JP4126648B2 - Method for manufacturing metal mask member - Google Patents

Method for manufacturing metal mask member Download PDF

Info

Publication number
JP4126648B2
JP4126648B2 JP2002191721A JP2002191721A JP4126648B2 JP 4126648 B2 JP4126648 B2 JP 4126648B2 JP 2002191721 A JP2002191721 A JP 2002191721A JP 2002191721 A JP2002191721 A JP 2002191721A JP 4126648 B2 JP4126648 B2 JP 4126648B2
Authority
JP
Japan
Prior art keywords
layer
bonding
metal mask
metal
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002191721A
Other languages
Japanese (ja)
Other versions
JP2004039319A (en
Inventor
弘幸 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002191721A priority Critical patent/JP4126648B2/en
Publication of JP2004039319A publication Critical patent/JP2004039319A/en
Application granted granted Critical
Publication of JP4126648B2 publication Critical patent/JP4126648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は有機ELディスプレイ等の蒸着用メタルマスクとして、高精度なパターン成膜が可能なメタルマスク用部材の製造方法に関するものである。
【0002】
【従来の技術】
近年の携帯情報機器に代表されるディスプレイ装置のフルカラー化、小型化、高精細化は急激な進展を遂げている。実用化が進んでいる低分子型有機ELディスプレイの製造工程において、複数の貫通孔を有する蒸着マスクにより発光層等の微細パターンが形成されているが、上述のような高精細化のニーズに対応してメタルマスクは開孔パターンの小サイズ化、高精度化が要求されている。
メタルマスクは板状の金属に複数の貫通孔を設けたもので、基板前方に設置されたメタルマスクを介して、蒸着法等によって基板上に有機物、電極材料等を成膜することにより、開孔形状に対応したパターン成形が行われる。
【0003】
このような複数の貫通孔を有するメタルマスクは、一般に次のような製造方法により製造される。
先ず、メタルマスクとなる金属板を用意し、金属板の表面に所望のパターンのフォトレジスト膜を形成した後エッチングすると、レジスト被覆されていない部分のみがエッチングされて貫通孔が形成される。
この時、エッチング液によるメタルマスク材の侵食の方向は単一方法にはならず、厚さ方向のみならず板の平面方向にも進行する。従って、エッチングにより形成される貫通孔は元のレジストパターンよりも開孔面積が大きくなるという問題を抱えている。
【0004】
平面方向への侵食の程度は処理時間が大きな支配因子であるから、開孔形状を精度良く成形するためには、メタルマスクとなる金属板の厚さを薄くすることが最も有効な手段と考えられる。
しかし、メタルマスクとなる金属板の厚さを20μm以下に設定すると、新たに次のような問題を生じる。
具体的には、蒸着材の付着堆積によりメタルマスクとなる金属板に対して付着蒸着材の重量が重くなりすぎ歪みが生じる。また熱容量が極めて小さくなるため熱膨張による歪みが、マスクの位置精度の悪化、蒸着の回り込みによるパターンの分離不足が発生させる等の問題がある。
また、メタルマスクを使用する際には、歪防止のため予め張力を負荷して使用するが、厚さ20μm以下の薄いメタルマスクでは張力に対する伸び量が大きくなり、僅かな張力の不均一さが歪発生の要因となり、張力の調整が難しくなる。
以上のような問題を解決する手段として、薄い板材で開孔形成し、これを補強する方法がたとえば特開平10-50478号に開示されている。
【0005】
【発明が解決しようとする課題】
上述の特開平10−50478号に記載されている方法は、部分的に補強金属線を設けて、薄い厚みのメタルマスクの撓みを防止するものであるが、この方法では補強金属線の影になる部分では、補強金属線が無い部分よりも蒸着材の付着量が少なくなり、膜の厚さが不均一になるという欠点があった。
本発明の目的は、有機ELディスプレイ等の蒸着用メタルマスクとして、高精度なパターン成膜が可能なメタルマスク用部材の製造方法を提供することである。
【0006】
【課題を解決するための手段】
本発明者は、補強材として線材を用いない方法について鋭意検討してみた所、貫通孔形成する薄い板材と、補強のための板材の組合せが最適であり、更に、貫通孔形成する薄い板材と、補強のための板材別々にエッチングする方法についても検討した結果、メタルマスク用板材としてエッチング特性の異なる複数の板材の積層構造を採用することで、開孔形状の精度を向上し、尚且つメタルマスクの強度を大きく改善できることを見いだし本発明に到達した。
【0007】
即ち本発明は、開孔寸法を定める開孔形成層と支持層とを接合する接合層とを具備し、且つ、前記接合層は乾式成膜層でなり、接合層は開孔形成層と支持層とはエッチング特性が異なるメタルマスク用部材の製造方法であって、開孔寸法を定める開孔形成層となる板材と支持層となる板材の接合表面に、接合層となる乾式成膜層を形成した後、圧着ロールにて前記接合表面に形成した乾式成膜層同士を圧着接合し、開孔寸法を定める開孔形成層と支持層とを接合する接合層とを具備する積層板とし、該積層板に加熱拡散熱処理を行うメタルマスク用部材の製造方法である。
【0008】
【発明の実施の形態】
上述したように、本発明の重要な特徴はメタルマスク用材として複数の金属の積層構造を採用したことにある。
以下に本発明を詳しく説明する。
先ず、本発明のメタルマスク用部材を用いたメタルマスクの構造について、一例を記して説明する。
図1は、本発明のメタルマスク用部材を用いたメタルマスクの断面構造の一例を示す概略図である。図1に示すメタルマスクは板材でなる薄い開孔形成層(1)と、比較的厚い板材でなる支持層(3)と、該開孔形成層(1)と支持層(3)を接合する接合層(2)とからなる三層の金属層で形成される。
開孔形成層(1)と支持層(3)と接合層(2)にはエッチングによりこれら各層を貫く貫通孔(4)を形成することで、メタルマスクとすることができるものである。
【0009】
本発明のメタルマスク用部材を用いたメタルマスクの断面構造において重要な特徴のひとつは、メタルマスクを構成する全ての層が容易にエッチング加工できるため、開孔形成層側開孔部(4−a)と、支持層側開孔部(4−b)とが別々のエッチングパターンでエッチングされており、双方の孔形状が異なることである。
つまり、開孔形成層側開孔部(4−a)は貫通孔部(4)において小径の貫通孔を形成し、厚みの板材でなる薄い開孔形成層(1)に開孔形成層側開孔部(4−a)を設けることにより寸法精度の高い開孔寸法形成を可能にしている。
板材でなる開孔形成層(1)の厚さは、開孔部をエッチングにより形成する際の平面方向への侵食を極力小さくするためになるべく薄い方がよく、少なくとも10μm以下に設定することにより、貫通孔部(4)の寸法精度を±数μmに抑えることが可能である。
【0010】
板材でなる支持層(3)の厚さは強度上厚い方が好ましいが、あまり厚くすると蒸着の際に貫通孔部(4)に影をつくり、蒸着膜厚の不均一さを生じる。
従って貫通孔部(4)の最小長さと同程度かそれ以下の100〜30μm程度に設定するのが適当である。
接合層(2)は、開孔形成層(1)と支持層(3)とを接合するバインダーの役割を果たすと同時に、接合層を開孔形成層(1)と支持層(3)とはエッチング特性の異なる金属とすると、貫通孔部(4)をエッチングにより形成する際に、開孔形成層(1)側の開孔部(4−a)と支持層側開孔部(4−b)とを別々にエッチングするためのバリアの役目も担っている。
なお、本発明において、接合層以外は熱膨張特性の整合の必要があるため、薄い接合層をエッチング特性の異なるものとする。
【0011】
なお、本発明のメタルマスク用部材を用いたメタルマスクの一例として、上述の三層構造のものを示したが、例えば二層構造もある。この場合の組合せは、開孔形成層と支持層となる。
このような二層構造のメタルマスク用部材を製造する場合、通常の金属板同士を重ね合わせて接合し圧延で厚みを薄くしたり、支持層上に成膜法にて金属を積層する方法でも良いが、通常の金属板同士を重ね合わせて接合し圧延で厚みを薄くする方法では、開孔形成層の厚みが不均一になったり、支持層上に成膜法にて金属を積層する方法では、成膜する金属が限定されたり、帯材として連続で製造できなかったり、製造コストが高くなる。
