JP2004179814A - Agc回路および差動増幅回路 - Google Patents

Agc回路および差動増幅回路 Download PDF

Info

Publication number
JP2004179814A
JP2004179814A JP2002341675A JP2002341675A JP2004179814A JP 2004179814 A JP2004179814 A JP 2004179814A JP 2002341675 A JP2002341675 A JP 2002341675A JP 2002341675 A JP2002341675 A JP 2002341675A JP 2004179814 A JP2004179814 A JP 2004179814A
Authority
JP
Japan
Prior art keywords
circuit
voltage
channel transistor
output
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002341675A
Other languages
English (en)
Other versions
JP4211369B2 (ja
Inventor
Toshio Maejima
利夫 前島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2002341675A priority Critical patent/JP4211369B2/ja
Publication of JP2004179814A publication Critical patent/JP2004179814A/ja
Application granted granted Critical
Publication of JP4211369B2 publication Critical patent/JP4211369B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Amplifiers (AREA)

Abstract

【課題】従来のAGC回路においては、FET75のソース端にVDD/2を印加しているため、ゲート閾値電圧をVthにしたとき、ゲート電圧を(VDD/2+Vth)以上で制御する必要がある。この発明は、低電源電圧で駆動する回路においても広範囲な制御範囲を有するAGC回路および該AGC回路に用いて好適な差動増幅回路(含むコンパレータ回路)を提供する。
【解決手段】出力電圧と基準電圧とを比較するコンパレータ回路200と、前記コンパレータ回路の出力に基づいて動作状態が切り替わるチャージポンプ回路84と、前記チャージポンプ回路の高電圧出力を時間平均する平均化回路(64,47)と、前記平均化回路の出力によりインピーダンスを増減する第3の素子70により増幅率を可変する増幅回路とを有する。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、低電圧駆動用アナログ回路に用いて好適なAGC(AUTOMATIC GAINCONTROL)回路および該AGC回路に用いて好適な差動増幅回路に関する。
【0002】
【従来の技術】
従来のAGC回路を図1(b)に示す。該AGC回路は、差動増幅回路30ならびに抵抗器53,55および電解コンデンサ62から構成される増幅回路と、MOSFET75および抵抗器51から構成される分圧回路と、基準電圧Vrefを発生する基準電源85および入力電圧を前記基準電圧Vrefと比較した結果に応じて所定電流を出力するコンパレータ回路35から構成される比較回路と、抵抗器57およびコンデンサ64とから構成される。入力交流信号にVDD/2の直流電圧が重畳された入力信号と、FET75のソース端に印加されているVDD/2の直流電圧との差分信号が、基準電圧Vrefにより定まる所定のゲインで増幅される。
さらに、差動増幅回路30の構成を図1(a)に示す。差動増幅回路30は、pチャンネルMOSトランジスタ21,22による差動入力回路およびnチャンネルMOSトランジスタ11,12によるカレントミラー回路と、pチャンネルMOSトランジスタ23,24から構成されるカレントミラー回路と、nチャンネルMOSトランジスタ13およびpチャンネルMOSトランジスタ25から構成される出力回路とから構成される。なお、該差動増幅回路の出力を調整することにより同一の回路構成でコンパレータ回路(35)としても使用可能である。なお、特許文献1には、集積回路内部のチャージポンプ回路を用いて供給された正電源より負電圧を発生させ、出力ドライバを駆動させた回路が開示されている。さらに、特許文献2には、非反転増幅器出力を正電源とし、チャージポンプ回路を用いた負電源を使用してクロストークノイズの防止を図った電源回路が開示されている。
ここで、チャージポンプ回路の具体例を図4(a)、図5(a)に示す。双方の回路とも、複数のコンデンサ、複数のMOSスイッチおよびクロック発生回路から構成され、電源電圧VDDを昇圧した電圧HVoutを出力する。なお、動作中のクロック波形を図4(b)、図5(b)に示す。
【0003】
【特許文献1】
特開2001−309400号公報
【特許文献2】
特開平11−346473号公報
【0004】
【発明が解決しようとする課題】
ところで、単一電源(電源VDDと接地GND間)で動作させる従来のAGC回路においては、FET75のソース端に直流電圧VDD/2を印加しているため、ゲート閾値電圧をVthにしたとき、ゲート電位を「VDD/2+Vth」以上で制御する必要がある。これに対して、コンパレータ回路35の出力電圧変化範囲は0からVDDであるので、低電圧で駆動する場合には制御電圧範囲が{VDD−(VDD/2+Vth)}={VDD/2−Vth}となり、狭くなる問題点があった。その結果、FET75をオン方向へ制御可能な電圧範囲は、「VDD/2−Vth」、すなわち、電源電圧の半分未満の値になる。VDDが十分に大きいときにはVthの電圧降下は問題にならないが、VDDが2V〜3V程度になると、このVthの電圧降下は問題になる。たとえば、VDD=10V、Vth=1Vであれば、VDD/2−Vth=4Vの制御電圧範囲を確保できるが、VDD=3Vであれば、0.5Vの制御電圧範囲に制限される。さらに、差動増幅回路30内部のpチャンネルMOSトランジスタ24によるドレイン−ソース間電圧、nチャンネルMOSトランジスタ11,12のゲート−ソース間電圧の存在により、低電圧で駆動する場合には非反転入力電圧V、反転入力電圧Vを低電圧にすることが出来なかった。さらに、pチャンネルMOSトランジスタ23,24から構成されるカレントミラー回路の存在により、入力電圧を電源電圧近傍で動作させることが出来なかった。これらの問題点は、近年の携帯電話等、低電源電圧(たとえば、約3V)で駆動する回路においては特に重要である。
この発明は、上述した事情に鑑みてなされたものであり、低電源電圧で駆動する回路においても広範囲な制御電圧範囲を確保できるAGC回路および該AGC回路に用いて好適な差動増幅回路(含むコンパレータ回路)を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するため本発明にあっては、下記構成を具備することを特徴とする。なお、括弧内は例示である。
請求項1記載の差動増幅回路にあっては、第1の入力電圧(非反転入力電圧)によりインピーダンスを増減する第1の素子(24,224)に流れる電流と第2の入力電圧(反転入力電圧)によりインピーダンスを増減する第2の素子(23,223)に流れる電流との和を制御するカレントミラー回路(21,22、221,222)と、所定の電源電圧を昇圧し、前記カレントミラー回路を駆動する高電圧電源回路(高電圧発生回路、チャージポンプ回路)と、前記第1の素子に流れる電流と前記第2の素子に流れる電流との差に応じた電圧を出力する負荷回路(25,26,214,215)と、前記電源電圧によって駆動され、前記負荷回路の出力を増幅する出力回路(15,27,216,226)とを有することを特徴とする。
さらに、前記第1の素子および前記第2の素子は、MOSトランジスタによって構成され、前記第1の素子を前記負荷回路に接続する点の電位および前記第2の素子を前記負荷回路に接続する点の電位の双方をゲート閾値電圧以下に設定したことを特徴としてもよい。
さらに、請求項3記載のAGC回路は、出力電圧と基準電圧とを比較するコンパレータ回路(200)と、前記コンパレータ回路の出力に基づいて動作状態が切り替わるチャージポンプ回路(84)と、前記チャージポンプ回路の高電圧出力を時間平均する平均化回路(47,64)と、前記平均化回路の出力により増幅率を増減する増幅回路(41,70,43,45,62,100)とを有することを特徴とする。
さらに、請求項4記載のAGC回路は、前記コンパレータ回路および前記増幅回路は、請求項1記載の差動増幅回路を用いたものであることを特徴とする。
【0006】
【発明の実施の形態】
1. 実施形態の構成
1.1 全体構成
次に、本発明の一実施形態であるAGC回路の全体構成を図2(a)を参照し説明する。
図において、100は差動増幅回路(オペアンプ回路)であり、非反転入力端(+)および反転入力端(−)を有し、入力電位差に比例した電圧を高い増幅率により出力する。200はコンパレータ回路であり、非反転入力端(+)および反転入力端(−)を有し、入力電位差に比例した電圧を高い増幅率により出力する。ここで、差動増幅回路の場合は非飽和出力電圧で使用され、コンパレータ回路の場合は、飽和出力電圧(電源電位に近似する電位あるいは接地電位に近似する電位)で使用される。なお、差動増幅回路100およびコンパレータ回路200の詳細は後述する。41,43,45,47は抵抗器であり、62は電解コンデンサであり、64はコンデンサである。なお、この回路がIC化される場合には、抵抗器、コンデンサはポリシリコン抵抗器、MOSキャパシタで作成される。
【0007】
差動増幅回路100の出力端には抵抗器43の一端が接続され、抵抗器43の他端は差動増幅回路100の反転入力端および抵抗器45の一端に接続されている。また、抵抗器45の他端は電解コンデンサ62を介して接地される。なお、差動増幅回路100には電源としてVDDおよびGND(接地)が接続されている。したがって、差動増幅回路100、抵抗器43,45、電解コンデンサ62の回路は単一電源による非反転増幅回路を構成している。
【0008】
コンパレータ回路200の非反転入力端は、差動増幅回路100の出力端に接続され、反転入力端は基準電圧Vrefを生成する基準電源95を介して接地されている。84はチャージポンプ回路であり、コンデンサおよびスイッチ素子から構成され、コンパレータ回路からの入力信号がONのときに電源電圧VDDを昇圧した電圧を出力する。具体的には、図4(a)あるいは図5(a)の回路が使用されるが、公知技術であるので説明を省略する。70はMOSトランジスタであり、ゲート−ソース間電圧に対応してソース−ドレイン間インピーダンスを変化する。コンパレータ回路200の出力は、チャージポンプ回路84に入力されている。なお、コンパレータ回路200には電源としてVDDおよびGND(接地)が接続されている。
【0009】
チャージポンプ回路84の出力端は抵抗器47およびコンデンサ64の並列回路に接続され、さらに、該出力端はMOSトランジスタ70のゲート端に接続されている。MOSトランジスタ70のドレイン端は、抵抗器41の一端および差動増幅回路100の非反転入力端に接続されている。MOSトランジスタ70のソースは電源電圧VDDの半分の電位に維持されている。AGC回路の入力端子INは抵抗器41に接続され、出力端OUTは差動増幅回路100の出力端に接続されている。なお、AGC回路の入力端子INには、入力交流信号にVDD/2の直流電圧が重畳された信号が入力される。以上の構成により、AGC回路1000が実現される。
【0010】
1.2 差動増幅器の構成
ここで、AGC回路1000に使用される差動増幅回路100の構成を図3を参照して説明する。
図3において、11,12,13,14,15,16,17はnチャンネルトランジスタであり、MOS構造を採用している。これらnチャンネルトランジスタの飽和領域においては、ゲート−ソース間電圧(正)に対して二乗特性の飽和電流がドレイン−ソース間に流れる。また、ゲート電位はドレイン電位よりもゲート閾値電圧だけ増加しても動作可能である。さらに、非飽和領域においては、ドレイン−ソース間インピーダンスRは、ゲート−ソース間電圧をVGSとして、おおよそ「VGS−Vth」に反比例する。また、21,22,23,24,25,26,27はpチャンネルトランジスタであり、MOS構造を採用している。これらpチャンネルトランジスタの飽和領域においては、ゲート−ソース間電圧(負)により二乗特性の飽和電流(負)がドレイン−ソース間に流れる。また、ゲート電位はドレイン電位よりもゲート閾値電圧だけ低下しても動作可能である。なお、これらのトランジスタはエンハンスメント型であり、ゲート閾値電圧は約1[V]である。
【0011】
90は定電流源であり、一定電流Iを出力する。定電流源90の一端は、nチャンネルトランジスタ11のドレイン端およびゲート端に接続され、さらに、nチャンネルトランジスタ12,13,14,15のゲート端に接続されている。そして、nチャンネルトランジスタ11,12,13,14,15のソース端はGND(接地)に接続されている。これらのトランジスタ回路は、カレントミラー回路を構成し、定電流源90に流れる電流Iに比例するように、nチャンネルトランジスタ12,13,14,15のドレイン電流が各々決定される。
【0012】
nチャンネルトランジスタ12のドレイン端は、pチャンネルトランジスタ21のドレイン端およびゲート端に接続され、さらに、pチャンネルトランジスタ22のゲート端に接続されている。80は高電圧発生回路であり、図4(a)あるいは図5(a)の回路が使用される。高電圧発生回路80の出力端は、pチャンネルトランジスタ21,22のソース端に接続され、電源電圧VDDより高い電圧を供給している。pチャンネルトランジスタ21,22はカレントミラー回路を構成している。
【0013】
pチャンネルトランジスタ23,24のソース端はpチャンネルトランジスタ22のドレイン端に接続されている。さらに、pチャンネルトランジスタ23のドレイン端はnチャンネルトランジスタ13のドレイン端に接続され、さらに、nチャンネルトランジスタ16のソース端に接続されている。一方、pチャンネルトランジスタ24のドレイン端は、nチャンネルトランジスタ14のドレイン端に接続され、さらに、nチャンネルトランジスタ17のソース端に接続されている。非反転入力端+INにおける電圧Vがpチャンネルトランジスタ24のゲート端に入力され、反転入力端−INにおける電圧Vがpチャンネルトランジスタ23のゲート端に入力されている。pチャンネルトランジスタ23,24によって、差動入力回路が構成される。
【0014】
nチャンネルトランジスタ16,17のゲート端にバイアス電圧Vが印加されている。nチャンネルトランジスタ16のドレイン端は、pチャンネルトランジスタ25のドレイン端およびゲート端に接続され、さらに、pチャンネルトランジスタ26のゲート端に接続されている。一方、nチャンネルトランジスタ17のドレイン端は、pチャンネルトランジスタ26のドレイン端に接続され、さらにpチャンネルトランジスタ27のゲート端および抵抗器50の一端に接続されている。なお、pチャンネルトランジスタ25、26のソース端には、電源としてVDDが接続されている。pチャンネルトランジスタ25,26によってカレントミラー回路が構成される。なお、nチャンネルトランジスタ13,14,16,17による回路は折り返しカスコード回路といい、pチャンネルトランジスタ25,26を負荷回路という。
【0015】
pチャンネルトランジスタ27のソース端に電源としてVDDが接続され、ドレイン端がnチャンネルトランジスタ15のドレイン端およびコンデンサ60の一端に接続されている。nチャンネルトランジスタ15のドレイン端およびpチャンネルトランジスタ27のドレイン端が出力端OUTに接続されている。つまり、pチャンネルトランジスタ27およびnチャンネルトランジスタ15は出力回路を構成している。なお、コンデンサ60の他端および抵抗器50の他端は互いに接続され、位相補償が行われる。
【0016】
nチャンネルトランジスタ11,12,13,14,15,16,17の基板はGND(接地)に接続され、pチャンネルトランジスタ21,22,23,24,25,26,27の基板はソース端に接続されている。以上の要素により、第1実施形態である差動増幅回路100が構成される。
【0017】
1.3 コンパレータ回路の構成
AGC回路1000に使用されるコンパレータ回路200を図2(b)に示す。
図において、211,212,213,214,215,216はnチャンネルトランジスタであり、221,222,223,224,225,226は、pチャンネルトランジスタであり、280は高電圧発生回路であり、290は定電流源である。nチャンネルトランジスタ211,212,213、pチャンネルトランジスタ221,222、高電圧発生回路280、定電流源290の構成は、図3におけるnチャンネルトランジスタ11,12,13、pチャンネルトランジスタ21,22、高電圧発生回路80、定電流源90の構成と同様である。
【0018】
pチャンネルトランジスタ222のドレイン端はpチャンネルトランジスタ223,224のソース端に接続されている。非反転入力端+INにおける入力電圧V’がpチャンネルトランジスタ224のゲート端に入力され、反転入力端−INにおける入力電圧V’がpチャンネルトランジスタ223のゲート端に入力されている。これにより、pチャンネルトランジスタ223,224は差動入力回路を構成している。
【0019】
pチャンネルトランジスタ223のドレイン端は、nチャンネルトランジスタ214のドレイン端、ゲート端およびnチャンネルトランジスタ215のゲート端に接続されている。また、pチャンネルトランジスタ224のドレイン端は、nチャンネルトランジスタ215のドレイン端およびnチャンネルトランジスタ216のゲート端に接続されている。なお、nチャンネルトランジスタ214,215,216のソースはGND(接地)に接続されている。nチャンネルトランジスタ214,215はカレントミラー回路を構成する。
【0020】
pチャンネルトランジスタ225のドレイン端およびゲート端は、pチャンネルトランジスタ226のゲート端に接続され、さらに、nチャンネルトランジスタ212のドレイン端に接続されている。なお、pチャンネルトランジスタ225,226のソース端には電源VDDが接続されている。この接続により、pチャンネルトランジスタ225,226により、カレントミラー回路が構成される。さらに、pチャンネルトランジスタ226およびnチャンネルトランジスタ216により、出力回路が構成される。以上の構成により、コンパレータ回路200が実現される。
【0021】
2. 実施形態の動作
2.1 差動増幅回路100の動作
ここで、AGC回路1000に使用される差動増幅回路100の動作を図3を参照して説明する。
nチャンネルトランジスタ11,12はカレントミラー回路を構成しているので、nチャンネルトランジスタ12に流れる電流は、nチャンネルトランジスタ11に流れる電流すなわち定電流源90に流れる電流Iに比例する。一方、pチャンネルトランジスタ21,22もカレントミラー回路を構成しているので、pチャンネルトランジスタ22に流れる電流はpチャンネルトランジスタ21に流れる電流、すなわち、nチャンネルトランジスタ12に流れる電流に比例する。したがって、pチャンネルトランジスタ22に流れる電流は、定電流源90に流れる電流Iに比例する。ここで、高電圧発生回路80は、電源電圧VDDよりも高い電圧をpチャンネルトランジスタ21,22に印加している。それにより、非反転入力電圧端(+),反転入力電圧端(−)に、電源電圧VDDと同程度の電圧を印加しても、pチャンネルトランジスタ22におけるドレイン−ソース間の電圧降下に制限されることなく、pチャンネルトランジスタ23,24のゲート−ソース間電圧の極性が反転せず、差動増幅回路100が機能する。
【0022】
なお、図4(a)あるいは図5(a)に示されるチャージポンプ回路は、大電流を出力しようとすると回路が大型化する欠点があるが、簡易な回路で構成できる利点がある。一方、pチャンネルトランジスタ23,24から構成される差動入力回路は比較的消費電流を少なく構成することが可能であるため、IC化する際には、高電圧発生回路80としてチャージポンプ回路の使用が適している。
【0023】
(1) V=Vのとき
非反転入力電圧Vと反転入力電圧Vとが等しい場合においては、pチャンネルトランジスタ23,24のゲート−ソース間電圧VGSが等しいから、両者のドレイン電流が等しい値にされる。そして、各々のドレイン電流が、nチャンネルトランジスタ13,14に流される。その一方、nチャンネルトランジスタ13,14にに流れる電流は、定電流源Iに比例した電流に制限されている。したがって、pチャンネルトランジスタ25に流れる電流は、nチャンネルトランジスタ13に流れる電流からpチャンネルトランジスタ23に流れる電流を減じた電流にされる。その結果、pチャンネルトランジスタ25のゲート−ソース間電圧は、ドレイン電流に対応した値にされ、pチャンネルトランジスタ26のドレイン−ソース間インピーダンスが定められる。
【0024】
一方、pチャンネルトランジスタ26に流れる電流は、nチャンネルトランジスタ14に流れる電流からpチャンネルトランジスタ24に流れる電流を減じた電流にされる。したがって、pチャンネルトランジスタ26のドレイン−ソース間電圧、すなわち、pチャンネルトランジスタ27のゲート−ソース間電圧が定められる。その結果、pチャンネルトランジスタ27のドレイン−ソース間特性が定められる。一方、nチャンネルトランジスタ15はカレントミラー回路を構成しているので、定電流Iに比例した電流が流れる。したがって、pチャンネルトランジスタ27には所定のドレイン−ソース間電圧が生じ、該ドレイン電圧が出力端OUTに出力される。この電圧は、通常VDD/2に設定される。
【0025】
ここで、バイアス電圧Vを調整することにより、nチャンネルトランジスタ16,17のソース電位は、接地電位に対して(ゲート閾値電圧以下の電圧を増加させた電位、具体的には)0.2Vから0.3V増加した電位に設定される。それにより、pチャンネルトランジスタ23,24のドレイン電位が接地電位に対して0.2Vから0.3V増加した電位に設定される。一方、pチャンネルトランジスタ23,24のゲート電位はドレイン電位よりもゲート閾値電圧(約1V)だけ低下しても動作する。したがって、pチャンネルトランジスタ23,24のゲート電位が接地電位まで低下しても、差動増幅回路100が機能する。したがって、高電圧発生回路80による効果を含めて、RAIL to RAIL機能が実現される。ここで、RAIL to RAIL機能とは入力信号レベルが電源電位から接地電位の範囲で動作可能であることを意味する。
【0026】
(2) V>Vのとき
次に、反転入力電圧Vの方が、非反転入力電圧Vよりも低くされた場合の動作を説明する。この場合においては、pチャンネルトランジスタ24のゲート−ソース間電圧が、pチャンネルトランジスタ23のゲート−ソース間電圧よりも低い値にされる。それにより、pチャンネルトランジスタ24に流れる電流は小さくなる。一方、nチャンネルトランジスタ14に流れる電流は一定に制限されている。そのため、pチャンネルトランジスタ26に流れる電流が大きくなる。したがって、pチャンネルトランジスタ27のゲート−ソース間電圧が大きくなり、ドレイン−ソース間インピーダンスが低下する。ここで、nチャンネルトランジスタ15およびpチャンネルトランジスタ27に流れる電流は一定であるので、pチャンネルトランジスタ27のドレイン−ソース間電圧が低くなり、出力電圧VOUTがVDD/2よりも高い値にされる。ここで、たとえば、nチャンネルトランジスタ13,14に供給される電流を一定電流Iとし、pチャンネルトランジスタ22に流れる電流を変化すれば、差動入力回路による増幅率を変化することが可能である。
【0027】
(3) V<Vのとき
次に、非反転入力電圧Vの方が、反転入力電圧Vよりも低い場合について説明する。この場合には、pチャンネルトランジスタ24のゲート−ソース間電圧が、pチャンネルトランジスタ23のゲート−ソース間電圧よりも大きな値にされる。その結果、pチャンネルトランジスタ24にはpチャンネルトランジスタ23よりも大きな電流が流れる。一方、nチャンネルトランジスタ14に流れる電流は一定にされている。そのため、pチャンネルトランジスタ26に流れる電流が小さくなり、pチャンネルトランジスタ27のゲート−ソース間電圧が低くなる。そして、pチャンネルトランジスタ27のドレイン−ソース間インピーダンスが増加する。その一方、nチャンネルトランジスタ15およびpチャンネルトランジスタ27に流れる電流は一定であるので、pチャンネルトランジスタ27のドレイン−ソース間電圧が高くなる。すなわち、出力電圧VOUTがVDD/2よりも低下する。
【0028】
2.2 コンパレータ回路の動作
次に、コンパレータ回路200の動作を図2(b)を参照して説明する。
図において、nチャンネルトランジスタ211,212,213、pチャンネルトランジスタ221,222、高電圧発生回路280、定電流源290の動作は、図3におけるnチャンネルトランジスタ11,12,13、pチャンネルトランジスタ21,22、高電圧発生回路80、定電流源90の動作と同様である。したがって、pチャンネルトランジスタ222のドレイン電流は、定電流源290に流れる電流Iに比例する。
【0029】
(1)V’=V’のとき
非反転入力電圧Vと反転入力電圧Vとが等しくされた場合について説明する。
この場合においては、pチャンネルトランジスタ223,224のゲート−ソース間電圧が等しいから、両者のドレイン電流が等しくなる。nチャンネルトランジスタ214のドレイン電流はpチャンネルトランジスタ223のドレイン電流に等しいため、その電流値によりゲート−ソース間電圧が定められる。そのゲート−ソース間電圧によりnチャンネルトランジスタ215のドレイン−ソース間インピーダンスが定められる。一方、pチャンネルトランジスタ224に流れる電流がnチャンネルトランジスタ215に流れることによって、nチャンネルトランジスタ215のドレイン電圧が定まる。これにより、nチャンネルトランジスタ216のゲート−ソース間電圧が定まりドレイン−ソース間インピーダンスが定められる。
【0030】
ところで、pチャンネルトランジスタ225に流れる電流は、nチャンネルトランジスタ212に流れる電流であり、定電流源290に流れる電流Iに比例する。また、pチャンネルトランジスタ225,226はカレントミラー回路を構成しているので、pチャンネルトランジスタ226に流れる電流はpチャンネルトランジスタ225に流れる電流に比例する。したがって、pチャンネルトランジスタ226に流れる電流は、定電流源290に流れる電流Iに比例した電流にされている。その結果、nチャンネルトランジスタ216のドレイン−ソース間電圧が定まり、nチャンネルトランジスタ216のドレイン電圧が出力される。この電圧は、通常VDD/2に設定される。
【0031】
(2) V’>V’のとき
次に、非反転入力電圧Vの方が反転入力電圧Vよりも高い値にされた場合について説明する。この場合においては、pチャンネルトランジスタ223のゲート−ソース間電圧が、pチャンネルトランジスタ224のゲート−ソース間電圧よりも高い値にされる。それにより、pチャンネルトランジスタ223に流れる電流、すなわち、nチャンネルトランジスタ214に流れる電流が大きな値にされる。それにより、nチャンネルトランジスタ214のゲート−ソース間電圧、すなわち、nチャンネルトランジスタ215のゲート−ソース間電圧が高くなる。その結果、nチャンネルトランジスタ215のドレイン−ソース間インピーダンスが低い値になり、nチャンネルトランジスタ215のドレイン電圧、すなわち、nチャンネルトランジスタ216のゲート−ソース間電圧が低下する。それにより、nチャンネルトランジスタ216のドレイン−ソース間インピーダンスが増加し、オープン状態にされる。その結果、出力電圧VOUT’が電源電位VDD付近の値にされる。
【0032】
(2) V’<V’のとき
次に、反転入力電圧Vの方が非反転入力電圧Vよりも高い値にされた場合について説明する。この場合においては、pチャンネルトランジスタ223のゲート−ソース間電圧が、pチャンネルトランジスタ224のゲート−ソース間電圧よりも低い値にされる。その結果、pチャンネルトランジスタ223に流れる電流、すなわち、nチャンネルトランジスタ214に流れる電流が、小さな値にされる。それにより、nチャンネルトランジスタ214のゲート−ソース間電圧、すなわち、nチャンネルトランジスタ215のゲート−ソース間電圧が低くなる。その結果、nチャンネルトランジスタ215のドレイン−ソース間インピーダンスが高い値になり、nチャンネルトランジスタ215のドレイン電圧、すなわち、nチャンネルトランジスタ216のゲート−ソース間電圧が高くなる。その結果、nチャンネルトランジスタ216のドレイン−ソース間インピーダンスが低下し、出力電圧VOUT’が接地電位付近の値にされる。
【0033】
2.3 AGC回路の動作
ここで、AGC回路1000の動作を図2(a)を参照して説明する。
差動増幅回路100、抵抗器43,45、電解コンデンサ62から構成される非反転増幅回路の出力電圧VOUTは、その非反転入力電圧をV、電解コンデンサ62両端の直流電圧をVcとすると
Vout=(1+R43/R45)V−(R43/R45)Vc
となる。ただし、差動増幅回路100の増幅率は十分に大きいものとする。
差動増幅回路100の非反転入力電圧Vが高く、出力電圧VOUTも高い場合においては、コンパレータ回路200の非反転入力電圧V’が基準電源95の基準電圧Vrefよりも高くなるため、コンパレータ回路200の出力電圧が電源電位VDD付近の値にされる。そして、チャージポンプ回路84がON状態にされ、コンデンサ64が充電され、コンデンサ64両端の電圧が増加する。そして、コンデンサ64、抵抗器47およびチャージポンプ回路84の出力抵抗の作用により、コンデンサ64両端の電圧が平均化される。そして、MOSトランジスタ70のゲート−ソース間電圧が増加して、ソース−ドレイン間のインピーダンスが徐々に低下する。ただし、抵抗器41の抵抗値が充分に大きくトランジスタが非飽和領域で駆動しているとする。一方、入力交流信号にVDD/2の直流電圧が重畳された入力信号VINと、MOSトランジスタ70のソース端に印加されたVDD/2の直流電圧との差分信号すなわち入力交流信号が、抵抗器41およびMOSトランジスタ70のインピーダンスによって分圧される。その結果、非反転入力電圧Vの信号電圧が低下し、AGC回路のゲインが低下する。なお、入力信号VINに重畳されている直流電圧がVDD/2以外の電圧であっても、該直流電圧が増幅されて出力電圧に重畳されるのみである。
【0034】
ここで、チャージポンプ回路84によって電源電圧より高く昇圧された電圧が、MOSトランジスタ70のゲート端に印加される。そして、「VDD/2+Vth」からチャージポンプ回路の最大出力電圧までのゲート電圧の変動範囲により、MOSトランジスタ70のインピーダンス可変範囲が広がる。その結果、電源電圧VDDが低い場合であっても、十分な範囲でMOSトランジスタ70のインピーダンスを調節することが出来る。
【0035】
一方、差動増幅回路100の非反転入力電圧Vが低く、出力電圧VOUTも低い場合においては、コンパレータ回路200の非反転入力電圧V’が基準電源95の基準電圧Vrefよりも低くなるため、コンパレータ回路200の出力電圧が接地電位付近の値にされる。そして、チャージポンプ回路84がOFF状態にされ、コンデンサ64の充電が停止し、徐々に電圧が低下する。そして、MOSトランジスタ70のゲート−ソース間電圧が減少して、ソース−ドレイン間のインピーダンスが徐々に増加する。それにより、差動増幅回路100の非反転入力電圧Vが徐々に増加し、AGC回路のゲインが増加する。
【0036】
なお、定常的には、電解コンデンサ62に充電される電圧Vcが、ほぼ一定値になり、その一定値を保つようにチャージポンプ回路84のON/OFF状態が繰り返されてゆくことになる。
【0037】
3. 変形例
本発明は上述した実施形態に限定されるものではなく、例えば以下のような種々の変形が可能であり、全て本発明の範疇に含まれる。
(1)上記実施形態は、nチャンネルトランジスタ、pチャンネルトランジスタによって構成したが、ジャンクションFETなどの入力電圧によってインピーダンスが増減する素子を用いても構成可能である。
(2)上記実施形態は、チャージポンプ回路を用いた高電圧発生回路80,280によりカレントミラー回路を駆動したが、スイッチング電源等を用いて高電圧を発生してもよい。
(3)上記実施形態において、MOSトランジスタ70によるゲイン調整回路を増幅回路の入力部に設けたが、これに代えて、MOSトランジスタをオペアンプの帰還回路に挿入した増幅回路を使用しても良い。
(4)チャージポンプ回路の動作状態の切替例として、ON/OFF制御する例を示したが、動作周波数の高低で出力電圧を変化させるものであっても良い。
(5)差動増幅回路100あるいはコンパレータ回路200について使用されるnチャンネルトランジスタをpチャンネルトランジスタに変更し、pチャンネルトランジスタをnチャンネルトランジスタに変更し、電源電位VDDを接地電位に変更し、接地電位を電源電位VDDに変更し、さらに電流源の電流方向を反転した構成によっても実現可能である。
【0038】
【発明の効果】
以上説明したように請求項1記載の構成においては、高電圧電源回路を用いた高圧電源により、差動入力回路に電流を供給するカレントミラー回路を駆動しているので、入力電圧が電源電圧まで変化しても、第1の素子に流れる電流と第2の素子に流れる電流との差に応じた電圧が負荷回路に発生する。また、該高電圧電源回路を消費電流が少ない差動入力回路の駆動に用いているので、小型に該高電圧電源回路を構成できる。
また、請求項3に記載の構成においては、チャージポンプ回路による出力電圧を用いて、増幅率を増減するため、広い範囲で増幅率を増減することが出来る。
【図面の簡単な説明】
【図1】従来の差動増幅回路(含むコンパレータ回路)およびAGC回路の回路図である。
【図2】本発明の一実施形態であるコンパレータ回路および本発明の一実施形態であるAGC回路の回路図である。
【図3】本発明の一実施形態である差動増幅回路の回路図である。
【図4】チャージポンプの回路図およびクロック波形を示す図である。
【図5】チャージポンプの回路図およびクロック波形を示す図である。
【符号の説明】
11,12,13,14,15,16,17,211,212,213,214,215,216…nチャンネルトランジスタ、21,22,23,24,25,26,27,221,222,223,224,225,226…pチャンネルトランジスタ、30…差動増幅回路、35…コンパレータ回路、43,45,47,51,53,55,57…抵抗器、62…電解コンデンサ、64…コンデンサ、70…MOSトランジスタ、75…MOSトランジスタ、80,280…高電圧発生回路(高圧電源回路)、84…チャージポンプ回路、90,290…定電流源、100…差動増幅回路、200…コンパレータ回路、300…AGC回路

Claims (4)

  1. 第1の入力電圧によりインピーダンスを増減する第1の素子に流れる電流と第2の入力電圧によりインピーダンスを増減する第2の素子に流れる電流との和を制御するカレントミラー回路と、
    所定の電源電圧を昇圧し、前記カレントミラー回路を駆動する高電圧電源回路と、
    前記第1の素子に流れる電流と前記第2の素子に流れる電流との差に応じた電圧を出力する負荷回路と、
    前記電源電圧によって駆動され、前記負荷回路の出力を増幅する出力回路と
    を有することを特徴とする差動増幅回路。
  2. 前記第1の素子および前記第2の素子は、MOSトランジスタによって構成され、前記第1の素子を前記負荷回路に接続する点の電位および前記第2の素子を前記負荷回路に接続する点の電位の双方をゲート閾値電圧以下に設定したことを特徴とする請求項1記載の差動増幅回路。
  3. 出力電圧と基準電圧とを比較するコンパレータ回路と、
    前記コンパレータ回路の出力に基づいて動作状態が切り替わるチャージポンプ回路と、
    前記チャージポンプ回路の高電圧出力を時間平均する平均化回路と、
    前記平均化回路の出力により増幅率を増減する増幅回路と
    を有することを特徴とするAGC回路。
  4. 前記コンパレータ回路および前記増幅回路は、請求項1記載の差動増幅回路を用いたものであることを特徴とする請求項3記載のAGC回路。
JP2002341675A 2002-11-26 2002-11-26 Agc回路 Expired - Fee Related JP4211369B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341675A JP4211369B2 (ja) 2002-11-26 2002-11-26 Agc回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341675A JP4211369B2 (ja) 2002-11-26 2002-11-26 Agc回路

Publications (2)

Publication Number Publication Date
JP2004179814A true JP2004179814A (ja) 2004-06-24
JP4211369B2 JP4211369B2 (ja) 2009-01-21

Family

ID=32703932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341675A Expired - Fee Related JP4211369B2 (ja) 2002-11-26 2002-11-26 Agc回路

Country Status (1)

Country Link
JP (1) JP4211369B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330869A (ja) * 2005-05-24 2006-12-07 Sanyo Electric Co Ltd レギュレータ回路
JP2011250195A (ja) * 2010-05-27 2011-12-08 Lapis Semiconductor Co Ltd フォールデッドカスコード型の差動アンプ及び半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330869A (ja) * 2005-05-24 2006-12-07 Sanyo Electric Co Ltd レギュレータ回路
JP2011250195A (ja) * 2010-05-27 2011-12-08 Lapis Semiconductor Co Ltd フォールデッドカスコード型の差動アンプ及び半導体装置

Also Published As

Publication number Publication date
JP4211369B2 (ja) 2009-01-21

Similar Documents

Publication Publication Date Title
US11876510B2 (en) Load driver
US7764113B2 (en) Output circuit
JP4559643B2 (ja) ボルテージ・レギュレータ、スイッチング・レギュレータ、及びチャージ・ポンプ回路
US20110148375A1 (en) Power amplifying circuit, DC-DC converter, peak holding circuit, and output voltage control circuit including the peak holding circuit
KR20190141868A (ko) 발진기
US7511563B2 (en) Ripple current reduction circuit
JP5444869B2 (ja) 出力装置
US20110274290A1 (en) Fast start-up circuit for audio driver
US7288993B2 (en) Small signal amplifier with large signal output boost stage
JP2014128038A (ja) 電源装置
KR100528858B1 (ko) 진폭변환회로
JP2006157607A (ja) 増幅器
US7560987B1 (en) Amplifier circuit with bias stage for controlling a common mode output voltage of the gain stage during device power-up
JP2010130136A (ja) オーディオ信号処理回路およびチャージポンプ回路の制御方法
US8102200B2 (en) Current control circuit
JP4357698B2 (ja) リセット回路及び電源装置
JP2001042830A (ja) 電源装置、及びこれを用いた液晶表示装置
JP4211369B2 (ja) Agc回路
CN110622403B (zh) 电源电路
JP2018196201A (ja) Dc/dcコンバータ
JPH02101814A (ja) チョッパ型コンパレータ
JP3385100B2 (ja) 演算増幅器
JP4412067B2 (ja) 直流電源装置
US20060055390A1 (en) Circuit arrangement with a level shifter and a voltage regulator
JP3823853B2 (ja) 駆動回路及びそれを用いた表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees