JP2004185890A - Metal mask - Google Patents

Metal mask Download PDF

Info

Publication number
JP2004185890A
JP2004185890A JP2002349494A JP2002349494A JP2004185890A JP 2004185890 A JP2004185890 A JP 2004185890A JP 2002349494 A JP2002349494 A JP 2002349494A JP 2002349494 A JP2002349494 A JP 2002349494A JP 2004185890 A JP2004185890 A JP 2004185890A
Authority
JP
Japan
Prior art keywords
layer
metal mask
forming layer
rolled
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002349494A
Other languages
Japanese (ja)
Inventor
Hideya Yamada
英矢 山田
Hiroyuki Takatsuka
弘幸 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002349494A priority Critical patent/JP2004185890A/en
Publication of JP2004185890A publication Critical patent/JP2004185890A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal mask having improved productivity by applying a usual etching method, capable of improving accuracy required for metal mask for organic EL used for selective coating of a pattern. <P>SOLUTION: The metal mask is at least provided with an opening forming layer made of a rolled metal plate and a supporting layer made of a rolled metal plate, and has a plurality of through-holes penetrating through the opening forming layer and the supporting layer. At least either the opening forming layer or the supporting layer is composed of a rolled plate material of an Fe-Ni group alloy containing 30-35 mass% of Ni+Co, and not more than 0.01 mass% of C, with a residual part substantially of Fe. Out of the crystal component of the rolled metal plate material of Fe-Ni group alloy having main orientation of (200), (311), (220), the content of the crystal having (200) orientation is 60-99%. The long and narrow-shaped through-holes of the metal mask is oriented in the rolling direction of the Fe-Ni group alloy. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば有機ELディスプレイ等の蒸着用メタルマスクとして、高精細なパターン成膜が可能なメタルマスクに関するものである。
【0002】
【従来の技術】
フルカラー有機ELディスプレイなどのように、幅数10μmの高精細パターンを形成するためには、パターンの塗り分けに用いられるメタルマスクの精度向上が求められる。
これに対して、例えばシリコン板からなる支持層と、所定の開孔断面形状を有するシリコン板からなる表面層と、支持層をエッチングにより開孔する際のエッチングストッパとなるストッパ層を支持層と表面層の間に挿入した構成をとる蒸着マスクが、特許第3024641号(特許文献1)に開示されている。
【0003】
【特許文献1】
特許第3024641号公報
【0004】
【発明が解決しようとする課題】
上述の特許文献1に記載された蒸着マスクは、支持体用シリコンの下に熱酸化によってエッチングストッパ層の二酸化シリコン膜を熱酸化処理で形成し、二酸化シリコン膜にスピン塗布によりポリイミド薄膜を形成し、単結晶シリコンのシリコン板を張り合わせて300℃程度の温度でベークを行って接着し、更に、常温CVD法によって二酸化シリコン膜を成膜した後、窒化珪素膜をシャドウマスク全体に被覆する。そして、公知のフォトレジストプロセスを使用して、フォトレジスト膜パターンを支持体用シリコン上の窒化珪素膜上に形成するといったように、煩雑な工程にて生産されるものである。
【0005】
しかも、特許文献1の方法では、単結晶シリコン層5μmを残す厚さまでエッチング液やガスによるエッチングを行い、最後にレーザで開孔処理を行うもので、5μmの厚みでエッチングをストップしなければならない。
これは、特許文献1に記載の方法がシリコンを素材とするため、このような特殊加工が必要となるためである。
本発明の目的は、通常用いられるエッチング方法を適用して生産性を向上させたメタルマスクであり、しかも例えば有機EL用メタルマスクとして求められるパターンの塗り分けに用いられるメタルマスクの精度向上が実現可能なメタルマスクを提供することに有る。
【0006】
【課題を解決するための手段】
本発明者は、特許文献1に記載されるような特殊エッチング加工を用いないように、開孔形成層と支持層には金属の圧延板を用いることを検討した。そして、その金属の圧延板に、開孔幅が細く寸法バラツキを少なくでき、蒸着時の温度上昇による熱膨張が小さく、マスク断面形状が、蒸着の影になる部分が少なくなる形状とすることができるように、特定の化学組成とした上で、圧延によって得られる特有の金属の結晶の配向性を利用すれば、フルカラー有機ELディスプレイなどのような、幅数10μmの高精細パターンを形成するためのパターンの塗り分けに用いられるメタルマスクの精度向上が達成できることを見出し本発明に到達した。
【0007】
即ち本発明は、少なくとも金属圧延板の開孔形成層と、金属圧延板の支持層とを具備するメタルマスクであって、該メタルマスクは前記開孔形成層から支持層に貫通する貫通孔を複数個有し、前記開孔形成層及び支持層の少なくとも一方の層は質量%でNi+Co:30〜55%、C:0.01%以下を含み、残部実質的にFeでなるFe−Ni系合金の圧延板材であり、該Fe−Ni系合金の圧延板材は(111)、(200)、(311)、(220)の主方位のうち(200)が60〜99%であり、前記メタルマスクは前記Fe−Ni系合金の圧延板材の圧延方向に細長形状の貫通孔が形成されているメタルマスクである。
好ましくは上述メタルマスクは、前記開孔形成層と支持層とに挟み込まれ、前記開孔形成層及び支持層とはエッチング特性の異なる接合層を有するメタルマスクである。
【0008】
【発明の実施の形態】
本発明のメタルマスクの重要な特徴は、少なくとも開孔形成層と支持層との何れかの層に、圧延を施した特別な結晶方位を付与し、且つ特定組成の圧延板材を用いたことにある。
本発明では開孔形成層及び支持層の少なくとも一方の層は質量%でNi+Co:30〜55%、C:0.01%以下を含み、残部実質的にFeでなるFe−Ni系合金の圧延板材を用いる。この理由は以下の通りである。
先ず、Fe−Ni系合金を用いた理由の第一は、この合金がNiやCoの含有量を調整することで熱膨張係数を調整できる点にある。
理由の第二は、この合金が磁性材料であるため、実際にメタルマスクとして用いた際の成膜パターンの塗り分け時に、磁石を用いた固定もできるためである。次に、本発明のFe−Ni系合金の組成限定理由を述べておく。
【0009】
Ni及びCoはともに熱膨張係数を調整する重要な元素である。メタルマスクでは、基板に近似する熱膨張が要求される場合があるため、例えばガラス基板を使う場合は熱膨張係数を11×10−6/℃以下に制御可能なようにNiとCoの含有量で熱膨張係数を調整する。
Ni+Coが質量で30%より少なくても、また55%より多くても熱膨張係数が極端に大きくなってしまう。従って、Ni+Coを30〜55%に規定した。なお、この範囲の組成を有するものとして、例えば36%Ni−Fe合金、42%Ni−Fe合金、50Ni−Fe合金や、29%Ni−17%Co−Fe合金、31%Ni−5%Co−Fe合金が代表的であり、例えば使用するガラス基板の熱膨張係数に近似する熱膨張係数を有する合金に調整することが重要である。
この範囲のNi、Coの含有量を調整することで、メタルマスクに要求される蒸着時の温度上昇による熱膨張の増大を抑制することが可能となる。
【0010】
なお、本発明においては、開孔形成層及び支持層の少なくとも一方の層にFe−Ni系合金の圧延板材を用いると、低熱膨張特性が得られるという効果がある。但し、過度に熱膨張係数が異なる金属圧延板を用いると、加熱昇温時に撓みが発生する可能性があるため、開孔形成層及び支持層の少なくとも一方の層にFe−Ni系合金の圧延板材を用いたうえで、開孔形成層及び支持層の両方に低熱膨張特性を実現可能な材料とすれば良く、例えば開孔形成層及び支持層の両方に11×10−6/℃以下の材料の圧延金属板とすれば良い。より好ましくは、開孔形成層及び支持層の両方に10×10−6/℃以下の材料の圧延金属板である。
また、開孔形成層及び支持層の両方にFe−Ni系合金の圧延板材を用いるのが良く、更に望ましくはNiとCo含有量を同じとしたFe−Ni系合金の圧延板材を開孔形成層及び支持層の両方に用いるのが良い。
Fe−Ni系合金の圧延板材を開孔形成層及び支持層の両方に用いれば、貫通孔形成時のエッチング液を同じものとすることができる。
【0011】
Cはエッチング速度に大きな影響を及ぼす元素であり、少ないほどエッチング速度が速くなる。この効果を得るにはCを質量%で0.01%以下にすることが必要である。
また、低Cにすることによるエッチング性向上の効果を十分に発揮させるための好ましい範囲は0.006%以下であり、更に好ましくは0.004%以下である。
このCを低くすることで、エッチング性を向上でき、メタルマスクに要求される開孔幅が細くすることが可能となる。
なお、本発明では上述のNi、Co、C以外の元素は残部実質的にFeと規定しているが、不可避的に含有される不純物元素は含有され得るし、例えば、幾らかの剛性を付与したい場合には、例えばTiやNb等の強化元素を合計で1質量%程度含有しても良い。
【0012】
次に本発明では、更にエッチング特性(特にエッチング精度)を向上させるために、特別な結晶方位とする必要がある。
本発明で用いるFe−Ni系合金の圧延板材は、(111)、(200)、(311)、(220)の主方位のうち(200)が60〜99%とする。
エッチング速度は集積する結晶面に大きく左右されるため、孔の異形状化を抑制するためには、特定の結晶面への集積度を高めることが有効である。本発明の開孔形成層や、支持層に使用するFe−Ni系合金の圧延板材では、(111)、(200)、(311)、(220)の主方位のうち、エッチング速度に影響を及ぼす(200)方位への集積が特に有効であり、この結晶面に優先的に結晶面を配向させることで、エッチング速度と精度の両方の向上が図れる。
(200)方位の配向度が低いとその効果は小さくなり、少なくとも60%以上とすると良く、好ましくは80%以上である。しかしあまり高くすると孔の異形化が顕著になることから、その上限を99%以下とする。
これにより、メタルマスクに要求される寸法バラツキを抑制でき、更にマスク断面形状が、蒸着の影になる部分が少なくなる形状とすることができる。
【0013】
このような結晶の配向性を得るには、強圧下の冷間圧延後に焼鈍を行うことが一番容易である。具体的には約70%以上の強圧下と、再結晶焼鈍とを組合せれば良い。
特にメタルマスクのように細長いパターン形状で、断面が矩形に近い貫通孔を形成する場合には、(200)方位に集積させることで、圧延方向に細長の貫通孔を速く、精度良く形成させることができる。特に長方形パターンの場合、エッチング速度が遅くなるに従って角の部分が丸くなるため、角をよりシャープにしたい場合にも上述の手段が有効である。
これは、上述のような圧下率で冷間圧延を施し、その後再結晶焼鈍を施した場合には、圧延方向に(200)<001>が揃い易くなる。この状態は結晶の格子が圧延方向に規則的に並んでいる状態となるため、この特定の方位に配向させると、メタルマスクへの細長形状の貫通孔形成時に、特にエッチング精度(寸法のバラツキ)をより一層向上させることができる。
【0014】
また、圧延板材では少なからず成分偏析が残存する。この成分偏析は圧延板材の場合においては圧延方向に縦長に残留し、特に溶製材を素材とした場合では成分偏析を全く無くすことは困難である。
仮に、圧延方向に直角方向や、圧延方向に対して45°等の方向に対して細長形状の貫通孔を形成すると、成分偏析に起因してエッチング特性が変化する個所がありエッチング斑が生じる。このエッチング斑が生じた場合は、貫通孔の長辺の形状がギザギザとなり易い。
そのため、金属圧延板材特有(特に溶製材)の成分偏析の方向を考えた場合、圧延方向に長細形状の貫通孔を設けるのがエッチング精度(特に寸法のバラツキ)の点から言うと最良である。
なお、本発明で言う圧延方向に長細形状とする時は、圧延方向に対して±20°の範囲に貫通孔が形成されていれば上記効果が得られ、望ましくは±10°以内であり、更に望ましくは±5°以内であり、最も望ましくは圧延方向に真っ直ぐ貫通孔を形成すれば良い。
【0015】
次に、本発明の好ましい形態について説明する。
本発明では、開孔形成層と支持層とに挟み込まれ、前記開孔形成層及び支持層とはエッチング特性の異なる接合層を有することができ、本発明のメタルマスクの素材の好ましい一例を示すと、例えば図1に示すように開孔形成層(1)/接合層(2)/支持層(3)の構造となる。
開孔形成層(1)は、開孔寸法を定めるものである。なお、ここで言う開孔寸法とは、メタルマスクを用いてディスプレイ基板に形成する蒸着パターンを所望の形状寸法に制御するために、蒸着材粒子の入射角度等を考慮して調整したメタルマスクの開孔幅を言う。通常はメタルマスクの孔の最小開孔幅が、蒸着により形成されるパターンの寸法を決める主要因子であることから、最小開孔幅を所望の開孔寸法に近づけるようにエッチング条件の調整を行う。
そして、本発明によるメタルマスクは、開孔形成層に最小開孔幅を有する孔を形成し、この最小開孔幅がメタルマスクの開孔寸法となる。また、最小開孔幅が形成される位置が、ディスプレイ基板に近いほど、成膜パターンの塗り分けが明瞭にできることから、本発明のメタルマスクを用いてディスプレイ基板に蒸着する場合には、開孔形成層をディスプレイ基板に近い側に配置する。
【0016】
接合層(2)は、開孔形成層(1)と支持層(3)とを接合するバインダの役割を果たすと同時に、貫通開孔部(4)をエッチングにより形成する際に、該開孔形成層(1)側の開孔部(4−a)と支持層側開孔部(4−b)とを別々にエッチングするためのバリアの役目も担っている。
支持層(3)は、薄い開孔形成層を支持する役割を担っている。また、該支持層はディスプレイ基板から遠い側に配置され、図2に示す支持層側開孔部(4−b)は蒸着材粒子が開孔部に入射する際の入口となる。本発明では開孔形成層と支持層を別々にエッチングすることが可能であるから、開孔形成層側の開孔幅に対して、支持層側の開孔幅を比較的大きくとることができる。従って蒸着材粒子が貫通開孔部に入射する際の入口の幅を大きくすることが可能で、入口エッジ部分の遮蔽の影響をきわめて少なくすることができる。
【0017】
そして、この接合層(2)を構成する材料は、開孔形成層(1)及び支持層(3)に用いた圧延板材の材質とはエッチング特性の異なる材質から選べば良く、例えば開孔形成層(1)及び支持層(3)の両方にFe−Ni系合金圧延板材を用いたとすると、Ti、Sn、Ag等の使用が好ましく、このような金属材料で接合層を形成すると、レーザのような特殊加工ではなく、エッチング液を用いて接合層のみを選択エッチングすることも可能となり、生産性の向上が図れる。
接合層の厚さは一般に接合層が厚い方がエッチングバリア性が高く、接合強度も強いが、あまり厚くすると高温時に熱膨張係数の違いによりメタルマスクが反って基板との間に隙間を生じる。従って、エッチングバリアと接合強度を確保できる厚さとして、0.3〜2μm程度が好ましい。
【0018】
なお、ここで一例として示した図1のメタルマスクは三層の金属箔であるが、もちろん四層以上であっても良い。四層以上の例としては、開孔形成層、支持層、接合層のうち1つ以上の層の接合表面に防錆効果のあるコーティング層を設けたり、各層間の接合が弱い時に接合を補助する効果のある素材をコーティングした層を設ける場合等が挙げられる。開孔形成層と支持層以外の層を厚くすると、上述のような反りの原因となるので、厚さをこれらの層と接合層とを含め2μm程度以下に設定するのが良い。
【0019】
上述したメタルマスク用積層板を製造する方法としては、大気中で複数の金属箔を圧着接合する方法、金属箔表面にメッキにより金属を成膜する方法、低圧雰囲気中で金属箔表面に活性化処理を行い複数の金属箔を圧着接合する方法、低圧雰囲気中で開孔形成層となる金属箔と、支持層となる金属箔の表面に接合層となる第3の金属を蒸着した後、圧着ロールにて接合する方法等がある。
何れかの方法を選択すれば良いが、低圧雰囲気中で開孔形成層となる金属箔と、支持層となる金属箔の表面に第3の金属を蒸着したのち圧着ロールにて接合する方法は生産性が高く、メッキよりも開孔形成層(1)の面粗度がよいので、メタルマスク用積層板の製造方法として適している。この場合の構造は、金属箔/蒸着層/金属箔の構造となる。
【0020】
本発明では、上述した積層板を用いてメタルマスクとする。
図2は、本発明の望ましい形態のメタルマスクの断面構造の一例を示す概略図である。図2に示すメタルマスクは薄い開孔形成層(1)と、比較的厚い支持層(3)と、該開孔形成層(1)と支持層(3)を接合する接合層(2)とからなる3層の金属層で形成される。
開孔形成層(1)の開孔形成層側開孔部(4−a)から支持層(3)の支持層側開孔部(4−b)に貫通する貫通孔をエッチングによりこれら各層を貫く貫通開孔(4)を複数形成することでメタルマスクとすることができるものである。
【0021】
なお、このメタルマスクは、開孔形成層(1)と支持層(3)表面にレジストでエッチングパターンを形成し、開孔形成層(1)と支持層をエッチング液で選択エッチングする。開孔形成層及び支持層のみを選択エッチングでエッチング処理を施すと、エッチング特性が異なる接合層(2)でエッチングがストップする。その後、露出した接合層(2)を選択エッチングにより除去することで、開孔形成層(1)の開孔形成層側開孔部(4−a)から支持層(3)の支持層側開孔部(4−b)に貫通する貫通孔(4)が形成され、図2に示すようなメタルマスクとすることができるのである。
【0022】
【実施例】
以下に本発明を実施例及び図面に基づいて詳細に説明する。
開孔形成層及び支持層には、質量%でC:0.006%−Ni:42%−残部FeのFe−Ni系合金圧延板材を使用した。このFe−Ni系合金圧延板材は、真空溶解、鍛造により作製し、厚さ2mmになるように熱間圧延した。更に、この材料を冷間圧延、中間焼鈍を数回施し、表1に示す厚さと(200)結晶方位配向度を持つ開孔形成層用素材(素材番号1)及び支持層用素材(素材番号2)の素材を作製した。
【0023】
なお、素材番号1及び2は、(111)、(200)、(311)、(220)の主方位のうち、(200)結晶方位の配向度を60〜99%の範囲に制御するために、中間の冷間圧延の圧下率を75%とし、その後850℃×5分で焼鈍し、最終的な厚さ寸法になるよう圧延し、エックス線回折装置にて(111)、(200)、(311)、(220)方位の集積度を測定した。極点図測定も行ったところ、(200)<001>への集積も確認した。
【0024】
【表1】

Figure 2004185890
【0025】
上記の素材1、2を用いて、それぞれ開孔形成層、支持層としてTi接合層を介して接合し、積層板材を作製した。この時の断面顕微鏡写真とその模式図を図1に示す。開孔形成層(1)と、支持層(3)と、開孔形成層と支持層とに挟み込まれるのが接合層(2)である。
積層板材は、低圧雰囲気中で開孔形成層となるFe−Ni系合金圧延板材(10μm)と、支持層であるFe−Ni系合金圧延板材(90μm)の接合表面に純Tiを蒸着した後、圧着ロールにて接合する方法を採用した。
今回は接合強度向上のために、接合前に各Fe−Ni系合金箔を塩酸で洗浄したが、この他に、低圧雰囲気中で処理可能なドライエッチングする方法や、水素ガスの還元雰囲気で熱処理する方法等も有効である。
接合層の厚みは、必要な接合強度と、エッチングバリア性に応じて適正な厚みに設定すればよい。今回は接合層となるTiの厚みが1μmになるように、Ti蒸着の出力及びFe−Ni系合金箔の送り速度を調整した。
【0026】
上述の方法で接合した3層積層板材はそのままでは接合強度が弱く、引き剥がし試験では0.1kN/m以下であった。
そこで低圧雰囲気中で蒸着接合した後、不活性ガス雰囲気中で熱処理することにより、接合強度を強固なものとすることができた。熱処理後の引き剥がし試験では、開孔形成層である10μm側Fe−Ni系合金箔が破断し、引き剥がし不可能であった。
【0027】
なお、接合層のTiが各Fe−Ni系合金箔と拡散接合するための熱処理温度は400℃以上である。また650℃程度で熱処理するとFe−Ni系合金箔の急激な軟化が起こるので、Fe−Ni系合金箔の硬度を下げたくない場合は400℃〜500℃で熱処理するのがよい。
また550℃以上で熱処理するとFe−Ni系合金箔側から接合層のTi側への拡散が進み、界面に拡散層が生成されるとともに、拡散層内部に拡散速度の違いによるカーケンダルボイドが発生し、これが接合強度を弱める事になるので、本実施例の試料は熱処理温度を500℃に設定した。
なお、熱処理後の配向度も表1で示すものと変化はなかった。
【0028】
そして、上記の三層積層板材を用いて選択エッチングにより、Fe−Ni系合金の圧延板材の圧延方向に真っ直ぐな方向に細長形状の貫通孔となるように開孔部を形成してメタルマスクとした。
エッチングパターンは長孔状パターンとした。開孔寸法精度を評価するために、目標開孔寸法が100μm(幅)×300μm(長さ)と、70μm(幅)×200μm(長さ)の2種類の長孔状パターンの試料を作成した。
露光したレジストパターンは、開孔形成層用及び支持層用にそれぞれ別のものを用意した。開孔形成層側のレジストパターンは、エッチング後に開孔寸法が上述の目標値になるようにパターン幅を調整した。支持層側のパターン幅は、開孔形成層側のパターン幅の2倍とした。各層にそれぞれのレジストパターンを形成した後、エッチング液により開孔した。
エッチング液は開孔形成層及び支持層には塩化第二鉄を使用した。その後、エッチングした開孔形成層及び支持層に露出した接合層(Ti層)剥離には希フッ酸3%を使用し、接合層を除去してメタルマスクとした。
【0029】
作製したメタルマスクについて、開孔寸法の平均値と、そのばらつきを評価した。また開孔形成層、支持層それぞれの開孔断面形状を顕微鏡を用いて観察し、開孔形成層、支持層の開孔部の上と下の端点を結んだ直線の、板平面に対する角度が、70゜以上のものを◎、70゜未満60゜以上のものを○とした。これらの結果を表2に示す。
【0030】
【表2】
Figure 2004185890
【0031】
作製した試料の開孔寸法は、何れも目標の開孔寸法からのずれが3μm以下で、且つ寸法のバラツキも±2μm以内であった。また、形成した貫通孔を電子顕微鏡で観察し、貫通孔の異形化も生じず、貫通孔の断面が矩形に近い形状となっていることも確認した。
更に、本発明のメタルマスクは、支持層側の孔の入口部分が十分に広く、蒸着材粒子が孔に入射する際に影に入口エッジ部分で遮蔽されることなく、実用的な入射角度を確保していることを確認し、高精細ディスプレイ用途として寸法精度の高いパターン成膜が可能なメタルマスクを製作することができた。
このように、金属圧延板を積層板材として用いることで、従来のような特殊加工の必要なしに高精細用途のメタルマスクを生産性良く製造できた。
【0032】
【発明の効果】
本発明によればメタルマスクを用いた蒸着パターン精度を飛躍的に改善することができ、例えば高精細有機ELディスプレイの実用化にとって欠くことのできない技術となる。
【図面の簡単な説明】
【図1】本発明のメタルマスクに用いる積層板材一例を示す断面顕微鏡写真とその模式図である。
【図2】本発明の一例を示す構成図である。
【符号の説明】
1.開孔形成層、2.接合層、3.支持層、4.貫通開孔部、4−a.開孔形成層側開孔部、4−b.支持層側開孔部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal mask capable of forming a high-definition pattern as a metal mask for vapor deposition of an organic EL display or the like.
[0002]
[Prior art]
In order to form a high-definition pattern having a width of several tens of μm as in a full-color organic EL display or the like, it is required to improve the accuracy of a metal mask used for pattern separation.
On the other hand, for example, a support layer made of a silicon plate, a surface layer made of a silicon plate having a predetermined opening cross-sectional shape, and a stopper layer serving as an etching stopper when the support layer is opened by etching are referred to as support layers. An evaporation mask having a configuration inserted between surface layers is disclosed in Japanese Patent No. 3024641 (Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent No. 3024641
[Problems to be solved by the invention]
The vapor deposition mask described in the above-mentioned Patent Document 1 forms a silicon dioxide film as an etching stopper layer by thermal oxidation under the silicon for a support by thermal oxidation, and forms a polyimide thin film on the silicon dioxide film by spin coating. Then, a silicon plate of single crystal silicon is bonded and baked at a temperature of about 300 ° C. for bonding, and a silicon dioxide film is formed by a normal temperature CVD method, and then a silicon nitride film is coated on the entire shadow mask. Then, using a known photoresist process, the photoresist film pattern is produced in a complicated process such as forming a photoresist film pattern on a silicon nitride film on silicon for a support.
[0005]
Moreover, in the method of Patent Document 1, etching with an etching solution or gas is performed until the single-crystal silicon layer has a thickness of 5 μm, and hole opening is performed with a laser. The etching must be stopped at a thickness of 5 μm. .
This is because such a special processing is required because the method described in Patent Document 1 uses silicon as a material.
An object of the present invention is a metal mask in which productivity is improved by applying a commonly used etching method. In addition, for example, an improvement in accuracy of a metal mask used for separately applying a pattern required as a metal mask for an organic EL is realized. It consists in providing a possible metal mask.
[0006]
[Means for Solving the Problems]
The inventor studied using a metal rolled plate for the hole forming layer and the support layer so as not to use the special etching process as described in Patent Document 1. Then, the rolled plate of the metal, the opening width is narrow, dimensional variation can be reduced, thermal expansion due to temperature rise during vapor deposition is small, and the cross-sectional shape of the mask should be shaped to reduce the shadow of vapor deposition. In order to form a high-definition pattern with a width of several tens of μm, such as a full-color organic EL display, using a specific chemical composition and utilizing the specific crystal orientation of a metal obtained by rolling. The present inventors have found that it is possible to achieve an improvement in the accuracy of a metal mask used for differently applying the patterns described above, and reached the present invention.
[0007]
That is, the present invention is a metal mask including at least a hole forming layer of a metal rolled plate and a support layer of the metal rolled plate, wherein the metal mask has a through hole penetrating from the hole forming layer to the support layer. At least one of the hole forming layer and the support layer contains a plurality of Ni + Co: 30 to 55% and C: 0.01% or less by mass%, and the balance is substantially Fe. The rolled plate of the Fe-Ni alloy has (200) of 60 to 99% in the main orientation of (111), (200), (311), and (220), and The mask is a metal mask in which an elongated through hole is formed in the rolling direction of the Fe-Ni-based alloy rolled plate.
Preferably, the metal mask is a metal mask that is sandwiched between the hole forming layer and the support layer, and has a bonding layer having different etching characteristics from the hole forming layer and the support layer.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
An important feature of the metal mask of the present invention is that at least one of the hole forming layer and the support layer is given a special crystal orientation that has been subjected to rolling, and that a rolled sheet material having a specific composition is used. is there.
In the present invention, at least one of the pore forming layer and the support layer contains 30% to 55% by mass of Ni + Co and 0.01% or less of C by mass%, and the rest is substantially Fe. Use plate material. The reason is as follows.
First, the first reason for using an Fe—Ni alloy is that the thermal expansion coefficient of the alloy can be adjusted by adjusting the content of Ni or Co.
The second reason is that since this alloy is a magnetic material, it can be fixed using a magnet when the film formation pattern is actually applied when used as a metal mask. Next, the reasons for limiting the composition of the Fe—Ni alloy of the present invention will be described.
[0009]
Both Ni and Co are important elements for adjusting the coefficient of thermal expansion. In the case of a metal mask, thermal expansion close to that of the substrate may be required. For example, when a glass substrate is used, the content of Ni and Co is controlled so that the thermal expansion coefficient can be controlled to 11 × 10 −6 / ° C. or less. Use to adjust the coefficient of thermal expansion.
Even if the mass of Ni + Co is less than 30% or more than 55%, the thermal expansion coefficient becomes extremely large. Therefore, Ni + Co is specified to be 30 to 55%. As a material having a composition in this range, for example, a 36% Ni-Fe alloy, a 42% Ni-Fe alloy, a 50Ni-Fe alloy, a 29% Ni-17% Co-Fe alloy, a 31% Ni-5% Co -Fe alloy is typical, and for example, it is important to adjust to an alloy having a thermal expansion coefficient close to that of a glass substrate to be used.
By adjusting the contents of Ni and Co in this range, it is possible to suppress an increase in thermal expansion due to a temperature increase during vapor deposition required for the metal mask.
[0010]
In the present invention, when a rolled plate of an Fe—Ni alloy is used for at least one of the hole forming layer and the support layer, there is an effect that low thermal expansion characteristics can be obtained. However, if a metal rolled sheet having an excessively different coefficient of thermal expansion is used, bending may occur at the time of heating and heating, so that at least one of the hole forming layer and the support layer is formed by rolling a Fe—Ni-based alloy. After using the plate material, a material capable of realizing low thermal expansion characteristics for both the hole forming layer and the support layer may be used. For example, both the hole forming layer and the support layer may have a temperature of 11 × 10 −6 / ° C. or less. The material may be a rolled metal plate. More preferably, it is a rolled metal plate of a material having a temperature of 10 × 10 −6 / ° C. or less for both the hole forming layer and the support layer.
Further, it is preferable to use a rolled Fe-Ni alloy plate for both the hole forming layer and the support layer, and more preferably, to form a rolled Fe-Ni alloy plate having the same Ni and Co contents. It is good to use for both the layer and the support layer.
If a rolled Fe—Ni alloy is used for both the hole forming layer and the support layer, the same etching solution can be used for forming the through holes.
[0011]
C is an element that has a large effect on the etching rate, and the smaller the amount, the higher the etching rate. In order to obtain this effect, it is necessary to set C to 0.01% or less by mass%.
Further, the preferable range for sufficiently exhibiting the effect of improving the etching property by lowering the C content is 0.006% or less, more preferably 0.004% or less.
By lowering C, the etching property can be improved, and the opening width required for the metal mask can be reduced.
In the present invention, elements other than Ni, Co, and C described above are substantially defined as Fe. However, impurity elements that are inevitably contained may be contained, and for example, some rigidity may be imparted. If desired, a total of about 1% by mass of reinforcing elements such as Ti and Nb may be contained.
[0012]
Next, in the present invention, it is necessary to set a special crystal orientation in order to further improve the etching characteristics (especially, etching accuracy).
In the rolled Fe-Ni alloy used in the present invention, the (200) of the main orientations of (111), (200), (311), and (220) is 60 to 99%.
Since the etching rate largely depends on the crystal plane on which the crystal is to be accumulated, it is effective to increase the degree of integration on a specific crystal plane in order to suppress the irregular formation of holes. In the rolled sheet material of the Fe—Ni alloy used for the hole forming layer and the support layer of the present invention, among the main orientations of (111), (200), (311), and (220), the influence on the etching rate is affected. It is particularly effective to accumulate in the (200) direction exerted. By preferentially orienting the crystal plane to this crystal plane, both the etching rate and the accuracy can be improved.
When the degree of orientation of the (200) orientation is low, the effect is reduced, and the effect is preferably at least 60% or more, and more preferably 80% or more. However, if the height is too high, deformation of the holes becomes remarkable, so the upper limit is set to 99% or less.
Thereby, the dimensional variation required for the metal mask can be suppressed, and the cross-sectional shape of the mask can be a shape in which the portion that becomes a shadow of vapor deposition is reduced.
[0013]
In order to obtain such crystal orientation, it is easiest to perform annealing after cold rolling under high pressure. Specifically, it is sufficient to combine a strong pressure of about 70% or more with recrystallization annealing.
In particular, in the case of forming through-holes having a rectangular cross section and a rectangular cross-section like a metal mask, by forming the through-holes in the (200) direction, it is possible to form elongated through-holes quickly and accurately in the rolling direction. Can be. In particular, in the case of a rectangular pattern, the corners become rounder as the etching rate becomes lower. Therefore, the above-described means is also effective when the corners are to be sharpened.
This is because when cold rolling is performed at the above-described reduction ratio and then recrystallization annealing is performed, (200) <001> is easily aligned in the rolling direction. In this state, the crystal lattice is regularly arranged in the rolling direction. Therefore, if the crystal is oriented in this specific direction, the etching accuracy (variation in dimensions) is particularly high when an elongated through hole is formed in the metal mask. Can be further improved.
[0014]
Further, in the rolled sheet material, component segregation remains to some extent. This component segregation remains vertically long in the rolling direction in the case of a rolled sheet material, and it is difficult to eliminate component segregation at all, particularly in the case of using an ingot material.
If an elongated through-hole is formed in a direction perpendicular to the rolling direction or in a direction such as 45 ° with respect to the rolling direction, there will be portions where the etching characteristics change due to component segregation and etching unevenness will occur. When this etching unevenness occurs, the shape of the long side of the through hole tends to be jagged.
Therefore, when considering the direction of component segregation peculiar to a metal rolled sheet material (particularly, a smelted material), it is best to provide a long and thin through hole in the rolling direction in terms of etching accuracy (particularly, dimensional variation). .
Incidentally, when the elongated shape in the rolling direction referred to in the present invention, if the through-hole is formed in the range of ± 20 ° with respect to the rolling direction, the above effect is obtained, preferably within ± 10 °. More preferably, it is within ± 5 °, and most preferably, a straight through hole may be formed in the rolling direction.
[0015]
Next, a preferred embodiment of the present invention will be described.
In the present invention, the hole forming layer and the supporting layer are sandwiched between the opening forming layer and the supporting layer, and the opening forming layer and the supporting layer can have a bonding layer having different etching characteristics. Thus, for example, as shown in FIG. 1, a structure of the opening forming layer (1) / the bonding layer (2) / the support layer (3) is obtained.
The aperture forming layer (1) determines the aperture size. Here, the opening size is a metal mask adjusted in consideration of an incident angle of vapor deposition material particles in order to control a vapor deposition pattern formed on a display substrate to a desired shape and size using the metal mask. It refers to the opening width. Usually, the minimum opening width of the hole of the metal mask is a main factor that determines the size of the pattern formed by vapor deposition, and therefore, the etching conditions are adjusted so that the minimum opening width approaches the desired opening size. .
In the metal mask according to the present invention, a hole having a minimum opening width is formed in the opening forming layer, and the minimum opening width is the opening size of the metal mask. Further, the closer to the position where the minimum opening width is formed, the closer to the display substrate, the more distinctly the film formation pattern can be applied. The forming layer is arranged on the side close to the display substrate.
[0016]
The bonding layer (2) serves as a binder for bonding the hole forming layer (1) and the support layer (3), and simultaneously forms the through holes (4) when forming the through holes (4) by etching. The openings (4-a) on the formation layer (1) side and the openings (4-b) on the support layer side also serve as barriers for separately etching.
The support layer (3) has a role of supporting the thin hole forming layer. The support layer is disposed far from the display substrate, and the support layer side opening (4-b) shown in FIG. 2 is an entrance when vapor deposition material particles enter the opening. In the present invention, since the hole forming layer and the support layer can be separately etched, the hole width on the support layer side can be relatively large with respect to the hole width on the hole forming layer side. . Therefore, the width of the entrance when the vapor deposition material particles enter the through-hole can be increased, and the influence of the shielding at the entrance edge can be extremely reduced.
[0017]
The material constituting the bonding layer (2) may be selected from materials having etching characteristics different from those of the rolled sheet material used for the hole forming layer (1) and the support layer (3). Assuming that a rolled Fe—Ni alloy is used for both the layer (1) and the support layer (3), it is preferable to use Ti, Sn, Ag, or the like. Instead of such special processing, it is also possible to selectively etch only the bonding layer using an etchant, thereby improving productivity.
In general, the thicker the bonding layer, the higher the etching barrier property and the higher the bonding strength. However, if the bonding layer is too thick, the metal mask warps due to a difference in thermal expansion coefficient at a high temperature, and a gap is formed between the metal mask and the substrate. Therefore, the thickness which can secure the bonding strength with the etching barrier is preferably about 0.3 to 2 μm.
[0018]
The metal mask of FIG. 1 shown as an example here is a three-layer metal foil, but may of course have four or more layers. As an example of four or more layers, a coating layer with an anti-rust effect is provided on the joining surface of one or more of the hole forming layer, the support layer, and the joining layer, and the joining is assisted when the joining between the layers is weak. For example, a case in which a layer coated with a material having an effect of forming a layer is provided. If the layers other than the hole forming layer and the support layer are thickened, the above-mentioned warpage may be caused. Therefore, it is preferable to set the thickness to about 2 μm or less including these layers and the bonding layer.
[0019]
The method of manufacturing the metal mask laminate described above includes a method of bonding a plurality of metal foils in the air, a method of forming a metal film by plating on the metal foil surface, and a method of activating the metal foil surface in a low-pressure atmosphere. A method in which a plurality of metal foils are pressure-bonded by performing a treatment, and a metal foil serving as a hole forming layer and a third metal serving as a bonding layer are deposited on the surface of the metal foil serving as a support layer in a low-pressure atmosphere, and then pressed. There is a method of joining with a roll.
Either method may be selected, but the method of vapor-depositing a third metal on the surface of the metal foil serving as the opening forming layer and the metal foil serving as the support layer in a low-pressure atmosphere and then joining them with a pressure roll is as follows. Since the productivity is high and the surface roughness of the hole forming layer (1) is better than that of plating, it is suitable as a method of manufacturing a metal mask laminate. The structure in this case is a structure of metal foil / deposition layer / metal foil.
[0020]
In the present invention, a metal mask is formed using the above-described laminated plate.
FIG. 2 is a schematic view showing an example of a cross-sectional structure of a metal mask according to a preferred embodiment of the present invention. The metal mask shown in FIG. 2 has a thin hole forming layer (1), a relatively thick support layer (3), and a bonding layer (2) for bonding the hole forming layer (1) and the support layer (3). Formed of three metal layers.
Each of these layers is etched by etching a through-hole penetrating from the hole-forming layer side opening (4-a) of the hole-forming layer (1) to the support layer side hole (4-b) of the support layer (3). The metal mask can be formed by forming a plurality of through holes (4) penetrating therethrough.
[0021]
In this metal mask, an etching pattern is formed on the surfaces of the hole forming layer (1) and the support layer (3) with a resist, and the hole forming layer (1) and the support layer are selectively etched with an etchant. When only the opening forming layer and the support layer are subjected to the etching process by selective etching, the etching stops at the bonding layer (2) having different etching characteristics. Thereafter, by removing the exposed bonding layer (2) by selective etching, the opening layer (4-a) of the opening forming layer (1) is opened to open the supporting layer (3) on the supporting layer side. A through-hole (4) penetrating the hole (4-b) is formed, so that a metal mask as shown in FIG. 2 can be obtained.
[0022]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples and drawings.
For the hole forming layer and the support layer, a rolled Fe-Ni alloy sheet material of C: 0.006% -Ni: 42%-balance Fe by mass% was used. The rolled Fe—Ni alloy sheet was produced by vacuum melting and forging, and hot rolled to a thickness of 2 mm. Further, this material was subjected to cold rolling and intermediate annealing several times to obtain a material for the hole forming layer (material number 1) and a material for the support layer (material number) having the thickness and the degree of (200) crystal orientation shown in Table 1. The material of 2) was produced.
[0023]
Material numbers 1 and 2 are used to control the degree of orientation of the (200) crystal orientation in the range of 60 to 99% among the main orientations of (111), (200), (311), and (220). The rolling reduction of the intermediate cold rolling was set to 75%, and thereafter, annealing was performed at 850 ° C. × 5 minutes, and rolling was performed so as to have a final thickness dimension, and (111), (200), ( 311), the degree of integration in the (220) direction was measured. When pole figure measurement was also performed, accumulation at (200) <001> was also confirmed.
[0024]
[Table 1]
Figure 2004185890
[0025]
The above-mentioned raw materials 1 and 2 were bonded to each other through a hole forming layer and a Ti bonding layer as a support layer, respectively, to produce a laminated plate material. FIG. 1 shows a cross-sectional micrograph at this time and a schematic diagram thereof. The bonding layer (2) is sandwiched between the hole forming layer (1), the support layer (3), and the hole forming layer and the support layer.
The laminated plate material is obtained by depositing pure Ti on the joining surface of a rolled Fe—Ni alloy plate (10 μm) serving as an aperture forming layer and a rolled Fe—Ni alloy plate (90 μm) serving as a support layer in a low-pressure atmosphere. And a method of joining with a pressure roll.
This time, each Fe-Ni alloy foil was washed with hydrochloric acid before joining in order to improve the joining strength. Other methods such as dry etching that can be treated in a low-pressure atmosphere and heat treatment in a reducing atmosphere of hydrogen gas Is also effective.
The thickness of the bonding layer may be set to an appropriate thickness according to the required bonding strength and the etching barrier property. In this case, the output of Ti vapor deposition and the feed speed of the Fe—Ni-based alloy foil were adjusted so that the thickness of Ti serving as a bonding layer was 1 μm.
[0026]
The three-layer laminated plate joined by the above-described method had a weak joining strength as it was, and it was 0.1 kN / m or less in the peeling test.
Then, after performing vapor deposition bonding in a low-pressure atmosphere, heat treatment was performed in an inert gas atmosphere, whereby the bonding strength could be increased. In the peeling test after the heat treatment, the 10 μm-side Fe—Ni-based alloy foil, which was the hole forming layer, was broken and could not be peeled.
[0027]
The heat treatment temperature for diffusion bonding of Ti of the bonding layer to each Fe—Ni alloy foil is 400 ° C. or higher. If the heat treatment is performed at about 650 ° C., the Fe—Ni-based alloy foil is rapidly softened. Therefore, if it is not desired to reduce the hardness of the Fe—Ni-based alloy foil, the heat treatment is preferably performed at 400 ° C. to 500 ° C.
Further, when the heat treatment is performed at 550 ° C. or more, diffusion from the Fe—Ni-based alloy foil side to the Ti side of the bonding layer proceeds, a diffusion layer is generated at the interface, and Kirkendall voids are generated inside the diffusion layer due to a difference in diffusion speed. However, since this reduces the bonding strength, the heat treatment temperature of the sample of this example was set to 500 ° C.
The degree of orientation after the heat treatment was not changed from that shown in Table 1.
[0028]
Then, by selective etching using the above-described three-layer laminated plate material, an opening portion is formed so as to be an elongated through hole in a direction straight to the rolling direction of the rolled Fe-Ni-based alloy plate material, and a metal mask and did.
The etching pattern was a long hole pattern. In order to evaluate the hole size accuracy, two kinds of long hole pattern samples having target hole sizes of 100 μm (width) × 300 μm (length) and 70 μm (width) × 200 μm (length) were prepared. .
Different exposed resist patterns were prepared for the hole forming layer and for the support layer, respectively. The pattern width of the resist pattern on the opening forming layer side was adjusted so that the opening size after etching was at the target value described above. The pattern width on the support layer side was twice the pattern width on the hole forming layer side. After each resist pattern was formed on each layer, holes were opened with an etchant.
The etchant used was ferric chloride for the hole forming layer and the support layer. Thereafter, 3% of dilute hydrofluoric acid was used to peel off the etched bonding layer (Ti layer) exposed on the opening forming layer and the support layer, and the bonding layer was removed to form a metal mask.
[0029]
About the produced metal mask, the average value of the opening size and its variation were evaluated. The cross-sectional shape of each of the hole-forming layer and the support layer was observed using a microscope, and the angle between the straight line connecting the upper and lower end points of the hole-forming layer and the support layer with respect to the plate plane was 70 °. Those with ゜ or more were rated as ◎, and those with less than 70 ° and 60 ° or more were rated as ○. Table 2 shows the results.
[0030]
[Table 2]
Figure 2004185890
[0031]
The opening size of each of the prepared samples had a deviation from the target opening size of 3 μm or less, and the size variation was within ± 2 μm. Further, the formed through-hole was observed with an electron microscope, and it was confirmed that the through-hole was not deformed and the cross-section of the through-hole was almost rectangular.
Furthermore, in the metal mask of the present invention, the entrance portion of the hole on the support layer side is sufficiently wide, and when the vapor deposition material particles enter the hole, they are not blocked by the entrance edge portion in the shadow, so that the practical incidence angle can be increased. After confirming that the metal mask was secured, a metal mask capable of forming a pattern with high dimensional accuracy for high-definition displays could be manufactured.
As described above, by using a rolled metal plate as a laminated plate material, a metal mask for high definition use could be manufactured with high productivity without the need for special processing as in the related art.
[0032]
【The invention's effect】
According to the present invention, the accuracy of a deposition pattern using a metal mask can be drastically improved, which is an indispensable technique for practical use of, for example, a high-definition organic EL display.
[Brief description of the drawings]
FIG. 1 is a cross-sectional micrograph showing an example of a laminated plate material used for a metal mask of the present invention and a schematic diagram thereof.
FIG. 2 is a configuration diagram illustrating an example of the present invention.
[Explanation of symbols]
1. 1. aperture forming layer; 2. bonding layer; 3. support layer; Through hole, 4-a. An opening forming layer side opening, 4-b. Support layer side opening

Claims (2)

少なくとも金属圧延板の開孔形成層と、金属圧延板の支持層とを具備するメタルマスクであって、該メタルマスクは前記開孔形成層から支持層に貫通する貫通孔を複数個有し、前記開孔形成層及び支持層の少なくとも一方の層は質量%でNi+Co:30〜55%、C:0.01%以下を含み、残部実質的にFeでなるFe−Ni系合金の圧延板材であり、該Fe−Ni系合金の圧延板材は(111)、(200)、(311)、(220)の主方位のうち(200)が60〜99%であり、前記メタルマスクは前記Fe−Ni系合金の圧延板材の圧延方向に細長形状の貫通孔が形成されていることを特徴とするメタルマスク。A metal mask comprising at least a hole forming layer of a metal rolled plate and a support layer of the metal rolled plate, wherein the metal mask has a plurality of through holes penetrating from the hole forming layer to the support layer, At least one of the hole forming layer and the support layer is a rolled Fe-Ni-based alloy sheet material containing 30% to 55% by mass of Ni + Co and 0.01% or less of C by mass%, and substantially Fe. The rolled sheet material of the Fe-Ni alloy has (200) in the main orientation of (111), (200), (311), and (220) of 60 to 99%, and the metal mask has the Fe-Ni alloy. A metal mask having an elongated through hole formed in a rolling direction of a rolled Ni-based alloy plate material. 請求項1に記載の開孔形成層と支持層とに挟み込まれ、前記開孔形成層及び支持層とはエッチング特性の異なる接合層を有することを特徴とするメタルマスク。A metal mask sandwiched between the hole forming layer and the support layer according to claim 1, wherein the metal mask has a bonding layer having different etching characteristics from the hole forming layer and the support layer.
JP2002349494A 2002-12-02 2002-12-02 Metal mask Pending JP2004185890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002349494A JP2004185890A (en) 2002-12-02 2002-12-02 Metal mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002349494A JP2004185890A (en) 2002-12-02 2002-12-02 Metal mask

Publications (1)

Publication Number Publication Date
JP2004185890A true JP2004185890A (en) 2004-07-02

Family

ID=32752014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002349494A Pending JP2004185890A (en) 2002-12-02 2002-12-02 Metal mask

Country Status (1)

Country Link
JP (1) JP2004185890A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1939685A2 (en) * 2006-12-27 2008-07-02 Samsung SDI Co., Ltd. Mask device, method of fabricating the same, and method of fabricating organic light emitting display device using the same
JP2008255449A (en) * 2007-04-09 2008-10-23 Kyushu Hitachi Maxell Ltd Vapor deposition mask, and method for producing the same
JP2011143728A (en) * 2009-01-30 2011-07-28 Kobelco Kaken:Kk Method for manufacturing mesh member for screen printing
CN103205704A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 Vapor deposition mask
JP5382259B1 (en) * 2013-01-10 2014-01-08 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
JP5382257B1 (en) * 2013-01-10 2014-01-08 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
CN103682171A (en) * 2012-09-07 2014-03-26 昆山允升吉光电科技有限公司 Compound mask plate
WO2016111214A1 (en) * 2015-01-05 2016-07-14 シャープ株式会社 Deposition mask, deposition device, and deposition mask manufacturing method
JP2017125253A (en) * 2016-01-12 2017-07-20 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Mask assembly, manufacturing method thereof, and manufacturing apparatus of display device including the same
JP2018513918A (en) * 2015-04-24 2018-05-31 エルジー イノテック カンパニー リミテッド Metal substrate and mask for vapor deposition using the same
US10233546B2 (en) 2013-09-13 2019-03-19 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
WO2019098167A1 (en) * 2017-11-14 2019-05-23 大日本印刷株式会社 Metal plate for producing vapor deposition masks, production method for metal plates, vapor deposition mask, production method for vapor deposition mask, and vapor deposition mask device comprising vapor deposition mask
US10570498B2 (en) 2015-02-10 2020-02-25 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
US10600963B2 (en) 2014-05-13 2020-03-24 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
JP2020164913A (en) * 2019-03-29 2020-10-08 マクセルホールディングス株式会社 Vapor deposition mask
JP2021036076A (en) * 2018-11-13 2021-03-04 大日本印刷株式会社 Metal plate for manufacturing vapor deposition mask, manufacturing method of metal plate, vapor deposition mask, manufacturing method of vapor deposition mask, and vapor deposition mask device including vapor deposition mask
US11486031B2 (en) 2013-10-15 2022-11-01 Dai Nippon Printing Co., Ltd. Metal plate

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1939685A3 (en) * 2006-12-27 2013-08-21 Samsung Display Co., Ltd. Mask device, method of fabricating the same, and method of fabricating organic light emitting display device using the same
JP2008163448A (en) * 2006-12-27 2008-07-17 Samsung Sdi Co Ltd Mask device, method of fabricating the same, and method of fabricating organic light emitting display device using the same
EP1939685A2 (en) * 2006-12-27 2008-07-02 Samsung SDI Co., Ltd. Mask device, method of fabricating the same, and method of fabricating organic light emitting display device using the same
US8545631B2 (en) 2006-12-27 2013-10-01 Samsung Display Co., Ltd. Mask device, method of fabricating the same, and method of fabricating organic light emitting display device using the same
JP2008255449A (en) * 2007-04-09 2008-10-23 Kyushu Hitachi Maxell Ltd Vapor deposition mask, and method for producing the same
JP2011143728A (en) * 2009-01-30 2011-07-28 Kobelco Kaken:Kk Method for manufacturing mesh member for screen printing
CN103205704A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 Vapor deposition mask
CN103682171A (en) * 2012-09-07 2014-03-26 昆山允升吉光电科技有限公司 Compound mask plate
JP5382259B1 (en) * 2013-01-10 2014-01-08 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
JP5382257B1 (en) * 2013-01-10 2014-01-08 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
WO2014109394A1 (en) * 2013-01-10 2014-07-17 大日本印刷株式会社 Metal plate, metal plate production method, and method for producing vapor deposition mask using metal plate
WO2014109393A1 (en) * 2013-01-10 2014-07-17 大日本印刷株式会社 Metal plate, metal plate production method, and method for producing vapor deposition mask using metal plate
JP2014148740A (en) * 2013-01-10 2014-08-21 Dainippon Printing Co Ltd Metal plate, production method of metal plate, and method for producing vapor deposition mask by using metal plate
JP2014148743A (en) * 2013-01-10 2014-08-21 Dainippon Printing Co Ltd Metal plate, production method of metal plate, and production method of vapor deposition mask by using metal plate
CN104838037A (en) * 2013-01-10 2015-08-12 大日本印刷株式会社 Metal plate, metal plate production method, and method for producing vapor deposition mask using metal plate
US10233546B2 (en) 2013-09-13 2019-03-19 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US10731261B2 (en) 2013-09-13 2020-08-04 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US11486031B2 (en) 2013-10-15 2022-11-01 Dai Nippon Printing Co., Ltd. Metal plate
US11217750B2 (en) 2014-05-13 2022-01-04 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
US10600963B2 (en) 2014-05-13 2020-03-24 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
CN107208250A (en) * 2015-01-05 2017-09-26 夏普株式会社 Mask, evaporation coating device and the manufacture method that mask is deposited is deposited
WO2016111214A1 (en) * 2015-01-05 2016-07-14 シャープ株式会社 Deposition mask, deposition device, and deposition mask manufacturing method
US10570498B2 (en) 2015-02-10 2020-02-25 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
US10612124B2 (en) 2015-02-10 2020-04-07 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
JP2018513918A (en) * 2015-04-24 2018-05-31 エルジー イノテック カンパニー リミテッド Metal substrate and mask for vapor deposition using the same
KR20170084738A (en) * 2016-01-12 2017-07-21 삼성디스플레이 주식회사 Mask assembly, manufacturing method for the same, manufacturing apparatus for a display apparatus having the same
KR102586048B1 (en) * 2016-01-12 2023-10-10 삼성디스플레이 주식회사 Mask assembly, manufacturing method for the same, manufacturing apparatus for a display apparatus having the same
JP2017125253A (en) * 2016-01-12 2017-07-20 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Mask assembly, manufacturing method thereof, and manufacturing apparatus of display device including the same
JP7167936B2 (en) 2017-11-14 2022-11-09 大日本印刷株式会社 Metal plate for manufacturing vapor deposition mask, method for manufacturing metal plate, vapor deposition mask, method for manufacturing vapor deposition mask, and vapor deposition mask apparatus provided with vapor deposition mask
JPWO2019098167A1 (en) * 2017-11-14 2020-12-17 大日本印刷株式会社 A metal plate for manufacturing a vapor deposition mask, a method for manufacturing the metal plate, a vapor deposition mask, a method for manufacturing the vapor deposition mask, and a vapor deposition mask apparatus including the vapor deposition mask.
US11237481B2 (en) 2017-11-14 2022-02-01 Dai Nippon Printing Co., Ltd. Metal plate for manufacturing deposition mask and manufacturing method for metal plate, and deposition mask and manufacturing method for deposition mask
KR20200087185A (en) * 2017-11-14 2020-07-20 다이니폰 인사츠 가부시키가이샤 A metal plate for manufacturing a deposition mask and a method for manufacturing the metal plate, and a deposition mask, a method for manufacturing the deposition mask, and a deposition mask device including the deposition mask
JP2020079441A (en) * 2017-11-14 2020-05-28 大日本印刷株式会社 Metal plate for producing vapor deposition mask, method for producing metal plate, vapor deposition mask, method for producing vapor deposition mask, and vapor deposition mask apparatus provided with vapor deposition mask
US11733607B2 (en) 2017-11-14 2023-08-22 Dai Nippon Printing Co., Ltd. Metal plate for producing vapor deposition masks, inspection method for metal plates, production method for metal plates, vapor deposition mask, vapor deposition mask device, and production method for vapor deposition masks
WO2019098167A1 (en) * 2017-11-14 2019-05-23 大日本印刷株式会社 Metal plate for producing vapor deposition masks, production method for metal plates, vapor deposition mask, production method for vapor deposition mask, and vapor deposition mask device comprising vapor deposition mask
KR102596249B1 (en) * 2017-11-14 2023-11-01 다이니폰 인사츠 가부시키가이샤 A metal plate and a method of manufacturing a metal plate for manufacturing a deposition mask, and a deposition mask, a method of manufacturing the deposition mask, and a deposition mask device comprising the deposition mask
JP7478364B2 (en) 2017-11-14 2024-05-07 大日本印刷株式会社 METHOD FOR EVALUATING METAL PLATES FOR MANUFACTURING EVAPORATION MASKS
JP2021036076A (en) * 2018-11-13 2021-03-04 大日本印刷株式会社 Metal plate for manufacturing vapor deposition mask, manufacturing method of metal plate, vapor deposition mask, manufacturing method of vapor deposition mask, and vapor deposition mask device including vapor deposition mask
JP7478359B2 (en) 2018-11-13 2024-05-07 大日本印刷株式会社 Metal plate for manufacturing a deposition mask, method for manufacturing a metal plate, deposition mask, method for manufacturing a deposition mask, and deposition mask device including a deposition mask
JP2020164913A (en) * 2019-03-29 2020-10-08 マクセルホールディングス株式会社 Vapor deposition mask
JP7473298B2 (en) 2019-03-29 2024-04-23 マクセル株式会社 Evaporation mask

Similar Documents

Publication Publication Date Title
JP2004185890A (en) Metal mask
JP5517196B2 (en) Superconducting compound substrate and manufacturing method thereof
JP2011097038A (en) Ceramic wiring substrate and manufacturing method of the same
WO2011007527A1 (en) Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor
JP3975439B2 (en) Metal mask
JP2004362908A (en) Metal mask and manufacturing method thereof
JP4126648B2 (en) Method for manufacturing metal mask member
JP5400416B2 (en) Superconducting wire
TWI716837B (en) Copper foil with glass carrier and manufacturing method thereof
JP2004039628A (en) Metal mask
US20240191343A1 (en) Mask-frame assembly and producing method thereof
CN111406127A (en) Method for manufacturing frame-integrated mask
KR20240084851A (en) Mask frame assembly and producing method thereof
KR20240039474A (en) Mask frame assembly and producing method thereof
US20210114923A1 (en) Systems and methods for adhering copper interconnects in a display device
JP5918920B2 (en) Superconducting compound substrate and manufacturing method thereof
KR20240037652A (en) Mask integrated frame and producing method thereof
US8853797B2 (en) MEMS devices and fabrication thereof
JPH01200651A (en) Manufacture of semiconductor device
KR20240037653A (en) Mask integrated frame and producing method thereof
CN117431501A (en) Mask and support connection and method for manufacturing same
JPH06163544A (en) Wiring structure of semiconductor integrated circuit and fabrication thereof
JPH01184858A (en) Superconducting lead frame and manufacture thereof
JPS63289845A (en) Manufacture of semiconductor device
JPH0364924A (en) Manufacture of semiconductor device