そのため、二層構造のメタルマスク用部材を製造するには、二つの金属帯を巻き出して、被接合面にドライエッチを行って活性化面を形成して、低圧下率によるロール等で圧着する方法をとれば、連続して帯材を製造できるだけでなく、開孔形成層と支持層の厚み変化も少ないことから、最も好ましい方法である。
但し、二層構造のものは、熱膨張係数の差によってパターン蒸着の際に反りを生じやすい。従って本発明のメタルマスク用部材の構成としては三層構造とする。
以下に、三層構造のメタルマスク用部材について述べる。
【0012】
三層構造のメタルマスク用部材となる積層板を製造する方法としては、上述した金属板同士を重ね合わせて接合し圧延で厚みを薄くする方法、金属箔表面に金属を順次成膜する方法、積層材を素材として二つの金属積層帯を巻き出して、被接合面にドライエッチを行って活性化面を形成して、低圧下率によるロール等で圧着する方法、低圧雰囲気中で一対以上の金属箔の表面に第三の金属を付着形成した後、圧着ロールにて接合する方法等がある。
この中でも、本願出願人の提案による2001−162382号で示す低圧雰囲気中で一対以上の金属箔の表面に第三の金属を乾式成膜した後、圧着ロールにて接合する方法は最も生産性が高く、メッキよりも開孔形成層の面粗度がよいので、該メタルマスク用積層板の製造方法として適している。
また、乾式成膜層を付着形成することから、均一な厚みの接合層とすることもでき、特に好ましい。
【0013】
また、本発明において、板材でなる開孔形成層と板材でなる支持層と接合層のうち、少なくとも何れか一層は、残りの層とはエッチング特性が異なるものであると、エッチング処理を選択的に行える。
上述した層のうち、開孔形成層及び支持層を構成する金属材料としては熱膨張による蒸着パターンずれ防止のため、熱膨張係数の小さい金属材料であれば用いることが可能である。中でも、入手のし易さや、エッチング特性を考慮すると、たとえばインバー合金、42%Ni合金等のFe−Ni系合金を用いるのが特に望ましい。
また、CrやCoを添加したスーパーインバー合金や、Fe−Ni−Cr系合金の適用も可能である。
【0014】
この時、板材でなる開孔形成層(1)と板材でなる支持層(3)とを同じ材質とし、接合層を異種金属とすると、開孔形成層と支持層とを同時にエッチング加工することもできるばかりか、接合層以外は熱膨張特性の整合の必要があるため、薄い接合層をエッチング特性の異なるものとするのが良く、望ましくは開孔形成層と支持層に用いる金属材料を同種の金属または合金として、接合層を異種の金属とすると良い。
【0015】
本発明の接合層を構成する材料は、種々の金属の中から必要に応じて適宜選択する。例えば、上述のように板材でなる開孔形成層及び板材でなる支持層にFe−Ni系合金とすると、Fe−Ni系合金と接着力が高く、しかもエッチング特性が異なるものが良いため、Ti,Sn,Ag等の金属や、これらを主成分とする合金を用いるのが良い。
そして、接合層の厚さはエッチングバリアとして必要な厚さを確保できればよく、1μm程度の厚みがあれば十分である。
なお、接合層による開孔形成層及び支持層の接合において、より接合力を高めるため、加熱拡散熱処理を組合せる。この時には、拡散層が新たに形成されるが、本発明ではこの拡散層も接合層として定義する。
【0016】
【実施例】
以下に本発明を実施例及び図面に基づいて詳細に説明する。
図1は本発明のメタルマスク用部材を用いたメタルマスクの一例を示す概略図である。図1に示すメタルマスクは板材でなる薄い開孔形成層(1)と、板材でなる比較的厚い支持層(3)と、該開孔形成層(1)と支持層(3)を接合する接合層(2)とからなる三層の金属層で形成される。また図2にこの断面顕微鏡像を示す。図2の三層金属板はメタルマスク用部材の断面顕微鏡写真とその模式図であり、上側が厚み10μmのFe−42%Ni合金からなる開孔形成層(1)、下側が厚み90μmのFe−42%Ni合金からなる支持層(3)、中央の極めて薄い層が1μmのTiでなる接合層(2)である。
【0017】
このメタルマスクとなるメタルマスク用部材の積層板を製造する方法としては、低圧雰囲気中で開孔形成層となるFe−42%Ni合金(10μm)と、支持層であるFe−42%Ni合金(90μm)の接合表面に純Tiを乾式成膜(蒸着)した後、圧着ロールにて接合する方法を採用した。
また、接合前に各Fe−42%Ni合金は接合強度向上のために塩酸による洗浄を行っている。なお、今回の実施例では塩酸による洗浄を行ったが、酸洗浄のほかに、低圧雰囲気中で処理可能なドライエッチング等の方法も有効である。
【0018】
上述の方法で接合した三層金属板でなる積層板はそのままでは接合強度が若干弱く、引き剥がし試験では0.1kN/m以下であったため、不活性ガス雰囲気中で加熱拡散熱処理することにより、接合強度を強固なものとしてメタルマスク用部材とした。
加熱拡散熱処理後の引き剥がし試験では、開孔形成層である10μm側Fe−42%Ni合金が破断し引き剥がし不可能であった。なお、接合層のTiが各Fe−42%Ni合金と拡散接合するための加熱拡散熱処理温度は400℃以上であれば良い。
但し、650℃程度で加熱拡散熱処理するとFe−42%Ni合金の急激な軟化が起こるので、支持層材の強度を低下させることなく、且つ接合力を向上させるためには400℃〜500℃で加熱拡散熱処理するのがよい。
【0019】
上記のメタルマスク用部材を用いて選択エッチングにより開孔部を形成し、図1に示すメタルマスクを作成した。開孔形成層及び支持層の開孔は各々別のエッチングパターンを使用した。エッチングパターンはデルタ配列とし、開孔形成層側開孔部の幅寸法は100μmとした。
エッチング液は開孔形成層及び支持層には塩化第二鉄を使用し、Ti層剥離には希フッ酸3%を使用した。
開孔部の寸法はいずれも100μm±5μmの範囲に収まっており、高精細ディスプレイ用途として寸法精度の高いメタルマスクを製作することができた。
【0020】
【発明の効果】
本発明によればメタルマスクを用いた蒸着パターン精度を飛躍的に改善することができ、高精細有機ELディスプレイの実用化にとって欠くことのできない技術となる。
【図面の簡単な説明】
【図1】 本発明のメタルマスク用部材を用いたメタルマスクの一例を示す構成図である。
【図2】 本発明のメタルマスク用部材の断面顕微鏡写真とその模式図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a metal mask member capable of forming a highly accurate pattern as a metal mask for vapor deposition of an organic EL display or the like.
[0002]
[Prior art]
In recent years, full-color display, downsizing, and high-definition display devices represented by portable information devices have made rapid progress. In the manufacturing process of low-molecular-type organic EL displays that are in practical use, fine patterns such as light-emitting layers are formed by vapor deposition masks that have multiple through-holes. Metal masks are required to have a small and highly accurate aperture pattern.
A metal mask is a plate-like metal with a plurality of through-holes. The metal mask is opened by depositing organic substances, electrode materials, etc. on the substrate by vapor deposition or the like through a metal mask placed in front of the substrate. Pattern formation corresponding to the hole shape is performed.
[0003]
Such a metal mask having a plurality of through holes is generally manufactured by the following manufacturing method.
First, when a metal plate serving as a metal mask is prepared and a photoresist film having a desired pattern is formed on the surface of the metal plate and then etched, only a portion not covered with the resist is etched to form a through hole.
At this time, the direction of erosion of the metal mask material by the etching solution is not a single method, and proceeds not only in the thickness direction but also in the plane direction of the plate. Therefore, the through hole formed by etching has a problem that the opening area is larger than that of the original resist pattern.
[0004]
Since the degree of erosion in the plane direction is a major factor in processing time, it is considered the most effective means to reduce the thickness of the metal plate used as the metal mask in order to accurately form the aperture shape. It is done.
However, if the thickness of the metal plate serving as the metal mask is set to 20 μm or less, the following problem is newly generated.
Specifically, due to the deposition of the vapor deposition material, the weight of the deposited vapor deposition material becomes too heavy with respect to the metal plate serving as the metal mask, causing distortion. In addition, since the heat capacity is extremely small, distortion due to thermal expansion causes problems such as deterioration in mask position accuracy and insufficient pattern separation due to deposition wraparound.
In addition, when using a metal mask, tension is applied in advance to prevent distortion. However, a thin metal mask with a thickness of 20 μm or less has a large elongation with respect to the tension, and there is slight uneven tension. It becomes a cause of distortion and tension adjustment becomes difficult.
As means for solving the above problems, for example, Japanese Patent Application Laid-Open No. 10-50478 discloses a method of forming a hole with a thin plate material and reinforcing it.
[0005]
[Problems to be solved by the invention]
The method described in JP-A-10-50478 described above is to partially provide a reinforcing metal wire to prevent the thin metal mask from being bent. In such a portion, the deposition amount of the vapor deposition material is smaller than that in the portion without the reinforcing metal wire, and the film thickness is not uniform.
The objective of this invention is providing the manufacturing method of the member for metal masks which can form a highly accurate pattern film as a metal mask for vapor depositions, such as an organic EL display.
[0006]
[Means for Solving the Problems]
The inventor has intensively studied a method that does not use a wire as a reinforcing material, and a combination of a thin plate material for forming a through hole and a plate material for reinforcement is optimal, and further, a thin plate material for forming a through hole, As a result of studying the method of etching separately for the reinforcing plate material, the use of a laminated structure of a plurality of plate materials with different etching characteristics as the metal mask plate material improves the accuracy of the aperture shape, and the metal The inventors have found that the strength of the mask can be greatly improved and have reached the present invention.
[0007]
That is, the present invention comprises an opening forming layer for determining an opening size and a bonding layer for bonding the support layer, and the bonding layer is a dry film-forming layer, and the bonding layer is a hole-forming layer and a support layer. A layer is a manufacturing method of a member for a metal mask having different etching characteristics, and a dry film forming layer serving as a bonding layer is formed on a bonding surface of a plate material serving as a hole forming layer and a plate material serving as a support layer for determining a hole size. After the formation, a dry-bonded layer formed on the bonding surface with a pressure roll is pressure bonded to each other, and a laminate including a bonding layer for bonding a hole forming layer and a support layer for determining a hole size, It is a manufacturing method of the member for metal masks which performs heat diffusion heat processing to this laminated board .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As mentioned above, an important feature of the present invention lies in adopting a laminated structure of a plurality of metals as member for the metal mask.
The present invention is described in detail below.
First, the structure of a metal mask using the metal mask member of the present invention will be described with an example.
FIG. 1 is a schematic view showing an example of a cross-sectional structure of a metal mask using the metal mask member of the present invention. The metal mask shown in FIG. 1 joins a thin hole forming layer (1) made of a plate material, a support layer (3) made of a relatively thick plate material, and the hole forming layer (1) and the support layer (3). It is formed of three metal layers composed of the bonding layer (2).
By forming through holes (4) penetrating these layers in the hole forming layer (1), the support layer (3) and the bonding layer (2) by etching, a metal mask can be obtained.
[0009]
One of the important features in the cross-sectional structure of the metal mask using the metal mask member of the present invention is that all the layers constituting the metal mask can be easily etched. a) and the opening part (4-b) on the support layer side are etched with different etching patterns, and both hole shapes are different.
That is, the opening forming layer side opening portion (4-a) forms a small-diameter through hole in the through hole portion (4), and the opening forming layer side is formed on the thin opening forming layer (1) made of a thick plate material. By providing the opening portion (4-a), it is possible to form an opening size with high dimensional accuracy.
The thickness of the hole forming layer (1) made of a plate material is preferably as thin as possible in order to minimize the erosion in the plane direction when the hole is formed by etching, and is set to at least 10 μm or less. The dimensional accuracy of the through hole (4) can be suppressed to ± several μm.
[0010]
The thickness of the support layer (3) made of a plate material is preferably thick in terms of strength. However, if the thickness is too large, the through-hole portion (4) is shaded during vapor deposition, resulting in non-uniform deposition thickness.
Therefore, it is appropriate to set it to about 100 to 30 μm, which is about the same as or less than the minimum length of the through hole (4).
The bonding layer (2) serves as a binder for bonding the hole forming layer (1) and the support layer (3), and at the same time, the bonding layer is composed of the hole forming layer (1) and the support layer (3). When the metal having different etching characteristics is used, when the through hole portion (4) is formed by etching, the opening portion (4-a) on the opening forming layer (1) side and the support layer side opening portion (4-b) are formed. ) And a barrier for etching separately.
In the present invention, except the bonding layer due to the need for matching the thermal expansion characteristics, you thin bonding layer and those having different etching characteristics.
[0011]
In addition, although the thing of the above-mentioned three-layer structure was shown as an example of the metal mask using the member for metal masks of this invention, there also exists a two-layer structure, for example. In this case, the combination is an aperture forming layer and a support layer.
When manufacturing a metal mask member having such a two-layer structure, it is possible to overlap ordinary metal plates and join them together to reduce the thickness by rolling, or to laminate a metal on a support layer by a film forming method. It is good, but the method of stacking and joining ordinary metal plates together and reducing the thickness by rolling makes the thickness of the hole forming layer non-uniform or stacks the metal on the support layer by a film forming method Then, the metal to form into a film is limited, it cannot manufacture continuously as a strip | belt material, or manufacturing cost becomes high.
Therefore, in order to manufacture a metal mask member with a two-layer structure, two metal bands are unwound, dry etching is performed on the surfaces to be joined, an activated surface is formed, and pressure bonding is performed with a roll or the like at a low pressure reduction rate. This method is the most preferable method because it can not only continuously produce the band material, but also has little change in the thickness of the hole forming layer and the support layer.
However, the two-layer structure tends to warp during pattern deposition due to the difference in thermal expansion coefficient. Accordingly, the metal mask member of the present invention has a three-layer structure.
The metal mask member having a three-layer structure will be described below.
[0012]
As a method of manufacturing a laminated plate to be a member for a metal mask having a three-layer structure, a method of stacking and joining the metal plates described above and reducing the thickness by rolling, a method of sequentially forming a metal on the surface of the metal foil, A method of unwinding two metal laminated strips using a laminated material as a raw material, performing dry etching on the bonded surfaces to form an activated surface, and press-bonding with a roll or the like with a low pressure reduction rate, one or more pairs in a low pressure atmosphere There is a method in which a third metal is attached and formed on the surface of the metal foil and then joined by a pressure roll.
Among these, the method in which a third metal is dry-deposited on the surface of a pair of metal foils in a low-pressure atmosphere shown in 2001-162382 proposed by the applicant of the present invention, and then joined by a pressure roll is the most productive. Since the surface roughness of the hole forming layer is higher than that of plating, it is suitable as a method for producing the metal mask laminate.
In addition, since the dry film-forming layer is formed by adhesion, a bonding layer having a uniform thickness can be obtained, which is particularly preferable.
[0013]
In the present invention, of the support layer and the bonding layer formed of a hole forming layer and plate material made of a plate material, and more at least one, if the remaining layers in which etching characteristics different, selectively etching treatment It can be done.
Of the above-described layers, the metal material constituting the hole forming layer and the support layer can be any metal material having a low coefficient of thermal expansion in order to prevent a deposition pattern shift due to thermal expansion. Among these, considering availability and etching characteristics, it is particularly desirable to use, for example, an Fe—Ni alloy such as an Invar alloy or a 42% Ni alloy.
In addition, a super invar alloy to which Cr or Co is added, or an Fe-Ni-Cr alloy can be applied.
[0014]
At this time , if the hole forming layer (1) made of a plate material and the support layer (3) made of a plate material are made of the same material and the bonding layer is made of a different metal, the hole forming layer and the support layer are etched simultaneously. In addition, since it is necessary to match the thermal expansion characteristics except for the bonding layer, it is better to make the thin bonding layer have different etching characteristics. Desirably, the metal materials used for the hole forming layer and the support layer are the same. As the metal or alloy, the bonding layer may be a different metal.
[0015]
The material which comprises the joining layer of this invention is suitably selected from various metals as needed. For example, if the hole-forming layer made of a plate material and the support layer made of a plate material are made of an Fe—Ni based alloy as described above, it is preferable to have a high adhesive force and different etching characteristics from the Fe—Ni based alloy. It is preferable to use a metal such as Sn, Ag, or an alloy containing these as a main component.
As the thickness of the bonding layer, a thickness necessary for an etching barrier may be secured, and a thickness of about 1 μm is sufficient.
In the bonding of the hole forming layer and the support layer by the bonding layer, a heat diffusion heat treatment is combined in order to further increase the bonding force. At this time, a diffusion layer is newly formed. In the present invention, this diffusion layer is also defined as a bonding layer.
[0016]
【Example】
Hereinafter, the present invention will be described in detail based on examples and drawings.
FIG. 1 is a schematic view showing an example of a metal mask using the metal mask member of the present invention. The metal mask shown in FIG. 1 joins a thin hole forming layer (1) made of a plate material, a relatively thick support layer (3) made of a plate material, and the hole forming layer (1) and the support layer (3). It is formed of three metal layers composed of the bonding layer (2). Moreover, this cross-sectional microscope image is shown in FIG. The three-layer metal plate in FIG. 2 is a cross-sectional micrograph of a metal mask member and a schematic diagram thereof, the upper side being an aperture forming layer (1) made of a 10-μm thick Fe-42% Ni alloy, and the lower side being a 90 μm-thick Fe layer. A support layer (3) made of -42% Ni alloy, and a very thin layer at the center is a bonding layer (2) made of 1 μm Ti.
[0017]
As a method for producing a laminate for metal mask member comprising this metal mask, a Fe-42% Ni alloy serving as the hole forming layer in a low pressure atmosphere (10 [mu] m), a supporting layer Fe-42% Ni A method was adopted in which pure Ti was formed into a dry film (evaporated) on the bonding surface of the alloy (90 μm) and then bonded with a pressure roll.
Before joining, each Fe-42% Ni alloy is washed with hydrochloric acid to improve the joining strength. In this example, cleaning with hydrochloric acid was performed, but in addition to acid cleaning, a method such as dry etching that can be processed in a low-pressure atmosphere is also effective.
[0018]
The laminated plate made of the three-layer metal plate joined by the above method is slightly weak in bonding strength as it is, and it was 0.1 kN / m or less in the peeling test, so by performing heat diffusion heat treatment in an inert gas atmosphere, It was member for a metal mask by a bonding strength and strong.
In the peeling test after the heat diffusion heat treatment, the 10 μm-side Fe-42% Ni alloy as the hole forming layer was broken and could not be peeled off. Note that the heat diffusion heat treatment temperature for diffusion bonding of Ti in the bonding layer with each Fe-42% Ni alloy should be 400 ° C. or higher.
However, when heat-diffusion heat treatment is performed at about 650 ° C., the Fe-42% Ni alloy suddenly softens. Therefore, in order to improve the bonding strength without reducing the strength of the support layer material, the temperature is 400 ° C. to 500 ° C. Heat diffusion heat treatment is preferable.
[0019]
Opening portions were formed by selective etching using the above metal mask member, and the metal mask shown in FIG. 1 was created. A different etching pattern was used for each of the hole forming layer and the support layer. The etching pattern was a delta arrangement, and the width dimension of the aperture forming layer side aperture was 100 μm.
As the etching solution, ferric chloride was used for the hole forming layer and the support layer, and dilute hydrofluoric acid 3% was used for peeling the Ti layer.
The dimensions of the apertures were all in the range of 100 μm ± 5 μm, and a metal mask with high dimensional accuracy could be manufactured for high-definition display applications.
[0020]
【The invention's effect】
According to the present invention, the accuracy of vapor deposition pattern using a metal mask can be drastically improved, which is an indispensable technique for the practical use of a high-definition organic EL display.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an example of a metal mask using a metal mask member of the present invention.
FIG. 2 is a cross-sectional micrograph of a metal mask member of the present invention and a schematic diagram thereof.

Claims (1)

開孔寸法を定める開孔形成層と支持層とを接合する接合層とを具備し、且つ、前記接合層は乾式成膜層でなり、接合層は開孔形成層と支持層とはエッチング特性が異なるメタルマスク用部材の製造方法であって、開孔寸法を定める開孔形成層となる板材と支持層となる板材の接合表面に、接合層となる乾式成膜層を形成した後、圧着ロールにて前記接合表面に形成した乾式成膜層同士を圧着接合し、開孔寸法を定める開孔形成層と支持層とを接合する接合層とを具備する積層板とし、該積層板に加熱拡散熱処理を行うことを特徴とするメタルマスク用部材の製造方法。A bonding layer for bonding the hole forming layer for determining the hole size and the support layer; and the bonding layer is a dry film-forming layer, and the bonding layer is an etching characteristic of the hole forming layer and the support layer. Is a method of manufacturing a member for a metal mask having a different shape, and after forming a dry film forming layer to be a bonding layer on a bonding surface of a plate material to be a hole forming layer and a plate material to be a support layer for determining an opening dimension, press bonding A dry-bonded layer formed on the bonding surface with a roll is pressure-bonded to each other to form a laminated plate having a bonding layer for bonding a hole-forming layer for defining a hole size and a support layer, and the laminated plate is heated. A method for producing a metal mask member, comprising performing diffusion heat treatment.
JP2002191721A 2002-07-01 2002-07-01 Method for manufacturing metal mask member Expired - Fee Related JP4126648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191721A JP4126648B2 (en) 2002-07-01 2002-07-01 Method for manufacturing metal mask member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191721A JP4126648B2 (en) 2002-07-01 2002-07-01 Method for manufacturing metal mask member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003158965A Division JP2004039628A (en) 2003-06-04 2003-06-04 Metal mask

Publications (2)

Publication Number Publication Date
JP2004039319A JP2004039319A (en) 2004-02-05
JP4126648B2 true JP4126648B2 (en) 2008-07-30

Family

ID=31701206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191721A Expired - Fee Related JP4126648B2 (en) 2002-07-01 2002-07-01 Method for manufacturing metal mask member

Country Status (1)

Country Link
JP (1) JP4126648B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170052472A (en) 2015-11-04 2017-05-12 제이엑스금속주식회사 Metal mask material and metal mask
US11825727B2 (en) 2020-11-24 2023-11-21 Samsung Display Co., Ltd. Mask, method of providing mask, and method of providing display panel using the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4197259B2 (en) * 2003-02-10 2008-12-17 株式会社 日立ディスプレイズ Method for manufacturing organic EL display device and vapor deposition mask
KR101434084B1 (en) * 2010-05-28 2014-09-22 샤프 가부시키가이샤 Evaporation mask, and production method and production apparatus for organic el element using evaporation mask
CN103205673A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 Preparation method of mask plate for vapor plating
CN103682171A (en) * 2012-09-07 2014-03-26 昆山允升吉光电科技有限公司 Compound mask plate
JP5382259B1 (en) * 2013-01-10 2014-01-08 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
JP5382257B1 (en) * 2013-01-10 2014-01-08 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
JP5455099B1 (en) 2013-09-13 2014-03-26 大日本印刷株式会社 Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate
JP5516816B1 (en) * 2013-10-15 2014-06-11 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
JP5641462B1 (en) 2014-05-13 2014-12-17 大日本印刷株式会社 Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate
WO2016111214A1 (en) * 2015-01-05 2016-07-14 シャープ株式会社 Deposition mask, deposition device, and deposition mask manufacturing method
CN106460150B (en) 2015-02-10 2020-01-10 大日本印刷株式会社 Method for manufacturing vapor deposition mask, metal plate for manufacturing vapor deposition mask, and method for manufacturing metal plate
JP2020158843A (en) * 2019-03-27 2020-10-01 日立金属株式会社 Clad plate material for metal mask and metal mask
CN116197680B (en) * 2023-03-21 2023-09-29 寰采星科技(宁波)有限公司 Manufacturing method of precise metal mask strip

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726163A (en) * 1980-07-23 1982-02-12 Hitachi Ltd Mask for forming thin film and its manufacture
JPS5873767A (en) * 1981-10-28 1983-05-04 Hitachi Ltd Mask for formation of thin film and production thereof
JP3024641B1 (en) * 1998-10-23 2000-03-21 日本電気株式会社 Shadow mask, method of manufacturing the same, and method of manufacturing organic EL display using shadow mask
JP3339632B2 (en) * 1999-09-22 2002-10-28 日立金属株式会社 Manufacturing method of laminated metal strip and laminated metal strip
JP2001237072A (en) * 2000-02-24 2001-08-31 Tohoku Pioneer Corp Metal mask and manufacturing method of the same
JP2001254169A (en) * 2000-03-13 2001-09-18 Optonix Seimitsu:Kk Metal mask for vapor deposition, and its manufacturing method
JP2003183811A (en) * 2001-12-17 2003-07-03 Koken Chemical Co Ltd Metal mask and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170052472A (en) 2015-11-04 2017-05-12 제이엑스금속주식회사 Metal mask material and metal mask
US11825727B2 (en) 2020-11-24 2023-11-21 Samsung Display Co., Ltd. Mask, method of providing mask, and method of providing display panel using the same

Also Published As

Publication number Publication date
JP2004039319A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP4126648B2 (en) Method for manufacturing metal mask member
TW200803681A (en) Process for producing circuit board
JP2006286971A (en) Composite substrate, manufacturing method thereof, thin-film device, and manufacturing method thereof
KR920006106A (en) Metal-film stacks resistant to delamination
WO2021027102A1 (en) Flexible display panel and manufacturing method for flexible display panel
JP2004185890A (en) Metal mask
WO2013125076A1 (en) Copper-clad two-layer material and process for producing same
JP2004362908A (en) Metal mask and manufacturing method thereof
JP3975439B2 (en) Metal mask
TW201107532A (en) Metal-coated polyimide film and process for producing the same
JP2004039628A (en) Metal mask
JP2711004B2 (en) Method of manufacturing multilayer circuit having dynamic bending region and flexible circuit manufactured by the method
JP2001295040A5 (en)
WO2020119339A1 (en) Metal foil having carrier and preparation method therefor
JP2023126205A (en) Clad plate material for metal mask, and metal mask
JP2022111045A (en) wiring circuit board
JP2000228571A (en) Metal transfer film
JP2004530282A5 (en)
TWI795356B (en) Conductive Substrate
JP2004141918A (en) Method for manufacturing laminated metal plate and laminated metal plate
JP2000246462A (en) Manufacture of laminated metallic plate
JP7414925B2 (en) Display substrate
JP3944401B2 (en) Flexible printed circuit board and manufacturing method thereof
JP2003198120A (en) Flexible printed circuit board and method of manufacturing the same
JP3309646B2 (en) Manufacturing method of ceramic laminated electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080501

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees