より、陽極側面に沿うように陰極電極2に向けてガスを流しても良い。このようにしても、ガス流が十分に層流であれば、ガス流に沿ってアークが発生し、陰極点が固定化される。このことは後述する他の実施形態でも同様である。
【0021】
なお、中空陽極電極11内部の孔11aから送給するガスは、純アルゴン又は5%程度の水素ガスやヘリウムガスを混入したアルゴンガスを用いてもアーク形態に大きな変化は見られない。特に、アルゴンに水素ガスを数%〜数十%混ぜると、アークの安定性を損なうことなく、カーボンナノチューブの収量を増加することができる。これは、水素ガスに陽極電極上で昇華した炭素がクラスタとして成長するのを防止する効果があり、陰極電極上でカーボンナノチューブが合成されやすい条件となるためであると考えられる。適正ガス流量は、中空陽極電極11の孔11aの断面積に影響され、孔11aの断面積1mm当り10〜400ml/分である。
【0022】
中空陽極電極11の孔11aから供給する純アルゴン又は5%程度の水素ガスやヘリウムガスを混入したアルゴンガスの流量が孔11aの断面積1mm当り10ml/分よりも少なすぎると、プラズマガスとして十分に機能せず、また流量が孔11aの断面積1mm当り400ml/分よりも多すぎると、電極周辺部までプラズマガスの濃度が増加し、中央部だけでなく、周辺部でもアーク放電が起こりやすい条件となり、アークを集中させることができなくなる。
【0023】
本実施形態においては、中空陽極電極11の孔11aから供給するガス流量を、中空陽極電極11の孔11aの断面積1mm当り10〜400ml/分とすることにより、プラズマガスとして機能させつつ、中空陽極電極11の中央部のみが周辺部に比べアーク放電しやすい条件をつくり出すことができる。その結果、陰極点を集中させることができて、純度の高いカーボンナノチューブを収率良く生成することができることを確認している。
【0024】
また、本実施形態においては、上述のように、カーボンナノチューブを収率良く生成することができるが、更に、アーク放電法を用いて種々の検討を行った結果、中空陽極電極11と陰極電極(例えば炭素基板)2を用いて、これらの電極を大気雰囲気下でアーク放電を行わせると、グラファイト筒の先端部の一部又は全部が閉じていないカーボンナノチューブを効率よく製造できる、という知見が得られた。そのメカニズムは以下のようになっているものと考えられる。
【0025】
図3はグラファイト筒の先端部が一部又は全部が閉じていないカーボンナノチューブの製造原理の説明図である。なお、図3においては、51は炭素物質、52はCNT合成領域(成長+崩壊)、53は大気圧雰囲気による酸化冷却領域である。CNTの生成機構自体が未だ不明な点が多く断定はできないが、或る温度範囲のCNT合成領域(反応領域)52において、CNTの成長は生成と崩壊を繰返していると考えられるため、CNTが高純度にて生成されるためには、CNTの成長速度が崩壊速度(クラスタ放出速度)を上回ればよいこととであり、この成長と崩壊の速度比率は電流などにより決定することができ、グラフェンシートが筒の中央部を中空とするCNTとして合成する場合と、グラフェンシートが筒の中央部まで密に積層したCNTとして合成する場合に作り分けができることとなる。また、中空陽極電極を使用する場合には、前記にも示しているが陰極点がふらつかないために、或る温度範囲(ここで言い換えれば、アークが当たっている陰極電極の部分)において、CNT合成の元となる炭素蒸気物質51の濃度が上がることとなり、グラフェンシートが筒の中央部まで密に積層したCNTが多量に合成されることにもなる。
【0026】
そして、CNTの合成は、或る温度範囲のCNT合成領域(反応領域)52にておいて成長と崩壊を繰り返しているが、成長速度が崩壊速度を上回りCNTの合成が進んでいくと、陽極電極1が移動しない静止状態においては、今までアーク3が直接的に当たっていた陰極電極2の領域からアーク3が直接当たらない領域に変化する。また、陽極電極1を積極的に相対的に移動させる場合においても同様に今までアーク3が当たっていた陰極電極2の領域がアークが当たらない領域に変化する。このようにアーク3が当たらない領域に変化することにより、放電直後に大気圧雰囲気下とするか又は酸化雰囲気下とすると、CNT30の先端部では、高温大気圧下の状態から急激な温度変化により酸化・冷却がなされ(この領域が大気圧雰囲気による酸化冷却領域53である。)、複数のグランフェンシートからなる各々のカーボンナノチューブ30の先端部が酸化・冷却されることにより破れることとなる。
【0027】
図4(a)(b)は通常のカーボンナノチューブの先端部の形状を示した図であり、6個の五員環が導入されることにより閉じたCNTの先端構造のモデルである。本実施形態においては、上述のように、このような先端部が破れて細く尖ったものになる(図5参照)。
【0028】
図5(a)(b)はカーボンナノチューブの先端部の破れについての説明図である。同図(a)はグラフェンシートの平面を示しており、同図(b)はその1枚のグラフェンシート28を丸めてグラフェンシート筒29にした状態を示している。本実施形態においては、このようにグラフェンシート28のエッジ面が出ている状態をもって先端部が破れているとする(図示の例は先端部の全部が閉じていない、開放されている例)。この先端部の破れ(グラファイト筒の先端部の一部又は全部が閉じていない)についても次のような態様がある(図6参照)。
【0029】
図6(a)〜(e)は、グラファイト筒の先端部の一部又は全部が閉じていないカーボンナノチューブの形状及び破断部の説明図である。同図(a)は中空(通常)のCNTの断面形状、同図(b)は中心部まで密に積層したCNTの断面形状、同図(c)は先端部が中空で筒長さ方向で密に積層したCNTの断面形状である。これらのカーボンナノチューブは何れも先端部の一部又は全部が閉じておらず、開放されている。同図(d)(e)は破断部を示しており、(a)〜(c)の異なった先端形状が発生する根拠を示している。アーク放電にて合成されたCNTは、同図(d)(e)に示されるように、先端部が閉じたものとなる場合が多いが、大気雰囲気の酸化燃焼工程において先端部が破れ、その破れる位置が▲1▼,▲2▼の場合には同図(a),(b)のCNTが得られ、▲3▼の場合には同図(c)のCNTが得られることになる。本実施形態においては、同図(b)の断面形状のCNTが効率良く製造できるので、電子放出特性に優れたCNTの製造が可能になっている。
【0030】
実施形態2.
図7は本発明の実施形態2に係るカーボナノチューブを含むテープ状物質の製造方法の説明図である。中空陽極電極11を移動させながらアーク放電を行った場合には、図7に示されるようにアーク3の中心部(陰極点)3aが通過した陰極電極2上にテープ状の物質が生成され、これらが自然剥離する現象が認められる。このテープ状物質を走査型電子顕微鏡(SEM)および透過型電子顕微鏡(TEM)により観察したところ高純度のカーボンナノチューブの集合体で構成されていることが判明している。このテープ状物質すなわち高純度カーボンナノチューブテープ(以下、高純度CNTテープという)31の生成機構(生成メカニズム)は、図8のようであると考えられる。
【0031】
図8は高純度CNTテープ31の生成機構(生成メカニズム)の説明図である。アーク3の中心部(陰極点)3aでカーボンナノチューブが合成される機構(メカニズム)は、静止アークの場合と同様であるが、移動アークの場合は、アーク周辺部3bでアモルファスカーボン32が生成されるため、アーク3が移動した部分の生成物断面は図8上段に示すように、カーボンナノチューブの集合体がアモルファスカーボン32で挟まれた形となる。しかし、アーク3が過ぎ去った後、高温の状態で大気と触れ合うため、結晶的構造欠陥の多いアモルファスカーボン32が優先的に酸化・燃焼し、一部が焼失する(図8中段)。さらに、その後の陰極電極2の冷却過程にて、非晶質カーボンの層と高純度カーボンナノチューブ集合体との熱膨張率の相違により、高純度のカーボンナノチューブがテープ状に剥離する現象を起こす(図8下段)ものと考えられる。このように、中空陽極電極11の移動アーク放電により、効率的に高純度のカーボンナノチューブを合成できるとともに、いたって容易にテープ状の高純度カーボンナノチューブの集合体を回収できる。
【0032】
図9は高純度CNTテープ31の合成方法(製造方法)の説明図である。陽極電極として、外径10mm、内径4mmの炭素材料からなる中空陽極電極11を用い、陰極電極として直径35mmの炭素材料からなる円柱状の陰極電極2Aを用いる。陰極電極2Aを回転させるとともに、中空陽極電極11を陰極電極2Aの軸方向に直線的に移動させて、陰極電極2A上に螺旋を描く形で陰極点を移動させる。陰極電極2Aの回転速度は例えば1.5回転/分であり、中空陽極電極11の移動速度は、例えば35mm/分である。また、アーク放電は、開放空間(大気圧下・大気雰囲気中)で行い、中空陽極電極11の孔11aから送給するガスには純アルゴンガスを用い、流量は例えば1リットル/分とした。放電条件は、電流100A、電圧20V(アーク長約1mm)とした。アーク放電後、陰極電極2A上で陰極点が移動した螺旋状の位置に、幅2〜3mm程度、厚さ100ミクロン程度のテープ状の高純度CNT31Aが合成された。このCNTテープの幅及び厚さは、電極の形状、サイズ及び合成条件により変化させることが可能である。本実施形態により製造されたCNT31Aにおいては、グラフェンシートが筒の中央部まで密に積層したCNTが多量に合成され、且つ、その断面形状が図6(b)に示される断面形状のCNTとなっており、電子放出特性に優れたCNTの製造が可能になっている。このことは後述の実施形態においても同様である。
【0033】
実施形態3.
図10は本発明の実施形態3に係るカーボンナノチューブを含むテープ状物質の製造方法の説明図であり、図中、上述の実施形態1,2と同一部分には同一符号を付してある。
【0034】
本実施形態においては、炭素材料からなる陽極として前述の実施形態1,2の陽極と同様の軸心部に孔11aを有する中空陽極電極11を用いるとともに、触媒となる金属粉末または金属化合物粉末21を収容した触媒混入容器22内と中空陽極電極11の孔11aとを接続し、開放空間(大気圧下・大気雰囲気中)にて、触媒混入容器22を介して中空陽極電極11の孔11aから陰極電極2に向けて少量のアルゴンガス等の不活性ガス又は不活性ガスを含む混合ガスを吹き付けるとともに、このガス流に乗せて触媒金属粉末または金属化合物粉末21を注入し、更に中空陽極電極11を炭素材料からなる陰極電極2に対し相対移動させながらアーク放電を行うようにした点に特徴がある。
【0035】
本実施形態においても中空陽極電極11内部の孔11aから送給するガスとして、純アルゴンもしくは5%程度の水素ガスやヘリウムガスを混入したアルゴンガスを用いた。特にアルゴンに水素ガスを数%〜数十%混ぜると、アークの安定性を損なうことなく、カーボンナノチューブの収量を増加することができた。これは既述したように水素ガスに陽極電極上で昇華した炭素がクラスタとして成長するのを防止する効果があり、陰極電極上でカーボンナノチューブが合成されやすい条件となるためであると考えられる。
【0036】
また、本実施形態においても適正ガス流量は、前述の第1実施形態と同様、中空陽極電極11の孔11aの断面積に影響され、孔11aの断面積1mm当り10〜400ml/分であり、この適正ガス流量とすることで、プラズマガスとして機能させつつ、陽極電極中央部のみが周辺部に比べアーク放電しやすい条件をつくり出すことができる。その結果、陰極点を集中させることができ、純度の高いカーボンナノチューブを収率良く生成することができる。
【0037】
なお、本実施形態において使用される金属粉末または金属化合物粉末の種類は、触媒機能のあるものなら何でも良いが、ここではFe 、Ni 、Co 、FeS 等の単体もしくはそれらの混合体を使用している。
【0038】
また、本実施形態においても中空陽極電極11の孔11aからアーク3に向けて(陰極電極2に向けて)不活性ガスもしくは不活性ガスを含む混合ガスを吹き付けているので、アーク放電による高温下で、不活性ガスもしくは不活性ガスを含む混合ガスの電離度が上がり、導電性が周辺部に比し大きくなる。また、中空電極内面に陽極点が安定して形成されるため、ガス流経路に沿ってアークが発生する拘束アーク形態となる。
【0039】
更に、本実施形態では、ガス流に乗せて触媒金属粉末または金属化合物粉末21を注入しているので、触媒がアーク熱により超微粒化し、それが核となり、そこから単層のカーボンナノチューブが成長していく。つまり、固定された陰極点の発生位置(アークの中心部)およびその周辺部で高純度の単層カーボンナノチューブの合成物を製造することができる。そして、中空陽極電極11を移動させながらアーク放電を行うことで、図7で説明したものと同様にアーク3の中心部(陰極点)が通過した陰極電極上に高純度の単層カーボンナノチューブを含むテープ状の物質31を生成することができる。
【0040】
実施形態4.
図11は本発明の実施形態4に係るカーボンナノチューブを含むテープ状物質の製造方法の説明図であり、図中、前述の図9と同一部分には同一符号を付してある。
【0041】
アーク放電によるカーボンナノチューブの合成では、主として陽極電極から発生した炭素蒸気および炭素イオンが陰極側に拡散し、陽極電極より温度の低い陰極電極の表面にて凝縮することによりカーボンナノチューブ(特に多層カーボンナノチューブ)が合成されるものと考えられている。そのため、陰極電極の温度は低い方がカーボンナノチューブの成長速度が速く、陰極材料は耐熱性導電材料であれば炭素材料である必要もないとされている。
【0042】
しかしながら、陽極電極の炭素蒸気および炭素イオンのみを増加させてもカーボンナノチューブの合成比率は低いものしか生成できず、カーボンナノチューブが生成される陰極電極の温度を適正な温度範囲に保つことが純度の高いカーボンナノチューブを生成する上で重要であることが本発明者等による実験の結果明らかとなった。すなわち、前述の実施形態3と同様の電極構成および条件下で、図11のように陰極電極2Aの全体を別電源(交流電源40)によって通電加熱してからアーク放電を行うと、陰極点部の温度は予熱がない場合に比べ高い温度にでき、かつ純度の高いカーボンナノチューブを含むテープ状物質を合成できることが確認されている。
【0043】
このように、高い純度と収量のカーボンナノチューブを合成するためには、陰極点部の温度をある程度高くすることが有利である。通常電極として使用されている炭素電極の電気抵抗率(=固有抵抗)は500〜2000μΩ・cm程度の範囲であるが、4000μΩ・cm以上の電気抵抗率を有する炭素材料を陰極材料として使用すると、陰極材料の陰極点近傍では、アーク放電時に高い電流密度となるので、電気抵抗発熱のため陰極点近傍が高温度となる。そのため、陰極電極を加熱したのと同様な効果が得られ、収量及び純度の高いカーボンナノチューブを生成することができる。
【0044】
また、通常電極として使用されている炭素電極の熱伝導率は50〜200W/m・Kの範囲であり、炭素材料における電気抵抗率と熱伝導率はほぼ負の相関関係が有る。つまり、電気抵抗率が大きいものは、熱伝導率が低く熱を伝えにくいので、より陰極点近傍が高温度となる。電気抵抗率4000μΩ・cm以上の炭素材料の熱伝導率は、ほぼ40W/m・K以下に相当する。
【0045】
実施形態5.
図12は本発明の実施形態4に係るカーボンナノチューブを含むテープ状物質の製造方法の説明図であり、図中、前述の図9と同一部分には同一符号を付してある。
【0046】
本実施形態のカーボンナノチューブを含むテープ状物質の製造方法は、前述の実施形態3,4と同様の電極構成および条件下で、図12のようにアーク3の陰極点又は陰極電極2A上のアーク軌道におけるアーク前方部分を、レーザ発振器41からのレーザ光線42によって加熱しながらアーク放電を行うようにしたものである。
【0047】
本実施形態においても、陰極点部の温度は加熱がない場合に比べ高い温度にでき、かつ純度の高いカーボンナノチューブを含むテープ状物質を合成することができた。
【0048】
実施形態6.
図13は本発明の実施形態6係るカーボンナノチューブを含むテープ状物質の製造方法の説明図であり、図中、前述の図8と同一部分には同一符号を付してある。
【0049】
本実施形態のカーボンナノチューブを含むテープ状物質の製造方法は、前述の実施形態3,4と同様の電極構成および条件下で、図13のようにアーク3の陰極点の軌跡上に生成されている生成物すなわち高純度CNTテープ31Aに、ガスノズル43からガス44を吹き付けるようにしたものである。
【0050】
高純度CNTテープ31Aの生成後にガス44を吹き付け、生成物を冷却することにより、高純度CNTテープ31Aの剥離を促進させることができる。吹き付けるガスは、可燃性のもの以外の冷却効果があるものなら空気、窒素等、何でも使用可能である。テープ状物質は陰極電極2A上に薄い膜状に生成されているので、ガスを吹き付けることにより、陰極電極2Aより温度低下が急速に進み、高純度CNTテープ31Aと陰極電極2Aとの間に熱応力が働いて、剥離が著しく促進される。さらに、吹き付けるガスが酸素を含んでいる場合や、または酸素を含んでいなくても大気雰囲気中では、ガスを吹付けることによって大気を多少巻き込むため、高純度CNTテープ31Aの表裏面に付着している多結晶黒鉛および非晶質炭素の薄皮や粒子の酸化・燃焼を促進する作用があり、その結果、高純度CNTテープ31Aのカーボンナノチューブ純度が上がるとともに、陰極電極2Aと高純度CNTテープ31Aの付着力が弱まり、高純度CNTテープ31Aの剥離が促進される。
【0051】
なお、陰極電極2Aと高純度CNTテープ31Aとの付着力は、陰極材料の表面の算術平均粗さ(Ra)によっても変動する。すなわち、陰極材料の表面粗さが粗い場合(算術平均粗さ(Ra)が4.0μm以上の場合)、陰極電極2Aと高純度CNTテープ31Aとの付着力が高まり、容易には剥離を起こさなくなる。したがって、陰極電極2Aとして、表面の算術平均粗さ(Ra)が3.2μm以下の炭素材料とすることで、陰極電極2Aと高純度CNTテープ31Aとの付着力を弱め、熱応力により自然剥離させることにより、CNTテープ31Aの回収をいたって容易にすることができる。
【0052】
実施形態7.
図14は本発明の実施形態7に係るカーボナノチューブの製造装置の構成図であり、上記の実施形態2に対応した製造装置である。この製造装置は、電源100、コントローラ101、駆動モータ102、陽極電極支持部材103、門型フレーム104を備えている。門型フレーム104には陽極電極支持部材103が水平方向に移動可能に支持されており、陽極電極支持部材103には中空陽極電極11が取り付けられている。この中空陽極電極11からはアルゴンガス等が供給されるものとする。円柱状の炭素材料からなる陰極電極2Aは回転自在に支持されており、駆動モータ102により回転される。中空陽極電極11と陰極電極2Aとは電源100から電圧が印加される。また、陽極電極支持部材103は門型フレーム104の水平部材104a上を駆動機構(図示せず)の駆動により移動する。コントローラ101は駆動モータ102及び駆動機構を制御する。駆動モータ102を回転して陰極電極2Aを回転させながら、陽極電極支持部材103を門型フレーム104の水平部材104a上を水平移動させて中空陽極電極11を移動させつつ、中空陽極電極11と円柱状炭素電極2Aとの間でアーク放電を発生させることにより、図示のように、螺旋状の高純度CNTテープ31Aを生成する。そのCNTは同6(b)の断面形状のものを多く含んでいるので、電子放出特性に優れたCNTの製造が可能になっている。
【0053】
実施形態8.
図15は本発明の実施形態8に係るカーボナノチューブの製造装置の構成図である。この製造装置は密閉容器(チャンバー)105を備えており、密閉容器105内には、ドーナツ状の柄杓形状からなり、ドーナツ部分に内側に孔(挿入孔、吸引孔)が明けられた挿入・吸引ノズル106が配置されている。この挿入・吸引ノズル106は密閉容器105の外に配置されているポンプ107,108にそれぞれ連結されており、挿入・吹き付けノズル106の挿入孔からは大気(又は酸素)が吹き付けられ、吸引孔からは大気(又は酸素)が吸引される。また、中空陽極電極11と陰極電極2Aとは対向して間隙をもって配置されるが、中空陽極電極11は挿入・吸引ノズル106の内側に配置され、また、中空陽極電極11からはアルゴンガス等が供給されるものとする。このように構成したことにより、密閉容器105内においても大気圧雰囲気下又は酸化雰囲気下をつくることで、その高純度CNTテープ31AのCNTは同6(b)の断面形状のものを多く含んでいるので、電子放出特性に優れたCNTの製造が可能になっている。
【0054】
【実施例】
実施例1
図14の実施形態に対応した実施例を説明する。中空陽極電極11として外径6mmの円柱状炭素電極を用い、陰極電極2Aとして直径35mmの円柱状炭素電極を用いた。陰極電極2Aを回転させるとともに、中空陽極電極11を陰極電極2Aの軸方向に直線的に移動させて、陰極電極2A上に螺旋を描く形で陰極点を移動させた。陰極電極2Aの回転速度は1.5回転/分であり、中空陽極電極11の移動速度は35mm/分である。また、アーク放電は大気圧下、大気雰囲気中で行った。放電条件は電流100A電圧20Vアーク長(1mm)である。アーク放電後陰極電極2Aの上で陰極点が移動した螺旋上の位置に、幅2〜3mm程度、厚さ100ミクロン程度の高純度CNTが合成された。このCNTテープの幅および厚さ、電極の形状、サイズおよび合成条件により変化させることが可能である。中空陽極電極11として、炭素電極を用いているが、この炭素電極には特に制限はなく、黒鉛化された炭素材料を用いてもよく、また、非消耗金属電極を用いても良い。
【0055】
図16は上記にて合成されたCNTテープを透過型電子顕微鏡(TEM)により観察した結果を示した図である。グラフェンシートが筒中央部まで密に積層し、先端部が破れたカーボナノチューブが観察される。なお、この高純度CNTテープ(テープ状物質)による電子放出特性も、表1に示されるように、良好な結果が得られた。
【0056】
【表1】
Figure 2004189501
【0057】
【発明の効果】
以上のように本発明によれば、グラフェンシート筒の先端部が一部又は全部が破れているカーボナノチューブの製造を大気圧下、大気雰囲気で行うようにしたので、電子放出特性に優れた性能を持ったカーボナノチューブを効率良く、安価に製造することが可能になっている。
【図面の簡単な説明】
【図1】本発明の実施形態1に係るカーボンナノチューブの製造方法の基本原理の説明図である。
【図2】図1の陽極電極の変形例の説明図である。
【図3】グラファイト筒の先端部が一部又は全部が閉じていないカーボンナノチューブの製造原理の説明図である。
【図4】カーボンナノチューブの先端部の形状を示した図である。
【図5】カーボンナノチューブの先端部の破れについて説明図である。
【図6】グラファイト筒の先端部の一部又は全部が閉じていないカーボンナノチューブの形状及び破断部の説明図である
【図7】。本発明の実施形態2に係るカーボナノチューブを含むテープ状物質の製造方法の説明図である。
【図8】カーボンナノチューブテープの生成メカニズムの説明図である。
【図9】図7の実施形態における炭素材料電極相互のアーク放電状況を模式的に示す図である。
【図10】本発明の実施形態3に係るカーボンナノチューブを含むテープ状物質の製造方法の説明図ある。
【図11】本発明の実施形態4に係るカーボンナノチューブを含むテープ状物質の製造方法の説明図である。
【図12】本発明の実施形態5に係るカーボンナノチューブを含むテープ状物質の製造方法の説明図である。
【図13】本発明の実施形態6に係るカーボンナノチューブを含むテープ状物質の製造方法の説明図である。
【図14】本発明の実施形態7に係るカーボンナノチューブを含むテープ状物質の製造装置の構成図である。
【図15】本発明の実施形態8に係るカーボンナノチューブを含むテープ状物質の製造装置の構成図である。
【図16】本発明の実施例1にて合成されたCNTテープを透過型電子顕微鏡(TEM)により観察した結果を示した図である。
【符号の説明】
1 陽極電極
2,2A 陰極電極
3 アーク
11 中空陽極電極
11a 孔
21 触媒金属粉末
30,31 カーボンナノチューブテープ(CNT)

Claims (8)

  1. 陽極電極と、該陽極電極に対向する炭素基板からなる陰極電極との間でアーク放電させる工程と、
    アーク放電済み又はアーク放電中の位置を大気雰囲気又は酸化雰囲気にさらす工程とを有することを特徴とするグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法。
  2. 大気雰囲気又は酸化雰囲気の下で、陽極電極と、該陽極電極に対向する炭素基板からなる陰極電極との間でアーク放電させることを特徴とするグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法。
  3. 前記陽極電極と前記陰極電極とを相対的に移動させつつ、両電極間でアーク放電させることを特徴とする請求項1又は2記載のグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法。
  4. 前記陽極電極から前記陰極電極に向けて不活性ガスのガス流を発生させることを特徴とする請求項1〜3の何れかに記載のグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法。
  5. 前記陽極電極は、筒状に構成され、当該筒の中空部に不活性ガスを前記陰極電極に向けて流すことを特徴とする請求項4記載のグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法。
  6. 前記カーボンナノチューブは、
    複数のグラフェーンシート筒からなり、筒中心部が中空であるカーボンナノチューブ、複数のグラフェンシート筒が同心状に筒中心部まで密に積層しているもの、及び筒長さ方向において一部が前記カーボンナノチューブで構成され一部が前記密に積層しているものの内の何れかであることを特徴とする請求項1乃至5の何れかに記載のグラフェンシート筒の尖端部の一部又は全部が破れているカーボンナノチューブの製造方法。
  7. 陽極電極と、
    該陽極電極に対向して配置された炭素陰極電極と、
    前記陽極電極から前記陰極電極に向けて不活性ガスのガス流を発生させる手段と、
    前記陽極電極と前記陰極電極との間に電圧を印加してアーク放電させる電源ととを備え、前記アーク放電を大気雰囲気又は酸化雰囲気の下で行わせることを特徴とするグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造装置。
  8. 陽極電極と、
    該陽極電極に対向して配置された円柱状の炭素陰極電極と、
    前記陽極電極から前記炭素陰極電極に向けて不活性ガスのガス流を発生させる手段と、
    前記陽極電極と前記陰極電極との間に電圧を印加してアーク放電させる電源と、
    前記炭素陰極電極を回転させながら、前記陽極電極を前記炭素陰極電極の軸方向に移動させる駆動手段と
    を備えたことを特徴とするグラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造装置。
JP2002355540A 2002-12-06 2002-12-06 グラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法及び製造装置 Expired - Fee Related JP3885719B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355540A JP3885719B2 (ja) 2002-12-06 2002-12-06 グラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法及び製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355540A JP3885719B2 (ja) 2002-12-06 2002-12-06 グラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法及び製造装置

Publications (2)

Publication Number Publication Date
JP2004189501A true JP2004189501A (ja) 2004-07-08
JP3885719B2 JP3885719B2 (ja) 2007-02-28

Family

ID=32756210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355540A Expired - Fee Related JP3885719B2 (ja) 2002-12-06 2002-12-06 グラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法及び製造装置

Country Status (1)

Country Link
JP (1) JP3885719B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790242B1 (en) 2007-10-09 2010-09-07 University Of Louisville Research Foundation, Inc. Method for electrostatic deposition of graphene on a substrate
CN101964291B (zh) * 2009-07-24 2012-03-28 清华大学 透射电镜微栅及其制备方法
CN101964292B (zh) * 2009-07-24 2012-03-28 清华大学 石墨烯片-碳纳米管膜复合结构及其制备方法
RU2504514C2 (ru) * 2011-12-22 2014-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") Способ выделения углеродных наночастиц
JP2014231446A (ja) * 2013-05-29 2014-12-11 日立造船株式会社 カーボンナノチューブの製造方法
RU2559481C2 (ru) * 2013-12-13 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВПО "ВГУИТ") Способ синтеза углеродных нанотрубок и устройство его осуществления
RU2704678C1 (ru) * 2018-12-03 2019-10-30 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ модифицирования чугуна и модификатор для осуществления способа
RU2755122C1 (ru) * 2020-09-28 2021-09-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Способ получения мезопористых углеродных материалов

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790242B1 (en) 2007-10-09 2010-09-07 University Of Louisville Research Foundation, Inc. Method for electrostatic deposition of graphene on a substrate
CN101964291B (zh) * 2009-07-24 2012-03-28 清华大学 透射电镜微栅及其制备方法
CN101964292B (zh) * 2009-07-24 2012-03-28 清华大学 石墨烯片-碳纳米管膜复合结构及其制备方法
RU2504514C2 (ru) * 2011-12-22 2014-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") Способ выделения углеродных наночастиц
JP2014231446A (ja) * 2013-05-29 2014-12-11 日立造船株式会社 カーボンナノチューブの製造方法
RU2559481C2 (ru) * 2013-12-13 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВПО "ВГУИТ") Способ синтеза углеродных нанотрубок и устройство его осуществления
RU2704678C1 (ru) * 2018-12-03 2019-10-30 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ модифицирования чугуна и модификатор для осуществления способа
RU2755122C1 (ru) * 2020-09-28 2021-09-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Способ получения мезопористых углеродных материалов

Also Published As

Publication number Publication date
JP3885719B2 (ja) 2007-02-28

Similar Documents

Publication Publication Date Title
US7625545B2 (en) Process for producing carbon nanotubes by arc discharge
JP3825336B2 (ja) ナノカーボンの製造方法及びナノカーボンの製造装置
US7056479B2 (en) Process for preparing carbon nanotubes
US7923077B2 (en) Continuous method for producing inorganic nanotubes
TW200540111A (en) Process for the production of carbon nanostructure
JP2006045057A (ja) 二重壁炭素ナノチューブ並びにその製造および使用方法
JP3621928B2 (ja) カーボンナノ微粒子の製造方法,カーボンナノ微粒子の製造装置
TW200536779A (en) Method of synthesizing small-diameter carbon nanotubes with electron field emission properties
JP2005005266A (ja) ナノ構造体を含む電界放出アレイの製造方法
KR20020039636A (ko) 나노튜브의 제조방법 및 이 방법을 이용하여 제조된나노튜브, 나노튜브의 제조장치, 나노튜브의 패턴화 방법및 이 방법을 이용하여 패턴화된 나노튜브 기재 및 이패턴화된 나노튜브 기재를 이용한 전자방출원
JP4604563B2 (ja) カーボンナノ構造体の製造方法
JP3885719B2 (ja) グラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法及び製造装置
Rakhi et al. Field emission from carbon nanotubes on a graphitized carbon fabric
US20080217161A1 (en) Process for the simultaneous and selective preparation of single-walled and multi-walled carbon nanotubes
JP2006315920A (ja) 電子放出源及びその製造方法
JP2004168647A (ja) 多層カーボンナノチューブの製造方法と製造装置並びにその精製方法およびパルス状高電圧大電流電源
JP3602092B2 (ja) ナノカーボンの製造方法、ナノカーボンの製造装置、ナノカーボンのパターン化方法
JP3861857B2 (ja) カーボンナノチューブテープの製造方法
JP2002146534A (ja) カーボンナノチューブの製造方法
JP4665113B2 (ja) 微粒子製造方法および微粒子製造装置
JP3815421B2 (ja) カーボンナノチューブの製造方法
JP4339870B2 (ja) ナノカーボンの製造方法及びナノカーボンの製造装置
JP3915119B2 (ja) カーボンナノチューブを含むテープ状物質の回収方法
JP4019920B2 (ja) カーボンナノチューブ
JP3867790B2 (ja) カーボンナノチューブを含むテープ状物質の連続製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees